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ABSTRACT. We study the possible structures of monodromy groups of Kloosterman and hypergeo-
metric sheaves on G, in characteristic p. We show that most such sheaves satisfy a certain condition
(S+), which has very strong consequences on their monodromy groups. We also completely clas-
sify finite, almost quasisimple, groups that can occur as monodromy groups of Kloosterman and
hypergeometric sheaves.
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INTRODUCTION

Given a prime p, it was conjectured by Abhyankar [Abh] and proven by Raynaud [Ray] (see also
[Pop]) that any finite group G' which is generated by its Sylow p-subgroups occurs as a quotient of
the fundamental group of the affine line A!/F,. The analogous result for the multiplicative group
Gy, := Al\ {0}, also conjectured by Abhyankar and proven by Harbater [Har] is that any finite
group G which, modulo the subgroup Opl(G) generated by its Sylow p-subgroups, is cyclic, occurs as
a quotient of the fundamental group of G,,/F,. In the ideal world, given such a finite group G, and
a complex representation V' of G, we would be able, for any prime ¢ # p, to choose an embedding
of C into Qp, and to write down an explicit Q/-local system on either A! JF, or on G,,/F, whose
geometric monodromy group is GG, in the given representation.

In some earlier papers, we have been able to do this for some particular pairs (G,V). When
we were able to do this on A!, it was through one-parameter families of “simple to remember”
exponential sums, often but not always rigid local systems on A'. When we have been able to do
this on G,,, it was through explicit irreducible hypergeometric sheaves. We focus on hypergeometric
sheaves because they are the simplest rigid local systems on G,, (simplest in the technical sense
of having the lowest nonzero sum of Swan conductors among all irreducible local systems), yet are
known to yield many interesting groups as their monodromy groups.

Here we reverse this point of view, and investigate what possible (G, V') can hypergeometric
sheaves give rise to? The first part of the paper is devoted to showing that for the majority of
(primitive) hypergeometric sheaves H, their geometric monodromy groups Ggeom (Which need not
be finite) in their given representations satisfy a certain condition (S+) (which is a slightly strength-
ening of condition (S) introduced in [GT2], and roughly speaking, corresponds to Aschbacher’s class
S of maximal subgroups of classical groups [Asch]), see Theorems 1.7, 1.9, 1.11, and 1.12. When
this condition holds, it imposes strong restrictions on the pair (Ggeom, H). If G is infinite, then the
identity component Gy, 0f Ggeom 1s a simple algebraic group, still acting irreducibly. If G is finite,
then either G is almost quasisimple (that is, S << G/Z(G) < Aut(S) for some non-abelian simple
group S), or G is an “extraspecial normalizer”, in particular, the dimension of the representation
is a prime power 7" and there is an extraspecial r-group E in G of order 712" acting irreducibly.

In this paper, we consider only geometrically irreducible hypergeometric sheaves, i.e., those on
which Ggeom acts irreducibly. One also knows that if Ggeom is finite, then a generator of local
monodromy at 0 is an element of G which has all distinct eigenvalues in the given representation
(a “simple spectrum” element). And by Abhyankar, if Ggeom is finite, then G/ 0" (G) is cyclic.

Let us say that a triple (G, V, g) satisfies the Abhyankar condition at p if G is a finite group such
that G/ Op’(G) is cyclic, V' a faithful, irreducible, finite-dimensional complex representation of G,
and g € G an element of order coprime to p that has simple spectrum on V. So a natural question
is which triples (G, V,g), with G a finite group, almost quasisimple or an extraspecial normalizer,
that satisfy the Abhyankar condition at p, occur “hypergeometrically”, that is, as (Ggeom, H, g) for
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a hypergeometric sheaf H and a generator g € Gigeom of local monodromy around 0 on G, /F, (and
V realizes the action of G = Ggeom on H).

Grosso modo, our main results essentially classify all such triples (G,V,g) that can arise from
hypergeometric sheaves, and also determine the structure of geometric monodromy groups of hy-
pergeometric sheaves that satisfy the condition (S+). These groups are then shown to occur hy-
pergeometrically in companion papers listed below.

More precisely, in Theorems 6.2, 6.4, and 6.6 we classify all pairs (G,V'), where G is a finite
almost quasisimple group and V is a faithful, irreducible, finite-dimensional complex representation
of G such that some element g € G has simple spectrum on V. Next, in Theorem 7.3 we show that
if such a group G occurs as Ggeom for a hypergeometric sheaf in characteristic p and in addition G
is a finite group of Lie type in characteristic 7, then p = r unless dim(V') is small. Theorem 7.4
gives an analogous result in the case G is an extraspecial normalizer. With these results in hand,
we complete the classification of triples (G, V, g) that satisfy the Abhyankar condition at p, with
G being almost quasisimple or an extraspecial normalizer, in §8. An in-depth algebro-geometric
and representation-theoretic study of geometric constraints for a finite group G to occur as Ggeom
of a hypergeometric sheaf in §§4, 5, 9, allows us to rule out certain families of such triples. All
the remaining almost quasisimple triples (G, V, g), that satisfy the Abhyankar condition at p and in
addition these extra constraints, are then shown (modulo a central subgroup) to occur hypergeomet-
rically; the respective hypergeometric sheaves H are explicitly constructed in a series of companion
papers [KRL], [KRLT1]-[KRLT4], [KT1]-[KT3], [KT5]-[KT8]. The extraspecial normalizer case is
treated in [KTS].

The hypergeometric sheaves with infinite geometric monodromy groups will be studied in a sequel
to this paper.

1. THE BASIC (S4) SETTING

1A. Conditions (S) and (S+). We work over an algebraically closed field C of characteristic
zero, which we will take to be Q, for some prime ¢ in the rest of this paper. Given a nonzero
finite-dimensional C-vector space V' and a Zariski closed subgroup G < GL(V), recall from [GT2,
2.1] that G (or more precisely the pair (G, V) is said to satisfy condition (S) if each of the following
four conditions is satisfied.

(i) The G-module V is irreducible.

(ii) The G-module V is primitive.
(iii) The G-module V is tensor indecomposable.
(iv) The G-module V' is not tensor induced.

Lemma 1.1. Suppose 1 # G < GL(V') is a Zariski closed, irreducible subgroup. Then the following
statements hold.
(i) If G satisfies (S), dim(V) > 1, and Z(QG) is finite, then we have three possibilities:
(a) The identity component G° is a simple algebraic group, and V'|ge is irreducible.
(b) G is finite, and almost quasisimple, i.e. there is a finite non-abelian simple group S such
that S < G/Z(G) < Aut(S).
(c) G is finite and it is an “extraspecial normalizer” (in characteristic r ), that is, dim(V') = r"
for a prime r, and G contains a normal r-subgroup R = Z(R)E, where E is an extraspecial
r-group E of order r'+?" acting irreducibly on V, and either R = E or Z(R) = C}.
(ii) Z(Q) is finite if and only if det(G) is finite.

(
Proof. (i) The proof of [GT2, Prop. 2.8] (taking H = () shows that one of (a)-(c) holds.
(ii) By Schur’s lemma, Z(G) consists of scalar matrices, hence the finiteness of det(G) implies
|Z(G)| < oo. Suppose now that |Z(G)| < co. Note that the unipotent radical of G° has nonzero
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fixed points on V' [Hum, 17.5], hence the irreducibility of V' # 0 implies that G° is reductive, and
so G° = T[G°,G°] with T := Z(G°)° and [G°,G°] < SL(V). As G/G° is finite, it suffices to show
that T < SL(V).

We may assume the torus T has dimension d > 1, and let Aq,..., A\, denote the distinct weights
of T acting on V. The irreducibility of V over G > T implies that G/G° acts transitively on
{A1,..., An}; in particular, all these weights occur on V' with the same multiplicity e > 1. Let
A < GL4(Z) denote the finite subgroup induced by the action of G/G° on the character group
X(T) =74 and let W := X(T) ®z Q. As A is finite, we can find an A-invariant Euclidean scalar
product (-,-) on W. Note that

(1.1.1) W =W, Al @ W4,
where [W, A] := (a(v) —v | a € A,v € W)g and W4 := {v € W | a(v) = v, Va € A}. [Indeed, for
any a € A, v e W, and w € W# we have
(a(v) = v,w) = (a(v),w) — (v,w) = (a(v),a(w)) — (v,w) =0,
showing [WW, A] L W4. Also we have
Al-v = (v —a(v)+ > a(v),
acA acA

ensuring W = [W, A] + W4]

Choose a basis ai,...,a; € X(T) of [W, A] (over Q). Consider any g € G and the element
a € A induced by the conjugation action of g on T'. Since X(7T') has finite rank d, we can find an
integer N, > 0 such that Ny(a(8) — B) € (au,...,q)z for all B € X(T). As A is finite, taking
N :=lem(N, | a € A), we have that

(1.1.2) N(a(B)—p) € {(a1,...,qp)z, foralla € A and g € X(T).
Now, if | <d—1, then T} := (ﬂ;zl Ker(aj))o has dimension > 1. On the other hand, by (1.1.2),
for any t € 71 and any § € X(T), g € G, we have
BgtNg™'t™N) = BllgtgHYM)/BEN) = (a(8)(1)" /BN = (N(a(8) — 8))) (1) = 1

if g induces a € A. Thus gtVg=! =tV for all g € G, and so tV € Z(G) for all t € Ty, a contradiction
since |Z(G)| < oo and dim Ty > 1. It follows that [ = d, and so W4 = 0 by (1.1.1).

Recall that A1, ..., A, is an A-orbit in W. Hence 3.7, \; € W4, and so 31", \; = 0. Finally,
for any t € T, note that

det(tlv) = (JTr(®)) = (eD_ M) (1) =1,
i=1 i=1
ie. T <SL(V), as stated. O

Definition 1.2. A pair (G, V) is said to satisfy the condition (S+), if it satisfies (S) and, in addition,
|Z(G)| is finite (equivalently, det(G) is finite).

The following lemma is immediate from the definitions.

Lemma 1.3. Given a Zariski closed subgroup G C GL(V') and a Zariski closed subgroup H < G,
suppose that (H,V|m) satisfies (S). Then (G,V) satisfies (S). If in addition Z(G) is finite, then
(G, V) satisfies (S+).

Let us also recall the following lemma from [GT2, Lemma 2.5].
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Lemma 1.4. Given a Zariski closed subgroup G C GL(V) and a Zariski closed normal subgroup
H < G, suppose that (G, V) satisfies the first three conditions defining (S), i.e., suppose that G is
irreducible, primitive, and tensor indecomposable. Then either H < Z(G) or V' |y is irreducible.

Definition 1.5. More generally, if I' is any group given with a finite-dimensional representation
¢ : T — GL(V), then we say (I', V) satisfies (S+), if (®(I"), V') satisfies the three conditions of (S)
and, in addition, det(®(T")) is finite.

Lemma 1.6. Let I' be a group, C an algebraically closed field of characteristic zero, n € Z>1,
¢ : I' - GL,(C) = GL(V) a representation of I', and G < GL(V') the Zariski closure of ®(I").
Then (I',V) satisfies (S+) if and only if (G,V) satisfies (S+). This equivalence holds separately
for each of the four conditions defining (S+).

Proof. If V is G-reducible, it is a fortiori I'-reducible. Conversely, if ®(I") stabilizes a proper subspace
U # 0 of V, then, since the stabilizer of U in GL(V') is closed, G also stabilizes U and so is reducible
on V. If V is G-imprimitive, any system of imprimitivity for G remains one for I". Conversely, if
®(I") stabilizes an imprimitive decomposition V' = @, V; of V, then, since the stabilizer of this
decomposition in GL(V) is closed, G also stabilizes the decomposition and so is imprimitive on V. If
V' is tensor decomposable as a G-module, then a fortiori it is tensor decomposable for I'. Conversely,
if ®(I") stabilizes a tensor decomposition V = A ® B with dim A,dim B > 1, we use the fact that
the image of the“Kronecker product” map GL(A) x GL(B) — GL(A ® B), namely the stabilizer
GL(A) ® GL(B), is closed, cf. [Hum, 7.4, Prop. B]. Therefore G also stabilizes the decomposition
and so is tensor decomposable on V. The same argument shows that V' is tensor induced for G if
and only if it is tensor induced for T'. Indeed if V is V®" with dim(V}) > 1 and n > 1, use the
fact that the image in GL(V{®") of the wreath product GL(V1)1S,, is closed to see that ®(T") lands
in this image if and only if G does. If det(G) fails to be finite, then det(®(I")) is infinite, by the
Zariski density of ®(I") in G. If det(G) is finite, then a fortiori det(®(I")) is finite. O

1B. Statements of theorems of type (S+) for Kloosterman and hypergeometric sheaves.
We work in characteristic p, and use Qg-coefficients for a chosen prime £ # p. We fix a nontrivial
additive character ¢ of IF,,, with values in p, (Qg). We will consider Kloosterman and hypergeometric
sheaves on Gy, /F, as representations of w1 := m1(G,,/F,), and prove that, under various hypotheses,
they satisfy (S+) as representations of m;. As noted in Lemma 1.6, this is equivalent to their
satisfying (S+) as representations of their geometric monodromy groups Ggeom. Furthermore, it is
a consequence of [De, 1.3.8] that det(Ggeom) is finite for any such (geometrically irreducible) sheaf;
hence (S+) amounts to (S).
On Gy, /F,, we consider a Kloosterman sheaf

Kl := Kly(x1,---,XD)

of rank D > 2, defined by an unordered list of D not necessarily distinct multiplicative characters
of some finite subfield F, of F,,.

One knows that Kl is absolutely irreducible, cf. [Ka-GKM, 4.1.2]. One also knows, by a result
of Pink [Ka-MG, Lemmas 11 and 12] that Kl is primitive so long as it is not Kummer induced.
Recall that Kl is Kummer induced if and only if there exists a nontrivial multiplicative character p
such that the unordered list of the x; is equal to the unordered list of the px;. Thus primitivity (or
imprimitivity) of Kl is immediately visible.

Theorem 1.7. Let Kl be a Kloosterman sheaf of rank D > 2 in characteristic p which is primitive.
Suppose that D is not 4. If p = 2, suppose also that D # 8. Then Kl satisfies (S+).

Remark 1.8. We exclude D = 4 because in any odd characteristic p, there are Kloosterman sheaves
of rank D = 4 which are 2-tensor induced, cf. [Ka-CC, Theorem 6.3].
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We next consider a hypergeometric sheaf H of type (D, m) with D > m > 0, thus
H=Hypy(X1,-- -, XD P1,- - -+ Pm)-

Here the x; and p; are (possibly trivial) multiplicative characters of some finite subfield F, with
the proviso that no x; is any p;. [The case m = 0 is precisely the Kl case.] One knows [Ka-ESDE,
8.4.2, (1)] that such an H is lisse on G,,, geometrically irreducible. Its local monodromy at 0 is
tame, a successive extension of the y;. It is of finite order if and only if the y; are pairwise distinct,
in which case that local monodromy is their direct sum @;x;, cf. [Ka-ESDE, 8.4.2, (5)]. Its local
monodromy at oo is the direct sum of a tame part which is a successive extension of the p;, with a
totally wild representation Wildp_,,, of rank D —m and Swan conductor one, i.e. it has all co-breaks
1/(D —m). It is of finite order if and only the p; are pairwise distinct, in which case that local
monodromy is the direct sum of @©;p; with Wildp_,,,. We denote by W := D — m the dimension of
the wild part Wild.

In the case of a hypergeometric sheaf H with m > 0, primitivity is less easy to determine at first
glance, because there is also the possibility of Belyi induction, cf. [KRLT3, Proposition 1.2]. It is
known that an H of type (D, 1) is primitive unless D is a power of p, cf. [KRLT3, Cor 1.3]. It is
also known [KRLT3, Proposition 1.4] that an H of type (D, m), with D > m > 2 and D a power of
p, is primitive.

Theorem 1.9. Let H be a hypergeometric sheaf of type (D,m) with D > m > 0, with D > 4.
Suppose that H is primitive, p4 D, and W > D /2. If p is odd and D = 8, suppose W > 6. If p # 3,
suppose that either D # 9, or that both D =9 and W > 6. Then H satisfies (S+).

Remark 1.10. In the case D = 4, the condition W > D/2 is sharp. In any odd characteristic p,
there are hypergeometric sheaves of type (4,2) which are 2-tensor induced, cf. [Ka-CC, Theorem
6.5]. There are also hypergeometric sheaves of type (4,2) which are tensor decomposable, cf.
[Ka-CC, Theorem 5.3].

Here is a slight variant, which visibly implies the above Theorem 1.9.

Theorem 1.11. Let H be a hypergeometric of type (D, m) with D > m > 0, with D > 4. Suppose
that H is primitive, p{ D, and denote by pgy the least prime divisor of D. Suppose that any of the
following conditions holds.

(i) D= po.

(ii) D = p? and W > 2py.

(iii) D is neither po nor p3 nor 8, and W > D /py.

(iv) D=4 and W = 3.

(v) D=8 and W > 6.
Then H satisfies (S+).

In the case when p divides D, we need stronger hypotheses to show that (S+) holds.
Theorem 1.12. Let ‘H be a hypergeometric of type (D, m) with D > m > 0, with D > 4. Suppose

that H 1is primitive, p|D, and W > (2/3)(D —1). If p = 2, suppose D # 8. If p = 3, suppose (D, m)
is not (9,1). Then H satisfies (S+).

2. TENSOR INDECOMPOSABILITY

In this section, we will prove the tensor indecomposability for the Kloosterman and hypergeomet-
ric sheaves of Theorems 1.7, 1.9, 1.11, 1.12. We begin with a general statement on “linearization”.
Let k be an algebraically closed field of characteristic p > 0, and U/k an affine curve which
smooth and connected, X/k the complete nonsingular model of U/k, and oo a k-point of X \ U.
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Denote by 71 (U) the fundamental group of U (with respect to some geometric point as base point),
and denote by I(oco) C m1(U) a choice of inertia group at co. Fix a choice of a prime £.

Proposition 2.1. Suppose we are given a finite dimensional Qg-vector space V' on which w1 acts
continuously, by a representation p. Suppose further that we are given an expression of the vector
space V' as a tensor product V =A1 @ Ao ® --- ® A, of n > 2 vector spaces A;, each of dimension
d; > 2, such that the image of p(m1(U)) lands in the subgroup

GL(A;) ® GL(A42) ® - - - ®@ GL(A4,,) < GL(V).
[This is the subgroup of those automorphisms of V' which have (non-unique !) expressions as n-fold
tensor products of automorphisms of the A;.] Then we have the following results.

(i) There exists a lifting of p to a homomorphism
p:m(U) — SL(A;1) x SL(Ag) X -+ x SL(A4,-1) X GL(4,,).

(ii) Suppose that for i =1 ton — 1, dim(A4;) is prime to p. Suppose that in the representation
p, all the co-slopes are < r for some real number r > 0, i.e., for each real x > r, the upper
numbering subgroup I(c0)®) acts trivially on V. Then for any lifting jp as in (i), each A;
(viewed as a representation of w1 (U) by applying p and then projecting onto the A; factor)
has all its co-slopes are < r.

Proof. To prove the first assertion, we argue as follows. In an expression of an element of ®7_; GL(A4;)
as ®)_ oy, we are free to multiply each «; by an invertible scalar A;, so long as [[; A1 = 1. Doing
this, we can move the first n — 1 of the «; into SL(A;). In other words, we have an equality of
groups

(©75SL(A)) ® GL(An) = @ GL(A;)

inside GL(V'). So we have a short exact sequence
n—1 n—1
1= [ saim(ay) = (] ] SL(A9)) x GL(A,) = @7 GL(4A;) — 1,
i=1 i=1

the first map sending ({1, -+ ,(n—1) to (¢, 5 Gu—1,1/ H?;ll i). Now use the fact that 71 (U) has
cohomological dimension < 1, to lift p.

If the first n — 1 factors A; have dimensions prime to p, then the group H?;ll Hdim(A;) has order
prime to p. If a given I(00)®) with 2 > r dies under p, then its image under p lands in H?;ll Hdim(A;)-
But I(c0)® with z > r is a pro-p group, so must die in the prime to p group H?;ll Hdim(A;)- Thus
I(00)®) with 2 > r dies under p. In other words, each A; has all its I(co)-slopes < 7. O

Here is a more precise statement, which will be essential in what follows.

Proposition 2.2. Hypotheses and notations as in Proposition 2.1 above, denote by F the local
system given by p.
(i) There exist local systems Ay, ..., A, on U of respective ranks d; and an isomorphism of local
systems on U

FEAQRAR...Q A,

such that for i < n, the representation p; corresponding to A; has image in SLg,(C).

(ii) Suppose each d; := rank(A;) for i < n is prime to p. Suppose that in the representation p,
all the co-slopes are < r for some real number r > 0. Then the A; each have all co-slopes
<r.
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Proof. (i) Each of the tensor factors A; is a projective representation of m := m(U), i.e. a homo-
morphism to PGL(A4;). But PGL(A;) = PSL(A4;). The obstruction to lifting each tensor factor to
a linear representation toward SL(A;) lies in the group H? (1, f1a,), which vanishes (because m(U)
has cohomological dimension < 1). Let p; : m1 — SL(A;) be some choice of lifting, and let B; be the
corresponding local system on U. What is the relation of F to the tensor product of the B;? They
give rise to the same projective representation, so their ratio is a rank one local system, call it L,
so that we have
FEBiB®...0 B, L.

Taking A; := B; for i < n and A, := B, ® L gives the asserted isomorphism.
(ii) Denote by x the one-dimensional representation of 71 giving £. Then view

P=p1@P2® ... 3 pu-1® (pn @ X)
is a lifting p of p, and apply (ii) of Proposition 2.1 above. Here is a more “concrete” proof. Take
any real number z > r, and any element v € I(00)®. By hypothesis, p(y) = 1, i.e. the Kronecker
product
p1(7) ® p2(7) ® -+ @ pn-1(7) @ (pn @ X)(7) = 1.
But in order for an external tensor product to be 1, each factor must be a scalar A;, and

H/\z-:L

(2
Because each p;(y) has p-power order, each scalar \; is a p-power root of unity. For ¢ < n, the only
p-power roots of unity in SLg,(C) is 1 (simply because d; is prime to p for i < n). Thus for i < n,
A; = 1. By the product formula above, A\, = 1 also. O

Lemma 2.3. Let Kl be a Kloosterman sheaf of rank D > 2 in characteristic p. Then Kl is tensor
indecomposable.

Proof. If D is a prime number, there is nothing to prove. If D is not prime, suppose that D = AB
with A, B both > 2. Suppose that the image of 71 := 71(G;,,/F,) lies in GL(A4) ® GL(B). In view of
Proposition 2.2, there exist local systems A and B on Gy, /F,, of ranks A and B respectively, such
that we have an isomorphism Kl = A ® B as representations of m. We argue by contradiction.

Consider first the “easy” case, in which p? does not divide D. Then p does not divide at least
one of A or B. The largest oo-slope of Kl is 1/D. In view of part (ii) of Proposition 2.2, we may
choose the local systems A and B so that each of them has largest oo-slope < 1/D. Then their
Swan conductors at oo satisfy

Swane(A) < A/D < 1,Swan(B) < B/D < 1.

But Swan conductors are nonnegative integers, so we have Swany,(A) = Swany,(B) = 0, i.e., both
A and B are tame at oco. But then Kl = A ® B is tame at oo, contradiction.

Suppose now that Kl = A ® B, but both A and B are divisible by p. In this case, we use the
argument of Such, cf. [Such, Prop. 12.1, second paragraph]. We have

End(Kl) = End(A ® B) = End(A) ® End(B) = (1 ® End’(A)) ® (1 @ End®(B))
=1 @ End’(A) @ End’(B) ® End’(A) @ End®(B).
In particular, each of End’(A), End®(B) is a direct factor of End(Kl). To fix ideas, assume A < B.
Then A% < D, and hence End®(A) has rank < D — 1. The largest co-slope of Kl is 1/D, as is the
largest slope of its dual (itself another Kloosterman sheaf of the same rank D). There End(Kl) has

all co-slopes < 1/D. Therefore End’(A)) has Swans, < (D —1)/D < 1. Just as above, this forces
End’(A) to be tame at oo. Hence also End(A) (being the sum of End’(A) and 1) is tame at oc.
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Thus the wild inertia group P(oo) acts trivially on End(A), and hence acts by a scalar character on
A. Observe that A is I(co)-irreducible, simply because A ® B is I(oco)-irreducible. Recalling that
p|A, write A as nogg with ny prime to p and with ¢ a positive power of p. From [Ka-GKM, 1.14], we
know that the restriction of A to P(c0) is the sum of ng pairwise distinct irreducible representations
of P(00), each of dimension g. This contradicts having P(co0) act on A by a scalar character. [

Lemma 2.4. Let H be a hypergeometric sheaf of type (D, m) with D > m > 0 in characteristic p.
Then H is tensor indecomposable under each of the following hypotheses.

(i) D # 4.

(i) D =4, p odd, and (D, m) # (4,2).

(iii) D=4, p=2, and (D,m) # (4,1).

Proof. This is proven in [KRLT3, Cor. 10.4], in the stronger form that under the stated hypotheses,
the I(oo)-representation of H is tensor indecomposable. O

3. TENSOR INDUCED SHEAVES

3A. Dealing with tensor induction: First steps. Given (G,V) as in the first section, and an
integer n > 2, we say that (G,V) is n-tensor induced if D := dim(V) is an n*® power D = Dy
with Dg > 2 and there exists a tensor factorization of V as V = 41 ® A3 ® --- ® A,, with each
dim(A;) = Dy, such that G < (®!"_;{GL(A;)) xS, with the symmetric group S, acting by permuting
the factors.

One says that (G, V) is not tensor induced if it is not n-tensor induced for any n > 2.

We have the following obvious but useful lemma.

Lemma 3.1. Given (G, V) whose dimension D := dim(V') > 2 not a power (i.e., not an n'" power
for any n > 2), then (G,V) is not tensor induced.

To deal with the case when D is a power, we begin with the following lemma.

Lemma 3.2. Let F be either a Kloosterman sheaf Kl of rank D > 4 or a hypergeometric sheaf H
of type (D,m) with D > m > 0 and D > 4. Suppose F is n-tensor induced for a given n > 2.
Consider the composite homomorphism

71 (Gm/Fp) — (®12GL(4;)) x S, — S,
obtained by projecting onto the last factor. Suppose we are in either of the following four situations.

(i) F is a Kloosterman sheaf of rank D > 4.
(ii) F is a hypergeometric sheaf H of type (D, m) with D # 4. Denote by py the least prime
dividing D, and suppose we have the inequality W > D/p%.
(iii) F is a hypergeometric sheaf H of type (4,1) and p is odd.
(iv) F is a hypergeometric sheaf H of type (4,2) and p = 2.

tame at 0,00
’

Then this composite homomorphism factors through the tame quotient ﬂl(Gm/E) and

its image is an n-cycle in S,,. Moreover, n is prime to p.

Proof. Via the deleted permutation representation, we have S,, < O,_1(C). View the composite
homomorphism as an (n — 1)-dimensional representation of ;. It is tame at 0, and its largest oo
slope is < 1/W. We first show that this homomorphism is tame at co. For this, via the inequality
Swane, < (n —1)/W, it suffices to show that W >n — 1.

In the Kloosterman case, W = D and D = D{} with Dy > 2 and n > 2. So we must show in this
case that D > n — 1 for Dy > 2 and n > 2. Hence we are done, since 2" > n — 1 for all n € Z>.

In the two hypergeometric cases with D = 4, the only possible n is n = 2. In both of these cases,
we have W > 1.
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In the hypergeometric case with D # 4, we are given W > D/ p% =Dy/ p%, so it suffices to show
that Dy /p2 > n—1 for n > 2. Because po|D and D = D}, po must divide Do. Thus D}}/p3 > pi~2,
and it suffices to show that pg_Q > n—1. Again for given n > 2, it suffices to show that 2"~2 > n—1,
which holds for all n > 2.

The tame quotient 71(G,,/F,)tame @ 020 ig the pro-cyclic group [], 2p Ze(1), of pro-order prime
to p. So its image in S, is a cyclic group of order prime to p. But this image must be transitive,
otherwise our Kl would be tensor decomposed (never) or our ‘H would be tensor decomposed (not
under the D # 4 and (D, m) not (an even power of p, 1) hypothesis). Thus the image is (the cyclic
group generated by) an n-cycle. Because the tame quotient is pro-cyclic or pro-order prime to p,
and cyclic quotient has order prime to p. Thus n is prime to p. O

Corollary 3.3. Let F be either a Kloosterman sheaf or a hypergeometric sheaf which satisfies one
of the hypotheses of Lemma 3.2 above, if F is n-tensor induced for a given n > 2 (n necessarily
prime to p), then we have a tensor decomposition of the Kummer pullback [n]*F,

M F=A10Ac -1 A,

with local systems A; each of rank Do > 2. Moreover, if D is prime to p, then we can choose this
tensor decomposition so that each A; has all oo slopes < n/W.

Proof. In view of Lemma 3.2, after this Kummer pullback, 7 lands in ®} ;GL(A4;). Then apply
the linearization Proposition 2.2. The largest co slope of [n]*F is n/W, so in the case when D is
prime to p, we apply part (ii) of Proposition 2.2. O

3B. Tensor induction: the case when p1t D.
The proof of Theorem 1.11 is completed by the following proposition:

Proposition 3.4. Let F be either a Kloosterman sheaf Kl of rank D > 4 or a hypergeometric sheaf
H of type (D,m) with D >m >0 and D > 4. Suppose further we are in one of the following three
situations.

(i) F is a Kloosterman sheaf of rank D > 4 and D is prime to p.

(ii) F is a hypergeometric sheaf H of type (D, m) with D # 4 and D prime to p. Denote by
po the least prime dividing D, and suppose we have the inequality W > D/pg. If D = pg
(possible only if po > 2, given that D > 4), suppose in addition that W > 2pg. If D = 8,
suppose in addition that W > 6.

(iii) F is a hypergeometric sheaf H of type (4,1) and p # 2.

Then F is not tensor induced.

Proof. We treat first the case of a hypergeometric sheaf H of type (4,1) in characteristic p # 2.
We must show that # is not 2-tensor induced. If it were, then the I(oco) of [2]*H would be tensor
decomposed. But its slopes are 2/3 repeated 3 times, and 0. Thus the I(co) of [2]*H is the sum
of a one-dimensional tame part and a single wild irreducible of dimension 3, hence is not tensor
decomposable, cf. [KRLT3, Cor. 10.4 (ii)].

The idea is to show that in the other cases, each A; is tame at co. [For this, it suffices to show
that its Swan conductor is < 1.] This tameness forces [n]*F to be tame at oo, which is nonsense.

We begin with the Kloosterman case. If we are n-tensor induced, then D = D{, each A; has
rank Dy and all oo slopes < n/W =n/D = n/Dy. It suffices to show that each A; has Swans, < 1.
This Swan conductor is < Dgy(n/Df), so it suffices to show that

n < Dg_l
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when n > 2 and Dy > 2, except in the case (n = 2, Dy = 2), which is ruled out by the D > 4
hypothesis. For n = 2, the worst remaining case is Dy = 3, and indeed 3 > 2. For n > 3, the worst
case is 2"~ > n, which indeed holds.

In the hypergeometric case, we again have Dy(n/W') as an upper bound for the Swan conductor
of any A;. We have W > D/py, so we wish to show nDy < W, which is implied by

nDO < Dg/p()ai'e'v D(T)hl > npo-

Because pg divides D = D{}, po divides Dy, so we write Dy = ngpo for some integer ng > 1. It
suffices to show
n8_1p8_2 > n.

This last equality is visibly false for n = 2 if ng = 1, i.e, if we are dealing with the case D = p%.
But in that case we assumed that W > 2pg, and with this estimate we do have nDg < W in the
n = 2 case with D = pg.

Suppose now that n = 3. Then we need 3Dy < D%/po, i.e., we need D[Q) > 3po, i.e., n%po > 3.
This is fine so long as pg > 3 or ng > 1. In the case Dy = pg = 2, the desired inequality for n = 3
is 3-2 < W, which is precisely what we assumed in the D = 8 case.

Finally, for n > 4, where we need nDy < D{/po, this is implied by pg_Q > n, which for n > 4
already holds for the worst case pg = 2. ]

Remark 3.5. In [Ka-ESDE, 10.6.9 and 10.9.1], there are examples of hypergeometric sheaves of
type (9,3) which are 2-tensor induced. In [Ka-ESDE, 10.8.1], there are examples of hypergeometric
sheaves of type (8,2) which are 3-tensor induced.

3C. Tensor induction: the case when p|D.
The proof of Theorem 1.12 is completed by the following proposition:

Proposition 3.6. Let F be either a Kloosterman sheaf Kl of rank D > 4 or a hypergeometric sheaf
H of type (D, m) with D > m >0 and D > 4. Suppose further we are in one of the following three
situations.
(i) F is a hypergeometric sheaf H of type (4,2) in characteristic p = 2.
(ii) F is a Kloosterman sheaf of rank D > 4 and p|D. If p = 2, suppose also that D # 8.
(iii) F is a hypergeometric sheaf H of type (D, m) with D > 4 and p|D. Suppose that W >
(2/3)(D —1). If p= 2, suppose D # 8. If p =3, suppose (D, m) is not (9,1).

Then F is not tensor induced.

Proof. We first treat case (i), a hypergeometric sheaf H of type (4,2) in characteristic p = 2. It
could only possibly be n-tensor induced for n = 2, but this is impossible as p { n, cf. Lemma 3.2.

We next treat the Kloosterman case. If Kl is n-tensor induced for a given n > 2, then n is prime
to p, D = Dy and we have a tensor decomposition

M'Kl=A1 @ Az @ A,

with each A; of rank Dy > 2. We use the argument of Such, cf. [Such, Prop. 12.1, second
paragraph], which we already used in the proof of Lemma 2.3. Exactly as there, each End®(A;) is
a direct factor of End([n]*Kl), hence has all co slopes < n/D =n/Dy.

If n = 2, then each A; has

Swan. (End’(A4;)) < (DZ —1)(2/D3) < 2.

Thus Swan., (End®(A4;)), which is equal to Swans, (End(A;)), is either 0 or 1. If it is 1 for at least one
of A; or Aj, that End is the direct sum of a nonzero tame part (from scalar endomorphisms) and
an I(oo)-irreducible part with Swan conductor 1, this latter part being totally wild. Its expression
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as an End violates its tensor indecomposability, cf. [KRLT3, Cor. 10.3], because the rank of End,
here D% = D, is not 4.

If both the End®(A4;) are tame at oo, then P(c0) acts by a scalar character on each of A; and Ay,
and hence P(00) acts by a scalar character on [2]*(Kl). The I(oco)-representation of Kl is irreducible
of Swan conductor 1. Its rank D is divisible by p, so we write D = ngq with ng > 1 prime to p
and with ¢ a positive power of p. Then the P(oco) representation of Kl is the direct sum of ng
inequivalent irreducible P(oo)-representations, each of dimension q. The P(c0) representation does
not change under Kummer pullback, so P(co) representation of [2]*(K) is the direct sum of ng
inequivalent irreducible P(oco)-representations, each of dimension ¢q. Therefore P(o0) does not act
as scalars on any of these ¢ dimensional P(oo)-irreducibles.

Suppose now that Kl is n-tensor induced for a given n > 3. Then each A; has
D2 -1

Dj
For n = 3, we cannot have Dy = 2 unless p = 2, but we have ruled out D = 8 when p = 2. So for
n = 3, we have Dy > 3, and so each Swan,,(End®(4;)) < 1 in the n = 3 case. For n > 4, we have
n/ Dg_2 < 1, as one sees already from the worst case Dy = 2, where it amounts to the inequality
n < 272 for n > 4.

We now turn to the hypergeometric case. Because D # 4, H is tensor indecomposable. So if
H is n-tensor induced for some n > 2 (necessarily prime to p), we have D = Dj and a tensor
decomposition

Swanu(End®(A;)) < (DZ — 1)(n/DE) < (n/Dp2) <n/Dp2.

MH=A A A,
with each A; of rank Dy > 2.

We first consider the case n > 3. By the Such argument, each End®(A;) is a direct factor of
End([n]*H), hence has all co slopes < n/W. We claim that each End®(4;) is tame at oo. If so, we
reach a contradiction as follows. Each End(.4;) is then tame at oo, so P(c0) acts on each A; by a
scalar character, and hence P(oc0) acts on [n]*H by a scalar character. Because [n]*H has a tame
part of rank m > 0, this scalar character must be trivial. This in turn implies that [n]*H is tame
at oo, contradiction.

To show that each End®(4;) is tame at oo, it suffices to show that its Swan conductor is < 1.
Using the estimate Swans, (End®(A;)) is < (D2 — 1)(n/W), it suffices to show that

n(DZ —1) < W.
By hypothesis, W > (2/3)(D — 1). So for D # 27 it suffices to show that
n(D§ — 1) < (2/3)(D — 1) = 2/3)(Dg — 1),

so long D is neither 8 when p = 2 nor 27 when p = 3. For n = 3, we need

3(Dy — 1) < (2/3)(D§ — 1) for p > 3.
This inequality holds for Dy > 5, which for p odd rules out Dy = 3. But this p =3,n=3,Dg =3
case does not arise, because in characteristic p, here 3, we can only be n-tensor induced when n is
prime to p. For p = 2, it rules out Dy = 2, the excluded D = 8 case.

But we must still deal with the case n = 3,p = 2, Dy = 4. Here the estimate for Swan.. (End®(A4;))
3(42 - 1)
(2/3)(4° - 1)
So each A; has Swan,, (End®(A;)) = Swan, (End(A;)) either 0 or 1. The Swany,(End(A4;)) = 1 is
impossible, because it violates tensor indecomposability, cf. [KRLT3, Cor. 10.3], because the rank

of End, here D2 = 16, is not 4. Thus each End’(4;) is tame at oo in this case as well.

Swan,, (End®(4;)) < =15/14 < 2.
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For n > 4, we need
n(D3 — 1) < (2/3)(Dy — 1) for p > 3.
This holds for Dy > 3 for all n > 4, and for Dy > 2 for all n > 5. The case n = 4,Dy = 2 is
excluded because when p = 2, n-tensor induction is only possible when n is odd.
It remains to treat the case n = 2. In this case, p must be odd. Thus D = D3,

[2]"H = A1 ® Aq,
with each A; of rank Dg. We first claim that Swans,(End®(A;)) is 0,1, or 2, i.e. that
Swan. (End’(A4;)) < 3.

This Swan conductor is < (D% — 1)(2/W) = 2(D — 1)/W, so we must show 2(D — 1) < 3W, which
is precisely our hypothesis.

If both A; have End®, and hence End, tame at oo, then just as in the n > 3 case above, we reach
a contradiction.

If one of the A; has Swany,(End’(A;)) = 1, then the rank D of this End(A;) must be 4. But
D > 4 in the hypergeometric case (ii) we are considering. [Alternatively, D = 4 and p|D forces
p = 2, in which case n-tensor induction for n = 2 is impossible.]

If one of the A; has Swan, (End’(A;)) = 2, we argue as follows. Either End(A;) is the sum of a
nonzero tame part and a single I(oco)-irreducible whose Swan conductor is 2, or End(.4;) is the sum
of a nonzero tame part and of two I(0o)-irreducibles, each of Swan conductor 1. In the first case,
we again have (by [KRLT3, Cor. 10.3]) that the rank D of this End(.4;) must be 4, an excluded
case.

It remains now to analyze the case when each of the End(A;), i = 1,2, is the sum of a nonzero
tame part and of two I(oco)-irreducibles, each of Swan conductor 1. We first show that in this case,
the rank D of End(A;) must be ¢2, for ¢ some positive power of p. We show this in the next lemma.

Lemma 3.7. Let A be an I(oo)-representation of dimension Dy > 2 with p|Dy, p odd, such that
End(A) := A® AV is the sum of a nonzero tame part and of two wild I(co)-irreducibles. If such
an A ezists, then it is an I1(oc0)-irreducible of dimension q, for q some positive power of p.

Proof. We first show that A is totally wild. It cannot be totally tame, otherwise its End would be
tame. It cannot contain both a nonzero tame part T and two wild two I(oco)-irreducibles W and
W, for then its End contains the four totally wild components T@ W), T@ Wy, TV @ W1, TV @ Wa,
which each themselves contain at least one wild I(oco)-irreducible.

If it is of the form 7'+ W with T" a nonzero tame part and W a wild I(oo)-irreducible,then its
End contains T'® WY, TV @ W,W @ WV. If this End contains only two wild I(co)-irreducibles,
then T is one-dimensional and W ® WV is totally tame. But if W @ WV is totally tame, then W
is one-dimensional, cf. [KRLT3, Lemma 10.2]). Thus our A, if not totally wild, has dimension
Dy = 2. But as p|Dy, and p is odd, this cannot happen.

Thus A is totally wild. We next show that it is I(oco)-irreducible. If A contains two wild
irreducibles W7 and Ws, at least one of which has dimension > 1, we reach a contradiction as
follows. Then its End contains the four terms Wy @ Wy, Wo @ Wy, W1 @ Wy, Wo ® Wy . Neither of
ths two cross terms, nor whichever of W; ® W,” has dimension > 1, can be totally tame, again by
[KRLT3, Lemma 10.2]).

To finish the proof that A is I(oo)-irreducible, we must rule out the case when A contains only
wild irreducibles of dimension one. In this case, A contains at least 3 such (because Dy > 2).
Partition them according to the equivalence relation W7 = Wy if and only if Wi ® I/VQv is tame.
Then A is the sum of terms T; ® W;, with T; tame of dimension d; > 1, W; wild of dimension one,
and W; ® ij is wild whenever i # j. Then its End contains precisely >, +; didj wild summands
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(namely the T; ® T]V QW; ® W]V), and ) ,d; = Dy > 3. There must be more than one such
summand, otherwise the End is tame. If there are at least three such summands, then A contains
W14+ Wy + Wy, with W; ® W]V wild for i # j. In this case, the End contains the six wild summands
W¢®ij with 7,7 € [1,3] and i # j. So A must be T} @ Wi + T @ Wy with dy + dy = Dy > 3.
Interchanging the two indices if necessary, we may assume d; > 2 (and d; > 1). Then the End
contains at least 2d; > 4 wild summands, contradiction.

Thus A is I(oco)-irreducible. We write its dimension Dy as nogq, with ng > 1 and ¢ a strictly
positive power of p. Then A is the Kummer direct image

A = [no]B

for B a ¢-dimensional I(oco)-irreducible. We know further that B is P(oo)-irreducible, and that A is,
as P(oo)-representation, the direct sum of ng pairwise inequivalent irreducibles. Indeed, under the
multiplicative translation action of jip,, the ng multiplicative translates {MT¢B}¢ey,, are pairwise
inequivalent P(oo)-irreducibles.

We next claim that we have a direct sum decomposition

End([no].B) = @B [nol«(B® MTBY).
CE€ptng

To see this, we argue as follows. Denote by I(no) < I(co) the open subgroup of index ng. For any
I(no)-representation V, the character of its direct image [ng],V (i.e.the group theoretic induction of
V from I(ng) to I(00)) is supported in I(ng) (simply because I(ng) < I(c0) is a normal subgroup).
Then End(([no]«V) = ([no]«V) @ ([no)«V") has its character supported in I(ng). Therefore the
character of End([ng]«V’) is determined by its pullback to I(ng).

We now apply this with V' taken to be B. Because B is I(ng)-irreducible, its induction [ng],3
and its End([no]«B) are both I(c0)-semisimple, so determined by their characters, and hence by the
characters of their pullbacks [ng]*. We have

[no]*[nolB = @5 MT(B, [no]*[nol,B" = € MT:B".

Ceuno Ceﬂno
Thus
[no]"End([nolB) = P T B e MT,BY) = @ P MT (B (MT,BY)),
(Cl7<2)eﬂn0 Xﬂno CQeﬂnO Cl E,U«no

which is the pullback to I(ng) of the character of
P ol (A MT,BY).
CZE,U«TLO

With this formula at hand, we continue as follows. Because the various MT B are pairwise
inequivalent irreducible P(co)-representations, we have

B® BY =1 + totally wild,

and for each { # 1,
B®@MT:B" = totally wild.

Now V + [no)V preserves being totally wild, so we find

End(A) = End([ng]«B) = [no]x1 + [n0],End’(B) DC£1Epn, [M0]x(B @ MT:BY)
= [ng]+1 4 the sum of ng totally wild summands.

In order for there to be precisely two irreducible wild summands in End(.A), we must have ny < 2.
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If ng = 2, then both [2],(End®(B)) and [2],(B ® MT_;BY) must be irreducible. In particular,
End’(B) must be irreducible, i.e. we must have End(B) = 1 + irreducible. This is possible only
when B has rank 2, cf. [KRLT3, Cor. 10.4]. Then A = [2],.B has rank Dy = 4. As p|Dy, p must be
2, an excluded case.

If ng =1, then A is an I(oo)-irreducible of dimension q. O

Returning to our situation
2"H = A1 ® As,

we now know that D = ¢?, Dy = ¢, and that both A; and As are I(oco)-irreducibles. Having
dimension ¢, they are each P(oo)-irreducible. Because H has type (D,m) with m > 0, [2]*H has
an I(oco)-tame part of dimension m > 0. At the expense of tensoring H with a tame character,
we may assume further that among the “bottom” characters in H is 1. Then A; ® Ay as I(00)-
representation contains 1. The projection of A4; ® Az onto 1 is then a nonzero I(oco)-linear map
As — AY, which must be an I(oo)-isomorphism because source and target are I(oo)-irreducible.
Thus A; ® Asg is I(co)-isomorphic to End(A;). Because A; is P(co)-irreducible, the space of P(c0)-
invariants in End(.A;) is one dimensional. But this space of P(co)-invariants is precisely the tame
part of A7 ® As = [2]*H. Therefore m = 1, and H has type (D, m) = (¢%,1).

In the next section, we will deal with this (¢2,1) case.

3D. Completion of the proof of Proposition 3.6.
In this subsection, ¢ is a positive power p® of the odd prime p, and H is a hypergeometric of type
(¢%,1) whose “bottom” character is 1. The I(oco)-representation of # is the direct sum W+ 1, with
W totally wild of rank ¢> — 1 and Swan conductor one. Because ¢> — 1 is prime to p, we know
[Ka-GKM, 1.14] that W is the Kummer direct image [¢*> — 1],(£) for some rank one £ of Swan
conductor one. Furthermore, the restriction of W to P(oc0) is the direct sum of ¢? — 1 pairwise
distinct characters of P(co) which are cyclically permuted [Ka-GKM, 1.14(3)] by I(o0)/P(0),
acting through its p152_; quotient.

We denote by

J1 := the image of I(c0) acting on W + 1.

Because our H began life on G, over a finite extension of F,,, we know [Ka-GKM, 1.11 (3)] that J;
is finite, with a normal Sylow p-subgroup P; such that J; /P is cyclic of p’-order m(q? — 1) for some
m € Z>1. Moreover, any element of J; of order m(q?—1) induces, by conjugation, an automorphism
of Py of order ¢2 — 1. [Indeed this action cyclically permutes ¢? — 1 distinct characters of P; on W.]

Our concern is with the Kummer pullback [2]*H, whose I(oco)-representation is [2]*W + 1. We
readily decompose

2PW = [21°[% — 1L = [2*2Ll(a — 1)/2}uL =
= 2]* 2y X = X + [~1]. X, for X = [(¢*> — 1)/2], L.

X is itself irreducible of Swan conductor one. One knows that for any irreducible I(oco)-representation
X of Swan conductor one, X and its multiplicative translate [—1],X are inequivalent. [If they were
isomorphic, X would descend through [2], i.e. would be of the form [2]*), which would force its
Swan conductor to be even, cf. [Ka-ESDE, proof of 3.7.6] for the D-module analogue.]

Thus the I(oo)-representation of [2]*H is the sum of three distinct irreducibles:

2"H = X + [-1,.X + 1.
We denote by
J2 < J1

the subgroup of index 2 which is the image of I(c0) acting on [2]*H. As p > 2, Jy has the same
Py as its normal Sylow p-subgroup P», and the quotient .Jo/P; is cyclic of p’-order m(q? — 1)/2.
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Moreover, any element of Jy of order m(q? — 1)/2 induces, by conjugation, an automorphism of P,
of order (¢®> —1)/2.

Suppose now that H is 2-tensor induced. The I(co)-representation (indeed the m-representation,
but we do not know how to use this much stronger information) of [2]*H lands in GL(A;) ® GL(As),
with each A; of dimension g. We wrote GL(A;) ® GL(Az2) as SL(A;) ® GL(Az2). This allowed us to
lift the action of I(co0) (indeed of 71) on [2]*H to a map

The image of this map we denote J3. This group Js is finite, and maps J3 — Jo with kernel the
intersection of J3 with the subgroup p,, embedded as (A, 1/X) € SL(A;) x GL(Az2). Thus the kernel
is a cyclic group of order dividing ¢, so lies in the Sylow p-subgroup Ps of J3. Thus J3 has a normal
Sylow p-subgroup Ps, and J3/ P is cyclic of p’-order m(g? — 1)/2, in fact the same order as Jo/P;.
Thus we get Jz-representations A; X As such that

2]"H = A ® Aa,

and we showed that A; and Ajg are I(oco) (and hence J3) duals of each other.
Next, we define

Jy < SL(Al)

to be the image of J3 < SL(A;) x GL(Ag) by the first projection. We denote by P <1 Jy its normal
Sylow p-subgroup. The image of Jy in End(A;) = [2]*H is Ja. The kernel K of the surjection
Js — Jo is the intersection of Jy with the scalars p, of SL(A;), so lies in P;. Therefore P; maps
onto P, with kernel K, and Jy/P; maps isomorphically to Jy/P>. Any element = € Jy of order
m(q? —1)/2 induces, by conjugation, an automorphism ¢, of P, of order (¢? — 1)/2. [Indeed, this
is already the case in the quotient situation (J2, P»), hence ¢, has order divisible by (¢? — 1)/2. It

2_
also follows that goggq D/2 acts trivially on P, = P4/K and on the central p-subgroup K, and so the
2 2
order of <p:(pq /25 p-power. As x is a p’-element, we conclude that gpgﬁq -z _ 1.]

We will apply the next lemmas with
J =y < SL(Al),V = A

We know that J is a finite group with a normal p-Sylow subgroup P (thus O,(J) = P), that J/P
is cyclic of prime to p order divisible by (¢> — 1)/2 and that any element of J of order m(q? —1)/2
induces, by conjugation, an automorphism of P of order (¢*> —1)/2. We have a faithful irreducible ¢-
dimensional representation V of J, and we know that End(V) is the sum of three distinct irreducible
submodules. Note that J is solvable, and furthermore has cyclic Sylow 2-subgroups if 2 t q. Hence
the subsequent Lemmas 3.8-3.10 apply to J.

Lemma 3.8. Let V be a faithful irreducible CJ-module of dimension d > 3 and d # 4, where J
is a finite solvable group, which has abelian Sylow 2-subgroups if 2 1 d. Suppose that End(V') is a
sum of three irreducible submodules, but the J-module V' does not satisfy condition (S). Then the
J-module V' is tensor indecomposable, not tensor induced, and every imprimitivity decomposition
for V has the form V. = ®L|V;, with dimV; = 1 and J permuting {V4,...,Vy} primitively and
2-homogeneously.

Proof. Let x denote the character afforded by the CJ-module V. By assumption, xx = 17+ a1+ o,
where «; € Irr(J). First we note that o; # as. Indeed, by Burnside’s theorem (3.15) of [Is], x(¢) = 0
for some g € J. Hence, in the case a; = as we would have that a;(g) = —1/2, which is not an
algebraic integer, a contradiction. Next, the irreducibility of x implies that «; # 1. It follows that

3= M4(<]7 V) = [XY? XY]J = [X27X2]J-
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On the other hand, V®2? = S2(V)@®A%(V). So we conclude that either S?(V) is irreducible, or A2(V)
is irreducible.

If S?(V) is irreducible, then the J-module V satisfies (S) by [GT2, Lemma 2.1]. Hence A?(V) is
irreducible. Assume in addition that V is imprimitive: J stabilizes a decomposition V = &!_,V;
with ¢ > 1 and dim V; = d/t. The proof of [GT2, Lemma 2.4] then shows that t = d and J acts on
the set {Vi,...,Vy} 2-homogeneously.

In the same proof, it was shown that V is tensor indecomposable, and furthermore, if it is tensor
induced, then any tensor induced decomposition has the form V = V; ® V;, with Jy := Stab;(V1, V3)
of index 2 in J, and S?(V;) and A2(V;) being irreducible over Jy for i = 1,2. In the latter case,
dim V; = v/d > 3 by hypothesis. Furthermore, V; is irreducible, and S?(V;) 2 A2(V;) by dimension
consideration. It follows that My(Jy, V) = 2. Certainly, Jy is solvable as so is J. If furthermore
2t dim V;, then 2 t d and so Sylow 2-subgroups of J are abelian, whence so are Sylow 2-subgroups
of Jy. Thus [KRLT3, Theorem 2.3] applies to the Jy-module V; and yields My(Jp,V;) > 3, a
contradiction. O

Next we will analyze the situations arising in Lemma 3.8, under the assumption that d = dimV =
q = p*, where p is a prime and a > 1. We will fix a primitive prime divisor £ = ppd(p, 2a) of p** —1,
that is, a prime divisor of p>* — 1 that does not divide Hfizl(pl — 1), when it exists. Such a prime

always exists, unless either (p,a) = (2,3), or a = 1 and p is a Mersenne prime, see [Zs].

Lemma 3.9. In the situation of Lemma 3.8, assume that d = p® > 3 for a prime p and that the
conjugation by some element h € J induces an automorphism of Op(J) of order (p**—1)/ ged(2,p—
1). Then J acts primitively on V.

Proof. Assume the contrary. By Lemma 3.8, the action of J on {Vj,...,V;} induces a solvable,
primitive subgroup H of S4. Since H is solvable, it possesses an abelian minimal normal subgroup N.
By the O’Nan-Scott theorem, see e.g. [LPS], H is a subgroup of the affine group AGL(U) = AGL,(p)
in its action on the points of U = F} (with N acting via translations). Let B <1 J consist of all
elements that fact trivially on {Vi,...,Vy}, so that H = J/B. Then B is contained in a maximal
torus of GL(V') and so is abelian.

First we consider the case ¢ = ppd(p,2a) exists. Then ¢ does not divide |GL4(p)|. It follows
that any f-element g € J has trivial image in H, that is, g € B and so g € Oy(B) < J (since B
is abelian). For any z € O,(J) we then have [g,z] € Op(J) N Oy(B) = 1. We have shown that
[9,0,(J)] = 1, and so O,(J) is centralized by O (J). Thus the action of J on O,(J) induces a
subgroup of Aut(O,(J)) of order coprime to ¢, a contradiction.

Now we may assume that ¢ does not exist. Assume furthermore that ¢ = 1, but p > 3 is a
Mersenne prime. Now we can find a 2-element g € (h) such that the conjugation by g induces an
automorphism ¢4 of order 4 of O,(J). Since the 2-part of |H| divides |GL1(p)| = p—1, ¢g* has trivial
image in H, and so g> € O2(B) < J. For any z € O,(J) we then have [¢2, 2] € O,(J) N O2(B) = 1.
We have shown that [g2, O,(J)] = 1, contrary to |¢,| = 4.

It remains to consider the case p® = 8. In this case we can find a 3-element g € (h) such that the
conjugation by ¢ induces an automorphism ¢, of order 9 of O,(.J). Since the 3-part of |H| divides
|GL3(2)| = 168, ¢> has trivial image in H, and so ¢g° € O3(B) <1J. For any z € O,(J) we then have
(g3, 2] € O,(J) N O3(B) = 1. Thus [¢3,0,(J)] = 1, again contradicting the equality |, =9. O

Now we complete the analysis of the situations arising in Lemma 3.8:

Lemma 3.10. Let J be a finite solvable group, and let V' be a faithful irreducible CJ-module of
dimension d = p® > 5 for some prime p. Assume in addition that J has abelian Sylow 2-subgroups
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if 21 d, and that the conjugation by some element h € J induces an automorphism of O,(J) of
order (p*®* — 1)/ ged(2,p — 1). Then End(V) cannot be a sum of three irreducible J-submodules.

Proof. (i) Assume the contrary: End(V') a sum of three irreducible J-submodules. By Lemmas 3.8
and 3.9, the J-module V satisfies condition (S). As explained in §1, the proof of [GT2, Proposition
3.8] shows that J contains a normal p-subgroup @), where @ = Z(Q)E for some extraspecial p-group
E of order p!*2@ acting irreducibly on V; furthermore, either Q = E or |Z(Q)| = 4. Let A denote
the subgroup of Aut(Q) induced by the conjugation action of J.

(ii) Observe that C;(O,(J)) = C;(Q) = Z(J). (Indeed, Z(J) < C;(0,(J)) < C;(Q) as
Q < 0,(J). As E < @ is irreducible on V, C;(Q) = Z(J) by Schur’s lemma.) From the equality
Cj(0,(J)) = C;(Q), we see that the image of J in Aut(O,(J)), namely J/C;(O,(J)), maps
isomorphically to A = J/C;(Q).

Hence, by hypothesis, A < Aut(Q) contains a cyclic p’-subgroup C of order (p**—1)/ gcd(2,p—1).
In fact, A acts trivially on Z(Q), so A is contained in Auty(Q), the subgroup of all automorphisms
of @ that act trivially on Z(Q). Next, if Q = E, then E/Z(E) < Auto(Q) < (E/Z(E)) - Spy,(p)-
The same also holds in the case @ > E, see [Gri, §1]. As p 1 |C|, C injects into Sp(U) = Spy,(p),
and we can view C as a subgroup of Sp(U), with U := E/Z(E) = Iﬁ‘ga.

(iii) Here we consider the case ¢ = ppd(p, 2a) exists. As ¢ divides |C|, C < Sp(U) acts irreducibly
on U. As explained in part (a) of the proof of [BNRT, Theorem 5], |C| divides p® 4+ 1. However,
IC| = (p?* — 1)/ ged(2,p — 1), so we obtain p® — 1 < ged(2,p — 1), and so d = p® < 3, which is
excluded.

Next we consider the case a = 1 and p > 5 a Mersenne prime. Then C is a cyclic subgroup of
SLa(p). Any such subgroup has order < p+ 1 < (p? — 1)/2, contrary to the assumptions.

Finally, the case p* = 8 is excluded since Spg(2) does not contain any cyclic subgroup of order
26 — 1, see [Atlas]. O

With this Lemma 3.10, we have completed the proof of Proposition 3.6. O

Remark 3.11. Here we construct two examples related to the situations in Lemma 3.8. First we
give an example of an imprimitive CJ-module of dimension d = p® that satisfies the conditions of
Lemma 3.8, but does not satisfy (S), for any odd prime power p* > 3. Consider the d-dimensional
vector space V = C¢ with basis {e, | v € F,}. Let H := AGL1(q) act on this basis as follows:
the normal p-subgroup @1 of order ¢ acts via translations e, — ey4., u € [y, and the complement
C:={cr | A € F;} acts via e, = ey,. Also consider the unique elementary abelian subgroup @ of
order p? of GL(V') that acts diagonally in the given basis. Then J := Q x H = (Q x Q1) x C acts
imprimitively on V' and has My(J,V) = 3. (Indeed, A%(V) is irreducible and S?(V') is the sum of
two irreducible submodules. The equality My(J, V') = 3 then follows from the fact that c_; acts as
lone,®e_y+e_,Re, butas —lone,®e_, —e_, e, for any 0 £ v € V.)

Next, let d = p = 3 and consider the faithful irreducible representation of the extraspecial 3-group
P =31 onV = C3. It is well known that this representation extends to P x SLy(3). Now we can
take J = P x Cy inside GL(V') and observe that My(J,V) = 3.

Remark 3.12. If we drop the hypothesis that p|Dy, there is a three dimensional 4 in any char-
acteristic p # 3 whose End consists of a nonzero tame part and two wild irreducibles. Start with
L) and form its Kummer direct image [3]xLy ;). This is I(oo)-irreducible. We first show that

Swanoo(End([3]*£¢($)) = 2.
In fact, for any n > 1 prime to p, we will have

Swane (End([n]i Ly ) =n — 1.
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To see this, use the fact that for n prime to p, and any I(co)-representation V', we have
Swans ([n]*V) = nSwans (V).
Applied to End([n]«Ly(s)), this gives
Swaneo (End([n]+Ly(z))) = (1/n)Swano ([n]"End([n]+Ly(s))) =

= (1/n)Swanoo(End([n]*[n]*£¢(x))).
But [n]*[n]«Ly () is the direct sum @¢ey, Ly(ca), Whose End is

B(¢1,¢2)Epm % Lp((C1—C2)2)»

whose Swan conductor is visibly n(n — 1).
In fact, End([n]«Ly(y)) is the direct sum of the tame piece [n].(1) with the direct sum of the
n — 1 irreducible wild summands

De1,cemn [P (Ly(1-0)2)s

each of which has Swan conductor one. To see this, we repeat the argument in Lemma 3.7. Denote
by I(n) the unique subgroup of I(oo) of index n. Because I(n) < I(c0) is a normal subgroup,
the induction [n],Ly,) has its character supported in I(n). Hence also End([n]*[n]«Ly(,)) has its
character supported in I(n). Similarly, each term [n]+Ly((1—¢)z) has its character supported in I(n).
So it suffices to check that the two sides of the asserted identity have, after [n]*, the same character,
which is visibly the case.

3E. Interesting special cases. For an integer N > 2 prime to p, we have the local system Fx
on A! of rank D = N — 1 in characteristic p attached to the family of exponential sums

tr = > a +tr).

One knows that Fpu is the Kummer pullback
Fn = [N]*KI(2); all nontrivial x with x~ = 1).

This K is visibly primitive (i.e., not Kummer induced), and thus satisfies (S+) so long as D := N—1
is not 4 (or 8, if p = 2). We expect that F5 satisfies (S+), but we do not know how to prove it.
We also note that Fy itself is primitive when D is not a power of p, but is imprimitive (indeed its
Ggeom is a finite p-group) when D is any power of p.

For an integer D > 2 prime to p, and a nontrivial multiplicative character x, we have the local
system Gp on A! of rank D in characteristic p attached to the family of exponential sums

tr = > (a? +tz)x(z).

One knows that Fp is the Kummer pullback
Gp = [DI*H(¢;all x with x” = 1;p),

for any p with p” = x. One knows [KRLT1, Lemma 1.1] that Gp is primitive for any D prime to
p and any nontrivial y, so a fortiori H is primitive as well. Then by Theorem 1.9, applied in the
W = D — 1 case, H satisfies (S+) whenever D is prime to p.
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3F. Another (S+) result. In this section, we work in a fixed characteristic p, and we denote by
q a positive power of p.

Theorem 3.13. Let H be a hypergeometric sheaf in characteristic p of type (D, D — q), with
D > q = p*. FEquivalently, H is of type (D,m) with D > m > 0 and wild part of dimension
W = q =p® If D is a power, let n be the largest integer such that D is an n*™ power, and suppose
we have the inequality W > n. Then H has (S+).

Proof. We first show that such an H is primitive. To see that it cannot be Kummer induced, let
d > 2 be the (necessarily prime to p) degree of the Kummer induction. Then d|D and d|m, and
hence d|q, a contradiction since d is prime to p.

We next show that H is not Belyi induced. Looking at the three types of Belyi induction in
[KRLT3, Prop. 1.2], we see that whenever there are fewer “downstairs” characters than “upstairs”
characters, the difference, i.e. W, is always of the form

dop” — do = do(p" — 1),
for some dy prime to p and some positive power p” of p. This difference is prime to p, so cannot be
q.

We next observe that H is tensor indecomposable, since already its I(co)-representation is tensor
indecomposable, cf. [KRLT3, Prop. 10.1 or Thm. 2.1]. This applies when D # 4.

It also applies in the two cases D = 4 and either p = 2 and m > 2 or p odd and m # 2. Let
us see that this is good enough for us. We are working in characteristic p, with D =4 > ¢q. So
either we are in characteristic p = 2 and W = 2, which has m = 2, an allowed case, or we are in
characteristic p = 3, W = 3, and m = 1, another allowed case.

If D is not a power, then H cannot be tensor induced, and we are done. If D is a power, recall
that n is the largest integer such that D is an n'! power, in which case we assume W > n. Suppose
that D is an r* power, and that # is r-tensor induced. Then W > r, and, as explained in the first
paragraph of the proof of Lemma 3.2, the composite map from m; to S, is tame at both 0 and oo,
so its image is (the cyclic group generated by) an r-cycle, and r is prime to p. So we would find
that the Kummer pullback [r]*H is tensor decomposable (of a very specific shape, but this will not
matter). The key point is that the wild part Wild of the I(oo)-representation of H, having dimension
q is irreducible on P(o0). Therefore all of its Kummer pullbacks, e.g. [r]*Wild, are irreducible on
P(00), and hence a fortiori on I(c0). So we have only to apply [KRLT3, Prop. 10.1 or Thm. 2.1]
to know that the I(oo)-representation of [r]*H is tensor indecomposable. O

4. GENERAL RESULTS ON Ggeom
In this section, we consider a (Qg-adic) hypergeometric sheaf,

H = Hypy(X1,- - XD5 P15~ - > Pm)

of type (D, m) with D > m > 0, defined over some finite subfield of F,,, p # ¢, and write W := D—m.
The I(oco)-representation on # is then the direct sum of a tame part of rank m and a totally wild
part of rank W, all of whose oo-breaks are 1/W. Let us denote by

(4.0.1) J := the image of I(c0) on H.
One knows that J is a finite group if and only if the p; are all distinct, and that #H is geometrically

irreducible if and only if none of x; is among the p;.

Theorem 4.1. Let H be an irreducible Qo-hypergeometric sheaf on Gy, /Fp, with p # £, and of type
(D,m) with W := D —m > 2. Denote by Gy the Zariski closure inside the geometric monodromy
group Ggeom of the normal subgroup generated by all Ggeom-conjugates of the image of 1(0). Then



MONODROMY GROUPS OF KLOOSTERMAN AND HYPERGEOMETRIC SHEAVES 21

Go = Ggeom- In particular, if Ggeom s finite then it is generated by all Ggeom-conjugates of the
image of 1(0), and Ggeom = OP(Ggeom)-

Proof. Let K := Ggeom/Go. Because H is geometrically irreducible, Ggeom has a faithful irreducible
representation, and hence is reductive. Therefore its quotient K is reductive.

Suppose K is nontrivial. Then it has at least one nontrivial irreducible representation, say p. View
p as a representation of 71 (G, /F,). So viewed, p is trivial on I(0), so may be viewed as a lisse Q-
sheaf 7, on the affine line A!/F,, which is irreducible and nontrivial. Therefore H.(A!/F,, F,) =0
for i # 1. By the Euler-Poincare formula [Ka-GKM, 2.3.1],

Xc(Al/IETp, F,) = rank(F,) — Swanyo(F)),

and hence
hi(A'/F,, F,) = Swany(F,) — rank(F,).
As hl >0, we find that
Swane (F,) > rank(F,).

On the other hand, the upper numbering subgroup I(co)/W+¢ dies in Ggeom for all € > 0. So a
fortiori, it dies in K, and hence all co-slopes of F, are < 1/W. Hence

Swans (Fp) < (1/W)rank(F,) < (1/2)rank(F),),

a contradiction.
In the case Ggeom is finite, G is the normal closure of the image of 7(0), and is contained in the
subgroup OP(Ggeom) generated by all p’-elements of Ggeom, Whence the statements follow. O

The same argument gives the following result.

Proposition 4.2. Let F be a lisse, geometrically semisimple, Qq-sheaf on GW/E with p # £, and
geometric monodromy group Ggeom. Suppose that all co-slopes of F are < 1. Denote by Go the
Zariski closure inside Ggeom 0f the normal subgroup generated by all Ggeom-conjugates of the image
of I(0). Then Gy = Ggeom-

Corollary 4.3. Let H be an irreducible Qg-hypergeometric sheaf on Gy, /F,, with p # £, and of type
(D,m) with W := D —m > 2. Let N be a prime to p integer with 1 < N < W. Then the geometric
monodromy group G of the Kummer pullback sheaf F := [N|*H is equal to the Zariski closure in G
of the normal subgroup generated by the image of 1(0) on F.

Proof. Indeed, the largest oo-slope of [N[*H is N/W < 1. O
Here is a companion result to Proposition 4.2.

Proposition 4.4. Let F be a lisse, geometrically semisimple, Qq-sheaf on GW/E with p # £, and
geometric monodromy group Ggeom. Suppose that all co-slopes of F are < 1. Denote by Go the
Zariski closure inside Ggeom 0f the normal subgroup generated by all Ggeom-conjugates of the image
of I(0). Then Ggeom/Go is either trivial or a finite abelian p-group of exponent p.

Proof. The group K := Ggeom /G is reductive, so it suffices to show that all its nontrivial irreducible
representations, if any, are linear characters of order p. An irreducible nontrivial representation of
K is a lisse, geometrically irreducible sheaf G on Al /T, all of whose oo slopes are < 1, which is not
the constant sheaf. If some oo slope were < 1, then Swans(G) < rank(G), which is impossible, cf.
the proof of Theorem 4.1. Thus all co slopes are 1. There exists a # 0 in F,, such that G ® Ly(ax)
has some oo slope < 1, For otherwise the Fourier Transform vanishes identically. But G ® Ly(qs)
is still irreducible. It cannot be nontrivial, because it has some oo slope < 1, so it must be the
constant sheaf, i.e. G is Ly(_qq)- g
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Remark 4.5. Here are some examples to show that in Proposition 4.4, the group Ggeom/Go can
be trivial. For any integer D > 2, and any integer w with D > w > 2 which is prime to p, take
a hypergeometric sheaf H of type (D,D — w) whose Ggeom,n is connected. Then [w]*H has all
oo slopes < 1, and has w of them = 1. But Ggeom juw*x = Ggeom,n is thus connected, so has
no nontrivial finite quotient. There are a plethora of such H. In view of Theorem 4.1, if the D
“upstairs” characters are all trivial, then Ggeom,» is connected (because generated by unipotent
elements).

If we replace 0 by oo in Theorem 4.1, we get the following result.

Theorem 4.6. Let H be an irreducible Qg-hypergeometric sheaf on Gy, /F,. Denote by Goo the
Zariski closure inside the geometric monodromy group Ggeom Of the normal subgroup generated by
all Ggeom-conjugates of the image J of 1(c0). Then Goo = Ggeom-

Proof. In this case, representations of the quotient Ggeom /G oo correspond to lisse sheaves on P\ {0}
which are tame at 0, and any such is trivial. ]

Here is another companion result to Theorem 4.1.

Theorem 4.7. Let H be an irreducible Qo-hypergeometric sheaf on Gy, /F, definable on G,,/F, for
some finite extension Fy/F,, with p # £, and of type (D, m) with D > m. Denote by Gp() the
Zariski closure inside the geometric monodromy group Ggeom of the normal subgroup generated by
all Ggeom-conjugates of the image of the wild inertia group P(00). Then Ggeom/G p(so) 5 a finite
cyclic group of order prime to p.

Proof. Let K := Ggeom/Gp(c). Because H is definable on G,,/F,, one knows [Ka-ESDE, 8.4.2
(4)] it is pure (of weight D + m — 1). It is geometrically, and hence arithmetically irreducible;
therefore by [De, 1.3.9] Ggeom is a semisimple group (in the sense that its identity component Ggeom
is semisimple). Therefore the quotient K is semisimple. Let V' be an irreducible representation of
K. Then V is given by a geometrically irreducible lisse sheaf F on G,, /]ITp which is tame at both
0 and co. As a representation of 71 (G,,/F,), it factors through the quotient 71 (G, /F,)teme at 0,00,
which is the pro-cyclic group [], 4p Z¢(1) of pro-order prime to p. Any irreducible representation
of this group is one-dimensional. Therefore F is lisse of rank one, and tame at 0 and oco. Because
K is semisimple, it admits a faithful finite dimensional representation, which is necessarily a direct
sum of rank one sheaves F as above. Therefore K embeds into a finite product of groups GL1(Qy).
Thus K is abelian, and therefore (being semisimple) is finite. But the image of 71 (G,,/F,) in K is
Zariski dense (this already being true for its image in Ggeom). Therefore K is a finite quotient of
71 (G /Fp)tame a8 0.0 “hence is cyclic of order prime to p. O

Proposition 4.8. Let H be an (irreducible) hypergeometric sheaf of type (D, m) in characteristic
p, with D > m and with geometric monodromy group G = Ggeom. Then the following statements
hold for the image @ of P(c0) in G:

(i) If H is not Kloosterman, i.e. if m >0, then Q NZ(G) = 1.

(ii) Suppose H is Kloosterman and D > 1. Then Q £ Z(G). If pt D, then Q NZ(G) = 1. If p|D
then either QNZ(G) =1 or QNZ(G) = C,.

(iii) If D > 1, then 1 # Q/(Q NZ(G)) — G/Z(G) and p divides |G/Z(G)]|.

(iv) If D—m > 2, the determinant of G is a p'-group. If in addition p t D, then Z(QG) is a p'-group.

(v) Suppose that p = 2 and G is finite. Then the trace of any element g € G on H is 2-rational
(i.e. lies in a cyclotomic field Q((y) for some odd integer N); in particular, the 2-part of
|Z(G)| is at most 2.
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Proof. (a) For (i), note that if ¢ € @ N Z(G), then g acts as a scalar on A and trivially on the
(nonzero) tame part, hence g = 1.

Suppose now that H is Kloosterman. If Q@ < Z(G), then @ acts as scalars on H. Hence, the
@-module H is a direct sum of D copies of a 1-dimensional module. But the wild part, which is H
in this case, is a direct sum of pairwise non-isomorphic simple @-modules. So D = 1.

Next assume that H is Kloosterman and p 1 D. Then by [KRLT1, proof of Lemma 1.2], we know

that @ can be identified with the additive group of the field Fpa, where Fy« =IF,({p) and (p € IETpX
has order D. Moreover, a generator of the tame quotient acts via conjugation on () as multiplication
by (p # 1. Hence, if g € Q N Z(G), then g(p = g and g = 0 in Q) viewed as Fy,({p), as stated.

(b) Now we consider the case H is Kloosterman and p|D. Recall [Ka-ESDE, 8.6.3] that the
action of I(00) on a Kloosterman # is uniquely determined by the rank D, up to tensoring with a
one-dimensional representation and multiplicative translation.

Consider first the case of Kloosterman sheaf H of rank ¢ = pf. To analyze the Q-action, we may,

by [Ka-ESDE, 8.6.3], assume that our H is
H := Kl(all nontrivial characters of order dividing g + 1).
The action of @ does not change if we replace this H by its (prime to p) Kummer pullback
F=[qg+ 1"},

which is the local system on Al/F 42 Whose trace function at ¢ € k, k a finite extension of F, is

Fite =) (2™ +ta).

€k

By a result of Pink [KT1, Corollary 20.3], the geometric monodromy group Ggeom, 7 of F is a finite
p-group. Using [Ka-LGE, Prop. 1.4.2], we see that Ggeom 7 is precisely @. This allows us to apply
to @ the known results about Ggeom, 7, due to Pink and Sawin.

By the result [KT1, Corollary 20.2] of Pink, the image of @) on End(#) is the additive group
Wy i={teFpul|t+ 7 = 0}. By the irreducibility of the action of @ on H, this tells us that
Q/Z(Q) = W,. To compute the order of Z(Q), it suffices to compute the order of Q). In the first
part of the proof of Sawin’s p-odd result [KT1, top of page 841], valid in any characteristic, he
writes down an explicit description of the action of Q which shows that its order is pg?. Therefore
Z(Q) = C,. Because the Q-action is irreducible and faithful, Z(Q) = C, acts by scalars, and
faithfully. But any element of @) that acts by a scalar lies in Z(G). Thus Z(Q) < Z(G). Conversely,
any element of @ NZ(G) acts as a scalar, so (by the irrreducibility of the @ action) lies in Z(Q).
So in this rank ¢ case, we have Q N Z(G) = C,,.

Now we consider the case when our Kloosterman sheaf H has rank dg with d prime to p. As Z(G)
acts as scalars on ‘H, Q N Z(G) = (g) is cyclic. We also know that H is a direct sum of d pairwise
non-isomorphic simple @-modules, Wild; of dimension ¢, 1 <1i < d. As ) maps to the image Q; of
P(00) on Wild,, it follows from the preceding rank ¢ result that gP acts trivially on every Wild;, and
hence that gP acts trivially on H = @ld:lWiIdi. By the faithfulness of the action of @ on H, g = 1.
Therefore either Q N Z(G) is trivial, or Q NZ(G) = C,,.

(c) For (iii), we note that H is not tame at oo, hence @ # 1. It follows from (i) and (ii) that
Q £ Z(G), and so 1 # Q/(Q NZ(G)) — G/Z(G). In particular, p divides |G/Z(G)|.

(d) Now we establish (iv). By [Ka-ESDE, 8.11.6] det(G) is equal to the product of the D upstairs
characters of #, whence it is a p/-group. In particular, for any g € Ggeom, det(g) is a p’-root of
unity. If z € Z(G) acts as the scalar a € C*, then det(z) = o is a p’-root of unity. So if p { D,
then « is a p’-root of unity, and hence z has p’-order. Thus Z(G) is a p’-group.
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Finally, for (v) we note that any additive character of a finite field of characteristic 2 takes only
integer values +1. Sp for any finite extension k/Fs, and any multiplicative character x of k™, the
Gauss sum Gauss(¢y, x) lies in the field Q(x), which is Q((y) for some odd integer N. View our
H on G,,/F, for a finite extension F,/Fy such that all the “upstairs” characters x; and all the
“downstairs” characters p; of H are characters of F, and define

A= A=A(-1)P PPV T](~Gauss(vr,. xi/p)))-
i i,
Notice that A lies in the field Q({;—1), itself Q((n) for some odd integer N. According to the
arithmetic determinant formula [Ka-ESDE, 8.12.2], we have

| La® Ades/Fa, if D—m > 2,
det(H) = { £w ® LA ®Adeg/]Fq, it D—m=1.

The group Ggeom of H does not change if we make an extension of the ground field, so we may
consider H viewed on G, /F 0. Relative to this ground field, we have

Ly ® (AD)de8/Ep if D—m>2,

det(H) =
et(#) {£¢®£A®(AD)deg/FqD, if D—m=1.

The key point is that over this ground field, H ® A~ des /FyD has finite arithmetic determinant, but

all Frobenius traces still lie in Q((;—1). Because the determinant of H® A~ dog /FuD 5 of finite order,
and its Garign normalizes the irreducible subgroup Ggeom, Garith itself is finite. The trace of any
element g € G (indeed of any element g in Gy,ith, being the trace of some Frobenius, is 2-rational.
In particular, if a 2-element g € Z(G) acts on H as scalar a € C*, then « is both a root of unity in
some Q((x) with NV odd, and a 2-power root of unity, and so o = +1. O

Theorem 4.9. In the above situation of (4.0.1), let F be an algebraically closed field of characteristic
r=0 orr#p, and let

A J — GLy(F)
be a continuous F.J-representation of dimension d > 1. If d < W, then A is tame, i.e. trivial on
the image of P(c0) in J, and the image A(J) is a profinite cyclic group of pro-order prime to p. If
in addition A is irreducible, then d = 1.

Proof. Let
p1 : 1(00) — GL,(Qp)

be the representation of I(oo0) on H. The highest co-break of p is 1/W, meaning precisely that the
upper numbering subgroup I(c0)/"W+) of I(c0) lies in the kernel of p. The composite representation

Ao py : I(o0) - J — GL4(F)

then has I(co)(/"*) in its kernel, and hence has highest slope < 1/W. The Swan conductor of
A o py then satisfies

Swan(A o py) < rank x highest slope < d/W < 1,

and hence and hence by [Ka-GKM, 1.9] Swan(A o py) = 0. Thus A o py is tame, i.e., is a repre-
sentation of the tame quotient I(c0)/P(o0), which is abelian and pro-cyclic, of pro-order prime to
p. Therefore the image A(J) is a profinite cyclic group of pro-order prime to p. If in addition, A is
irreducible, then d = 1, simply because I(00)/P(o0) is abelian. O
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We now give global versions of this result.

Given J the image of I(c0) on H of type (D, m), and () the image of P(co) on H, one knows that
Q@ is a finite p-group, normal in J, and that J/@Q is pro-cyclic of pro-order prime to p, as follows
from the basic structure of I(oc0), cf. [Se, pp. 80-82].

Proposition 4.10. Let H be an irreducible hypergeometric sheaf on Gm/]ITp of type (D, m) with
W := D —m > 0 the dimension of the wild part Wild of the I(co)-representation. If p{ W, then we
have the following results.

(i) Wild is the Kummer direct image [W1.(L) of some linear character L of Swan conductor 1.

(ii) Wild as a P(00) representation is the direct sum of the W multiplicative translates of L|p(oo)
by pw -

(iii) Any element of I(c0) of pro-order prime to p which maps onto a generator of I(c0)/P(00)
acts on the set of the W irreducible constituents of Wild|p() through the quotient pw of
I(c0), cyclically permuting these multiplicative translates of L| P(oo)-

(iv) The image of P(c0) is isomorphic to the additive group of the finite field Fp(puw ).

Proof. Statement (i) is proven in [Ka-GKM, 1.14 (2)]. Statements (ii) and (iii) result from (i), cf.
[KRLT3, proof of 3.1]. For (iv), there is nothing to prove if W = 1. If W > 2, by [Ka-ESDE, 8.6.3],
the I(oo)-isomorphism class of Wild up to multiplicative translation depends only on det(Wild), a
tame character which we can change as we like by tensoring Wild with a tame character. Such
tensoring with a tame character does not alter the action of P(o0), and allows us to reduce to the
case where det(Wild) = x5 ~!, and then apply [KRLT3, 3.1]. O

Proposition 4.11. Given J the image of I(c0) on H of type (D,m), and Q the image of P(c0)
on H, denote by J% the Zariski closure of J in the ambient Ggeom (07 equivalently in the ambient
GLp(Qy)). Choose an element ~y € J which is a topological generator of J/Q. Denote by .. the
semisimple part of v (in the sense of Jordan decomposition) in J***. Then we have the following
results.
(i

(i) The ratio v~ 7 acts trivially on Wild, and ~yss|wia has finite order.
i

) The action of I(c0), or equivalently of J, on Wild is through a finite group.
)

(iii) The action of s on Tame is via the direct sum of the m “downstairs” characters p; in H.
)
)

(iv) 7ss has finite order, and the group Js := (s, Q) is a finite subgroup of J%.

v) If in H the “downstairs” characters p; are all distinct, then v = s, and Jgs is simply the
finite group J.

Proof. We first show that the action of I(c0), or equivalently of J, on Wild is through a finite
group. Because H is defined on G,,/F, for some finite extension F,/F,, each “downstairs” p; has
finite order, and Wild is geometrically isomorphic to a multiplicative translate of the Wild of any
Kloosterman sheaf of rank W := D — m whose product of "upstairs” characters is specified, cf.
[Ka-ESDE, 8.6.4]. We can choose such a Kloosterman sheaf to have finite Ggeom. Indeed, if we
write W = ngp® with ng prime to p, we have only to take

[n0],K1(Charygiv(1 + p®))

if a > 1, and to take Kl(Char(ng)) if @ = 0. We then tensor with a suitable £, to get the correct
product of upstairs characters. This shows that the action of J on Wild is through a finite group.
From this finiteness it follows that 717 acts trivially on Wild, simply because 7174 is unipotent.
Thus ~ss acts on Wild with finite order. Statement (iii) is obvious, since the I(oco)-representation on
Tame is a successive extension of the p;. Statement (iv) follows from (ii) and (iii), simply because
the I(oco)-representation is the direct sum Tame & Wild. Statement (v) is immediate from (ii) and
(i). O
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Corollary 4.12. For py the representation defined by H, denote by peo its restriction to I(c0),
and denote by p% the semisimplification of poo. Then the image of p& is (isomorphic to) the finite
group Jss = (s, Q) constructed in Proposition 4.11.

Proof. As representation of 1(00), peo is the direct sum Tame & Wild. Thus p¥ is the direct sum
Tame®@Wild*. As shown above, I(co) acts on Wild through a finite group, and hence Wild is already
semisimple as an I(co)-representation. The semisimplification of Tame as an I(oo)-representation
is the direct sum of the p;, on which a topological generator v of J/Q acts as 7,,. Thus the image
of p% is precisely Jg. O

In view of Corollary 4.12, we see that Jg is simultaneously a finite subgroup of Ggeom, and it is the
image of p¥. Because semisimplification of an I(oo)-representation does not change its co-slopes,
the slopes of p¥ are 0 with multiplicity m and 1/W with multiplicity W. Thus we get the following
“finite” version of Theorem 4.9, whose proof, based entirely on the fact that the nonzero slopes of
ps are all 1/W, is left to the reader.

Theorem 4.13. (Theorem 4.5-bis) Let F be an algebraically closed field of characteristic r =0 or
r # p, and let

A J — GLg(F)
be an FJss-representation of dimension d > 1. If d < W, then A is tame, and the image A(Jss) is a
finite cyclic group of order prime to p. If in addition A is irreducible, then d = 1.
Theorem 4.14. Consider a (Qu-adic) hypergeometric sheaf,

H = Hypy (X1, XD; Pls- - > Pm)

of type (D, m) with D > m > 0, defined over a finite subfield of E, with geometric monodromy
group Ggeom- Suppose that we are given a group I' together with a surjective homomorphism

¢ : T = Ggeom

whose kernel Ker(¢) is a finite abelian group of order prime to p. Let F be an algebraically closed
field of characteristic r =0 orr # p, and let

A : T — GLy(F)

be an FT -representation of dimensiond > 1. Ifd < W, then A is tame, i.e. trivial on the full inverse
images under ¢ of the images in Ggeom of P(0) and P(c0), and the image A(I") is a profinite cyclic
group of pro-order prime to p. If in addition A is irreducible, then d = 1.

geom

Proof. Let us write 7$°™ := 71(G,,,/F,), and denote by
PH ﬂ'%eom — GL, (@)

the representation which “is” H. By definition, Ggeom is the Zariski closure of py (7$°™) in GL,,(Qy),
and we view py as a homomorphism

eom
PH - W% — Ggeom-

From the short exact sequence
1 — Ker(¢) = I' = Ggeom — 1,
we see that the obstruction to lifting py to a homomorphism

~ geom

Py —T
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lies in the group H?(G,/F,, Ker(¢)) = 0, the vanishing because open curves have cohomological
dimension < 1, cf. [SGA4t3, Cor. 2.7, Exp. IX and Thm. 5.1, Exp. X]. Let us choose such a lifting

prmit — .

The composite map

7" = T — Ggeom
(1/W+)  Because
1/W+)

is tame at 0, i.e., trivial on P(0), and has highest co-break 1/W, i.e., trivial on I(c0)
Ker(¢) has order prime to p, the map p itself is trivial on the p-groups P(0) and I(co)
Therefore p is tame at 0 and has highest co-break < 1/W. If we now compose p with A, we find
that A o p is tame at 0 and has Swans, < d/W. Hence if d < W, then A o p has Swan,, = 0, hence
is tame at both 0 and co. But W%eom’tame at 0,50 4q a pro-cyclic group of pro-order prime to p. Hence
if d < W, then the image A(T") is a profinite cyclic group of pro-order prime to p. In particular, if
A is irreducible and d < W, then d = 1, simply because A(T") is abelian. O

Corollary 4.15. In the situation of the theorem above, the group I' has no faithful FI"-representation
of dimension d < W. In particular, Ggeom itself has no faithful FI'-representation of dimension
d<W.

Proof. If W =1, there is nothing to prove, so it suffices to treat the case W > 2. By Theorem 4.14,
any such representation A has image an abelian group. But I' is not abelian, indeed its quotient
Ggeom is not abelian, as it has an irreducible Qg-representation of dimension D > W > 2, namely
the one coming from . O

Here is another application of Theorem 4.14.

Theorem 4.16. Let H be a hypergeometric sheaf of type (D, m) with D > m > 0 in characteristic

p, and let G be the geometric monodromy group of H. Suppose that

(a) G is a finite almost quasisimple group: S<AG/Z(G) < Aut(S) for some finite non-abelian simple
group S;

(b) For some normal subgroup R of G/Z(G) containing S, R admits either a d-dimensional lin-
ear representation ® : R — GL4(F), or an e-dimensional projective representation W : R —
PGL¢(F), over an algebraically closed field F of characteristic # p and nontrivial over S.

Then for the dimension W = D —m of the wild part of I(c0) on H we have
W <d-|G/Z(G) : R] < d-|Out(S)],

respectively
W < (e =1)-[G/Z(G) : R] < (¢* — 1) - |Out(9)|.

Proof. In the case U is given, we note that ¥ is faithful. [Indeed, Ker(¥) <« R does not contain
S, and so intersects S trivially by simplicity of S. Because both S and Ker(¥) are normal in R,
the commutator [S, Ker(¥)] C SN Ker(¥) = 1. Thus Ker(¥) < Cg(S5) < Cauys)(S) = 1. Hence
R is embedded in PGL(U), where U = F¢. Composing this embedding with the faithful action of
PGL(U) on End(U)/scalars, we obtain a faithful action of R on a module of dimension < e? — 1.
Thus it suffices to prove the bound W < d- [G/Z(G) : R] in the case ® : R — GL(V) is given.

So assume the contrary: ® : R — GL(V) is faithful with dim(V') = d, but

(4.16.1) W >d-[G/Z(G) : R.

Let V denote the G-module Ind%(V) for G := G/ Z(G). Note that G acts faithfully on V. Indeed,
let K < G denote the kernel of the action of G on V. By the construction of V as the induced
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representation, the R-module V contains V as a submodule. But S acts faithfully on V', hence
SNK =1. As S <G, it follows that [S, K] =1, and so

K < Cg(S) < Cauys)(S) = 1.

We also note that
dim(V) =[G : R]-dim(V)=d-[G: R < W
by (4.16.1); in particular, D > W > 2.
Now view V as a representation of GG, of dimension < W. By Theorem 4.14, applied with its
I taken to be G, this representation is tame at both 0 and co. Thus the image @ in G of P(c0)
acts trivially on V. But G/Z(G) acts faithfully on V. Therefore @ lands in Z(G), contradicting
Proposition 4.8(iii). O

We conclude this section with another result that bounds dim Wild for hypergeometric sheaves
in good characteristics: Recall [St, 1.13] first the notion of a torsion prime for a simple Lie algebra,
or equivalently for a simple algebraic group. For the groups of type A,, C., there are none. For
the groups of type B, (r > 3), D, (r > 4), G5 they are 2 alone. For Fy, Fg, and E7 they are 2, 3.
For FEg they are 2,3,5. For a semisimple Lie algebra, they are the torsion primes for the simple
components.

Theorem 4.17. Let H be a hypergeometric sheaf of type (D, m) with D > m in characteristic p.
Suppose that G := Ggeom 15 a connected semisimple algebraic group, and at least one of the following
conditions holds:

(a) p does not divide the order of the Weyl group W (G) of G.
(b) p does not divide D —m = dim Wild, and p is not a torsion prime for G.

Then dim Wild divides the order of some element in W(G).

Proof. We work with the finite subgroup Jss = (@, 7ss) constructed in Proposition 4.11; in particular,
it consists of semisimple elements in G.

First we show that @ (the image of P(c0) in G) is contained in a maximal torus 7 of G. By
[Bor, E-45, 11.5.16], the finite nilpotent subgroup @ is always contained in the normalizer Ng(7)
of a maximal torus 7. In the case of (a), p is coprime to [Ng(7T)/T| = |W(G)|, so Q < T. In the
case of (b), pt (D —m) implies @ is abelian by Proposition 4.10. Since p is not a torsion prime, by
[Bor, E-42, 11.5.8, I1.5.11], @ is contained in a maximal torus 7.

Note that every torsion prime for G is a divisor of |W(G)|. So either (a) or (b) implies that p
is not a torsion prime and that @ < T is abelian. By [Bor, E-42, I11.5.8, 11.5.11], C := Cg(Q) is a
connected reductive subgroup of G that contains 7. We note that

(4.17.1) The order of any element in Ng(C)/C divides the order of some element of W (G).

Indeed, if g € Ng(C), then 79 is a maximal torus of C, so T9 = T¢ for some ¢ € C. Hence 79 =T
and thus gc=! € Ng(T). Replacing g by gc~!, we may assume g € Ng(T). As Ng(T)/T = W(G)
is finite, there exists some N € Zs; such that ¢ € 7 < C, and thus the order of the coset gC in
Ng(G)/C divides N, as stated.

Also note that @ abelian implies p { (D —m) = dim Wild. Now, by Propositions 4.10 and 4.11,
Yss permutes the D — m distinct linear characters of (Q on Wild transitively, and () acts trivially
on Tame. It follows that g has order exactly D — m in Ng(Q)/Cg(Q). But Ng(Q) normalizes
Cg(Q) =C. Hence Ng(Q)/Cg(Q) < Ng(C)/C, and the statement now follows from (4.17.1). O
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5. HYPERGEOMETRICITY RESULTS

In this section, we consider the question of when a Qg-local system on Gy, /F,, £ # p, is given by
a hypergeometric sheaf.

Theorem 5.1. Let G be a finite group, and ¢ : 71(Gp/Fpy) — G a surjective homomorphism.
Suppose we are given two irreducible representations

®;: G — GLp,(Qp), i=1,2.

Let H; the the local system on G, /F, which realizes ®;; i.e., H; is the local system given by the
composite

7Tl((GTn/IFip) i} G &) GLDz(@)? = 1a 2a
Suppose that there exists an integer a such that for every g in ¢p(P(0)) U ¢(P(0)), we have
(xxp)  Trace(®2(g)) = a + Trace(P1(g)).

Then the following conditions are equivalent.
(i) Hi is hypergeometric, of type (D1, m1) with D1 > my.
(ii) Ha is hypergeometric, of type (Do, ms) with Dy > mso; moreover (Da,ms) = (D1+a,mi+a).

Proof. By symmetry, it suffices to show that (i) implies (ii). Because D; > mj, H; is tame at 0.
Apply (*%,) to the image Pg(0) = ¢(P(0)) of the wild inertia group P(0) at 0. For any v € Pg(0),
we have

Trace(®1(vy)) = D,

simply because H; is tame at 0. Therefore we have
Trace(®2(y)) = D1 +a

for every v € Pg(0). Thus the Pg(0)-representation on Hsy has the same trace at Dy 4+ a copies
of the trivial representation, and hence Pg(0) acts trivially on Ho, and Ho has rank Dy + a. In
particular, Hs is tame at 0.

We next consider the action of the image Pg(o0) = ¢(P(00)) of the wild inertia group P(co)
at 0o. Because H;j is hypergeometric and tame at 0 (and lisse on G,,), its Pg(00)-representation
has Swan conductor Swans(#1) = 1. [Recall that the Swan conductor of a representation of the
inertia group I(oo) is defined completely in terms of its restriction to P(oo) and of the restriction
to P(00) of the upper numbering filtration on I(o00), cf [Ka-GKM, 1.7].] From the equality ()
applied to elements of Pg(co) < G, we see that Ha as a P(oo)-representation is isomorphic as
a virtual representation to direct sum of H; as a P(oo)-representation and a copies of the trivial
representation. As Swan conductors pass to virtual representations, and trivial representations have
Swan conductor zero, it follows that Swan.(Hz2) = 1. By [Ka-ESDE, Theorem 8.5.3], it follows
that Ho, being irreducible, tame at 0 and with Swan.,(#Hz2) = 1, is hypergeometric, of type (D2, m2)
with Dy > mgy. We have already seen, from the Pg(0) analysis, that Dy = Dy + a.

We will now show that mg = mj + a. Break the Pg(0o)-representations of 71 and Hg into tame
and totally wild parts, say

Hq, = Wildy + mill, Ho= Wildy 4+ mo1.
From the equality of traces on Pg(00), we have an equality of virtual representations of Pg(00),
Wildy + mol = Wildy + mq1 + all,

which we rewrite as

Wi|d2 — W”dl = (m1 +a— MQ)]I.
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If, for example, m; + a — mg > 0, we get an isomorphism of representations
Wildy = Wildy + (m1 +a— mg)]l.

But Wilds is totally wild, hence it has no trivial components, and hence m1 +a —mgo = 0. Similarly,
if mi +a —mo <0, then we get an isomorphism of representations

WI|d1 = Wl|d2 + (mg —a— ml)]l,
and again infer that mi +a — mo = 0. O
Some particularly useful consequences of Theorem 5.1 are the following:

Corollary 5.2. Let G be a finite group, and ¢ : m1(G,,/Fp) — G a surjective homomorphism.
Suppose G = Z x H for a p'-subgroup Z < Z(G) and H < G. Denote by m : G — H the projection
and v : H — G the inclusion. Suppose we are given an irreducible representation ® : G — GLp(Qy),
and let H and H' be the local systems on Gm/Fp given by

11 (G /Tp) & G2 GLp (@) and m(Gn/Fy) 5 G 5 H S G2 GLp (@),

respectively. Then H is hypergeometric, of type (D, m) with D > m, if and only if H' is hypergeo-
metric, of type (D, m) with D > m.

Proof. Note that (com)(h) = h for all h € H, and, furthermore, any p-element g € G is contained in
H as pt|Z|. Moreover, (Porom)(G) = ®(H) is irreducible since Z < Z(G). Now for any p-element
g € G we have (Porom)(g) = ®(g). Hence (*x,) holds with a = 0, and the statement follows from
Theorem 5.1. O

Corollary 5.3. Let G be a finite group, and ¢ : 71(G,,/F,) - G a surjective homomorphism.
Suppose we are given an irreducible representation ® : G — GLp(Qy) and a tame representation
A G — GL1(Qy) of odd order such that ®* = ® @ A. Then there exists a tame representation
O : G — GL1(Qy) such that ® ® © is self-dual. Let H and H' be the local systems on G, /F, given
by

(G /Tp) & G2 GLp (@) and m1(Gm/Fp) & G 2295 GLp (@),

respectively. Then H is hypergeometric, of type (D,m) with D > m, if and only if H' is hypergeo-
metric, of type (D, m) with D > m.
Proof. Let N = 2m + 1 denote the order of A, so that gcd(N,2p) = 1. Then

(Q) ® Am+1)* ~ (I)* ® A—m—l ~ ® AP ® Am-i—l7

i.e. we can take ® = A™. Now, for any p-element g € G, O(g) = 1 as © is tame, whence
(P®0O)(g9) = ®(g). Hence (¥%,) holds with a = 0, and the statement follows from Theorem 5.1. [

In connection to the last statement, we prove the following useful fact:

Lemma 5.4. Let ‘H be a hypergeometric sheaf of type (D,m), where D > m > 1 and D > 2, with
finite geometric monodromy group G = Ggeom. Let ® : G — GLp(Qy) denote the corresponding
representation, and assume that, for the image Q of P(o0) in G, (®|g)" = (P|g) ® A for some
1-dimensional Q-representation A. Then A is trivial, unless m = 1, D is a power of p, and Q is
elementary abelian of order D. In all cases, the Q-representation ®|g is self-dual.

Proof. Let ¢ denote the character of ®. Write the dimension w := D — m of Wild as tp™ with ¢
prime to p and n > 0. Then one knows [Ka-GKM, 1.14] that ¢|g = S_i_, 6; +m - 1¢, for t pairwise
distinct nontrivial irreducible characters 6; of (), each of degree p™, that are permuted transitively
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by J, the image of I(oco) in G. By assumption, there exists A € Irr(Q) such that @|g = ¢|g - A,

whence
t t

D bitm-lg=0lg=plo- A=) _0i- Ao +m\

i=1 i=1
Note that all the characters 6; are still irreducible and distinct. Hence, if m > 2, we must have that
A = 1q, and so ®|q is self-dual.

Suppose now that m = 1 but A # 1g. Then there exists some ¢ such that A\ = 0;. Therefore 6;
has degree 1. Therefore p" = 1, t = w, and every 0; is a linear character of order p. Therefore () is
elementary abelian, and (1) = 1 for all j. We now have that §; - = o for o := ¢|g. Conjugating
this equality by elements in J which acts transitively on {61, ...,0;}, we see that

(5.4.1) 9j 0 =0
for all 1 < j <t. It follows that

00 = (1Q+Z(9j)5:5+29j -0 =0 +to.
Jj=1 J=1
Taking complex conjugate and subtracting, we get (t — 1)(¢ — o) = 0. But note that t = w =
D—m = D~—1>1in this case, so & = 0. Next we show that o = | is the regular character regg
and that D = |@| in this case. Indeed, consider any g € @ with o(g) # 0. Then by (5.4.1) for the
root of unity z := 0;(g) we have o(g) = 2o(g), for all j. It follows that 1+ tz = 2(1 +tz) = z + ¢,
andso z =1ast>1 Thus o(g) =t+ 1 and g € Ker(®) = 1. Thus o(x) =0 forall 1 # z € Q.
Now
Q1= 1Ql [ 1glg = 3. o(@) = (1) =t +1 = D.
T€Q
As the ¢ + 1 characters 1¢, 01, . .., 0; are all distinct, we conclude that o = regg. O

6. ALMOST QUASISIMPLE GROUPS CONTAINING ELEMENTS WITH SIMPLE SPECTRA

The goal of this section is to describe triples (G, V, g) subject to the following condition:
~ G is an almost quasisimple finite group, with S the unique non-abelian composition
(*) factor, V a faithful irreducible CG-module, and g € G has simple spectrum on V.

With G as in (x), let E(G) denote the layer of G, so that E(G) is quasisimple and S =
E(G)/Z(E(G)). On the other hand, G/Z(G) is almost simple: S < G/Z(G) < Aut(S). We will
frequently identify G with its image in GL(V'). Let 9(S) denote the smallest degree of faithful pro-
jective irreducible complex representations of S, and let 6(g) denote the order of the element gZ(G)
in G/Z(G). Adopting the notation of [GMPS], let meo(X) denote the largest order of elements in
a finite group X. An element g € G < GL(V) is called an ss-element, or an element with simple
spectrum, if the multiplicity of any eigenvalue of g acting on V is 1. (Note that in (x), we do not
(vet) assume that V|g(q) is irreducible.)

We begin with a useful observation:

Lemma 6.1. In the situation of (x), we have

0(S) < dim(V) <0(g9) < meo(G/Z(G)) < meo(Aut(S)).
Proof. For the first inequality, let U denote an irreducible summand of the CE(G)-module V. Since
G is almost quasisimple, Z(E(G)) < Cg(S) = Z(G). As the G-module V is faithful and irreducible,

it follows that Z(E(G)) acts faithfully (via scalars) on U, and so E(G) is faithful on U. Thus U
induces a faithful projective irreducible action of S, whence n := dim(V) > dim(U) > d(S5).
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Next, let {e1,...,€,} denote the set of eigenvalues of g acting on V', and let m := 6(g). Then
g™ € Z(@G) acts a scalar v on V, hence € = v for all i. Since g has simple spectrum on V, we
conclude that n < m, and the statement follows. O

6A. Non-Lie-type groups. The goal of this subsection is to address the case where S = A, the
alternating group of degree n > 7, or one of the 26 sporadic simple groups. (We omit explicit results
in the cases S = As g, since there are too many cases, all of which are tiny and can easily be looked
up using [GAP].) For any partition A - n, let S* denote an irreducible CS,-module labeled by .
In particular, S~11 ig just the deleted permutation module of S,,. We will also need to consider
the so-called basic spin modules (acted on faithfully by the double cover An), see e.g. [KIT, §2].

The following result extends [GKT, Theorem 9.7]. (We note that the case n = 6 of [GKT,
Theorem 9.7] inadvertently omitted a triple (G, V, g) with G = Ag, dim(V) =5 = |g|.)

Theorem 6.2. In the situation of (x), assume that S = A, with n > 8. Then one of the following
statements holds.
(i) E(G) = A, and one of the following holds.
(a) dimV =n—1, V]a, = S®=LD|s | and, up to a scalar, g is either an n-cycle, or a disjoint
product of a k-cycle and an (n — k)-cycle for some 1 <k <n —1 coprime to n.
(b) n =8, dimV = 14, and, up to a scalar, g is an element of order 15 in Ag.
(i) E(G) = A, and one of the following holds.

(a) n =38, dimV =8, V|gq) is a basic spin module, and 6(g) = 10, 12, or 15.
(b) G/Z(G) = Ay, dimV =8, V|g(q) is a basic spin module, and 6(g) =9, 10, 12, or 15.
(c) G/Z(G) =Sy, dimV =16, V|g(q) is the sum of two basic spin modules, and 6(g) = 20.
(d) G/Z(G) = Sy, dimV =16, V|g(q) is a basic spin module, and 5(g) = 20 or 30.

)

(e) G/Z(G) = Ay, dimV =16, V|g(q) is a basic spin module, and o(g) = 20.
(f) G/Z(G) = S12, dimV = 32, Vg is a basic spin module, and 5(g) = 60.

Proof. It is more convenient to work with a modified version H of G which may differ from G
only by scalars and whose representation theory is better understood. If G/Z(G) = S, we take
H = E(G).

Suppose G/Z(G) = S,,. Then there is an element z € G the conjugation by which induces the
same automorphism of F(G) as the one induced by the 2-cycle (1,2). In particular, z? centralizes
E(G) and so 22 = § - 1y for some § € C*. In this case, taking ¢ := 6~ /22, we have that t* = 1y,
and choose H := (E(G),t). Our construction of H ensures that Z(GL(V))G = Z(GL(V))H; in
particular, H is irreducible on V. If furthermore E(G) = A,, then since |H| = 2|E(G)| and
H induces the full Aut(S) = S,,, we have that H = S,,. Consider the case E(G) = A,. Then
Z(H)=7Z(F(GQ)) < E(G) =[H,H] and H/Z(H) = G/Cg(S) = Aut(S) =S,. Thus H is a central
extension of S,, with kernel Z(H) of order 2 contained in [H, H]. By [Is, Corollary (11.20)], H is
isomorphic to a universal cover of S,,, namely the one with order 2 inverse images of transpositions,
usually denoted S,, [KIT, §1].

From now on, we will replace G by H, so that G € {A,,S,} in the case E(G) = A,, and
G € {A,,S,} in the case E(G) = A,. We will let cyc(g) denote the number of disjoint cycles of the
image of g in G/Z(G) < S,,.

(i) Here we assume that F(G) = A, = S, in particular, A,, <G < S,,, and proceed by induction
on n > 8. The cases 8 < n < 14 can be checked directly using [Atlas] and [GAP], so we may
assume n > 15. If furthermore dim(V') < n —1, then by [Ra, Result 1] without loss we may assume
that V = S(1D|4. In this case, if cyc(g) > 3, then dim V9 > 2, a contradiction. If cyc(g) = 2:
g is a product of disjoint k-cycle and (n — k)-cycle with 1 < k < n — 1 but ged(k,n) > 1, then
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exp(2mi/ ged(k,n)) is an eigenvalue of g of multiplicity 2, again a contradiction. Thus we arrive at
conclusion (i)(a).

We may now assume that dim(V) > n. Assume furthermore that cyc(g) < 3. Then |g| < n3/27,
whence dim(V) < n3/27 by Lemma 6.1. In particular, if W is an irreducible CS,-module that
contains V' as a submodule upon restriction to G, then dim W < 2n3/27 < n(n — 1)(n — 5)/6.
It follows from [Ra, Result 3] and the assumption dim(V) > n that dimW = dim V' and, up to
tensoring with the sign representation, V' = §(n=2,1%) | or G(n=2.2
dim V9 > 2 for all g with cyc(g) < 3, a contradiction.

Thus we may assume that s := cyc(g) > 4. Let a; > as > ... > as > 1 denote the length of
the disjoint cycles of g. Then we take m to be as if 2 as, as—1 if 2|as but 21 as_1, and as—1 + as
if 2|as,as—1. Our choice of m ensures that (a conjugate of) g is contained in A,_,, X A,,, with
n —m > 8, and the A,_,,-component h of g has disjoint cycles of length a;, as (and possibly
others) and cyc(h) > s — 2. Let U; ® Uy be an irreducible summand of the module V|a, , xa,, o0
which A,,_,, acts nontrivially. Since Spec (g, V) is simple, Spec (h,U;) is simple. By the induction
hypothesis applied to Uy, cyc(h) < 2, which implies s = 4, 2|as3, a4, and aj,ay are coprime. Since
h € A,_, we see that 2 f ajay. Noting that a3 + ag+aq4 > 5+ 2+ 2 =9, we can now put g in
A, —a, X Ag, and repeat the above argument to get a contradiction, as the A,,_,,-component A’ of
g now has cyc(h’) = 3.

(ii) Now we consider the case F(G) = An, in particular, A, <G <S,. The cases 8 < n < 13
can again be checked directly using [Atlas] and [GAP] (and they lead to examples (i)(a)—(f)), so we
may assume n > 14. Note that

)|G. Direct calculation shows that

oln-1)/2)

. = éna
(621) dlm(v) = { 2|_(7l_2)/2J7 G = Ana

in particular, dim(V) > 2(»=3)/2 Now, if n > 40, then

(where the second inequality follows from [Mas]), contradicting Lemma 6.1. For 20 < n < 39, we
can use the values of meo(S,,) stored in the sequence A000793 of [Slo| to verify that

dim(V) > 2L0=2/2] 5 meo(S,) > a(y),

and again arrive at a contradiction. Using (6.2.1) and [GAP], we can verify that dim(V') > meo(G)
for 17 <n <19.

Now, the cases G = S, with 14 < n < 16 can be checked using character tables available in
[GAP]. We also have dim(V) > 128 > 105 = meo(Ag) and dim(V) > 64 > 60 = meo(A14) when
n = 14,16. It remains to consider the case G = Ays. As 6(g) > dim(V) > 64, we must have that
0(g) = 105 and that V is a basic spin module of A1s of dimension 64 (as non-basic spin modules of
S15 have dimension > 864, cf. [GAP]). Without loss, we may assume |g| = 105 and that g = g3g597
lies in a central product Ag o A5 o A7, with g; € Aj has order j for j = 3,5,7. Note that g; has j —1
distinct eigenvalues on basic spin modules of Aj for j = 3,5, all different from 1. Furthermore, the
restriction of V to any standard subgroup An/ of A, involves only basic spin modules of An/, see
[KIT, Lemma 2.4]. It follows that g can have at most 2 x 4 x 7 = 56 < dim(V") distinct eigenvalues
on V, a contradiction. O

Note that case (i)(b) of Theorem 6.2 does give rise to a hypergeometric sheaf in characteristic 2
with Ggeom = Ag = GL4(2), see [KT5, Corollary 8.2]. Case (i)(a) is shown to occur in Theorem 9.3,
whereas cases of dimension 16 or 32 of Theorem 6.2(ii) are ruled out in Lemma 9.1.
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Next we record the following statement, which is useful in studying representations with irrational
traces:

Lemma 6.3. Let  : G — GL(V) = GL,—1(C) be a faithful irreducible representation of a finite
almost quasisimple group G, which contains a normal subgroup S = A, with n > 7. Suppose that
(a) V]s = S|, and

(b) Q(¢) C K for some number field K, if ¢ denotes the character of ®.

Then Q(¢) C Ko, the subfield obtained by joining to Q all roots of unity that belong to K. In fact,

Q(p) is some cyclotomic extension Q((,) contained in K, and Tr(®(g)) is an integer multiple of a
root of unity for any g € G.

Proof. (i) By Schur’s lemma, Cg(S) = Z(G) acts in ® via scalars, and so by finiteness Z(G) is
cyclic of order say k. Then ¢(z) € Q(¢x) C Ky for all x € Z(G). Now if G induces only inner
automorphisms of S, then G = Z(G)S = Z(G) x S, and we are done since ¢(y) € Z for all y € S,
in this case, Q(¢) = Q((x). It is also clear that, for any g € G, p(g) € Z¢ for some root of unity &.

(ii) It remains to consider the case G induces some outer automorphisms on S. Asn > 7, it
follows that [G : Z(G)S] = 2, and we need to look at ¢(g) for all g € G N\ Z(G)S with ¢(g) # 0.
Note that we can extend ®|g to S,, which without loss we also denote by ®, and then Tr(®(y)) € Q
for all y € S,,. Given g € G\ Z(G)S with p(g) # 0, we can find h € S;, that induces the same
action on S. It follows by Schur’s lemma that ®(g) = {®(h) for some £ € C*. Since both g and h
have finite order, £ is a root of unity. Also we have that K* > ¢(g) = a& where a := Tr(®(h)) € Z.
It follows that ¢ € K, and so Ko contains ¢ and ¢(g). We also note that g2, h? € Z(G)S, and so
®(g%h~2) = €2 -1d belongs to ®(Z(G)), whence £%¢ = 1. Together with (i), we have shown that

Q(¢k) € Q) € Ko NQ(Car)-
As [Q(Car : Q(Cr)] < 2, Q(yp) is either Q(x) or Q((ax)- O

Table 1 summarizes the classification of ss-elements in the non-generic cases of sporadic groups
and A7 and some small rank Lie-type groups, under the additional condition that V| E(G) 18 irre-
ducible. For each V', we list all almost quasisimple groups G with common E(G) that act on V,
and we list the number of isomorphism classes of such representations in a given dimension, for a
largest possible G up to scalars (if no number is given, it means the representation is unique up
to equivalence in given dimension). For each representation, we list the names of conjugacy classes
of ss-elements in a largest possible G, as listed in [GAP], and/or the total number of them. We
also give a reference where a local system realizing the given representation is constructed. The
indicator ! signifies that we have a conjectured local system (listed in Table 3) realizing the given
representation, whereas (-) means that no hypergeometric sheaf with G as its geometric monodromy
group can exist.

Theorem 6.4. In the situation of (), assume that S is one of 26 sporadic simple groups, or Az,
and that V|gq) is irreducible. Then (S,G,V,g) are as listed in Table 1.

Proof. We apply Lemma 6.1 to (G,V, g) to rule out 12 sporadic groups, listed in Table 2, because
they all satisfy meo(Aut(S)) < 9(S). For the remaining 15 cases, we use [GAP] to find possible
candidates for (G,V, g) (certainly, it suffices to search among representations of dimension at most
meo(Aut(S5))). O

Furthermore, we list in Table 3 certain hypergeometric sheaves

Hyp’t/l(Xl? -3 XD3P1ly- - ’Pm)
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] S | meo(Aut(S)) [2(9) | G \ dim(V) \ ss-classes ‘
A7 12 4 2A7 4 (2 reps) * 9 classes
Sz 6 (2 reps) [Thm. 9.3] | 7A, 6C, 104, 12A (4 classes)
3A7 6 (2 reps) 6 classes
6A7 6 (4 reps) * 15 classes
M 11 10 My 10 (3 reps) * 11AB (2 classes)
11°% 11AB (2 classes)
M2 12 10 | 2Mj2 -2 10 (4 reps) (-) 11 classes
Mo 11 (2 reps) (-) 11AB (2 classes)
2Mjo - 2 12 (2 reps) (-) 24AB (2 classes)
Moo 14 10 2Mas - 2 10 (4 reps) * 10 classes
Moz 23 22 Mos 22 F 23AB (2 classes)
Moy 23 23 Moy 23 ¢ 23AB (2 classes)
Ja 24 6 2J 6 (2 reps) [KRL] 17 classes
2]y -2 14 (2 reps) * 28AB, 24CDEF (6 classes)
J3 34 18 3J3 18 (4 reps) * 19AB, 5TABCD (6 classes)
HS 30 22 | HS-2 22 (2 reps) (-) 304
McL 30 22 McL - 2 22 (2 reps) 304, 22AB (3 classes)
Ru 29 28 2Ru 28 (2 reps) * 29AB, 58AB (4 classes)
Suz 40 12 6Suz 12 (2 reps) [KRLT3] 57 classes
Coy 60 24 2Co; 24 [KRLT3| 17 classes
Coy 30 23 Coy 23 [KRLT?2] 23AB, 30AB (4 classes)
Cos 30 23 Cos 23 [KRLT1] 23AB, 30A (3 classes)
PSL3(4) 21 6 6S - 21 6 (4 reps) many classes
45 - 23 8 (8 reps) * 12 classes
25 -2 10 (4 reps) * 14CDEF (4 classes)
PSU4(3) 28 6 615 - 29 6 (4 reps) many classes
Spg(2) 15 7 Spg(2) 70 7A, 8B, 94, 12C, 154
2Spg(2) 8 f 8 classes
Spg(2) 15 (-) 154
Q4 (2) 30 8 [297(2)-2 8 ? 22 classes
’By(8) 15 14 | ?B2(8)-3 14 (6 reps) * 15AB (2 classes)
G1(3) 18 14 | G2(3)-2 14 (2 reps) F 144, 18ABC (4 classes)
G2(4) 24 12 | 2G2(4) -2 12 (2 reps) * 20 classes

TABLE 1. Elements with simple spectra in non-generic cases

in characteristic p that are conjectured to produce G as geometric monodromy groups. All of them
have been proved in [KRLT4] to have finite Ggeom, and the cases marked with a reference to [KRLT4]
are proved therein to have the conjectured G as Ggeom, whereas “(WS)” signifies that the sheaf is
obtained by Sawin’s construction described in Lemma 9.2. For any natural number N, the notation
Chary denotes the set of all (multiplicative) characters of order dividing N, Chary, denotes the set
of all characters of order exactly IV, and £y denotes a fixed character of order N. The last column
indicates the conjectured image of I(c0), where A x B means a split extension of a group A by a
group B, with A = p® denoting an elementary abelian p-group of order p®, A = p'™2¢ denoting an
extraspecial p-group of order p'*2¢ and B = N denoting a cyclic group of order N.
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[ S [meo(Aut(S)) [2(S) [ S [meo(Aut(S)) [2(S) [ S [meo(Aut(S)) [ o(S) |
Jp 19 56 [ Ja 66 1333 | He 42 51
Ly 62 2480 || O'N 56 342 || N 60 133
Figo 42 78 || Fioz 60 782 || Fi}, 84 783
Th 39 248 || BM 70 4371 M 119 196883
TABLE 2. Maximal element order and minimal degree for some sporadic groups
] S \ G \ D \ rank \ X1s---5sXD \ Ply--sPm \Imageof](oo)‘
A; 2S [ 3| 4[KRLT4] 1,&7,62,62 0 37 x4
35 | 5| 6[KRLT4] & - Char 1,& 54
65 5| 6 [KRLT4] & - Char £s, 63" 58
Miq S 3 0 (WS) Chary Chars 32 %8
S 3 | 10 [Lem. 9.5] Char§ £s, &3 32 %8
S 3 1 (WS) Char11 Char4 AN {]1} 32 X 8
Moo 2S5 | 2 | 10 [KRLT4] Char}y £7,67,63 23 % 7
M3 S 2 22 [KRLT4] CharJ, Charys \ Charj§ 2" % 15
M24 S 2 (WS) Char23 Chal’é< 26 x 21
McL S-2 | 3| 22 [KRLT4] Charay Char? 311 % 20
S-2 |5 22 [KRLT4] Chargs Char 5172 % 24
Jo 25-2 | 5 | 14 [KRLT4] Charag ~ Chary4 £, 85" 52 % 24
J3 35 | 2 | 18 [KRLTY] & - Chary, 1,65, 6" 28 x 15
Ru 25 5 28 [KRLT4] Charj, €12, &89, E1a, €75 52 x 24
PSU4(3)| 6:-S | 3 | 6 [KRLT4] Char’ 3 31 % 10
Spg(2) S 7 | 7 [KRLTY] Chars U Char} & 7x6
28 7 | 8 [KRLTY] Charg ~ {1} Chars 7x6
Q7 (2) | 29-2 | 3| 8[KRLT4] CharJ, Chary 3172 % 8
25-2 | 7| 8 [KRLT4] Char, Chary 7x6
PSL3(4) | 6S 2 | 6 [KRLTY] Char & 245
4,8-24 | 7| 8 [KRLT4] g o TOIBIEIT £3,62 7:6
25-25 | 3 | 10 [KRLT4] | Charyy ~ {€20%%) Char} 32:8
Ga(4) 2-S | 2| 12 [KRLT4] Charyy Char; 2-group x 15
G2(3) S-2 [13| 14 [KRLT4] | Charys ~ {1,&,£3,£3} Charj 13 % 12
By(8) | S-3 |13] 14 [KRLT4] Charys ~ {1} €19, &3y 13 % 12

6B. Finite groups of Lie type. In this subsection, we will deal with almost quasisimple groups
G, where S is a finite simple group of Lie type. We will need the following well-known consequences

TABLE 3. Hypergeometric sheaves in non-generic cases

of the Lang-Steinberg theorem:

Lemma 6.5. Let G be a connected algebraic group over an algebraically closed field of characteristic

p>0 and let o : G — G be a surjective morphism with finite G° := {x € G | o(x) = z}.

(i) Suppose the G-conjugacy class of g € G is o-stable. Then some G-conjugate of g is o-fized, in

particular, |g| < meo(G7).
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(ii) Suppose that [G,G] is simply connected and g € G is semisimple. Then, for any t € G with
tgt=! € G7, tgt~! is G7-conjugate to g.

Proof. (i) By assumption, o(g) = xgr~! for some x € G. Since G is connected, the Lang map
y — y to(y) is surjective on G. Hence x = y~ 1o (y) for some y € G. Thus o(g) = o(y~Hygyto(y),
whence ygy~! € G7, and the statement follows.

(ii) By assumption, t~o(t) € Cg(g). Since o(g) = g and [G,G] is simply connected, by [C,
Theorem 3.5.6] Cg(g) is connected and o-stable. By the Lang-Steinberg theorem applied to Cg(g),
t7to(t) = ¢ to(c) for some ¢ € Cg(g). Now u := tc™! € G and tgt~! = tc tget™" = ugu™? is
G7-conjugate to g. O

Theorem 6.6. In the situation of (x), assume that S is a finite simple group of Lie type. Then
one of the following statements holds.
(i) S = PSLa(q) and dim(V') <o(g) < g+ 1.
(ii) S =PSLy(q), n > 3, E(G) is a quotient of SL,(q), and V|g () is one of ¢ — 1 Weil modules,
of dimension (¢" —1)/(qg—1) or (¢" —q)/(qg—1). Moreover, dim(V) <o(g) < (¢"—1)/(¢—1).
(iii) S =PSUn(q), n > 3, E(G) is a quotient of SUn(q), and V|g(q) is one of ¢+ 1 Weil modules,
of dimension (q" — (—=1)")/(¢ +1) or (¢" +q(=1)")/(¢ +1).
(iv) S = PSpy,(q), n > 2, 21 q, E(G) is a quotient of Spy,(q), every irreducible constituent of
Vg is one of four Weil modules, of dimension d := (¢" £1)/2, and dim(V') = d or 2d.
(v) Non-generic cases:
(a) S is one of the following groups: PSLs(4), PSU4(3), Sps(2), Q4 (2), 2B2(8), G2(3), G2(4),
Vg is simple, and the classification of ss-elements in G can be read off from Table I.
(b) Vg is the direct sum of two simple modules of equal dimension, and one of the following
possibilities occurs.
(o) E(G) =85 =8SU4(2), G/Z(G) = Aut(S), either dim(V) =8 and 6(g) =9, 10,12, or
dim(V) = 10 and o(g) = 10, 12.
(B) S =1SUs5(2), G/Z(G) = Aut(S), dim(V') = 22, and o(g) = 24.

Proof. By Lemma 6.1,
(6.6.1) meo(Aut(S)) > dim(V) > 0(95).

We will use the upper bounds on meo(Aut(S)) available from [KSe| and [GMPS], on the one hand,
and the (precise or lower) bounds on ?(S) as recorded in [T1, Table I], to show that most of the
possibilities for S contradict (6.6.1). We will frequently use the obvious estimate

(6.6.2) meo(Aut(S)) < meo(S) - |Out(S)].

(A) First we consider exceptional groups of Lie type.

(A1) Assume S = %Gs(q), with ¢ = 3%¢+1 > 27. By [KSe, Table A.7], meo(S) < q + /3¢ + 1,
hence meo(Aut(S)) < (¢ + /3¢ + 1)(2a + 1) by (6.6.2). On the other hand, 2(S) = ¢*> — q + 1,
contradicting (6.6.1).

Similarly, if S = 2Bs(q) with ¢ = 22471 > 128, then meo(S) < q + v/2¢ + 1, hence

meo(Aut(S)) < (g + /2q+ 1)(2a + 1)

by (6.6.2). On the other hand, 3(S) = (¢ — 1)4/q/2, contradicting (6.6.1). The cases S = ?Ba(q)
with ¢ = 8,32 can be checked directly using [GAP].
Let S = 2Fy(q), with ¢ = 22¢*1 > 8. By [GMPS, Table 5],

meo(Aut(S)) < 16(¢> + v/2¢% + ¢ + v/2q + 1)(2a + 1).
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This contradicts (6.6.1), since 3(S) = (¢* + 1)(¢> — 1)\/q/2. If S = 2F4(2), then, according to
[GAP], meo(Aut(5)) =20 < 27 =0(95).

(A2) Assume S = 3Dy(q) with ¢ = p/ > 2. We will show that
(6.6.3) meo(Aut(S)) < 9(S) = q(¢* — ¢* + 1),

which contradicts (6.6.1). Indeed, if p > 2, then meo(S) = (¢* — 1)(g + 1) by [KSe, Table A.7]. On
the other hand, if p = 2 then, by Propositions 2.1-2.3 of [DMi], the order of any element s € S is at
most (¢ —1)(g+1) if s is semisimple, and max(2(¢® +1),8(¢®> + ¢+ 1)) < (¢3 —1)(¢+ 1) otherwise,
and so meo(S) = (¢3 — 1)(q + 1) again. Hence, if ¢ # 3,4, 8, then meo(Aut(S)) < 3f(¢> —1)(qg+ 1)
by (6.6.2), and so (6.6.3) holds.

Assume now that ¢ = 3,4, or 8, and view § = g"fT, where G = Sping(F,), 0 : G — G the
standard Frobenius morphism induced by the map x +— 2P of Fp, and 7 a triality automorphism of
G that commutes with o. Then the restriction o := o|g induces an automorphism of order 3f of
S, and A := Aut(S) = S x (a), cf. [GLS, Theorem 2.5.12]. Consider any element g € Aut(S). If
S(g) < A, then

gl < (3f/2)meo(S) < 3f(¢® —1)(¢+1)/2 < qlq" — ¢* +1).

In the remaining case, S(g) = A. Note that h := g3/ € S is centralized by g, and so [Ca(h) :
Cs(h)] = [A: S]. Hence #(h?) = #(h®); in particular,

o(h) = aha™t = tht™!
for some ¢t € S. Thus the G-conjugacy class of h is o-stable, and so
gl <3f - |h] < 3f-meo(G7) = 3f - meo(Sping (p))

by Lemma 6.5(i). Using [Atlas] one can check that meo(Sping (3)) < 2 - meo(PSg (3)) = 40 and
meo(Sping (2)) = 15. Thus |g| < 120, respectively 210, 305, when ¢ = 3, 4, and 8, respectively. It
follows that |g| < q(q* — ¢* + 1), completing the proof of (6.6.3).

If S = 3D4(2), then meo(Aut(S)) = 28 and 9(S) = 26 according to [GAP]. However, using
character tables in [GAP], one can check that no ss-element exists.

(A3) Assume S = Ga(q) with ¢ = p/ > 5. If p > 2, then meo(S) = ¢*> + ¢ + 1 by [KSe, Table
A.7], and so meo(Aut(S)) < f(¢? + g+ 1) if p > 3 and meo(Aut(S)) < 2f(¢> +q+1)if p=3. If
p = 2 and ¢ > 8, then using [EY] one can check that the order of any element g € S is at most
q® + q+ 1 if g is semisimple, and 2(¢? — 1) otherwise, and so meo(Aut(S)) < 2f(¢? + ¢+ 1). On the
other hand, 0(S) > ¢3 — 1 if p # 3 and 0(S) = ¢* + ¢> + 1 if p = 3, see [T1, Table I], and we arrive
at a contradiction when ¢ > 5. The cases ¢ = 3,4 are handled directly using [GAP].

Let S = Fy(q), with ¢ = pf > 3. Arguing as in the proof of [GMPS, Theorem 1.2], also
using [KSe, Table A.7], we get meo(Aut(S)) < 32fq(¢®> — 1)(¢ + 1). This contradicts (6.6.1), since
2(9) > ¢® — ¢* + 1. If S = Fy(2), then, according to [GAP], meo(Aut(S)) = 40 < 52 = d(S).

Likewise, if S = 2Fg(q) with ¢ = p/ > 3, then arguing as in the proof of [GMPS, Theorem 1.2] and
using [KSe, Table A.7], we get meo(Aut(S)) < 32f(¢> — 1)(¢* +1)(¢ + 1). This contradicts (6.6.1),
since 0(9) = q(¢* +1)(¢® — ¢® +1). If S = 2E4(2), then, according to [GAP], meo(Aut(S)) = 105 <
1938 = 0(S). If S = Eg(q) with ¢ = p/ > 3, then the same arguments show that meo(Aut(S)) <
32f(q® —1)/(g—1). This contradicts (6.6.1), since 3(S) = q(¢*+1)(¢® + ¢>+1). If S = E4(2), then
meo(S) = 126 according to [GAP], hence meo(Aut(S)) < 252 < 2482 = 9(5).

The same arguments apply to the last two exceptional types. If S = E7(q), then

meo(Aut(S)) < 32f(q+ 1)(¢® + 1)(¢* + 1) < ¢*3(¢* — 1) < d(S).
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If S = Ex(q), then
meo(Aut(S)) < 32f(¢+1)(¢* + g+ 1)(¢° — 1) < ¢*"(¢* — 1) < 2(9).

(B) Now we analyze the simple classical groups.

(B1) Suppose S = Sps,,(q) with n > 2 and 2|q. Then meo(Aut(S)) < ¢"*1/(¢ — 1) by [GMPS,
Theorem 2.16], whereas ?(S) = (¢"—1)(¢" —q)/2(¢+1) by [T1, Table I], and this contradicts (6.6.1),
unless (n,q) = (3,2), (2,4), (2,2). The remaining exceptions are handled using [GAP]. Likewise, if
S = Qopi1(q) with n > 3, 24 ¢, and (n,q) # (3,3), then meo(Aut(9)) < ¢"*1/(¢ — 1) by [GMPS,
Theorem 2.16], and 2(S) > (¢" — 1)(¢" — q)/(¢* — 1) by [T1, Table I], again contradicting (6.6.1).
If S = POS, (q) with n > 4 and (n,q,€) # (4,2, +), then meo(Aut(S)) < ¢"*'/(q¢ — 1) by [GMPS,
Theorem 2.16] and 9(S) > (¢" + 1)(¢" ' — q)/(¢*> — 1) by [T1, Table I], contradicting (6.6.1). The
cases S = Q7(3) and Qg (2) are handled using [GAP].

(B2) Assume now that S = PSL,(q) with n > 2, (n,q) # (3,4), (4,3), and ¢ > 11 if n = 2. Then
by [GMPS, Theorem 2.16] and (6.6.1) we have

dim(V)) < 0o(g) < meo(Aut(S5)) = (¢" —1)/(¢ = 1).

In particular, if n = 2 then we arrive at conclusion (i). If n > 3, then it follows from [TZ1, Theorem
3.1] that E(G) is a quotient of SLy(q) and that V| g has an irreducible constituent U, which is a
Weil module of dimension (¢" — ¢)/(qg — 1) or (¢" —1)/(¢ — 1). In particular, dim(U) > dim(V")/2,
and so U = V|g(q), and we arrive at conclusion (ii). The remaining cases are handled using [GAP].

(B3) Suppose S = PSpy,(q) with n > 2, 21 ¢, and (n,q) # (2,3). Then by [GMPS, Theorem
2.16] and (6.6.1) we have

dim(V) < meo(Aut(S)) < ¢"™'/(q - 1).

It follows from [TZ1, Theorem 5.2] that E(G) is a quotient of Spy,(¢q) and that Vg has an
irreducible constituent U, which is a Weil module of dimension d = (¢" £+ 1)/2. Now, if ¢ > 5,
then ¢"*'1/(q — 1) < 3(¢™ — 1)/2, hence dim(V) = d or 2d. Consider the case ¢ = 3, for which
¢"t1/(qg — 1) < 4d. Here, ecither G = Z(G)E(G), and so dim(V) = d, or [G : Z(G)E(GQ)] = 2,
G induces a diagonal automorphism of E(G) and fuses two irreducible Weil modules of E(G) of
dimension d, whence dim(V) = 2d. Thus we arrive at conclusion (iv). The remaining case of

S = PSp,(3) is handled using [GAP].

(B4) Finally, we consider the case S = PSU,(¢) with n > 3. If n = 3 and ¢ # 3,5, then by
[GMPS, Theorem 2.16] and (6.6.1) we have

(6.6.4) dim(V) < meo(Aut(S)) < q(qg+1) < (¢* —q+1)(q¢ — 1)/ ged(3,q + 1).

If n =4 and ¢ > 4 and we have

(6.6.5) dim(V) < meo(Aut(S)) < ¢* +1 < (¢* — g+ 1)(¢* +1)/2.

If 2|n > 6 and (n,q) # (6,2), then we have

(6.6.6) dim(V) < meo(Aut(S)) < ¢" ' +¢* < (¢" = 1)(¢" " — @)/ (g +1)(¢° - 1).
If 2¢tn >5and (n,q) # (5,2) and we have

(6.6.7) dim(V) < meo(Aut(8)) < ¢"~' +q < (¢" + ("™ = ¢*)/(¢+ D(@* — 1).

In all these cases, the upper bound on dim(V') obtained in (6.6.4)—(6.6.7) implies by [TZ1, Theorem
4.1] that E(G) is a quotient of SU,(q) and that V() has an irreducible constituent U, which is a
Weil module of dimension (¢" + ¢(—1)")/(¢ + 1) or (¢" — (—=1)")/(g + 1). In particular, dim(U) >
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dim(V)/2, and so U = V| g(q), and we arrive at conclusion (iii). The remaining cases (n,q) = (3, 3),
(3,5), (4,3), (5,2), and (6,2) can be checked directly using [GAP]. O

7. THE CHARACTERISTIC OF HYPERGEOMETRIC SHEAVES

In this section, we assume H = Hypy(X1,---,XD;P1;---,Pm) is geometrically irreducible (i.e, no
Xi is any p;) f-adic (Kloosterman or) hypergeometric sheaf of type (D, m), D > m, on G, over a
finite extension of I, that admits a finite geometric monodromy group Ggeom. In particular, the
image of 1(0) on H is a finite cyclic group whose generator has D distinct eigenvalues (*1, ..., (P,
where (¢ € IFT,X has order N, and y; = x% for a fixed multiplicative character x of order N and
1 <4< D. We will show that, in most cases the characteristic p of the sheaf can be read off from
the structure of Ggeom-

7A. The Lie-type case. In this subsection, we will assume that G = Ggeom is an almost qua-
sisimple group of Lie type, that is, S < G/Z(G) < Aut(S) for some finite simple group of Lie type,
in some characteristic r which may a priori differ from p.

The principal result of this section is Theorem 7.3 stating that in the generic situation we in fact
have r = p, that is, the characteristic of the sheaf and of the group S are equal.

In view of Theorem 6.6, we will first prove some auxiliary results concerning Weil representations
of finite classical groups.

Lemma 7.1. Let G be a finite classical group and ¢ be a complex irreducible character of G, such

that at least one of the following conditions holds:

(a) G =SLa(q) with q > 7;

(b) G = GLy(q) withn >3, and ¢ is one of the irreducible Weil characters 1, ., 0 <1i < g —2;

(¢) G =GUy(q) withn >3 and (n,q) # (3,2), and ¢ is one of the irreducible Weil characters (, ,,
0<1<gq; or

(d) G = Spg,(q) with n > 2, 2 1 q, and ¢ is one of the four irreducible Weil characters &;,m;,
i=1,2.

Let g € G \NZ(G). Then |¢(9)|/¢(1) < 2/3 in the case of (d) and |p(g)|/¢(1) < 3/5 in the other
cases. Moreover, if G = SLa(q) with g > 25 then

lp(g)l/e(1) <1/(Va—1) <1/4.
Furthermore, if G = Spy,,(q) and g is a p'-element, then |¢(g)|/e(1) < (¢" 1 +¢q)/(¢" — 1).

Proof. In the case of (a), one can check using the well-known character tables of G, see e.g. [Do,
§38], that |p(g)|/¢(1) < 1/(,/g—1) < 3/5 when ¢ > 8, and |¢(g)|/¢(1) < V2/3 < 3/5 when ¢ = 7.
If ¢ > 25, then [p(g)|/¢(1) < 1/(ya—1) < 1/4.

In the remaining cases, we will consider G as a classical group with natural module V" and let e(g)
denote the largest dimension of g-eigenspaces on V ® IF,. As g ¢ Z(G), we have e(g) < dimV — 1.

Consider the case of (b) and view G = GL(V') with V' =TFy. If ¢ = 2, then (g) +2 = 7'2’2(9) +2
is the number of g-fixed vectors in V', whence —2 < ¢(g) < 27! — 2 and so |p(g)|/¢(1) < 1/2.
Assume ¢ > 3, and let 0 € EX and 6 € C* be of order ¢ — 1. By the character formula [T2, (1.1)],

q—
. k
7_1 § : k dlm]pq Ker(g—06"-1y) 5

k:
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It is easy to see that ’ZZ;% §ik gdimeg Ker(g_‘sk'l‘/)‘ is at most ¢" ! +2¢ — 3 if e(g) = n — 1, and at
most ¢"2(q — 1) otherwise. It follows that
el _ ("' +2¢-3)/(a— 1D+
p(1) (¢"—q)/(g—1)

In the case of (c), view G = GU(V) with V =F},. Let { € EX and £ € C* be of order ¢ + 1.
By the character formula [TZ2, Lemma 4.1],

1
< 3/5.

Gale) = S ié“f(—q)dim%? Hertametiv)
n,q °

+1=

=i di Ker(g—¢F-1
Again, it is easy to see that |>{_,&%q ey Kerlg=¢ V)‘ is at most ¢"~' +2¢ — 1if e(g) =n -1,

"2+ q¢*+q—1ife(g) =n —2, and at most ¢ 3(g + 1) otherwise. It follows that
n—1 _
lelo)l (@ +2-D/(g+1) <35
¢(1) (¢" —a)/(a+1)

unless (n,q) = (4,2), (5,2). In the cases (n,q) = (4,2), (5,2), the desired bound can be checked
directly using [Atlas]. If (n,q) = (3, 16), then |¢(g)|/¥(1) < 1/14.

Finally, we consider the case of (d), where G = Sp(V) and V = Fg". By the character formula
for the Weil characters, see e.g. Theorem 2.1 and Lemma 3.1 of [GMT],

lp(g)] < (qdimea Kerlo=1v) o gdimeg Ker(g+lv)y /9 < (qn=1/2 4 ¢1/2) /9
as e(g) < 2n — 1. It follows that

e(9)l _ ¢" '+ g

< <2/3

o) = o1 =Y

unless (n,q) = (2,3). The remaining case (n,q) = (2,3) can be checked directly using [Atlas]. If in
addition g is a p’-element, then dimp, Ker(g & 1y) < 2n — 2, and so |¢(g)| < (¢! +q)/2. O

Proposition 7.2. Let G be a finite almost quasisimple group: S < G/Z(G) < Aut(S) for some

simple non-abelian group S. Suppose that at least one of the following conditions holds for (L, p),

where L := G and ¢ € Irr(G) is any faithful irreducible character:

(a) L is a quotient of SLa(q) for some prime power ¢ > 7 and (1) < g+ 1;

(b) L is a quotient of SLy,(q) for some prime power q and some n > 3, and p viewed as a character
of SLy(q) is one of the irreducible Weil characters Té’q, 0<i<q—2;

(¢) L is a quotient of SU,(q) for some prime power q and some n > 3, and ¢ viewed as a character
of SU,(q) is one of the irreducible Weil characters wa, 0<i<gq; or

(d) L is a quotient of Sps,(q) for some odd prime power q and some n > 2, and every irreducible
constituent of ¢|r, viewed as a character of Sps,,(q) is one of the four irreducible Weil characters
fi,m, 1= 1,2.

Let 1 # Q < G be any subgroup and let w(Q) := (1) — [plo, 1gQlq be the codimension of the fixed

point subspace of Q in a CG-representation ® affording the character . Then

(1/3)- (1—1/]Q|) = 1/6, in the case of (d),

w(Q) (1/10) - (1 =1/|Q[) > 1/20, in the cases of (a)—(c),

—= > ¢ (3/16) - (1-1/]Q|), in the case of (a), with ¢ > 25,

(1) 1/4—-2/(5|Q)), in the cases of (b), (c), with q prime,
0.377 — 0.345/|Q|, in the cases of (c), with (n,q) = (6, 3).



42 NICHOLAS M. KATZ AND PHAM HUU TIEP

Proof. (i) The faithfulness of ¢ implies that any non-identity central element z € Z(G) acts without
nonzero fixed points in ®. In particular, w(Q) = ¢(1) if @ NZ(G) # 1. So in what follows we may
assume that @ N Z(G) = 1. Suppose we can find an explicit constant 0 < a < 1 such that

[P(9)l/e(1) < @
for all g € @ \Z(G). Then

[Plo:lelo _ | 1 1+a(Q-1) _  1-o
2y 25 = e g%“@(g)‘ =7l ar
and so

w@Q 1o L
(7.2.2) () >(1—a)(l ’Q‘).

(ii) Assume we are in the case of (d). First we consider the case where all irreducible constituents
of ¢|1, are equal to a single irreducible Weil character, say 6 (when considered as a character of
Span(q)). It is well known that, each such 6 is stable under field automorphisms of Sp,y,(¢) — in
fact, it extend to a certain extension Spy,(q) X Cy < Spy,s(p) that induces the full subgroup of
outer field automorphisms of Spy,,(q), where ¢ = p/ and p is prime — but @ is not stable under outer
diagonal automorphisms. See e.g. [KT6, §6]. As Z(G) acts via scalars in ®, we can extend 6 to a
character of Z(G)L, which is still G-invariant. But G/Z(G)L embeds in the subgroup C of field
automorphisms of L and so it is cyclic. Hence, by [Is, (6.17), (11.22)], § extends to G and in fact
¢|r, = 6. Thus we may assume that ® extends to ® : Spy,,;(p) — GL(V') and that

®(G) < Napw)(®(Spay,(9))) < @(Spay,s(p))Z(GL(V)).

It follows that ®(g) is a scalar multiple of ®(h) for some non-central element h € Spy,¢(p). Applying
case (d) of Lemma 7.1 to ¢(h), we obtain |¢(g)| = |¢(h)| < (2/3)¢(1). Thus we can take a = 2/3
in this case.

Assume now that the set of irreducible constituents of ¢|L is {&1,&} or {ni,m2}. By Clifford’s
theorem G permutes these two constituents transtively; let H denote the stabilizer of one of them,
say 01. Then |G/H| = 2 and H fixes both #; and the other constituent #2. Moreover, ®|g =
®; ® Py, where all irreducible constituents of the character ¢; on restriction to L are equal to 8; for
i = 1,2, and Z(G) acts the same in ®; and ®3. The preceding analysis applied to ¢; shows that
l0i(9)|/wi(1) < 2/3 and so |p(g)|/e(1) < 2/3 for all g € (Q N H) \ Z(G). On the other hand, if
g € Q ~ H, then g interchanges ®; and ®3 and so ¢(g) = 0. Thus we have |¢(g)| < (2/3)p(1) for
all g € Q@ N~ Z(G), and can take o = 2/3 as above.

(iii) In the remaining cases of (a)—(c), note that for any g € G \ Z(G), we can find h € L such
that [g,h] < L \Z(G). [Indeed, suppose [g,z] € Z(G) for all z € L. Then for all y € L we have
[[z,y], 9] = ([y,g],a:][[g,x],y])_l = 1, and so g centralizes [L, L] = L. But this implies g € Cg(L) =
Z(G).] By Lemma 7.1 (applied to each irreducible constituent of ¢|1), |¢(h)| < (3/5)¢(1). Hence,
by [GT3, Corollary 2.14] we have

[p(9)l < (3/4)p(1) + (1/4)[p(h)] < (9/10)p(1).
Thus we can take o« = 9/10 in these remaining cases. If L is a quotient of SLs(q) with ¢ > 25 in
(a), then |p(h)] < ¢(1)/4 by Lemma 7.1, and so we can take o = 3/4+ 1/16 = 13/16.

(iv) Finally, assume we are in the case of (b) or (c), and ¢ is prime. Then by [GLS, Theorem
2.5.12], Aut(S) = PGL;(¢) x (1) if S = PSLf,(q), where ¢ = + in the GL-case and ¢ = — in
the GU-case. In particular, at least half of the elements g € @ must induce only inner-diagonal
automorphisms of S. Also, irreducible Weil representations of L = SL,(¢) extend to ® : GLf,(¢) —
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GL(V). Hence, for any such element g € @, we may assume that ®(g) = y®(¢’) for some ¢’ € GL,(q)
and a root of unity v € C*, whence |¢(g)| = |¢(¢")] < (3/5)p(1) by Lemma 7.1. It follows that

Plo.lole |1 L4 (9/10)(Q1/2) + (3/5)(Q1/2-1) _ 3 2/5
o0 arem 2Pl S Q R

whence w(Q)/¢(1) = 1/4 = 2/(5|Q]).

Assume furthermore that we are in (c) and L is a quotient of SUg(3). The proof of Lemma
7.1 for SUg(3) and the character table of SU5(3) in [GAP] show that |¢(¢")|/p(1) < 0.345 for
the aforementioned element ¢’. Hence, replacing 3/5 by 0.345 in the above estimate, we obtain
w(Q)/e(1) >0.377 — 0.345/]Q)|. O

Theorem 7.3. Let H be an irreducible hypergeometric sheaf in characteristic p of rank D with
finite geometric monodromy group G' = Ggeom- Suppose that G' is an almost quasisimple group of
Lie type:

S <G/ZL(G) < Aut(5)
for some finite simple group S of Lie type in characteristic v. Then at least one of the following
statements holds.

(i) p=r, i.e. H and S have the same characteristic.
(ii) D <22 and S is one of the following simple groups: PSLa(5,7,8,9,11,25), SL3 4(2), PSL3(3,4),
PSUy56(2), PSU34(3), PSUs(4,5), Sps(2), PSpy6(3), PSpy(5), QF (2), 2Ba2(8), Ga(3,4).

Proof. (a) As explained above, a generator g of the image I(0) on A has simple spectrum on H.
Hence we can apply Theorem 6.6 to the faithful irreducible representation ® : G — GL(CP”) induced
by the action of G on H. Since the non-generic cases of Theorem 6.6(v) are already included in
(ii), we may assume that the character ¢ of ® and the subgroup L = G(*) fulfills the assumptions
of Proposition 7.2. We can therefore apply Proposition 7.2 to the subgroup @ = O,(J), the image
of P(c0) on H, where J = QC' is the image of I(oc0) on H, with C the cyclic tame quotient, and
W = w(Q) is the dimension of the wild part for I(co) on H.

First we note that if |Q| = 2, then @ has a unique nontrivial irreducible character (of degree 1),
and so W <1 and D < 20 by Proposition 7.2. Thus, by assuming D > 21, we may assume that
|Q| > 3. In the rest of the proof we will assume that |Q| > 3 and that r # p, and work to bound
D = rank(H).

(b) Here we consider the symplectic case: S = PSp,,(¢), where n > 2, ¢ = v/, and r # 2. By
Proposition 7.2, W > (2/9)D, and D > (¢™ —1)/2. Since any irreducible Weil character is invariant
under field automorphisms of Sp,,(q), we have by Gallagher’s theorem [Is, (6.17)] that D or D/2
is (¢"+1)/2.

We can view Spy,(q) as Sp(V) with V' = F2", where V is endowed with a non-degenerate
symplectic form (-, -). We also consider the conformal symplectic group

CSp(V) = {X e GL(V) | Is(X) e F, (Xu, Xv) = £(X)(u,v), Yu,v € V}

which contains Sp(V') as a normal subgroup with cyclic quotient of order ¢ — 1. Next we consider
the representation A : GL(V) — GL(A?(V)), and its twisted restriction

A2 CSp(V) = GL(A%(V)), A(X) = k(X)) TA(X)

to CSp(V). It is straightforward to check that Ker(A’) = Z(CSp(V)), and A’ induces a faith-
ful action of S on the quotient of A%(V) by the trivial submodule that extends to PCSp(V) :=
CSp(V)/Z(CSp(V)), which is the group of inner-diagonal automorphisms of S, cf. [GLS, Theorem
2.5.12].
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Now we can embed G/Z(G) in Aut(S) = PCSp(V) x Cf and set R := G/Z(G) N PCSp(V).
Applying Theorem 4.16 with d := (2n+ 1)(n — 1), we get

(7.3.1) (¢"—1)/9<2D/9<W <d-[G/Z(G): R < (2n+1)(n—1)f.
Now, if n > 6, then ¢"~! > 3"~! > 6n?, whence
q" > 6n2q > 18n2f,

contradicting (7.3.1). If 2 <n <5, then (7.3.1) leads us to one of the following possibilities.

(bl) g =3,2<n<5 Dor D/2is (¢" £ 1)/2. Assume (n,q) = (5,3) or (4,3). In this case, as
p#r=23,any g € Q\Z(G) is a 3'-element, and so |p(g)|/¢(1) < 3/8 by Lemma 7.1 if g € Z(G)L.
If g € Q@ \Z(G)L, then g fuses the two irreducible Weil characters of any given degree (¢" +1)/2,
whence we must have that D = ¢™ £ 1 and ¢(g) = 0. Thus we have |p(g)|/¢(1) < 3/8 for all
g € QN Z(G). Also, since |Q| > 2 and @ is not a 3-group, we have that |Q| > 4. The proof of
Proposition 7.2 now implies that

3 1
W>D(1-2)1-—)>15D/32,
> (-3 by =160/
whence (7.3.1) yields that n =4, D € {40,41}, G = Z(G)L, and
(7.3.2) 19<W <27, QNZ(G) = 1,

where the second conclusion follows from W < D and Proposition 4.8(i). Assume in addition that
D = 40. Then L = Spg(3), and it is easy to see that G/O3(Z(G)) admits a faithful 8-dimensional
representation A over F3. Applying Theorem 4.9 to A|; and using (7.3.2), we obtain that Q < Z(G),
a contradiction. Now we consider the other possibility D = 41, for which G = Z(G) x S. By (7.3.2),
p € {2,5,7,13,41} and @ embeds in a Sylow p-subgroup of S = PSpg(3). Also, recall that the
@-module Wild is a sum of a pairwise non-isomorphic simple Q-modules of dimension p¢, where
W = ap®and pta. If p=7or 13, then @ N C,, whence a < p—1 < 12 and p® = 1, yielding
the contradiction W < 12. If p = 5 or 13, then using the character table of S given in [GAP] one
check that |p(g)] < 4 for all g € Q \ Z(G), whence W > (37/41)(1 — 1/|Q|)D > 29, contradicting
(7.3.2). Thus we must have p = 2. Again using the character table of S we get |p(g)| < 15 for
all g € Q@ \Z(G). Also, if |Q| < 16, then @ has at most 16 irreducible characters of degree 1,
3 of degree 2, and none of degree > 2, whence W < 15, contradicting (7.3.2). Thus |Q| > 32,
and so W > (26/41)(1 — 1/|Q|)D > 25, i.e. W = 27 or 26. In the former case, we know that @
can be identified with the additive group of F2(§27) & [Fy18, which is impossible since () embeds in
PSpg(3). Consider the latter case W = 26, in which a generator g of the tame quotient of I(c0)
permutes cyclically a = 13 simple @Q-modules in Wild, and has a simple spectrum on the tame part
of dimension 15, since (00) has finite image J. Thus the 2’-element g has order divisible by 13 but
larger than 15. Hence, we can write g = zh, where z € Z(G) acts as a scalar on H, and h € S is
an element of order 39. Using the character table of S and letting ( = (39 € C*, we have that the
spectrum of h on H is the disjoint union X UY LY U {1,¢?¢} (with counting multiplicities), where
X = p13 = (¢3), and Y = ¢213. On the other hand, because of the cyclic action of g (and k) on the
13 @-summands in Wild, the spectrum of g (and h) on Wild must be the union of some p13-cosets,
whereas the spectrum on the tame part is simple. Now, if the spectrum A of h on Wildis Y U Y,
then the spectrum B of h on the tame part contains 1 twice. If A is X LY, then B contains (26
twice, again a contradiction.

Next, we consider the case n = 3 and D = ¢" + 1. Using the character table of Spg(3) - 2
[GAP], one can check that |¢(g)] < D — 16 for all g € Q ~Z(G). As |Q| > 4, it follows that
W > 16(1 — 1/4) = 12. Since @ acts on the wild part of H with pairwise non-isomorphic simple
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summands, it follows that |Q| > 9, forcing W > 16(8/9) > 14, contradicting (7.3.1). We have
shown that n < 3 and D < 14.

(b2) (n,q) = (3,5), (2,9), (2,5). In the case (n,q) = (3,5), the same arguments as in (bl) also
apply, yielding |p(g)|/p(1) < 15/62, whence W > (47/62)(1 — 1/3)D > 14, contradicting (7.3.1).
In the remaining cases (7.3.3) forces D = (¢" £ 1)/2, and so G can only induce inner and field
automorphisms of S. In the case (n,q) = (2,9), this implies that, modulo scalars, ®(Q) is contained
in the image of Spg(3) in a Weil representation, and so the arguments in (b1) again apply, yielding
W > 15D /32 > 18, contradicting (7.3.1). Thus (n,q) = (2,5), and D < 13.

(c) Next we consider the linear case: S = PSL,(q), where n > 3 and ¢ = /. By Proposition 7.2,
W > D/15, and D > (¢" — q)/(q — 1). Recall [GLS, Theorem 2.5.12] that

Aut(S) =2 PGL,(q) x C,
where C is an abelian group of order 2f. Embedding G := G/Z(G) in Aut(S), we let
Ry := GNPGL,(q) < G,

so that [G : Ry] divides |C| = 2f. As noted in the proof of Theorem 4.16, PGL,(q) < PGL(V)
acts faithfully and irreducibly on a subquotient A(V) of V ® V* (of dimension n? — 1 if r { n and
n? — 2 if 7|n), where V = F,", and moreover this action is extendible to PGL(V) x (7), where 7
is the transpose-inverse automorphism of PGL(V'). Viewing R; inside PGL(V'), we get a faithful
irreducible action of Ry which also extends to Ry x (7).

If [G: Ry < f,weset R:=Ry. If G: Ry] > f, then G/R; =2 C = Cy x (7). In this latter case,
there is some element Z € G ~ R; such that Z2 € R; and Z induces the automorphism 7 on Rj.
Then we set R := (R, ) and obtain a faithful (at least on R;) irreducible action on A(V'). Now
we can apply Theorem 4.16 with d := dim(A(V)) < n? — 1 to get

q"—4q
15(q — 1)
Note that if ged(n,q — 1) = 1, then PGL,,(¢) = SL,(¢) (but the action of S on V' does not extend
to S x (7)), and so we can apply Theorem 4.16 with d := n to get

(7.3.3) <D/I5<W < (n?=1)-[G: R < (n* - 1)f.

n

g —4q
15(¢ — 1)
Furthermore, if ¢ = r is prime, then by Proposition 7.2 we have W > D/8.6, hence the constants
15 in (7.3.3) and (7.3.4) can be replaced throughout by 8.6. Another observation is that, when
r = 2 and f is a 2-power, since p # r = 2, QZ(G)/Z(G) < R; for the p-group Q. Hence
lo(g9)]/p(1) < 0.6 for all g € @ \ Z(G) by Lemma 7.1. Now the proof of Proposition 7.2 show that
W/D > 0.4(1-1/|Q|) > 4/15, hence the constant 15 in (7.3.3) and (7.3.4) can be replaced by 15/4.

Now, if n > 11, or if n > 7 and ¢ > 3, then (¢"~ ! —1)/(q — 1) > 7.5n2, whence

¢" —q>T75n%q(q— 1) > 15n°(¢ — 1) f,

contradicting (7.3.3). If 2 <n < 10, then (7.3.3) and (7.3.4) imply that one of the following holds.

(cl) g=2,n<5,and D = 2" —2. If n = 5, then since @ is not a 2-group, the character table of
SL5(2) [GAP] shows that |p(g)|/¢(1) < 1/3, whence W > (2/3)(1 — 1/|Q|)D > 13, contradicting
(7.3.4). Thusn <4 and D = 2" — 2 € {6,14}.

(c2) ¢g=3,n=4,and D = (3" — 3)/2,(3" — 1)/2. Using the character tables of L -2;, L - 29,
and L - 23 given in [Atlas], one can check that |¢(g)|/@(1) < 1/3 for all g € Q \ Z(G), whence
W >1(2/3)(1-1/|Q|)D > 18, contradicting (7.3.3).

(7.3.4) <D/15<W <d-[G: Ry] < 2nf.
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(c3)n=3,3<q¢<9 D=gq(qg+1)orq¢®>+q+1. Suppose ¢ =9, whence S = SL3(9) and
Aut(S) = S x C2, or ¢ = 8, whence S = SL3(8) and Aut(S) = S x C3. The character tables of all
groups between S and Aut(.S) are known in [GAP], from which we can check that |¢(g)|/¢(1) < 1/7
for all g € @ \Z(Q). Hence the proof of Proposition 7.2 implies that W/D > 6/7(1—1/|Q|) > 1/2.
Thus we can use 2 instead of the constant 15 in (7.3.4), which now leads to a contradiction.

Next suppose that ¢ = 7, whence D = 56 or 57. Note that when D = 57, L = SL3(7) has its
center inverted by the transpose-inverse automorphism of S, hence, up to scalars, ®(G) is contained
in the image of GL3(7) in a Weil representation of degree 57. If D = 56, then either p = 2 and, up to
scalars, ®(Q) is contained the image of PSL3(7) x Cy, or p # 2 and, up to scalars, ®(Q) is contained
the image of PGL3(7), in a representation of degree 56. Hence, using the proof of Lemma 7.1 for
GL3(7) and the character table of PSL3(7) - Cy in [GAP], we can check that |¢(g)|/¢(1) < 11/56
for all g € Q \ Z(G). It follows that W > (45/56)(1 — 1/3)D > 30 > 8, contradicting (7.3.3).

If ¢ = 5, then the character table of SL3(5) - 2 [GAP] shows that |¢(g)|/@(1) < 7/31, whence
W > (24/31)(1 — 1/|Q|)D > 15, contradicting (7.3.4). Hence ¢ < 4 and D < 21.

(d) Now we handle the unitary case: S = PSU,(q), where n > 3 and ¢ = /. By Proposition 7.2,
W > D/15, and D > (¢" — q)/(q + 1). Here we have

Aut(S) 2 PGU,(q) x C,
where C' = Cyy, by [GLS, Theorem 2.5.12]. Embedding G := G/Z(G) in Aut(S), we let

Ry := GNPCGUL(q) < G,
so that [G : Ry] divides 2f. As in (c), PGU,(q) < PGL(V) acts faithfully and irreducibly on a
subquotient A(V) of V@ V* (of dimension n? — 1 if r { n and n? — 2 if 7|n), where V = F,", and this
action is extendible to PGL(V') x (), where 7 is the transpose-inverse automorphism of PGL(V).
Viewing R; inside PGL(V'), we get a faithful irreducible action of R; which also extends to Ry x (7).
Note that 7 can be identified with an involution in the subgroup Cay of Aut(S).

If [G: Ry] < f, weset R:= Ry. If G : Ry] > f, then G/R; = C. In this latter case, there is

some element Z € G~ R; such that z2 € R; and Z induces the automorphism 7 on R;. Then we set

R := (Ry,z) and obtain a faithful (at least on R;) irreducible action on A(V'). Now we can apply
Theorem 4.16 with d := dim(A(V)) < n? — 1 to get

q" —q
15(¢g + 1)

Note that if ged(n,q+ 1) = 1, then PGU,(¢q) = SU,(¢) (but the action of S on V does not extend
to S x (7)), and so we can apply Theorem 4.16 with d := n to get

" —q
15(¢ + 1)
Furthermore, if ¢ = r is prime, then by Proposition 7.2 we have W > D/8.6, hence the constants
15 in (7.3.5) and (7.3.6) can be replaced throughout by 8.6. If, on the other hand, » =2 and f is a

2-power, then as in (c) the constant 15 in (7.3.3) and (7.3.4) can be replaced by 15/4.
Now, if n > 13, or if n > 8 and ¢ > 3, then (¢"~! —1)/(q¢ + 1) > 7.5n2, whence

¢" —q>75n%q(q +1) > 15n°(¢ + 1) f,

contradicting (7.3.5). If 2 <n < 12, then (7.3.5) and (7.3.6) imply that one of the following holds.

(d1) ¢ =2 and n < 9 but n # 8. Assume we are in the case (n,q) = (9,2), so that D = 170 or 171.
As mentioned above, since 7 = 2 and f = 1, we have the bound W/D > (4/15)D and so W > 46.
Now if the p-abelian group @ is non-abelian, then |Q| > p® > 27. If Q is abelian, then since the wild
part of H is a sum on non-isomorphic irreducible @-modules, we get |Q| > w+1 > 47. Thus in either

(7.3.5) <D/I5<W < (n?=1)-[G:R] < (n®>—1)f.

(7.3.6) <D/15<W <d-[G: Ry] < 2nf.
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case |Q| > 27. Since QZ(G)/Z(G) < Ry, the proof of Lemma 7.1 shows that |¢(g)|/¢(1) < 0.508
for all g € Q \ Z(G). Arguing as in the proof of Proposition 7.2, we obtain

W/D > (1 —0.508)(1 — 1/27) > 1/2.12.

Thus we can use 2.12 instead of the constant 15 in (7.3.5), which now leads to a contradiction.
Next suppose that n = 7. Since @ is not a 2-group and |Out(S)| = 2, QZ(G) < Z(G)L. Using the
character table of SU7(2) [GAP] one can check that |¢(g)|/¢(1) < 0.51 for all g € @\ Z(G), whence
W > 0.49(1 — 1/3)D > 13. This in turn implies that |Q| > 5, and so W > 0.49(1 — 1/5)D > 16,
contradicting (7.3.6). Hence, in fact we have n < 6, and so D = (2"4+2(—1)")/3, (2"—(-1)")/3 < 22.

(d2) ¢ =3 and n < 6. As |Q| > 2 and @ is not a 3-group, we have |Q| > 4. If moreover
n = 5 or 6, then by Proposition 7.2, W > D/4, hence we can use (7.3.6), respectively (7.3.5),
with 8.6 replaced by 4, yielding a contradiction ruling out this case. Hence 3 < n < 4, and
D=3"+3(-1)")/4,(3" = (-1)")/4 € {6,7,20,21}.

(d3) n =4 and ¢ = 4,5. Suppose ¢ = 5. Then the proof of Lemma 7.1 shows that |¢(¢")|/¢(1) <
1/4 for all ¢ € GU4(5) N\ Z(GU4(5)). Arguing as in part (iii) of the proof of Proposition 7.2 we get
lo(g)]/p(1) <3/441/16 = 13/16 for all g € G\ Z(G). Now, arguing as in part (iv) of the proof of
Proposition 7.2 we obtain W/D > 15/32—3/4|Q| > 1/5. Thus we can use 5 instead of the constant
15 in (7.3.5), which now leads to a contradiction. Next suppose that ¢ = 4. As Out(S) = Cy and
Q is not a 2-group, Q/Z(G) < S. Hence, using the character table of SU4(4) [GAP], one can check
that [¢(g)|/¢(1) < 1/2 for all g € Q@ \ Z(G), and so W/D > (1/2)(1 — 1/|Q]|) > 1/3. Thus we can

use 3 instead of the constant 15 in (7.3.6), which again leads to a contradiction.

(d4)n=3,4<qg<9 and D =q(qg—1) or ¢> — ¢+ 1. Suppose ¢ = 9, whence S = SU3(9)
and Aut(S) = S x C4. The character tables of all groups between S and Aut(S) are known in
[GAP], from which we can check that |p(g)|/¢(1) < 1/7 for all g € Q \ Z(Q). Hence the proof
of Proposition 7.2 implies that W/D > 6/7(1 — 1/|Q|) > 1/2. Thus we can use 2 instead of the
constant 15 in (7.3.6), which now leads to a contradiction.

Next suppose that ¢ = 8, whence Out(S) = C3 x Sz. As @ is not a 2-group, for any g € Q \Z(G)
the coset gZ(G) belongs to one of the three almost simple groups S - 31, S - 32, and S - 33 listed
in [Atlas]. Using the character tables of covers of these groups given in [Atlas], we can check that
lo(g)|/e(1) < 1/7, whence W > (6/7)(1 — 1/|Q|)D > 8f, contradicting (7.3.5).

If ¢ = 7, then using [Atlas] one can check that |p(g)|/¢(1) < 7/43, whence W > (36/43)(1 —
1/|1Q|)D > 8f, again contradicting (7.3.5). Hence ¢ < 5 and D < 21.

(v) Finally, we consider the case S = PSLa(q) with ¢ = rf, whence D < ¢ + 1. First we
analyze the cases with D > 25; in particular, ¢ > 25. By Proposition 7.2, W > D/8, and D >
(g —1)/ged(2,q — 1). We also note in this case that |Q| > 5 (because if |Q| < 4, then @ is abelian
and has at most 3 nontrivial irreducible characters, all of degree 1, when W < 3 and so D < 24).
Lemma 7.1 and Proposition 7.2 now imply that W/D > 3/20 (with equality possibly only when
q = 25). Arguing as in (c) using R = G N PGLx(q), instead of (7.3.3) and (7.3.4) we now have

q_1<{ 2D < 40f, 1> 2,

(7.3.7) D < 40f/3, r=2.

This can happen only when ¢ < 3%.

We will now analyze the remaining cases ¢ < 3 further, following the proof of Proposition 7.2
(and using (7.3.7) only when D > 25). If ¢ = 25, then the character table of SLy(64) [GAP] shows
that |p(g')|/¢(1) < 2/63 for all ¢ € L\ Z(G), whence |p(g)|/p(1) < 3/44 (1/4)(2/63) = 191/252.
Thus W > (61/252)(1 — 1/5)D > 12 = 2f, a contradiction. If ¢ = 25, then the character tables
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of SL2(32) and SL3(32) - C5 in [GAP] shows that |p(g)|/¢(1) < 2/31 for all g € G \ Z(G). Hence
W > (29/31)(1 —1/5)D > 23 > 2f, again a contradiction.

If ¢ = 3%, then since D < 80 by (7.3.7) (note that the equality in (7.3.7) when r > 2 can occur
only when ¢ = 25), we must have D = (¢ £ 1)/2. In particular, G can only induce inner and fields
automorphisms of S. Thus, modulo scalars, ®(G) is contained in the image of Spg(3) in a Weil
representation of degree D. Arguing as in (b1), we obtain W > 15D/32 > 18 > 3f, a contradiction.

If ¢ = 7%, then since D < 40, we must have D = (¢ +1)/2, whence again G can only induce inner
and fields automorphisms of S. Thus, modulo scalars, ®(G) is contained in the image of Sp,(9) in
a Weil representation of degree D. Arguing as in (bl), we obtain W > 15D/32 > 11 > 3f, again a
contradiction.

If ¢ = 3% or ¢ = r > 13, then since Q is not an 7-group, we must have that QZ(G)/Z(G) <
PGL2(q). The character tables of SLa(q) and GLa(q) [DM, Ch. 15] show that |p(g)]/¢(1) <
2/(q—1) < 1/6 for all g € Q ~ Z(G). Hence, W > (5/6)(1 — 1/|Q))D > 6(5/6)(2/3) > 3,
contradicting (7.3.3) when ¢ = 7. When ¢ = 33, the same bound but using D > 13 yields W > 7, and
so |Q| > 8. Using the same bound again, we get W > (5/6)(7/8)13 > 9 = 3f, again contradicting
(7.3.3).

If ¢ = 52, then using the character tables in [Atlas] we can check that |p(g)|/¢(1) < 5/13 for all
g € Q~Z(G). By (7.3.3) we now have 6 > W > (8/13)(2/3)D, whence D = (¢ +1)/2 < 13. Thus
we have shown that D < 13, and either ¢ = 25 or ¢ < 11. O

7B. The extraspecial normalizer case. Next we determine the characteristic of hypergeometric
sheaves H whose geometric monodromy groups are in the extraspecial normalizer case (iii) of [GT2,
Proposition 2.8].

Theorem 7.4. Let H be a hypergeometric sheaf in characteristic p, of type (D,m) with D > m.
Suppose that D = r"™ > 1 for some prime r and that the geometric monodromy group G = Ggeom
of H contains a normal r-subgroup R, such that R = Z(R)E for an extraspecial r-group E of
order r'*2" that acts irreducibly on H, and either R = E or Z(R) = Cy. Then either p = r, or
D €{2,3,4,5,8,9}.

Proof. Assume p # r, and let J = QC denote the image of I(co0) on H, with @ = O,(J) being the
image of P(c0) and C' the image of the tame quotient. Also let ® denote the representation of G
on H, and ¢ denote the character of ®. As in the proof of Theorem 7.3, first we show that the
dimension W = ¢(1) — [¢|g, 1g]q of the wild part of H satisfies

(7.4.1) W > D/3.

Note that D > m implies that @ # 1. Moreover, W = D if Q NZ(G) # 1. Hence we may assume
that @ NZ(G) = 1, and consider any g € Q \ Z(G). We will use the well-known fact (see e.g. [Wi,
Theorem 1]) that the group Out;(R) of all outer automorphisms of R that act trivially on Z(R) is
contained in Sps,,(7), and so (identifying the groups in consideration with their images on )

G < Nepp)(R) < Z(GL(H))R - Spy,,(r).

Since p # r and g ¢ Z(G), g projects onto a nontrivial semisimple element g of Sp,,(r). In
particular, if we view Spy, () as Sp(U) with U := F2"  then dim Kerg, (g — 1) < 2n — 2. Applying
[GT1, Lemma 2.4], we obtain

(7.4.2) lp(g)] <7t = (1) /r.

Now, using (7.2.2), we see that W/D > (1 —-1/3)(1—-1/2) =1/3if r > 3. If r = 2, then |Q| > 3
(as @ # 1 is a p-group), and so W/D > (1/2)(1 —1/3) = 1/3 again.
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(ii) Recall that the conjugation action of G on R induces a homomorphism ¥ : G — Aut(R),
with Ker(¥) = Cg(R) = Z(G). Composing with the projection Aut(R) — Out(R) (with kernel
R/Z(R)), we obtain a homomorphism A : G — Out;(R) < Sp(U), with Ker(A) = Z(G)R. Suppose
now that 2n < W. Then, by Theorem 4.9, A|; is tame, i.e. Q < Z(G)R. As Q is a p-group and
p # r, it follows that @Q < Z(G). But this is impossible when D > 1 by Proposition 4.8.

Together with (7.4.1), we have shown that

(7.4.3) 2n > W > D/3 =1r"/3.

This is possible only when D € {2,3,4,5,8,9,16}. Assume now that D = 16, so that » = 2 and
p > 2. Then W € {6,7,8} by (7.4.3). We now show that W = 8. First, as W > 6, we must have
by Proposition 4.10 that |Q| > 7, whence (7.4.2) and (7.2.2) imply W > 7. This in turn implies
by Proposition 4.10 that Q| > 9, whence (7.4.2) and (7.2.2) ensure that W > 8 i.e. W = 8 by
(7.4.3). Suppose that dim Kerg, (h—1y7) < 2n—3 for all 1 # h € Q. Then instead of (7.4.2) we now
have |¢(h)| < ¢(1)/4, and so (7.2.2) implies W > 10, a contradiction. Thus ) contains an element
g # 1 with |p(g)] = ¢(1)/2, hence necessarily dimKerp, (g — 1y) = 2n — 2. As g is a 2'-element
in Sp(U) = Spg(2), by [GT1, Lemma 2.4] this can happen only when g € O3 (2) < Spg(2) is an
element of order 3, whence p = 3, and g has eigenvalues A\(3 and )\Cg, both with multiplicity 8,
for some root of unity A € C*. On the other hand, g acts trivially on the tame part of dimension
D — W = 8, so we may assume A = (7, whence (g) + ¢(g~!) = 8. Let > 1 be the number of
pairs (h, h~!) of elements h € Q with |¢(h)| = ©(1)/2, and let y > 0 by the number of remaining
pairs of nontrivial elements in @ (for which we have |p(h)| < ¢(1)/4). Then

8(1+ 22 +2y) =W -[Q] = [¢lg, 1glo - |Q| < 16 + 8z + 8y,
whence (z,y) = (1,0). Thus |Q| = 3, and this contradicts Proposition 4.10 since W = 8. O

8. ELEMENTS WITH SIMPLE SPECTRA IN FINITE GROUPS OF LIE TYPE

In this section, we continue the classification of triples (G, V, g) satisfying the condition (%) intro-
duced at the beginning of §6 in the generic situation, that is, when dim V' > 23 and S = soc(G/Z(G))
is a simple group of Lie type in characteristic p. The non-generic cases, that is where either
dimV < 22 or S is an alternating group, have already been dealt with in §6. Furthermore, be-
cause of the main application to hypergeometric sheaves, by Theorem 7.3 and using the assumption
dimV > 23, we will assume in some, explicitly described, cases that g is a semisimple element.
The ss-elements g will be classified modulo scalars, that is, inside G/Z(G) < Aut(S), and we let g
denote the coset gZ(G) as an element of G/Z(G).

First we start with the linear case:

Theorem 8.1. In the situation of (%), suppose that S = PSL,(q) with n > 3 and (n,q) # (3,2),
(3,3), (3,4), so that case (ii) of Theorem 6.6 holds. Then o(g) = (¢" —1)/(¢ — 1), g € PGLy(q),
and g generates the unique, up to PGL,(q)-conjugacy, mazimal torus of order (¢" —1)/(q — 1) of
PGL,(q).

Proof. (i) The cases (n,q) = (4,2), (4,4), (5,2), (6,2), (7,2) can be checked directly using [GAP],
so we will assume none of these cases occurs. By Theorem 6.6(ii),

(8.1.1) (¢" —1)/(g—1) = 0(9) > dim(V) > (¢" — q)/(¢ — 1).

Recall [GLS, Theorem 2.5.12] that Aut(S) =Y x A, where Y := PGL,(¢) and A = (¢, 7) = Cy x Cy,
with ¢ the field automorphism induced by the Frobenius map = — 2P, ¢ = p/, and 7 the transpose-

inverse automorphism. We will follow the analysis in the proof of [GMPS, Theorem 2.16] to show
that g € Y.
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First suppose that g € (Y, ¢) \ Y. Then, as shown on [GMPS, p. 7679], there is a divisor e > 1
of f such that
r—1
r—1"7

o(g) <e- meo(PGLn(ql/e)) <e

where 7 := ql/e > 2. Note that, since n > 3 we have

(n—1)e—n e, if e > 2, with equality only when (n,r,e) = (3,2,2),
(8.1.2) r > { o ifess

in particular, ¢! > er™. Hence

n n
¢" 1 _ el -1 > e > 2,
qg—1 r—1
and so 0(g) < (¢" —1)/(q — 1) — 2, violating (8.1.1).

Next suppose that g = yi7, where y € Y and ¢ € (¢) has order e|f. If 2|e, then, as shown
on [GMPS, p. 7680], 6(g) < e - meo(PGU,(¢"/¢)). By [GMPS, Lemma 2.15], meo(PGU,(¢"/)) <
meo(PGL,(¢'/¢)), so as above we have 6(g) < (¢" — q)/(q¢ — 1), contradicting (8.1.1). On the other
hand, if 2t e > 3, then

rm—1 q¢"-1
0 <2 —
olg) S 2e =7 <7

2,

where we use (8.1.2) for r = ¢'/¢, and this contradicts (8.1.1).

It remains to consider the case e = o(¢)) = 1. As shown on [GMPS, p. 7680], we have one of the
following cases:

e 2|n and 6(g) < 2¢"/*™ /(¢ —1) < (¢" — q)/(q — 1), since (n,q) # (4,2);

e n =3 and 6(g) < max(8,2¢+2) < (¢* — q)/(q — 1), since (n, q) # (3,2);

e n >4 and o(g) < 2pl8rEHD14(n=2k+1)/2 for some 1 < k < (n — 1)/2. Since (n,q) # (4,2),
(5,2), we again have o(g) < (¢" —q)/(¢ — 1).

(ii) We have shown that g € PGL,(q). The cases (n,q) = (3,3) or (3,7) can be checked directly
using [GAP], so assume we are not in these cases. Consider an inverse image h of g in GL,(q) =
GL(V) with V' = Fy, and suppose first that h is not semisimple. Then p divides o(h) and 6(g), and
s00(g9) = (¢"—q)/(g—1) by (8.1.1). Note that h centralizes its unipotent part u # 1. If u is regular
unipotent, then o(h) divides [Cqr,,(g)(u)] = q¢" (g — 1), a contradiction. If, on the opposite, u is
a transvection, then o(h) divides |Cqr,, (o) (v)| = ¢*" (¢ — 1) - |GL,—2(q)|, a contradiction when
n = 3 since (n,q) # (3,3), (3,7). In particular, we may assume now that n > 4. Our assumptions
on (n, q) imply that there exists a primitive prime divisor £ = £(p, (n—1)f) of p(*~ D/ —1 = ¢g»~1 -1
by [Zs]. Since ¢ divides 0(g) but not |GL,_2(q)|, this rules out the case u is a transvection. Thus
u is neither regular nor a transvection, whence the u-fixed point subspace U on V has dimension
2 <m < n-—2. Now h fixes U, so it belongs to StabGL(V)(U), which is a p-group extended by
GL;,(q) X GL,—m(q), and so has order coprime to ¢, again a contradiction.

We have shown that h is semisimple, and so 6(g) = (¢" —1)/(¢ — 1) by (8.1.1). Our assumptions
on (n,q) imply that there exists a primitive prime divisor ¢; = ¢(p,nf) of p*f — 1 = ¢* — 1
by [Zs]. Let hy denote the ¢1-part of h. The structure of centralizers of semisimple elements in
GLy(q) is well known, in particular, the choice of £; implies that Cgqr,,(q)(h1) = GL1(¢"), and this
maximal torus is unique in GL,(¢q) up to conjugacy. It is now clear that h € GL;(¢"), and, since
o(g9) =(¢" —1)/(¢ — 1), g generates GL1(¢") modulo Z(GLy,(q)). O

Next we consider the symplectic case:
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Theorem 8.2. In the situation of (x), suppose that S = PSps,(q) withn > 2, 21 q = pf, and
(n,q) # (2,3), so that case (iv) of Theorem 6.6 holds. Then g € PCSpy,(q). Assume furthermore
that g is a p'-element. Then one of the following cases occurs.

(i) Vg is an irreducible Weil module, g € PSpy,,(q), and one of the following statements hold.

(o) o(9) = (¢" £1)/2, and g generates a unique, up to PSp,, (q)-conjugacy, cyclic mazimal
torus Ty < PSLa(q™) of order (¢™ £1)/2 in PSp,,(q).

(B) n = a+ b with a,b € Z>1, 2¢|a for e := ged(a,b), 6(g) = (¢* + 1)(¢" + 1)/2, and g
generates a unique, up to PSpy,(q)-conjugacy, cyclic mazimal torus Top < (Spog(q) X
SP2y(9))/Z (P2, (q)) of order (¢* 4 1)(¢° +1)/2 in PSpy,(q).

(ii) Vlg) is reducible, dim(V)) = ¢" £ 1, g ¢ PSpy,(q), and its square G° fulfills the conclusions

of (i).

Proof. (A) By Theorem 6.6(iv) and [GMPS, Theorem 2.16],
(8:2.1) /(g —1) > 6(g) > dim(V) > (¢" — 1)/2.

Recall [GLS, Theorem 2.5.12] that Aut(S) =Y x (¢), where Y := PCSp,,(¢) and ¢ is the field
automorphism induced by the Frobenius map z +— 2P. Now suppose that g ¢ Y. Then, as shown
on [GMPS, p. 7679], there is a divisor e > 1 of f such that

o(g) <e- meo(PCSan(ql/e)) <er"/(r—1),
where r := ¢!/¢ > 3. By (8.1.2) applied to (n + 1,7, €), we have that
" =7r"> (e + 1)r"t > et

and so 6(g) < er™/(r — 1) < er"t1/2 < (¢" — 1)/2, violating (8.2.1). Thus we have shown that
g € PCSpy,(q)-

(B) From now on we will assume that g is a p'-element. First we consider the case Vg is
irreducible, and so it is a Weil module of dimension d = (¢ + 1)/2. Since the outer diagonal
automorphism of E(G) fuses the two irreducible Weil modules of dimension d but ¢ stabilizes each
of them, g € Y N (S,¢) =S = PSp,,,(¢). View S =PSp(W) with W = Fg”, and let h € Sp(W) be
a (semisimple) inverse image of g.

(B1) Here we consider the case where the (h)-module W cannot be decomposed as an orthogonal
sum of h-invariant nonzero non-degenerate subspaces, and, for further use, we also allow n = 1 and
(n,q) = (2,3) here. In this case, by [Hup, Satz 2], either o(h)|(¢" + 1) and W is an irreducible
F,(h)-module, or o(h)|(¢" — 1) and W = W; & Wy with W; an irreducible F,(h)-module, also being
a totally isotropic subspace of W. Set ¢ = —, respectively € = +, in these two cases. Then, up to
Sp(W)-conjugacy, there is a unique cyclic maximal torus 1. = (he) = Cyn—_e, which can be chosen
to be inside a standard subgroup SLy(¢™) of Sp(W) and to contain h. Note that 6(he) = (¢" —¢€)/2;
on the other hand, o(g) > (¢" — 1)/2 by (8.2.1). Hence, if 0(g) > (¢" — 1)/2, we must have that
e=—,0(9) = (¢"+1)/2, and (g) = T_/Z(Sp(W)) =: T_. Otherwise we have 6(g) = (¢" — 1)/2.
If moreover (n,q) # (1,3), then (¢" +1)/4 < (¢" —1)/2, and so € = +, 6(g) = (¢" — 1)/2, and
(g) = Ty /Z(Sp(W)) =: T,. In the remaining case, we have (n,q) = (1,3) and g € Z(G). In
particular, we have arrived at conclusion («).

(B2) Now we may assume that W = @F_ W, is an orthogonal sum of minimal h-invariant nonzero
non-degenerate subspaces W; for some k > 2. Correspondingly, we can write

h= diag(hl, ho,..., hk) € H .= Sp(Wl) X Sp(Wz) X ... X Sp(Wk),
with h; € Sp(W;), dim W; = 2n; and Z,’f:l n; = n.
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By the analysis in (B1), o(h;) < (¢"+1)/2 for all i. Suppose for instance that o(h;) < (¢™ —1)/2.
Recall that, a total Weil module of Sp,,, (¢) has character wy,, = &, + 1y, with &,(1) = (¢" +1)/2 and
nn(1) = (¢" —1)/2; in particular, the character of V' considered as Sp(W)-module is either &, or n,.
Using the branching rule [TZ2, Proposition 2.2(iv)], we see that at least one irreducible constituent
of Vgpw,) affords the character &, of degree (¢"* + 1)/2. It follows that at least one irreducible
constituent Vy of V| affords the character

§m&a2®...®ak

for some irreducible (Weil) characters a; of Sp(W;), 2 < i < k. Since &,,(1) > 6(h1), Spec (h1,&n,)
is not simple, whence the same holds for Spec (h, V) and Spec (g, V'), a contradiction.

We have shown that 6(h;) = (¢"+1)/2 for all i. The analysis in (B1) shows that o(hz(»qniﬂ)m) <2.
In particular, M =1 and 6(g) < 2M, where

(8.2.2) M :=lem((¢" +1)/2,(¢"* +1)/2,...,(¢"™ +1)/2).
Suppose that k£ > 3. If ¢ > 5, or if ¢ = 3 but k > 4, then

and so 0(g) < 2M < (¢" — 1)/2, contradicting (8.2.1). If ¢ = k = 3 but n > 5, then

3
Mgzg.i];[l(1+qm)§8-(1+3) -(1+§)<Z.(1—7):

again leading to the same contradiction. If ¢ = k = n = 3, then 2M = 4 < (¢ — 1)/2 by (8.2.2),
and if ¢ = k = 3 but n = 4, then 2M = 20 < (¢* — 1)/2, again contradicting (8.2.1).

We have shown that k = 2. Now we have n = a + b with a :=n; and b := ng. Let e := ged(a, b),
and consider the case both a/e and b/e are odd. Then by (8.2.2) we have

o(g) <2M < (¢"+ (" + 1)/(¢°+1) < (¢“ + 1)(¢" + 1) /4 < (¢" — 1)/2,

unless (n,q) = (2,3) which is ruled out by assumption. Thus, renaming a and b if necessary, we
have that 2e|a (and so 2 { (b/e) necessarily). In this case, (¢® —1)/2 is divisible by (¢?¢ —1)/2, and
one can check that ged((¢®+1)/2, (¢®+1)/2)) = 1. Now, 6(h1) = (¢®*+1)/2 and 6(hs) = (¢® +1)/2,
hence 6(g) = o(h) is divisible by M = (¢® + 1)(¢® + 1)/4 > (¢" + 1)/4. Together with (8.2.1) and
h*M — 1, this implies that 6(g) = 2M. Also, we have shown in (B1) that h; generates a cyclic
maximal torus (of order (¢™ + 1)/2) in PSp(W;) for ¢ = 1,2, and this torus is unique in PSp(W;)
up to conjugacy. Hence, g generates a cyclic maximal torus T, (of order 2M = (g% + 1)(¢® +1)/2)
in PSp(W). Note that such a torus T is unique in PSp(W) up to conjugacy. [Indeed, applying
the above analysis to an inverse image h' € Sp(W) of a generator of T we see that case (B1) does
not occur for A/, since 6(h’) = |T| > (¢" + 1)/2. Next, the analysis in (B2) using (8.2.2) shows
that the (h')-module W decomposes as the orthogonal sum W @& W of two minimal h’-invariant
non-degenerate subspaces of dimension 2¢ and 2d, with 1 < ¢ < d and ¢+ d = n. Now, using
(¢° =g’ =1) < (¢° = 1)(¢* + 1) < ¢" and (¢° + 1)(¢* = 1) = =1 # (¢" + 1)(¢" + 1)(mod p) but
o(h') =o(h) = (¢* +1)(¢* + 1) /2, we must have that (') = (¢¢ 4+ 1)(¢? +1)/2 and {c,d} = {a, b},
and thus T is conjugate to Ty, .] We have arrived at conclusion (5).

(C) Now we consider the case V|g(q) is reducible, whence dim(V) = ¢" 1 and Vg = A® B
is the sum of two irreducible Weil modules A, B of dimension d = (¢" = 1)/2 by Theorem 6.6(iv).
If moreover A = B, then G cannot induce an outer diagonal automorphism of E(G), and so
G/Z(G) < (S, ¢). In particular, G/Z(G)E(G) is cyclic. On the other hand, the E(G)-module A
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extends to a simple Z(G)E(G)-module A which is G-stable. It follows from Gallagher’s theorem
[Is, (6.17)] that dim(V) = dim(A), a contradiction. Thus A 2 B, but A and B are fused by any
element t € Y N S: B AL

Suppose g € S. Then, up to scalar, g acts on V as some p’-element h € Sp(V) and stabilizes
each of A and B. As g has simple spectrum on V', the same holds for the actions of h on A and on
B. Next, viewing Sps,,(¢) = G for a Frobenius endomorphism o : G — G of the simply connected
algebraic group G = Sp,,,(F,), we have that Y = (G/Z(G))?. In particular, we can take ¢t € G and
also have that tht~! € G (since S <1Y). By Lemma 6.5(ii), tht ™! = uhu~! for some u € G°. It
follows that

Spec (h, B) = Spec (h, AY) = Spec (tht !, A) = Spec (uhu™', A) = Spec (h, A),

and this contradicts the simple spectrum of gon V= A& B.

We have shown that § € Y ~ S, whence ¢ interchanges A and B and ¢? stabilizes each of A
and B. In this case, Spec(g,V) = {£/a | a € Spec (g%, A)} is simple if and only if Spec (g2, A) is
simple. It follows that g? fulfills the conclusions of (i). O

Next, we treat the unitary case:

Theorem 8.3. In the situation of (x), suppose that S = PSU,(q) with n > 3, ¢ = p/, and
(n,q) # (3,2), (3,3), (3,4), (4,2), (4,3), (5,2), (6,2), so that case (iii) of Theorem 6.6 holds. Then
g € PGU,(q). Assume furthermore that g is a p'-element. Then G/Z(G) > PGU,(q) and one of
the following cases occurs.
(i) o(g) = (¢" — (=1)")/(qg + 1), and g generates a unique, up to PGU,(q)-conjugacy, cyclic
mazimal torus of order (¢" — (—=1)")/(q + 1) in PGU,(q). Moreover, if 2|n then dim(V) =
(" —=1)/(qg+1).
(ii) 21 n, o(g) = ¢"' — 1, and g generates a unique, up to PGU,(q)-conjugacy, cyclic mazimal
torus Ty—11 of order ¢"~* — 1 in PGU,(q). Moreover, dim(V ) (" —q)/(g+1).
(iii) 2|n = a+b with 2{ a,b € Z>1, ged(a,b) =1, 6(g) = (¢*+1)(¢* +1)/(¢+1), and g generates a
unique, up to PGU,(q)-conjugacy, cyclic mazximal torus T, < (GUq(q) x GUp(q))/Z(GUy(q))
of order (¢* +1)(¢" +1)/(¢+ 1) in PGU,(q).

Proof. (A) The cases (n,q) = (4,4), (4,5) can be checked directly using [GAP], so we will assume
(n,q) # (4,4), (4,5). By Theorem 6.6(iii) and [GMPS, Theorem 2.16],

(8.3.1) ¢" !+ ¢ > 5(g) > dim(V) > (¢" — q)/(q + 1).

Recall [GLS, Theorem 2.5.12] that Aut(S) = Y x (¢), where Y := PGU,(¢q) and ¢ is an outer
automorphism of order 2f. Now suppose that g ¢ Y, and write § = 2¢) with x € Y and ¢ € (¢) of
order 1 < e|2f. Suppose first that 2 1 e. Then, as shown on [GMPS, p. 7679],

5(g) < e-meo(PGU,(¢¥%)) < e(r"t 4 rmin@n=2) < (8/9)(¢" 1 — 1) < (¢" — ¢)/(g + 1),

where r := ¢%/¢ > 2, provided (n,r) # (5,2); and this contradicts (8.3.1). We also achieve a
contradiction in the case (n,r) = (5,2) using meo(PGUs5(2)) = 24. Next we consider the case
2|e > 4. Then

o(g) < e-meo(PGL,(¢7¢)) <e(r™ —1)/(r —1) < (¢" — q)/(g + 1),

with 7 := ¢¥/¢, (n,7) # (3,2), and (n,q) # (4,4), again contradicting (8.3.1). If (n,r) = (3,2), then
e>6as (n,q) # (3, 4), and we also achieve a contradiction using meo(PGL3(2)) = 8.

It remains to consider the case e = o(¢)) = 2. As shown on [GMPS, p. 7680], we have one of the
following cases:

e 2[n and o(g) < 2¢"**1/(q = 1) < (¢" — ¢)/(q + 1), since (n,q) # (4,2), (4,3), and (6, 2);
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e n =3 and 6(g) < max(8,2¢ +2) < (¢* —q)/(q +1), since (n,q) # (3,2), (3,3);

e n >4 and 5(g) < 2pllo8rrFHDI(n=2k4+1)/2 for some 1 < k < (n — 1)/2. Since (n,q) # (4,2),
(4,3), (4,4), (4,5), and (5,2), we again have 6(¢g) < (¢" —¢q)/(¢+ 1).

Thus we have shown that g € PGU,(q). Note that the same conclusion holds in the cases (n,q) =
(3,4), (4,2), (4,4), and (6,2), since in these cases p = 2 and f is a 2-power.

(B) From now on we will assume that g is a p’-element. View S = PSU(W) with W = Y., and
let h € GU(W) be a (semisimple) inverse image of g.

(B1) Here we consider the case where the (h)-module W cannot be decomposed as an orthogonal
sum of h-invariant nonzero non-degenerate subspaces, and, for further use, we assume only that
n > 2. In this case, by [Hup, Satz 2], either 2 { n, o(h)|(¢" + 1) and W is an irreducible F(h)-
module, or 2|n, o(h)|(¢" — 1) and W = Wi & Wa with W; an irreducible F,(h)-module, also
being a totally isotropic subspace of W. Furthermore, up to GU(W)-conjugacy, there is a unique

cyclic maximal torus 7' = (£) = Cgn—(~1)», which can be chosen to contain h. Note that o(t) =

(¢" — (=1)™)/(¢ + 1); on the other hand, o(g) > (¢" — (—1)")/2(¢ + 1) by (8.3.1). Hence, we must
have that o(g) = (¢" — (—=1)")/(¢ + 1), and (g) = T/Z(GU(W)). In particular, we have arrived at
conclusion (i) (with the value of dim V' following from (8.3.1) when 2|n).

(B2) Now we may assume that W = @F_ W, is an orthogonal sum of minimal h-invariant nonzero
non-degenerate subspaces W; for some k > 2. Correspondingly, we can write

h = diag(hl, ho,..., hk) € H .= GU(Wl) X GU(WQ) X ... X GU(Wk),

with h; € GU(W;), dim W; = n; and Zle n; = n.
By the analysis in (B1), o(h{*"~ V")) (44 1), Tn particular, A = 1 and 6(g)|(¢+1)M,
where

(832) M i=lem((g™ — (~1)")/(q + 1), (¢ — (~1)"™)/(g + - .-, (" — (~1))/(g + 1)).
Also note that for any c¢,d € Z>1,
Rt e e G VO oV
g+1 q+1 — g+1
Suppose that n > 4 and k > 3. Applying (8.3.3) repeatedly, we obtain

(8.3.3)

( + 1)M < ( + 1)ﬁ qni — (_1)”1 < n—k+1 ( 1)n—k+1 < n—2 ( 1)n—2 < q —q
q > \q 11 q+1 >4q >4q g+ 1’
and so 0(g) < (¢" — q)/(q + 1), contradicting (8.3.1). If n = k = 3, then ¢ > 2 and n; = 1 for all ¢,
and so (q+1)M =q+1< (¢ —q)/(g+1) by (8.3.2), again contradicting (8.2.1).
We have shown that £ = 2. Now we have n = a+ b with a := nq and b := no. If a,b > 2, then we
note that (¢ — (=1)*)(¢" — (=1)") < 2(¢"** — q). Hence, if ged(¢* — (=1)*,¢" — (=1)*) > 2(¢ + 1),

then
- (¢° = (=D~ (=1)") _q"—q
og) <(qg+1)M < (¢g+1 < ,
contradicting (8.3.1). Since ged(q® — (—1)%,¢* — (—=1)?) = ¢¢ — (1) for e := ged(a,b), we must
therefore have that e = 1, or e = ¢ = 2. In the latter case we also have
(¢" = (=D))(@" = (=1)") _ (¢"=1@"=1) _4¢"—q

o(g) < (qg+1)M =(q+1) VESIE = | PR

again a contradiction. Thus a and b are coprime.

n
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Consider the case a,b > 2, but 2|b. As n > 3, all irreducible Weil characters of SU,(q) extend to
GU,(q), see e.g. [TZ2, §4], so we may extend V to GU(W). Using the branching rule [KT4, (2.0.3)],
we see that at least one irreducible constituent of V'[gy(y,) affords the Weil character Cg o of degree

(¢® + q)/(g + 1), and the same holds for the restriction to GU(W5). Thus at least one irreducible
constituent Vy of V to H = GU(W;) x GU(W3) affords the character 81 X Sy for some irreducible
(Weil) characters 3; of GU(W;), i = 1,2, and Ba(1) = (¢" + q)/(q + 1) > o(hg). It follows that
Spec (ha, f2) is not simple, whence the same holds for Spec (h, V) and Spec (g, V'), a contradiction.

Thus either 2 ¥ n and (a,b) = (n — 1,1), or 2|n and ged(a,b) = 1. In the former case, h is
contained in a maximal torus Cypn-1_1 X Cyy1 < GU,_1(q) x GU1(g) which projects onto a cyclic

maximal torus 75,11 = Cyn-1_1 of PGUy(q). Since

o(h) =d(g) = (¢" —a)/(¢+1) > (¢"~" = 1)/2,

we must have that (g) = T,,—1,1. In fact, multiplying h by a suitable central element of GU(W), we
may assume that hy = lyy,. Now, if dim V' = (¢" +1)/(¢ + 1), then again using the branching rule,
we see that at least one irreducible constituent Vi of V|gy(wy,) has degree (¢""* +¢)/(¢+1). On
the other hand, k1 has order (¢"~! —1)/(q+ 1) modulo Z(GU(W4)). It follows that Spec (h1, V4) is
not simple, whence so is Spec (g, V') by the above argument. Hence dim(V') = (¢" —q)/(¢+ 1), and
we arrive at conclusion (ii).

In the latter case, h is contained in a maximal torus Cga41 X Cppq < GUqa(q) X GUp(q) which again
projects onto a maximal torus T, ; of PGU,(q); moreover, T, ; is cyclic of order (@+1)(g*+1)/(q+1),
since ged(q® +1,¢* + 1) = ¢ + 1. Since

o(h) =0(g) > (¢" —a)/(a+1) > (¢" + 1)(d" +1)/2(q + 1),
we must have that (g) = T, 4, and so we arrive at conclusion (iii).
In both cases of (i) and (iii), the uniqueness of cyclic maximal tori T, 4 of order (¢* —(—1)%)/(¢*—
(—=1)®)/(¢ + 1) follows from the well-known order formula and classification of maximal tori in
GU,(q) (or from repeating the analysis in (B1) and (B2) for an inverse image h’ € GU(W) of

a generator of such a torus). Finally, since g generates a maximal torus of PGU,(¢q), we have
G/Z(G) > PGU,(q). O

Corollary 8.4. In the situation of (x), assume we are in one of the cases considered in Theorem
8.1, respectively Theorem 8.2(i), Theorem 8.3. Suppose (%) gives rise to a hypergeometric sheaf H
of type (D, m) with D —m > 2, with G = Ggeom, g @ generator of the image of I1(0) in G, and V
realizes the action of G on H. Then G/Z(G) = PGL,(q), respectively PSps,(q), PGU,(q).

Proof. Since G is almost quasisimple, G(*) is a quasisimple cover of S = PSL,(q), respectively
PSp,,,(q), PSU,(q), and S < G/Z(G) < Aut(S). By Theorem 8.1, respectively Theorem 8.2(i),
Theorem 8.3, H/Z(G), with H := (G(®),Z(G), g), is the normal subgroup PGL,(q), respectively
PSpsy,(q), PGU,(q), of Aut(S); in particular, H < G. As H contains the normal closure of the
image (g) of I(0) in G, it follows by Theorem 4.1 that G = H, whence the statement follows. [

Finally, we treat the extraspecial normalizers:

Theorem 8.5. Let p be a prime. Let G be a finite irreducible subgroup of GL(V') = GLyn(C) that
satisfies (S+) and is an extraspecial normalizer, so that Gt> R = Z(R)E for some some extraspecial
p-group E of order p**2" that acts irreducibly on V, and furthermore either R = E or Z(R) = Cy,
as in [GT2, Proposition 2.8(iii)]. Suppose that a p'-element g € G has simple spectrum on V and
that p™ > 11. Then the following statements hold.
(i) Suppose p > 2. Then exp(R) = p, o(g) = p"™ + 1, and the coset gZ(G)R as an element of
G/Z(G)R — Spy, (p) generates a cyclic mazimal torus Cyni1 of Spa,(p)-
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(ii) Suppose p = 2. Then one can find integers a1 > ag > ... > a;y > 1 such that n = Zle a;,
ged(2% +1,2% + 1) = 1 if i # j, o(g) = [['_,(2% + 1), and the coset gZ(G)R as an element
of G/Z(G)R — Sp,,,(2) generates a cyclic mazimal torus Coa1 41 X ... X Coar41 0f Spy,(2).

Proof. By Schur’s lemma, the irreducibility of R on V implies that Co(R) = Z(G) < Z(GL(V)),
and so G/Z(G) embeds in the group Aut;(R) of all automorphisms of R that act trivially on Z(R),
and G/Z(G)R — Outi(R) = Aut1(R)/(R/Z(R)) < Spsy,(p), see e.g. [Wi, Theorem 1]. As p{o(g),
o(g) is equal to the order of the coset gZ(G)R in Outi(R) < Spy,(p). On the other hand,

(8.5.1) o(g) > p"
as g is an ss-element on V.

(i) First we consider the case p > 2. Suppose that exp(R) > p. Then Out;(R) is isomorphic
to a semidirect product of a p-group of order p?>*~! by Spy,, o(p) by [Wi, Theorem 1]. As g is a
p'-element, 6(g) is at most the maximum order of elements in Spy,_5(p), which is at most twice of
meo(PSp,,,_»(p)) < p"/(p — 1) by [GMPS, Lemma 2.10] (where the strict inequality holds because
meo(-) is an integer). It follows that 6(g) < 2p"/(p — 1) < p" = dim(V'), contradicting (8.5.1).

We have shown that exp(R) = p, i.e. R = p}r”". In this case, it is known that Aut;(R) is a split
extension of Inn(R) = R/Z(R) by Sp,, (p). Now, Sps, (p) as a subgroup of Aut;(R) preserves the
equivalence class of the representation of R on V, hence it admits a projective representation on V,
which must be linearized since Spy, (p) has trivial Schur multiplier when p™ > 9, and by a faithful
representation because Sps, (p) acts faithfully on R. Thus we have shown that

G S NGL(V) (R) = Z(GL(V))R A Sp2n(p);

in particular, by conjugating the p’-element g (applying the Schur-Zassenhaus theorem to Z(G)R(g)),
we can write g = zh for some z € Z(G) and some p’-element h € Sp,, (p) with 6(h) = 6(g) > p". If
n =1, it follows that 6(h) = o(h) = p+ 1, and we are done in this case.

Assume now that n > 2, and apply Theorem 8.2(i) to h € Spy,(p) acting on V. In case (a), we
have that h generates a cyclic maximal torus Cpn_c of Sp,,,(p) for some € = . As o(h) > p", we
must have that e = — and o(h) = p" +1 = 0(g), as stated. In case (), h belongs to a maximal torus

Cpay1 X Cpo iy < Spay(p) X Spay(p) with n = a 4+ b and a,b € Z>;. In this case, R DG /4 ¢

Z(Spaa (p) X Spay(p)) and so h®*+HDE*+D/2 = 1. Thus o(h) < o(h) < (p* +1)(p*+1)/2 < p™+* = p",
a contradiction.

(ii) Let g € Spy,(2) denote the image of g in G/Z(G)R. By [GT1, Lemma 5.8], there is some
e = + such that g preserves a quadratic form of type ¢ € {4+, —} on the natural module IE“%" for
Spy,(2): g € 05,(2). This implies that we may take E to be of type € and g-invariant. Let Sp™
denote O and let Sp~ denote Sp. As shown in [KT8, Theorem 4.2], the action of E on V' then
preserves a non-degenerate bilinear form of type €, and

Nspevy(E£) = E- 05,(2), Narw) = Z(GL(V))Ngpe (v (E).

In particular, we can write g = zh with z € Z(GL(V')) and h € Ngpe(y)(E) having odd order (as
210(g)). In turn, we can embed the image of h in O§,(2) in a maximal torus

T = Cgo1 ¢ X Caz_¢y X ... X Coar ¢, < Ofy (2) x 057 (2) x ... x 05, (2) < 05,(2),
where a; € Z>1, n = Zle a;, €, =, and € = Hle ¢;. Correspondingly, we can decompose
V=VioWhe...0V, E=FEjoFEyo...oE,
where V; = C*", E; = 2172%  and Ng,e (v, (E;) & E; - 0%, (2), and then put h in
Ngper (1) (E1) @ Ngpea (1) (B2) ® ... @ Ngper (v (E).
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By [KTS8, Lemma 4.3], a generator of the maximal torus Caai_., of Ngyei(v;)(E:)/E; = 0%, (2)
can be lifted to an element s; of Sp“(V;) that has order 2% — ¢; and spectrum pge; 41 ~\ {1} when
€ = —, and pge; 1 with 1 occurring twice when ¢; = +. Thus the 2’-element h is contained in
E-T = E(s1,82,...,5), with s1,..., s centralizing each other. Applying the Schur-Zassenhaus
theorem to E - T with normal Hall subgroup F, we may assume that h € (s1, s2,...,5;).

Recall that ¢ is an ss-element on V, whence so is h. Now, if ¢, = + for some %, then s; has
eigenvalue 1 with multiplicity 2 on V;, precluding h from being an ss-element. Thus ¢; = — for all i.
Now, the order of h is at most L := lem(2% +1,2%2+1,...,2% 4 1). Denoting by by > by > ... > by
the distinct values among a1, ao,...,a; we have

(8.5.2) L=lem(2" +1,2%2 4+ 1,...,2% 1) < 20 Fbetbutl

by [GMPS, Lemma 2.9] (with strict inequality because 2 { L). Now, if some a; is repeated, then
Zf;l b <n—aj <n—1,and so (8.5.2) implies o(h) < L < 2", whence 6(g) < 2", contradicting
(8.5.1). Thus a1 > ag > ... > a; > 1. If ged(2% + 1,2% + 1) > 1 for some 7 # j, then by [LMT,
Lemma 4.1(iii)] we have o(h) < L < []i_;(2% 4 1)/3 < (2.4)2"/3 < 2", again a contradiction. We
also achieve the same contradiction, if h does not generate (si,so,...,s), which is now a cyclic
group of order [['_,(2% + 1). Hence 6(g) = [['_,(2% + 1), as stated. O

As one can see, the results in this section leave out the case (i) of Theorem 6.6, where the almost
quasisimple group G has S = PSLy(q) as its unique non-abelian composition factor. In this case,
many complex representations of G, particularly the ones irreducible and nontrivial on L = G(),
have dimension < ¢+ 1 always admit ss-elements. On the other hand, if ¢ is not small, say g > 27,
then any hypergeometric sheaf H admitting G as its (finite) geometric monodromy group, must be
in characteristic p dividing ¢. As a direct application of Theorem 5.1 and results of [KT5], we show
that all nontrivial irreducible representations of GLa(¢) do lead to hypergeometric sheaves.

Theorem 8.6. Let ¢ = pf > 4 be a power of a prime p. Then the following statements hold.

(i) Let @ be any irreducible Qq-representation of G = GLa(q) of degree > 1. Then, there exists a
hypergeometric sheaf H over IFTJ that has G /Ker(®) as its geometric monodromy group.

(i) Let © be any irreducible Qp-representation of H = GUs(q) of degree > 1 that is trivial at
Oy (Z(H)). Then, there exists a hypergeometric sheaf H over F, that has H/Ker(©) as its
geometric monodromy group.

Proof. (i) We use the character table of G as given in [DM, Table 1, p. 155]. In particular, if
T = pg—1 X pg—1 denotes a diagonal maximal torus of G, then the irreducible representations
of G of degree ¢ + 1 are R%(a,3) which are Harish-Chandra induced from a ® 3 : T — Q.
where o, 3 are distinct characters of py—1. The nontrivial irreducible components of the total Weil
representation of G considered in [KT5] are precisely RY (o, 1) — 6411¢ with a € Irr(ug—1). Now
we pick a € Irr(pg—1) to be faithful. By [KT5, Corollary 8.2], there exists a hypergeometric sheaf
H,, over F, that has G as its geometric monodromy group, acting on H, via a representation ¥,
with character RS (a, 1). Inspecting the character table of G, we see that

Trace(®(g)) — Trace(¥,(g)) = Trace(®(1)) — Trace(V, (1))

for all p-elements g € G. Hence the statement follows from Theorem 5.1.

(ii) As in (i), we appeal to [KT5, Corollary 8.2] to get a hypergeometric sheaf H of rank ¢ with
geometric monodromy group PGL2(g) = PGUsy(q), which utilizes a surjection ¢ : 71(G,,/Fp,) —
PGU;(q) together with a representation ® : PGUa(q) — GL(H). View PGUsz(q) as H/Z, where
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Z =17Z(H) = Cyy1, and decompose Z = Zy X Zy, where Z; := Oy (Z) and Z3 := O3(Z). Then
observe that H = Z1H° and H° N Z = Z5, where

H® :={X € GUa(q) | det(X) € O(ugt1)}-

It follows that PGUy(q) = ZH®/Z = H°/Zs. Now, the obstruction to lifting ¢ to a homomorphism
¢ : (G, /Fp) — H° lies in the group H%(G,/F,, Z2) = 0, the vanishing because open curves have
cohomological dimension < 1, cf. [SGA4t3, Cor. 2.7, Exp. IX and Thm. 5.1, Exp. X]. We claim
that ¢ is surjective. [Indeed, for the image J of ¢ we have ZoJ = H®, and so

J > [J,J) = [ZoJ, ZoJ] = [H°, H°] = SUs(q).

Hence, if det maps J onto Os(pig41) =: Cae, then J = H® as claimed. Otherwise we have det(J) =
Co with 0 < b < a — 1; in particular, ¢ is odd. In this case, one can check that

JNZy = {diag(x,x) | € pgr1, 22 = 1} = Copi1,
and so
[PGUa(q)| = [H®/Zs| = |TZ2/ Z2| = |J|/|T N Zs| = 2°|SUa(q)| /2" = |PGU2(q)| /2,

a contradiction.]

Now, consider any irreducible representation © of H that is trivial on Z;. Then we can view ©
as a representation of H/Zy = Z1H°/Z, = H°, and inflate ® to a representation of H°. Checking
the well-known character table of GUz(q), we see that

Trace(®(g)) — Trace(O(g)) = Trace(P(1)) — Trace(O(1))
for all p-elements g € GU3(q). Hence the statement follows from Theorem 5.1. O

9. (NON-)EXISTENCE THEOREMS

In this section we will prove various theorems that rule out the existence of (irreducible) hy-
pergeometric sheaves of type (D,m) with D > m and certain kind of finite monodromy groups
G = Ggeom. For a hypergeometric sheaf # in question, we will denote by @ the image of P(oc0) on
H; note that @ # 1 as H is not tame at co. We also use the fact that, since H is tame at 0, P(0)
acts trivially on H and a generator go of the image of the p’-group 1(0)/P(0) has simple spectrum
on H, if p = char(H). Furthermore, if D > 1, then p divides |G/Z(G)| by Proposition 4.8(iii).

9A. Alternating groups. First, we rule out the cases (c¢)—(f) of Theorem 6.2(ii) for hypergeometric
sheaves.

Lemma 9.1. There does not exist any hypergeometric sheaf H of type (D, m) with D > m and
D = 16 or 32 that has finite geometric monodromy group G such that G/Z(G) = S, S10, A11, or
Si2 as listed in Theorem 6.2(ii).

Proof. Assume the contrary, and let p denote the characteristic of such a sheaf H, and ¢ denote
the character of G acting on H. As mentioned above, a generator gy of the image of 1(0)/P(0) has
simple spectrum on H.

(i) Consider the case of Theorem 6.2(ii)(f), i.e. D = 32 and 6(gp) = 60. As gy is a p-element,
p > 5. Now, by Proposition 4.8, Q N Z(G) = 1, whence @ embeds in G/Z(G) = Sy2. It follows that
p="T7or 11, and @ = C,. By checking the character table of 2515 as given in [GAP], we see that
the spectrum of a generator g of Q on H consists of all p roots of unity, each with multiplicity at
least 4 if p = 7 and at least 2 if p = 11. On the other hand, the action of g on the wild part Wild
yields a (nontrivial) eigenvalue of g with multiplicity 1, a contradiction.
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(ii) Now we consider the cases (c)—(e) of Theorem 6.2(ii), i.e. D = 16 and 0(gg) =
whence p # 2,5. Again by Proposition 4.8, Q N Z(G) = 1, whence @ embeds in G/Z(G)
or Aqp. In all cases, G/Z(G) embeds in GLio(2), hence

(9.1.1) W = dim Wild < 10

20 or 30,
=Sy, S1o,

by Theorem 4.16. Inspecting the character table of 2Sg, 2519, and 2A;; as given in [GAP], we see
that |¢(g)| < 8, whence

(9.1.2) W >6

by (7.2.2). It follows from Proposition 4.8(iv), p 1 |Z(G)|. In turn, this implies that Q < G(*°) = 2A,
2A10, or 2A11. Now, if @) contains an element g of order 3 that projects onto a 3-cycle, then
©(g) = —8 and g has no eigenvalue 1 on H, whence W = 16, contradicting (9.1.1). In all other
cases, we have |p(z)] < 4 for 1 # = € Q. If moreover |Q| > 7, then using (7.2.2) we obtain
W >16-(3/4) - (6/7) > 10, again contradicting (9.1.1). As p # 2,5 and @ # 1, we conclude that
p =3 and |Q| = 3. But then @ has at most 2 nontrivial irreducible characters, all of degree 1, and
this contradicts (9.1.2). O

We now give a result due to Sawin.

Lemma 9.2. (Sawin) Given positive integers A, B with gcd(A, B) = 1, and C := A + B consider
the polynomial

f@) = 241 - 2)P,
viewed as a map from P\ {0,1,00} to G,,. Then we have the following results.

(i) Let p be a prime with p|C. Write C = Cop® with Cy prime to p. Then in characteristic p,
we have, for any £ # p, and any nontrivial additive character 1 of I, the sheaf

£Qe/Qp
is geometrically isomorphic to a multiplicative translate of the hypergeometric sheaf
Hypy(Char(A) U Char(B) \ {1}; Char(Cp) \ {1}).

(ii) Let p be a prime with p|A. Write A = Agp® with Ay prime to p. Then in characteristic p,
we have, for any £ # p, and any nontrivial additive character 1 of IF,,, the sheaf

(1/£)+Qe/Qe

is geometrically isomorphic to a multiplicative translate of the hypergeometric sheaf
Hypy (Char(C) \ {1}; Char(Ag) U Char(B) \ {1}.

Proof. In either of the situations (i) or (ii), we work in the specified characteristic p. Both f and
1/f are finite etale maps from P!\ {0, 1,00} to G, cf. [KRLT3, proof of 1.2]. The constant sheaf
Q¢ has Euler characteristic —1 on P!\ {0,1,00}, hence f,Q; and (1/f),Q, are lisse sheaves on
Gy, with Euler characteristic —1. Each is pure of weight zero, so is geometrically semisimple. By
[Ka-ESDE, 8.5.2 and 8.5.3], each of these direct images is the direct sum of a single irreducible
hypergeometric sheaf H with some Kummer sheaves £,. We detect the H by listing the characters
which occur in f,Q, and (1/f),.Qy respectively at 0 and at oo, and cancelling those which appear
at both 0 and oo, cf. [Ka-ESDE, 9.3.1]. Because gcd(A, B) = 1, the only character to cancel is 1,
hence the assertion that the H, namely f,Q./Qy or (1/f)+Q¢/Qy, has the asserted “upstairs” and
“downstairs” characters. By [Ka-ESDE, 8.5.5], this local monodromy data at 0 and co determines
‘H up to multiplicative translation. O
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Theorem 9.3. Let n > 5. Then the cases listed in Theorem 6.2(i)(a) give rise to hypergeometric
sheaves. More precisely,

(i) For any prime p < n — 3 with p{ n, there exists a hypergeometric sheaf H over G, /F,, with
Ggeom = Ay if 2 4 pn and Ggeom = Sy if 2|pn, and with the image of 1(0) generated by an
n-cycle.

(ii) Suppose that 1 < k < n/2 is coprime to n, and p is any prime dividing n. If k = 1, suppose
in addition that n is not a p-power, and that p =3 if n =6 or 24, and p =2 if n = 12. Then
there exists a hypergeometric sheaf H over Gm/E, with Ggeom = Ay if 2|n and Ggeom = Sn if
2t n, and with the image of I1(0) generated by the disjoint product of an (n — k)-cycle and a
k-cycle.

Proof. (i) By Sawin’s Lemma 9.2(ii), by considering f,Qy/Q with f(x) = 27P(z — 1)P~" in charac-
teristic p, we get
H = Hyp(Char,, ~ {1}; Char,,_,),

with Ggeom < Sy, acting (irreducibly) via the restriction of the deleted natural permutation module
of S,,. This irreducibility implies that Ggeom is a doubly transitive subgroup of S,, in particular a
primitive subgroup. The wild part Wild has dimension p — 1, whence by Proposition 4.10 the image
Q of P(c0) is of order p. Now a generator g € S,, of @ has order p, and it acts trivially on the tame
part of dimension n — p, and thus it is a p-cycle. By Jordan’s theorem [J], Ggeom = Ay or S,,. Since
a generator of the image of I(0) has its spectrum on # consisting of all nontrivial n*" roots of unity,
it must act as an n-cycle. If p = 2, then Ggeom contains a 2-cycle, and so Ggeom = Sp. When p > 2,
applying Theorem 4.1, we conclude that Ggeom = Ay, if 2 n and Ggeom = Sy, if 2|n.

(ii) Now we choose any prime p|n, and again follow Lemma 9.2(i) to consider f,Q,/Q, with
f(z) = zF(x — 1)"* in characteristic p, to get

(9.3.1) H := Hyp(Char, ~ {1} U Char,,_g; Char,, ~ {1}),

where ng is the p/-part of n (also see [KRLT3, Proposition 1.2(ii)]). As in (i), Ggeom < Sp is a
doubly transitive subgroup. But now a generator gg of the image of I(0) has its (simple) spectrum
on H consisting of all (n — k)™ and all &' roots of unity, hence it must act as a product of an
(n — k)-cycle and a k-cycle. We note that gy € A, if and only if 2|n. Hence, using Theorem 4.1 and
assuming Ggeom > Ay, we can say that Ggeom = Sy is 211 and Ggeom = Ay, if 2|n.

Since ged(k,n — k) = 1, gg_k is a k-cycle. Suppose in addition that 2 < k < n/8. As gg_k fixes
n — k points, we have that Ggeom > Ay, by Bochert’s theorem [Bochl; in fact, the same is true by
Manning’s theorem [Man] if ¥ < n/3 — 24/n/3. The same is true by Jordan’s theorem if k is a
prime. Note that, up until this point of this proof, we have not used the Classification of Finite
Simple Groups.

Suppose now that n/8 < k < n/2 and k is not a prime. As the element gg_k of order k fixes
n—k > n/2 points, we can quote either [GM, Theorem 1] or [Jo, Theorem 1.2], which both use the
Classification, to conclude that Ggeom > As,.

Finally, assume that & = 1, in which case gy is an (n — 1)-cycle. If n is not a prime power
(equivalently, n is not a p-power since p|n) and n — 1 is not a prime, then Ggeom > A, by [Jo,
Theorem 1.2].

We note that when n = p®, the Kloosterman sheaf H is Kummer induced. Consider the case
n = r+ 1 for a prime r > 5 and assume that Ggeom # An. Suppose (n,p) = (6,3). Then
dimWild = 4 and so |Q| = 3? by Proposition 4.10, but rank(H) = 5 divides |Ggeom|, and this
forces Ggeom < S¢ to contain Ag by [Atlas]. Suppose (n,p) = (12,2). By [Jo, Theorem 1.2],
Ggeom € {Mi1, Mi2,PSL2(11),PGL2(11)}. As dimWild = 9, Ggeom must contain an element of
order divisible by 9 (namely a generator for the tame quotient I(co)/P(c0)) by Proposition 4.10(ii),
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which is impossible in all the four listed groups. Next suppose that (n,p) = (24, 3). By [Jo, Theorem
1.2], Ggeom € {Ma4,PSL2(23),PGL2(23)}. Now dimWild = 16, whence Ggeom must contain an
element of order divisible by 16, which is again impossible in all the three listed groups. Assume
now that r # 5,11,23 and n # p®. Then by [Jo, Theorem 1.2] we have PSLy(r) < Ggeom < PGLa(7).
This last possibility is ruled out by Theorem 7.3, which implies that p = char(#) must have been
equal to r and so coprime to n. O

Remark 9.4. Let us comment on Ggeom Of Sawin’s sheaf # of (9.3.1) in the exceptional cases
(n,p) = (6,2), (12,3), and (24,2) of Theorem 9.3(ii) when k& = 1. If (n,p) = (12,3), then H
is recorded in Table 3 and it is shown in Lemma 9.5 that Ggeom = Mi1. If (n,p) = (24,2),
then 7 is recorded in Table 3 and we show that Ggeom = Mo4. Finally, let (n,p) = (6,2).
Then [KT8, Corollary 8.2] yields a hypergeometric sheaf H; of type (4,1) in characteristic 2 with
Ggeom = PGL2(4) = As, and with Cs as the image of I1(0). Applying Theorem 5.1 to the two
irreducible representations of degree 4 and 5 of Aj, we get a hypergeometric sheaf Hs of type (5,2)
in characteristic 2 with Ggeom = As, and with C5 as the image of I(0); in particular, the set of
“upstairs” characters of Ho is Chars. A 2'-generator g € Aj of I(00)/P(o0) has order divisible by
3 = dim Wild, hence o(g) = 3, and the set of “downstairs” characters of Hsy is Chary. Thus H = H,
has Ggeom = As.

9B. Sporadic groups.

Lemma 9.5. The first three lines of Table 3 give hypergeometric sheaves over G,,/F3, each with
finite geometric monodromy group Ggeom = Mi1.

Proof. We start with the rank 11 sheaf H;. This can be obtained as a Sawin’s sheaf with (n,k) =
(12,11); in fact, as Sawin [Sa] kindly explained to us, it follows from previous results of Adler and
Abhyankar that this sheaf has Ggeom = G = M1, with the image of I(0) in G being (go) = Ci1.
As p = 3 and dim Wild = 8, we see that the image Q of P(c0) in G is Q = C3. Now, the image J
of I(c0) in G permutes cyclically the 8 linear characters of @ on Wild, and checking the character
table of G [GAP], we see that J = C? x Cs (as listed in Table 3).

Let ®; : G — GL(H1) denote the representation of G on H;. Let ®; : G — GL1o(Qy) and
®3 : G — GL1p(Qy) denote irreducible representations of G that afford a rational, respectively
non-real, character of degree 10. Using [GAP] we can check that Trace(®;(g)) — Trace(®1(g)) = —1
for all 3-elements g € G and i = 2,3. It follows from Theorem 5.1 that ®;, i = 2,3, gives rise to a
hypergeometric sheaf H; over G,,/F3 with G as its geometric monodromy group. The “upstairs”
and “downstairs” characters of H; can be seen by inspecting the spectra of gy and an element of
order 8 in J in ®;, which are precisely those listed in Table 3. We also note that Hs is Sawin-like,
with (n, k) = (11,9), see Lemma 9.2(ii). O

Lemma 9.6. There does not exist any hypergeometric sheaf H of type (D, m) with 12 > D > m,
that has finite geometric monodromy group G such that S < G/Z(G) < Aut(S) for S = Mjs.

Proof. Assume the contrary, and let p and ¢ denote the characteristic of such a sheaf H and the
character of G acting on H. Then a generator go of the image of I(0)/P(0) has simple spectrum on
‘H, and we can apply Theorem 6.4 to arrive at one of the following cases.

Case 1: D =12,0(g9) = 24, and G/Z(G) = S - 2.

As go is a p’-element, p > 5, whence p = 5 or 11, and moreover Q/(Q N Z(G)) embeds in a
Sylow p-subgroup which is cyclic of order p. Thus @ is abelian and Q/(Q N Z(G)) = Cp. Next,
observe that L := G(*) is a quasisimple cover of S acting on H of rank 12, whence L = 25 and
x € Z(G)L for any x € Q \ Z(G). Checking the character table of L as given in [GAP], we see that
lo(x)|/e(1) < 1/6, and so W = dimWild > 8 by (7.2.2). As @ is abelian, we see that ) admits
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at least 8 distinct linear characters on W. This is impossible when p = 5, since, with the action
of @ NZ(G) fixed on H, @ can have at most |Q/(Q N Z(G))| = p linear characters lying above it.
Thus p = 11, whence |p(z)|/¢(1) < 1/12 by [GAP] and W > 10 by (7.2.2). In particular, p 1 |Z(G)|
by Proposition 4.8(iv), and so @) = C1; and W = 10. Since 6(go) = 24 and G/Z(G) = S - 2, by
inspecting the spectrum of such an element on H, we see that the “upstairs” characters of H must
be Charyox for a fixed x. Next, a p’-element ¢ in the image of I(co) permutes cyclically the 10
characters of () on Wild, hence g is a scalar multiple of an element of class 10B or 10C' of 25 -2 in
[GAP]. Checking the spectrum of g, we see that the “downstairs” characters of % must be Charjap
for a fixed p. Thus H is stable under multiplication by x2, and so it is induced from a sheaf of
rank 6. But this is also impossible, since this does not hold for the 12-dimensional representations
of 25.2.

Case 2: D = 10.

Checking the character table of quasisimple covers of S, we see that L := G(®) = 25. First
we consider the case p # 2. Then |¢(x)|/¢(1) < 1/5 for all z € Q ~ Z(G) and |Q| > 3, whence
W > 6 by (7.2.2). If p =05, then Q/(Q NZ(G)) = C5, and so @ is abelian and cannot have 6
distinct linear characters of Wild, a contradiction. Hence p = 3 or 11, and p t D. This in turn
implies by Proposition 4.8(iv) that p t |Z(G)|. As p > 2, we have @ < Z(G)L, and so in fact
@ < L. Now observe that p(y) —¢(y) = —2 for all p-elements y € L, if 1) € Irr(L) has degree 12. If
G/Z(G) = S, then G = Z(G)L and v extends to G. In the remaining case we have G = (Z(G)L, y)
where y? € Z(G)L. As y centralizes Z(G), and 1 extends to L -2, we have that y fixes an extension
of ¢ to Z(G)L, and so this extension extends to G. Thus in all cases 1) extends to a character "
of G of degree 12, and ¢(y) — 9 (y) = —2 for all p-elements y € G. This implies by Theorem 5.1
that there exists a rank 12 hypergeometric sheaf realizing GG in a representation with character 1;,
contrary to the result of Case 1.

We have shown that p = 2. Since we still have |p(x)|/¢(1) < 1/5 for all x € Q@ N Z(G), W > 4
by (7.2.2) using |@Q| > 2. This in turn implies that |Q| > 8, and so in fact W > 7. If 21 W, then a
p/-element in the image of I(oco) permutes W linear characters of () on Wild and so 6(g) is divisible
by W. But this is impossible, since L.2 does not possess any element of such order modulo Z(G).
Suppose W = 8, whence @ acts irreducibly on Wild. Now if 1 # z € Z(Q), then z acts as 1 on
Tame and as a scalar on Wild, whence |¢(z)| > 8 — 2 = 6. Checking the character table of L.2, we
see that |¢(z)| = 10, and so z acts trivially on Wild and on H, contrary to z # 1. Thus W = 10.
In this case, H is Kloosterman, and the 2’-element gy has order > 10 modulo Z(G). It follows that
6(go) = 11 and the “upstairs” characters of H should be Char;x for a fixed character y. This case
however leads to SU5(2) by [KTS|.

Case 3: D =11 and o(gp) = 11.

In this case we have |¢o(x)|/p(1) < 3/11 for all z € Q \ Z(G), and so W > 4 by (7.2.2). Also,
checking the representations of quasisimple covers of S, we see that G(>) = S, and moreover
G = Z(G) x S, as the two 11-dimensional irreducible representations of S are fused by outer
automorphisms of S. First we consider the case p = 11. Then Q/(Q NZ(G)) = C, and so Q is
abelian. This in turn implies that W # 11 (as otherwise @ is irreducible on Wild of dimension p),
whence Q@ NZ(G) =1 and @ = C), by Proposition 4.8(i). As ¢(z) =0 for all x € Q \ Z(G), we
now have W > 10 by (7.2.2), and so in fact W = 10. Thus some p’-element g of Z(G) x S permutes
cyclically the 10 distinct characters of @@ =2 C1; on Wild. We will write a generator of @) as zh, with
2 € Z(G) and h € S of order 11. As g normalizes @, we have z'h’ = g(zh)g~! = z(ghg™!), implying
2 = z and ghg~' = h'. Checking the latter relation in S, we see that g can permute cyclically only
5 eigenspaces for h, and so for zh as well, a contradiction.



MONODROMY GROUPS OF KLOOSTERMAN AND HYPERGEOMETRIC SHEAVES 63

We have shown that p # 11. Then p { |Z(G)| by Proposition 4.8(iv), and so we may assume
G = S by Corollary 5.2. In the cases p = 3,5, we can further lift the surjection 71(G,,/F,) - S to
a surjection 71 (G, /F,) — 25 and then consider an irreducible character 1 of 25 of degree 12. After
inflating ¢ to a character of 25, we get that ¢(y) — ¥ (y) = —1 for all p-elements g € 25. But this
leads by Theorem 5.1 to a hypergeometric sheaf of rank 12 realizing 2.5, contradicting the result of
Case 1. Thus p = 2. As W > 4, we must have |Q] > 8. Another application of 7.2.2 now shows that
W > 7. As in Case 2, we can rule out W = 7,9 as GG has no elements of order 7 and 9. Likewise,
the case W = 8 would lead to an element 1 # z € Z(Q) acting as a scalar on Wild and 1 on Tame,
whence |¢(z)| > 8 — 3 = 5, which is impossible by [GAP]. If W = 11, then, as Fa((11) = Fa1, we
must have |Q| = 210, too big for a subgroup of S. Thus W = 10, and the “upstairs” characters
of the sheaf H is now Charj;. Now a 2'-element ¢ in the image of I(c0) cyclically permutes the 5
summands of P(c0) acting on Wild. Since g € S, we see that g has order 5. Checking the spectrum
of g, we get that the “downstairs” character of H is 1, which also occurs upstairs, violating the
irreducibility of . O

Lemma 9.7. There does not exist any hypergeometric sheaf H of type (D,m) with D = 22 > m,
that has finite geometric monodromy group G such that S < G/Z(G) < Aut(S) for S = HS.

Proof. Assume the contrary, and let p and ¢ denote the characteristic of such a sheaf H and the
character of G acting on H. Then a generator gg of the image of I(0)/P(0) has simple spectrum on
H, and so by Theorem 6.4, 6(go) = 30. As gg is a p’-element, p > 7. On the other hand, p divides
|Aut(S)| = 2|S|, whence p = 7 or 11, and moreover Q/(Q N Z(G)) embeds in a Sylow p-subgroup
which is cyclic of order p. Thus @ is abelian and Q/(Q NZ(G)) = Cp. Next, observe that G(>)
is a quasisimple cover of S. Since the Schur multiplier of S is Cy and 2S cannot act faithfully on
any space of dimension < 56, see [GAP], G(®) =~ § and we will identify it with S. Moreover,
(G : Z(G)S] < 2. Now, for any 1 # x € Q, x belongs to Z(G)S. Checking the character table of S
as given in [GAP], we see that |p(x)|/¢(1) < 1/22if x € Q \ Z(G). An application of (7.2.2) then
gives W = dimWild > 21(1 — 1/|Q|) > 21(1 — 1/7) = 18. As @ is abelian, we see that @ admits at
least 18 distinct linear characters on W. But this is impossible, since, with the action of @ N Z(G)
fixed on H, @ can have at most |Q/(Q N Z(G))| = p linear characters lying above it. O

Lemma 9.8. There does not exist any hypergeometric sheaf H of type (D, m) with D = 15 > m,
that has finite geometric monodromy group G such that G/Z(G) = Spg(2).

Proof. Assume the contrary, and let p and ¢ denote the characteristic of such a sheaf H and the
character of G acting on H. Then a generator go of the image of 1(0)/P(0) has simple spectrum on
‘H, and so by Theorem 6.6, 6(gg) = 15. As go is a p/-element, p 4 D = 15. Now, as in the proof of
Corollary 9.1, @ N Z(G) = 1, whence () embeds in S := G/Z(G) = Spg(2) and p=2o0r 7. As S is
simple, G(‘X’)Z(G) = @G, and so G(*®) is a quasisimple cover of S which acts irreducibly on H of rank
15. Tt follows that G(*) is isomorphic to S and so we can identity it with S. Now S N Z(G) = 1,
so G = Z(G) x S. Checking the character table of S as given in [GAP], we see that |p(z)| < 7 for
any 1 # x € @), whence

(9.8.1) m <7+8/|Q| <11

by (7.2.1). It follows from Proposition 4.8(iv) that p 1 |Z(G)|. In turn, the latter and Corollary
5.2 allow us to assume that G = S and so H is self-dual. Now, G has a faithful irreducible C-
representation of degree 7 [GAP], so by Theorem 4.16 and (9.8.1) we now have

(9.8.2) 4<W=dimWid=D —m <7

Assume p = 7. Then p(z) = 1 for all 1 # =z € @ and Q = Cr. It follows that m = 3 and
W = dim Wild = 12, a contradiction. Thus p = 2. As W > 4, @ cannot be (abelian) of order < 4,
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whence |Q| > 8, m < 8 by (9.8.1), and so (9.8.2) implies that W = 7 and |Q| = 8. Now a generator
of the tame quotient I(0c0)/P(0c0) maps onto an element h € S which permutes cyclically the seven
characters of @ on Wild. It follows that o(h) = 7, and so h cannot have 8 distinct eigenvalues on
Tame, again a contradiction. O

9C. Symplectic groups. The next result is well known; we recall a proof for the reader’s conve-
nience:

Lemma 9.9. Let g be an odd prime power, n € Z>1, and let w, = &, + n, denote the character
of a total Weil module M of L := Sps,(q), so that &,,n, are irreducible Weil characters of degree
(¢"+1)/2 and (¢" — 1)/2, respectively. Then for any 2'-element g € L, £,(9) = nn(g) + 1.

Proof. Let j denote the central involution of G, and let M> denote a reduction modulo 2 of the
complex module M. As shown in [GMST, §5], M, has a composition series

0<(J—1pa,) Mo < Chp(t) < Mo,

with three successive simple quotients X, Y, and X, where Y is trivial and dim(X) = (¢" —1)/2 =
nn(1). Tt follows that the restrictions to 2’-elements of 7,, and &, must equal to ¢ and ¢+ 11, where
¢ is the Brauer character of Y. Hence &,(g) = n,(g) + 1 for all 2’-elements g € L. O

Proposition 9.10. Let ¢ = p/ be a power of an odd prime p, n € Z>1, (n,q) # (1,3), and
let ® : G — GL(V) = GL(gn_1)/2(C) be a faithful irreducible representation of a finite almost
quasisimple group G. Suppose that det(®(G)) = un is a p'-group, E(G) is a quotient of L := Sps,,(q)
by a central subgroup, and that <I>|E(G) inflated to L, is an irreducible Weil representation of L.
Then there exists a finite almost quasisimple group G, a surjection T : G — G with kernel a central
subgroup, of order 1 if 2|D and 2 if 24 D, and an irreducible representation W : G — GLgn41y/2(C)
such that
Trace(¥(g)) = Trace(®(w(g))) + 1

for all p-elements g € G.

Proof. Write Z(G) = Z1 X Zy, where 2 1 |Z| and Z5 is a 2-group. Note that if 2|D := (¢"—1)/2, then
E(G) =L = Spy,(q) and ZNL = ZyNL = Z(L), whereas if 2t D, then E(G) = L/Z(L) = PSps,,(q)
and Z N E(G) = 1. By [KT2, Lemma 4.3], we can embed L in L = SPay,f(p) and extend @|g () to
an irreducible Weil representation ® : L — GL(V). As E(G) <G and no outer automorphism of L
fixes the equivalence class of ®, we have

®(G) < Nep ) (®(E(G)) < Z(GL(V))®(L).
In fact,
(9.10.1) d(G) < Zd(L),

where Z = pnp is a cyclic subgroup of order ND of Z(GL(V)). [Indeed, for any = € G, we can
write ®(x) = a®(y) for some o € C* and y € L. By assumption,

1 = det(®(z))N = VP det(®(y))N = a™P

as L is perfect, whence o/¥P = 1]

Write Z = T} x Ty, with T} = (t1) > Zp cyclic of odd order, and Ty = (t2) > Zs a cyclic 2-group.
We also write t; = ;- 1y with4; € C*. Let ¥ : L — GLp4+1(C) be the other constituent of the total
Weil representation of L having ® as one constituent. Now, if 2| D, we extend U to Z by letting ¢;
act as scalar y; and %9 act as scalar 7%. We also take G = G, m:=1;;, m:= lg, and choose ¥ to be

the restriction of ¥ to G. On the other hand, if 2 1 D, then note that ® is trivial and W is faithful
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at Z(L). In this case, we consider Z = (t1,%5), and extend ¥ to Z by letting ¢; act as scalar ~; and

ty act as scalar V2. We can also define a surjection 7 : Zx L — Z x LJZ(L) by sending t; to ty,
fy to tg, and y € L to yZ(L), and note that Ker(7) = Z(L) = Z(L). Finally, we take G = 7 1(G),
and choose ¥ and 7 to be the restrictions of ¥ and 7 to G.

Now consider any p-element g € G, of order say p®, and write ®(7(g)) = B®(7(h)) for some
B € Zand h € L, using (9.10.1). Then ®(n(g))?" = 1y € ®(L) and

e(r(9)" = pMPe(7(MNP) = &(7(M)"P) € B(L).

As pt ND, it follows that ®(7(g)) Efi)(i), and so we may assume that 8 = 1, h is a p-element,
and ®(7(g)) = ®(7(h)). Recall that ® is faithful, so 7(g) = m(g) = 7(h). But Ker(7) < Cs, so we
now have that g = h. Thus

Trace(U(g)) — Trace(®(m(g))) = Trace(¥(h)) — Trace(®(7(h))) = 1
by Lemma 9.9 applied to L. ]

Theorem 9.11. Let g be an odd prime power, n € Z>1, (n,q) # (2,3), (3,3), and ¢ #5,7,9,11,25
if n =1. Then case (i)(c) of Theorem 8.2 with o(g) = (¢" — 1)/2 does not lead to hypergeometric
sheaves in dimension (¢ +1)/2. More precisely, there is no hypergeometric sheaf H of type (D, m)
with m < D = (¢" +£1)/2, with finite geometric monodromy group G = Ggeom such that G is almost
quasisimple with S = PSpy,,(q) as a non-abelian composition factor, and with the image of 1(0)
being a cyclic group (g) where 6(g) = (¢" — 1)/2.

Proof. The finiteness of G implies that ®(g) has simple spectrum on H, where ® denotes the
representation of G on H. In particular, 6(g) > D, and so the case D = (¢" + 1)/2 is impossible.

Consider the case D = (¢" — 1)/2 and assume the contrary that # exists. The assumptions on
(n,q) imply by Theorem 7.3 that the characteristic of H is the prime p dividing q. Now we consider
the surjection ¢ : m(G,,/Fp) — G underlying H and apply Theorem 9.10 to get the surjection
7 : G — G with Ker(r) < Z(Q) of order 1 or 2 and the representation ¥ : G — GLp1(C). If
2|D, then Ker(m) = 1, then we may trivially lift ¢ to a surjection ¢ : 71(G,,/F,) - G such that
mop = ¢. Assume 2 { D, so that Ker(m) = Cy. The obstruction to lifting ¢ to a homomorphism
¢ : 11 (G /F,) = G lies in the group H*(G,,/F,, Ker(r)) = 0, the vanishing because open curves
have cohomological dimension < 1, c¢f. [SGA4t3, Cor. 2.7, Exp. IX and Thm. 5.1, Exp. X]. We
claim that ¢ is surjective. Indeed, we have H < G for H := Im(y) and n(H) = ¢ (m1(Gm/Fp)) = G.
Now, if H > Ker(r), then |H| > 2|G| = |G| and so H = G. Otherwise H NKer(r) =1, H = G and
so H(®) = Q) = E(G) = PSpy,(q). Also, |H| = |G| = |G|/2, so H <1 G. Thus G(*) = H(>) =~
PSpy,(q). On the other hand, the construction of G in Theorem 9.10 ensures that G(>) 2 Sp,, (q),
a contradiction.

Now we can apply Theorem 9.10 and Theorem 5.1 to the surjection ¢ : 71 (G, /Fp) — G together
with ® o 7 and ¥ and obtain another hypergeometric sheaf H' of type (D + 1, m + 1), also tame at
0. So the image I of 1(0) in G is a cyclic group (g) which projects onto (g) via 7 (seen by the action
on H). In the case Ker(w) = 1, 6(g) = 0(g) = (¢" — 1)/2 = D < rank(H'), and so H' cannot have
finite monodromy. In the other case, 2 t D, recall by Theorem 8.2 that g € PSp,,(¢) < G and so
o(g) = D. As Ker(r) < Z(G) and 7(j) = g, we have g € Z(Q), and so again 6(j§) < D < rank(H’),
a contradiction. g

9D. Unitary groups. The unitary analogue of Lemma 9.9 was proved in [DT, Theorem 7.2]; we
will give a slight extension of it:
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Lemma 9.12. Let q be any prime power, n € Zx, and let ¢, = > 1, ¢t denote the character of a
total Weil representation of G := GU,(q), as described in [TZ2, §4]. Then for any g € G and any
0<1i,7 <q we have

Culg) = Gilg) = Gu(1) = GL(1),
if at least one of the following two conditions holds.
(a) £ is any prime divisor of ¢+ 1, £10(g), and i — j is divisible by the ¢'-part s of ¢+ 1.
(b) o(g) is coprime to q+ 1.

Proof. Let € € EX and £ € C* be primitive (g + 1) roots of unity. We write ¢ + 1 = ¢°s with
¢ € Z>1 and £ { s in the case of (a), and choose (/,c,s) = (¢ + 1,1,1) in the case of (b). Also let
V =T}, denote the natural module of G. Then, by [TZ2, Lemma 4.1], ¢i(g) — ¢7(g) is equal to

(71)71 Z (ézk o gjk)(_q)dim Ker(g—£*-1y) + (71)71 Z (ng - éjk)(_q>dim Ker(gfﬁk-lv).

1
0<k<q, Lefk T4 ocrsy, egn

Since i = j(mod s), in the second summation we have £ = &% In the case of (a), the condition
dim Ker(g—¢&¥-1y) # 0 implies £°|k, hence in the first summation we have dim_Ker(g—fk 1y) = 0.
The latter equality also holds for 1 < k < ¢ in the case of (b). Thus ¢’ (g) — A (g) is equal to
- Fik _ Fj n i j
EUL S (@ - 4 = (160 - 530) = G.(1) - G,

152
as stated. O

Theorem 9.13. Let g be an odd prime power, 2{n € Z>3, and (n,q) # (3,3), (3,5). Then case
(ii) of Theorem 8.3 does not lead to hypergeometric sheaves in dimension (¢" — q)/(q +1). More
precisely, there is no hypergeometric sheaf H of type (D, m) with m < D = (¢" — q)/(q + 1), with
finite geometric monodromy group G = Ggeom such that G is almost quasisimple with S = PSU,(q)
as a non-abelian composition factor, and with the image of I1(0) being a cyclic group (go) where

6(g0) = ¢" ' — 1.
Proof. (i) Assume the contrary that such a hypergeometric sheaf H exists, and let ® : G — GL(V)

denote the corresponding representation, with V = @D, and with character ¢. The assumptions
on (n,q) imply by Theorem 7.3 that the characteristic p of H divides ¢, that is, ¢ = p! for some
f € Z>1. Recall that V is irreducible over G(*) which in turn is a quotient of SU,(q). As
D = (¢" — q)/(q + 1), we see that in fact G(>®) = S. Also recall that ¢|g extends to the Weil
character ¢ of PGU,(q), which is fixed by, and hence, extends to A := PGU,(g) x Cay = Aut(9).
Thus we can extend ® to an A-representation on V' which we also denote by ® : A — GL(V).
Certainly, ®(A) and ®(G) both normalize ®(S). Using the finiteness of G, we can find a finite
cyclic subgroup py of order N of Z(GL(V)) such that

B(G) < v x B(A) < Z(GL(V))B(A) = Ny (B(S)).

Here, uy N ®(A) =1 since C4(S5) =1 and soc(A) = S. We now define I' := C x A and extend ®
to Cn = Z(T") via scalar action, so that ®(I') = uny x ®(A).

We also note that m > 1. Indeed, if m = 0, then H is Kloosterman, and the D “upstairs”
characters of H can be read off from the spectrum of the image (go) of I(0), and seen to be
(Charg(y11) ~ Charg)x, where E := (¢"~' —1)/(¢+ 1) = D/q and x is some character. This set
is stable under the multiplication by &g, and so H is induced from a rank ¢ sheaf. But this is
impossible, since S has no proper subgroups of index < E, cf. [KIL, Table 5.2.A].
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(ii) Next we consider the Weil character Q(qurl)/ 2 of GU,(q), which restricts irreducibly to SU,(q)
and in fact factors through S = PSU,(q), since its kernel is the subgroup of order (¢ + 1)/2
of Z(GU,(q)) and so contains Z(SU,(q)) since 2 1 n. Thus we obtain a self-dual representation

VS — GL(W), with W = @D+1, whose character is invariant under A, since Q(Lqﬂ)/ % is fixed by
the subgroup Cyy of field automorphisms. As deg(V) = D + 1 is odd and S is perfect, ¥ extends
to a self-dual representation ¥ : A — GL(W) by [NT, Theorem 2.3], which we inflate to a self-dual
representation ¥ : I' — GL(W) by letting Cn = Z(I") act trivially.
(iii) Recall that H gives rise to a surjection ¢ : 71 (G, /F,) - G. We will now compose ¢ with
¢:G—>I—->GL(V)and V: G — T — GL(W)

and compare their traces at elements in ¢(P(0)) U ¢p(P(00)). First, if y € ¢(P(0)), then, since H is
tame at 0, y acts trivially in ®. But the latter is faithful, so y = 1, i.e. ¢(P(0)) = 1 and we trivially
have

(9.13.1) Trace(®(y)) — Trace(¥(y)) = —1

for all y € ¢(P(0)).

Now, let ¢ and 1 denote the character of the I'-representations ® and ¥, and let ¢° and °
denote their restrictions to 2’-elements. By [DT, Theorem 7.2(ii)], 6 := ¢°|g is an irreducible 2-
Brauer character of S. Next, by Lemma 9.12(a), ¢°|s = 0 + 1g. As S<T and D > 1, it follows
from Clifford’s theorem that 1° = a + (§ is the sum of two irreducible Brauer characters, with «
lying above 6 and 3 lying above 1g. Furthermore, as W is self-dual, we have that « and 8 are both
real-valued. But (1) = 1, so in fact § = 1p. We have shown that ¢)° — 1Ip = « and ¢° are two
extensions to I' of 6. By [N, Cor. (8.20)], there exists a linear character A of I'/S such that

(9.13.2) ©° = (¥° — 1p)A.
Taking the complex conjugate and using v = ), we obtain
(9.13.3) 2% = (¥° — Ir)h = (° — 1p)X = ¢°A2,

In particular, we have that |g = ¢|g - A?|g. Note that D = (¢" —gq)/(g+1) is not a p-power and so
|Q| # D. Hence \?|g = 1¢ by Lemma 5.4. But Q has odd order, so in fact A|g = 1¢. The relation
(9.13.2) applied to y € @ now implies that (9.13.1) holds for all y € Q = ¢(P(c0)).

Now we can apply Theorem 5.1 to ® and ¥ to conclude that ¥ leads to a hypergeometric sheaf
H' of rank D + 1 with geometric monodromy group ¥(G). In particular, the image (go) of 1(0) in
U (@) has simple spectrum on H’. But this contradicts Theorem 8.3, since 6(gg) = ¢" ' — 1. O

Next we prove the g-even analogue of Theorem 9.13.

Theorem 9.14. Let ¢ = 2/, 2{n € Z>3, and (n,q) # (3,2), (3,4), (5,2). Then case (i) of Theorem
8.3 does not lead to hypergeometric sheaves in dimension (¢" — q)/(q + 1). More precisely, there
is no hypergeometric sheaf H of type (D, m) with m < D = (¢" — q)/(q + 1), with finite geometric
monodromy group G = Ggeom such that G is almost quasisimple with S = PSU,(q) as a non-abelian
composition factor, and with the image of I1(0) being a cyclic group {go) where 6(go) = ¢+ — 1.

Proof. (i) Assume the contrary that such a hypergeometric sheaf H exists, and let ® : G — GL(V)

denote the corresponding representation, with V = @D, and with character . The assumptions
on (n,q) imply by Theorem 7.3 that the characteristic p of H divides ¢, that is, p = 2. Recall that
V is irreducible over G(°) which in turn is a quotient of SU,(q). As D = (¢" — q)/(¢ + 1), we see
that in fact G(*) = S and that ®|g affords the Weil character ¢ of SU,(g), which is real-valued.
First suppose that dimWild = D —m = 1. By Proposition 2.22 and Lemma 2.19 of [GT3],
lo(g)]/p(1) < (3.95)/4 for all 1 # g € Q. It now follows from (7.2.2) that D < 160, which is ruled
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out by our assumptions on (n,q), unless possibly (n,q) = (3,8) or (7,2). When (n,q) = (3,8),
using the character table of Aut(PSU3(8)) given in [GAP] we can check that |¢(g)|/p(1) < 1/7
for all 1 # g € Q. When (n,q) = (7,2), using the character table of X := SU7(2) given in [GAP]
we can check that |p(z)|/p(1) < 1/2 for all 1 # = € X, whence by [GT3, Lemma 2.19] we have
lo(g)]/p(1) < (3.5)/4 for all 1 # g € Q. Hence, in these two cases we have D < 16 by (7.2.2), which
is impossible.

Hence we may assume that D — m > 2, and therefore
(9.14.1) G =0°(G)
by Theorem 4.1. Now both ® and its dual ®* are extensions to G of ®|g, hence ®* =2 & @ A
for some 1-dimensional representation A by Gallagher’s theorem [Is, Cor. (6.17)]. By (9.14.1), A
has odd order. Applying Corollary 5.3, we can find a power © of A so that ® ® © is self-dual
and giving rise to a hypergeometric sheaf, and (® ® ©)(go) has the same central order ¢"~! — 1.
Replacing (G, ®) by (G/Ker(® ® 0),® ® O), we may assume that & is self-dual, and ®(gg) has
central order ¢"~! — 1. This in turn implies that |Z(G)| < 2. Note furthermore that Z(G)N S = 1
and G/Z(G) = PGU,(q) by Corollary 8.4. Hence, G/S = Z(G) - Cy4, where d := ged(n,q+1) is odd
and Cy =2 PGU,(q)/S. The oddness of d allows us to write G/S = Z(G) x Cy. Applying (9.14.1)
again, we get that Z(G) = 1, and thus
(9.14.2) G =~ PGU,(q).

(ii) Let r1,..., 7y be all the distinct primes divisors of d = ged(n,q¢+ 1) (with m =0if d = 1).
Then we can write
n=mnor{'...rém =non, ¢+ 1= qorll’l...r%" = qoq’

for some integers no, qo, ai, b; > 1, such that ged(ng, 71 ...7mm) = ged(qo, 71 - .. 7m) = 1. This implies

(9.14.3) ged(qo, ¢') = ged(go, n) = 1.

Here we prove that if H <T':= GU,(q) is a subgroup that contains the central subgroup Zy = C,,
of Z :=Z(GU,(q)) and maps onto PGU,(q) under the surjection I' - I'/Z, then H =T'. Indeed,
let v € Fqﬁ be of order ¢ + 1, so that the determinantal map det maps I' onto g1 = (7). Any
element of Z is a scalar matrix z = 447 - I,, in T, with i € Z/qoZ and with det(z) = (y7)™. As n is
coprime to go by (9.14.3), we see that det(x) runs over the subgroup piq, of pig41, i.e. det(Zp) = pqq-
Next, the condition that H maps onto PGU,(¢q) implies that HZ = T'. In particular,

(9.14.4) H>[H H|=[HZ HZ]=[IT] = SU.(q),

and there are some h € H and j € Z/(q+ 1)Z such that v = det(h(y? - I,)), i.e. det(h) = 77", As
n = non’, it follows that the order of v=" in g+ is divisible by ¢'. Thus det(H) has order divisible
by both gy and ¢/, and so by (9.14.3) we have det(H) = pg+1 = det(I'). But H > SU,(q) = Ker(det)
by (9.14.4), hence H =T, as stated.

(iii) Now we consider the surjection ¢ : m1(Gy,/F,) — G underlying H and recall that G
PGU,(q) = I'/Z by (9.14.2). Also, consider the surjection 7 : G = T'/Zy — G with kernel Ker(r)
Cy. The obstruction to lifting ¢ to a homomorphism @ : 71(G,/F,) — G lies in the group
H?(G,,/Fp, Ker(r)) = 0, the vanishing because open curves have cohomological dimension < 1, cf.
[SGA4t3, Cor. 2.7, Exp. IX and Thm. 5.1, Exp. X]. Write w(G) = H/Z for some subgroup H < T
containing Zy. Then

7(H/Z0) = (7 0 @) (11 (G /Fy)) = 6(m1 (Gun/Fy)) = T/,
i.e. H maps onto I'/Z. By (ii), H =TI, that is, w is surjective.

211
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(iv) Next, if g = g + 1, equivalently ged(n,q+ 1) = 1, then I' = S x Zy, I'/Zy = G = SU,(q);
set [ := 1 in this case and consider the Weil character C,ll of G = T'/Zy. If g0 < g+ 1, then we set
| := qo and consider the Weil character ¢! of GU,(q), which restricts irreducibly to SU,(q) and
factors through G =T’ /Z, since its kernel is the subgroup Zj of Z = Z(I"). Thus in both cases we
obtain an irreducible representation UG- GL(W), with W = @D ! whose character is ¢l We
can also inflate ® to a G—representatlon & with kernel Zy. We will now compose w with

$:G — GL(V) and ¥ : G — GL(W)
and compare their traces at any element y € w(P(0)) Uw(P(c0)). Then y is a 2-element, and so
by Lemma 9.12(ii) we have
Trace(®(y)) — Trace(¥(y)) = —1.
Now we can apply Theorem 5.1 to ® and ¥ to conclude that ¥ leads to a hypergeometric sheaf
H' of rank D + 1 with geometric monodromy group \I’(G) In particular, the image (go) of I(0) in
¥(G) has simple spectrum on H’. But this contradicts Theorem 8.3, since o(g0) = ¢! —1 but
rank(H') = (¢" +1)/(q + 1). 0
To handle other unitary cases, we will need some auxiliary statements.

Lemma 9.15. Let 2|n > 4, q = p! a power of a prime p > 2, and let H be a finite group with
p1|Z(H)| and H/Z(H) = PGU,(q). Let P < H be the full inverse image in H of a Siegel parabolic
subgroup P [i.e. with Levi subgroup GL,,/2(¢*)/Z(GUn(q))] of PGU,(q). Let Q := Op(P) and let
J=QxC <P such that Z := Z(H) < C and C/Z projects onto a mazimal torus Cign_1y/(q+1) of
PGU,(q). Then there exists a linear character 6 € Irr(Q) such that the following statements hold.
(i) If & € Irr(H) is any irreducible character of degree D := (¢" —1)/(q+1), then | is irreducible
and there exists a linear character &* € Irr(Z) such that

€lz =€(1)- €, €y =Indd,(RE).
(ii) Moreover, if o is an automorphism of H of p-power order that fizes & € Irr(H) of degree D,
then there exists a o-invariant linear character § € Irr(C) such that

lz=¢ €y=¢ Ind), (0K 15).

if we inflate £ to a linear character of J.

Proof. (i) Let H := GU,(q) = GU(V) for a Hermitian space V = Fle, 2 o= Z(H), so that
H/Z = H/Z. Now we can write P/Z P = P/Z, where P = Stab, ;(U) for a totally singular
subspace (€1, ..., ey,/2) of V. Then Q:=0 »(P ) is elementary abelian of order ¢™("*+2)/8. Moreover,
as shown in the proof of [GMST, Lemma 12.5], P acts on Irr(Q) with exactly one orbit of length 1,
namely {1 Q}, one orbit O; of length D, and all other orbits have length larger than D. Certainly,

this action factors through Z.
Let C = Cgqn—1 be a maximal torus of H contained in P. We may assume that C' = (g), where g
has simple spectrum

{e,e79,..., e(_Q)nil}
on V®TF, for a generator € of pgn_1 = Fgn. Note that (§P) = Z(H) fixes every A € O;. Furthermore,

as shown in the proof of [GMST, Lemma 12.5], if some power §™ fixes some character A € Oy, then
the p’-element "™ belongs to a subgroup GU;(q) X GLn/g_l(qQ) of a Levi subgroup GLn/Q(qQ) of

P. This implies that §™ has an eigenvalue belonging to Hg+1 © IFqXQ, and the latter is possible only
when D|m. We have shown that C acts transitively on O1, with any point stabilizer equal to Z(f] ).
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Since p 1 |Z|, the full inverse image of QZ / Z > (Q in H is precisely Z x Q. Hence, without loss
of generality, we may identify Q with @, and conclude that P acts on Irr(Q) with exactly one orbit
of length 1, namely {1g}, one orbit O of length D, and all other orbits have length larger than D;
furthermore, C acts transitively on Op, with any point stabilizer equal to Z. Now, as £ € Irr(H)
has degree D, it follows that {|g = 2/\601 A. Fixing 6 € Oy, we then have by Clifford’s theorem
that &|; = Indéz(e X £*), since the inertia group of # in J is precisely @ x Z and £|z = £(1) - £* by
Schur’s lemma. In particular, £|; is irreducible.

(ii) First note that C' is abelian, since C/Z = C(gn_1)/(q+1) is cyclic. As o fixes &, it also fixes the
central character £*. Hence o acts on the set of D = |C'/Z] irreducible constituents of the character
Id$ (£*), as C is abelian. But o(o) is a p-power and p t D. Therefore, o fixes some irreducible
constituents §~ of Indg(f*), and we have that é |z = £*. By Frobenius’ reciprocity, we also have that

€ Ind)z(0 ¥ 1z) = Indfz((E)loz - (R 12)) = Ind)z(OREY) = £]..
]

Proposition 9.16. Let ¢ = p! be a power of a prime p, 2|n >4, (n,q) # (4,2), (4,3), (6,2), and
let G be a finite almost quasisimple group with a normal subgroup H > Z(G) such that H/Z(G) =
PGU,(q) and pt|Z(G)|. Then L := G is a quotient of SU,(q) by a central subgroup. Suppose
that G has a faithful irreducible complex representation ® : G — GL(V') of degree

D:=(¢"=1)/(a+1)
such that ®|1, induces a Weil representation of SUy(q) with character & for some 1 < i < q and
p 1t |det(®(Q))|. Then G admits an irreducible complex representation ¥ : G — GL(W) of degree
D +1 such that
Trace(¥(y)) — Trace(®(y)) =1

for all p-elements y € G.

Proof. (i) Note that G has a unique non-abelian composition factor S = PSU,(q), and
(9.16.1) PGU,(¢q) =2 H/Z(G) < G/Z(G) < Aut(S) = PGU,,(q) x Coy

by hypothesis. In particular, L is a quasisimple cover of S, so L is a quotient of SU,(q) by the
assumptions on (n,¢q). Assume in addition that p = 2. If 2|[G : H], then G induces an involutive
field automorphism, namely the transpose-inverse automorphism, on S, which sends the character
¢t of SUn(q) to ¢ZT " # ¢t and this contradicts the existence of ®. Hence 2 t [G : H]. Next,
both |Z(G)| and |[PGU,,(q)/S| = ged(n,q + 1) are odd, so 21 [G : L] and y € L for all 2-elements
y € G. Now recall that the Weil character (¥ of SU,(q) factors through S and so can be inflated
to a real-valued, Aut(S)-invariant, irreducible character with trivial determinant (as L is perfect)
of L. By [NT, Lemma 2.1], the latter character extends to the character of some representation
U : G — GL(CP*H1). Now the relation Trace(¥(y)) — Trace(®(y)) = 1 follows from Lemma 9.12(b).

(ii) From now on we will assume p > 2. Also let ¢ denote the character of ®, and ¢° denote
its restriction to 2’-elements of G (and similarly for any character of G). Now, the Weil character
¢ of SU,(q), of odd degree (¢" + q)/(q+ 1) = D + 1, factors through S and yields a real-valued,
Aut(S)-invariant, irreducible character with trivial determinant (as S is simple) of S. By [NT,
Theorem 2.3], the latter character extends uniquely to a real character i with trivial determinant,
of some representation ¥ : G — GL(CP*!) that is trivial at Z(G).

Here we consider the case i = (¢ + 1)/2. By [DT, Theorem 7.2(ii)], 6 := ¢°|r, is an irreducible
2-Brauer character of L. Next, by Lemma 9.12(a), ¢¥°|, =0 + 11. As L <G and D > 1, it follows
from Clifford’s theorem that ° = a + (§ is the sum of two irreducible Brauer characters, with «
lying above 6 and (8 lying above 1;. Furthermore, as ¥ is real, we have that « and § are both
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real-valued. But §(1) = 1, so in fact § = 1g. We have shown that ¢¥° — 15 = «a and ¢° are two
extensions to L of 6. By [N, Cor. (8.20)], there exists a linear character A of G/L such that

(9.16.2) ©° =W = 1)
Taking the complex conjugate and using ¢ = 1), we obtain
(9.16.3) 7 =@~ Loh = (¥° — 1o)A = ¢°A2,

Now we consider any p-element y € G and let Y := (y). Restricting (9.16.3) to Y, we see that
®*|y = @[y ® A for some representation A : Y — GL;(C) with character A|y. In particular,

det(®(y)) " = det(®*(y)) = det(2(y))A(y)"-

As2 < pt|det(®(G))| and p 1 D, it follows that A(y) € C* is a p/-root of unity. On the other hand,
o(A(y)) is a p-power, since y is a p-element. Hence A(y) = 1, and so Trace(¥(y)) — Trace(®(y)) =1
by (9.16.2).

(iii) In the rest of the proof, we consider the case i # (¢ + 1)/2. Recalling (9.16.1), we can find
a p-element ¢ € G/Z(G), which is induced by a field automorphism of GU,(g), such that p does
not divide the index of (H/Z(G),5) = H x () in G/Z(G). Using p 1 |Z(G)|, we can find a lift o of
p-power order of ¢ in G, and note that G; := (H,0) = H x (o) satisfies p { [G : G1]; in particular,
(G1 contains all p-elements of G. The field automorphism action of ¢ induces an action of ¢ on
Hy := GUy(q)/Cg41y/2 (Where Cyy1)/2 has index 2 in Z(GU,(q)) and leads to Gg := Ha x (o).

Also recall that the real-valued Weil character Q(Lqﬂ)/ % of GU,(q) factors through Hy and is invariant
under all field automorphisms of GU,,(¢), in particular under o. By [NT, Lemma 2.1}, Q(Lqﬂ)/ % has a
unique real-valued extension & to Ga, afforded by a representation Z : Go — GL(CP). The analysis
in (ii) applied to (Gg, Z) then shows that

(9.16.4) Trace(V(y)) — Trace(E(y)) =1

for all p-elements y € Ga. (Note that ¥ is trivial at Z(G) and so can be viewed as defined on
G2/Z(G>) and then inflated to Gs.)

Next we can find a &-stable Siegel parabolic subgroup P of H/Z(G) with unipotent radical @
and a &-stable maximal torus C' =2 Clgn-1)/(g+1) In P (using the field automorphism action of
7), and embed (Q,5) in a Sylow p-subgroup R x () of G/Z(G), where R € Syl,(H/Z(G)). Let
J1 = Q1 xCq and Jo = Q2 x Cy be the full inverse images of Q x C in G and G, respectively, with
Q: == O,(J;) & Q as p is coprime to |Z(G)| and |Z(Gs)|. Similarly, there exist a unique Sylow p-
subgroup Ry > Q1 of H and a unique Sylow p-subgroup R > Q)2 of Hy that project isomorphically
onto R, and we may identify Ry with R; and Qo with Q; (via some fixed isomorphism). Note
that Ry < L = G and Ry < Ly := Ggoo). By hypothesis and by the construction of (Ga, Z),
®(L) and =(Ly) afford the Weil characters ¢ and ngﬂ)ﬂ, both of degree D. By Lemma 9.12(b),
Trace(®(y)) = Trace(E(y)) for all y € R;. Conjugating = suitably, we achieve that

(9.16.5) P(y) =E(y)
for all y € Ry.

(iv) Denote Z; := Z(G) < Cy and Zy := Z(G3) < Cy. Certainly, ¢|g and £|m, are both o-
invariant of degree D. By Lemma 9.15(ii), there exist 6 € Irr(Q);) and o-invariant linear characters
A1 € Irr(J1/Q1) and A2 € Irr(J2/Q2) such that

oln =M -Indg;lzl(emzl), £y, = )\2-Indg22222(0®122).

Note that Imdggl1 7, (0 X 1z,) is trivial at Z; and o-invariant, and similarly Ind‘gf1 2,0 K 1z,) is
trivial at Zs. So both of them can be viewed as the character of the same representation © of
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J1/Zy = Jy)Zy = Q x C. Let A; denote the one-dimensional representation of J; with character
Ai. Then @[,y is an extension of ®|; = A} ® © to Ji x (o), and E|j, (s is an extension of
Zlr, = A2 ® O to Jy x (o) (with © being viewed as representations of J; and Ja, respectively).
Thus, for all z € J; we have, using o-invariance of Ay,

A (2)8(27) = A1 (27) ® O(27) = B(27) = @(0)P(2)P(0) ™" = Mi(2)2(0)O(2)2(0) ",

and so O(27) = ®(0)O(x)®(0)~ ! for all x € J1/Z;. Similarly, ©(z7) = Z(0)0(z)=(0) ! for all
x € Jo/Zy. Since ®|j is irreducible by Lemma 9.15(i), © is irreducible. Hence, the equality
®(0)O(x)®(0)~! = Z(0)O(2)Z(0) ! for all € J1/Z; implies by Schur’s lemma that

(9.16.6) E(o) = a®(0)

for some o € C*. As o is a p-element, we see that o(a) is a p-power. On the other hand, ¢ = &,
so E is self-dual, whence det(2(0)) = £1. As p1|det(®(G))|, we also have that o(® (o)) is coprime
to p. Taking the determinant of (9.16.6), we now see that aP has p’-order, whence so does «, since
p1 D. Consequently, a = 1.

Now, (9.16.5) and (9.16.6) show that ®(y) = Z(y) for all y € RaU{c}. It follows that ®(y) = =(y)
for all y € Ry x (o), a Sylow p-subgroup of G5. Hence, Trace(®(y)) = Trace(E(y)) for all p-elements
y € Go, and, together with (9.16.4), this implies that

Trace(¥(y)) — Trace(®(y)) =1
for all p-elements y € G. O

Theorem 9.17. Let q be a prime power, 2ln > 4, and (n,q) # (4,2), (4,3), (6,2). Then case
(i) of Theorem 8.3 does not lead to hypergeometric sheaves in dimension (¢" —1)/(q¢ +1). More
precisely, there is no hypergeometric sheaf H of type (D, m) with m < D = (¢" —1)/(¢ + 1), with
finite geometric monodromy group G = Ggeom such that G is almost quasisimple with S = PSU,(q)
as a non-abelian composition factor, and with the image of I(0) being a cyclic group (go) where

6(g0) = D.

Proof. Assume the contrary that such a hypergeometric sheaf H exists, and let ® : G — GL(V)

denote the corresponding representation, with V' = @D, and with character ¢. The assumptions on
(n, q) imply by Theorem 7.3 that the characteristic p of H divides ¢, that is, ¢ = pf for some f € L>q.
The existence of gg implies by Theorem 8.3(i) that G contains a normal subgroup H > Z(G) such
that H/Z(G) = PGU,(q).

Assume in addition that D—m > 2. Then both det(®(G)) and Z(G) are p’-groups by Proposition

4.8(iv). Now, Proposition 9.16 implies that G admits an irreducible representation ¥ : G —

GL(@DH) with Trace(¥(y)) — Trace(®(y)) = 1 for all p-elements y € G. Applying Theorem 5.1

to ® and ¥, we conclude that ¥ leads to a hypergeometric sheaf H' of rank D + 1 with geometric
monodromy group ¥(G). In particular, the image (go) of I(0) in ¥(G) has simple spectrum on #'.
But this is impossible, since 6(gg) = D < rank(H’).

It remains to consider the case dimWild = D —m = 1. By Proposition 2.22 and Lemma 2.19
of [GT3], |¢(g)|/e(1l) < (3.95)/4 for all 1 # g € Q. It now follows from (7.2.2) that D < 160,
whence (n,q) = (4,4), (4,5), (8,2). However, if 2|¢ then p. (i) of the proof of Proposition 9.16
shows that Q < Z(G)G(™), and so we have |p(g)|/(1) < 0.95 for all 1 # g € Q, whence D < 40,
ruling out two of these possible exceptions. The same arguments apply to the remaining exception
(n,q) = (4,5). O
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9E. Extraspecial normalizers. We will now show that case (i) of Theorem 8.5 cannot lead to
hypergeometric sheaves of rank > 9. First we need the following technical result:

Lemma 9.18. Let p > 2 be a prime, and let n € Z>; with p" > 11. Let E < GL(V) be an
irreducible extraspecial p-subgroup of order p't2" for V. := CP", and let Q < NGL(V)(E) be a
nontrivial p-subgroup. Then the following statements hold for W := p™ — dim Cy (Q).

(i) W>T.

(i) If |Q| > 9, then W > p™/2.

Proof. (a) It is well known, see e.g. [Wi, Theorem 1], that
(9.18.1) Nerw)(E)/ZE < Sp(E/Z(E)) = Spy,(p), CNgy vy (p)(E/L(E)) = ZE

for Z := Z(GL(V)). The statements are obvious in the case QNZ # 1, so we may assume QNZ = 1.
Let ¢ denote the character of @ acting on V. Now, if ¢p(x) = 0 for some 1 # x € @ of order p,
then ¢|x contains 1x with multiplicity p"~! for X := (z), and so W > p"~!(p — 1), yielding
both statements. We also note that ¢(y) = 0 for all y € ZE ~ Z of order p. Hence, arguing by
contradiction, we may assume that

(9.18.2) QNZE =1, W <p"/2, p(x) #0 for all x € Q of order p.

Consider any element 1 # g € @ and let g denote its image in Sp(E/Z(FE)). We write
1Cr/ze)(9)] = p°9 for e(g) € Z. As g ¢ ZF by (9.18.2), the second part of (9.18.1) implies
that 0 < e(g) < 2n — 1. Hence

(9.18.3) lo(g)| < pe9)/2 < pr=1/2

by [GT1, Lemma 2.4]. Applying (7.2.2), (9.18.3), and using p” > 11 but assuming p > 3, we again
obtain both (i) and (ii). We also obtain (i) when p = 3, since p™ > 27 in this case.

(b) It remains to prove (ii) for p = 3, in which case we have p" > 27 and may assume |Q| = 9.
First suppose that @ contains some g with e(g) < 2n — 3. If o(g) = 3, then as |p(g)| < 373/2
by (9.18.3), we again have W > p"/2 from (7.2.2). If o(g) = 9, then @ contains 6 elements x
with e(x) < 2n — 3 and two more elements y with e(y) < 2n — 1. Using the bound (9.18.3) for
x and y, we can see that [¢|g, 1g]/3" < 0.37, contradicting (9.18.2). Hence e(g) > 2n — 2 for all
1+# g € Q. Since g € Spy,(p), it follows that g can have either one Jordan block of size 2 (and so
g is a transvection), or two Jordan blocks of size 2, and all other blocks of size 1 while acting on
E/Z(E). In particular, g% centralizes E/Z(E), whence ¢g> € QN GE = 1 by (9.18.1) and (9.18.2),
and so exp(Q) = 3.

We have shown that @Q =2 C3 x Cs5 and @) consists of 2a elements x with Z being transvections and
8 — 2a elements y with e(y) = 2n — 2, where 0 < a < 4. If a < 1, then (7.2.2) implies W > 3"/2,
contradicting (9.18.2). Hence @ contains at least 4 elements x with Z being transvections. As @
embeds in Sp,,(3) by (9.18.2) and |Q| = 9, we have that Q = (g, h) with g and h two distinct,
commuting transvections in Sps,,(3). By [GMST, Lemma 4.5], this pair (g, k) is unique in Sp,,,(3),
up to conjugacy. Now we can readily check that a = 2.

Recall by [GT1, Lemma 2.4] and (9.18.2) that |p(g)| = 3"~'/2; moreover, g centralizes an ex-
traspecial subgroup E; of order 32"~ ! of E. The Ei-module V is the sum of 3 copies of a simple
module of dimension 3"~!. On the other hand, E; preserves each of g-eigenspaces on V', and more-
over the 1-eigenspace has dimension > 3"/2 by (9.18.2). Replacing g by g~! if necessary, it follows
that g has eigenvalues 1 with multiplicity 2 - 3"~! and ¢ := (3 with multiplicity 3"~ on V, whence

(9.18.4) olg) +e(g~) =3",
and the same holds for h.
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Next we look at u := gh, for which we have e(u) = 2 and o(u) = 3. As ¢(u) # 0 by (9.18.2),
[GT1, Lemma 2.4] implies that u acts trivially on the inverse image of order 32"~! of Cp, z(E)(u)
in £, and this contains an extraspecial subgroup Fs of order 323 of E. The Eo-module V is
the sum of 9 copies of a simple module of dimension 37 2. On the other hand, E, preserves each
of u-eigenspaces on V. Hence, we may denote by 3"2b, 3" 2¢, and 3"2d the dimensions of the
u-eigenspaces for eigenvalues 1, ¢, and ¢, respectively, with b, ¢, d € Z>p and b+c+d =9. We also
have by [GT1, Lemma 2.4] that

9 — 3e(u)/32n—4 _ |(70(u)|2/32n—4 _ |b+ o + d5|2 _ ((b _ 6)2 + (C o d)2 + (d . b)2)/2

Note that 18 = 16 + 1+ 1 = 9+ 9 + 0 are the only two ways to write 18 as the sum of three
squares. One can now readily check that {b,c,d} = {5,2,2} or {4,4,1}. But b > 4 by (9.18.2), so
(b,e,d) = (5,2,2), and

(9.18.5) plgh) +¢((gh)™h) =2-3""1,
and the same holds for gh~!. Now using (9.18.4) and (9.18.5), we can compute [pg, 1g] to be
3" - (13/27), i.e. W/3™ = 14/27, contradicting (9.18.2). O

Theorem 9.19. Let H be an irreducible hypergeometric sheaf of type (D, m) in characteristic p
with D > m, D > 10, such that its geometric monodromy group G = Ggeom 15 @ finite extraspecial
normalizer in some characteristic r. Then p = r, D = p" for some n € Z>1, and the following
statements hold.

(i) Suppose p > 2. Then H is Kloosterman, in fact the sheaf ICl(Charpn g N {1}) (studied by Pink
[Pink]| and Sawin [KT1, p. 841]).

(ii) Suppose p=2. Then Z(G) = Cs, and so in Lemma 1.1(i)(c) we have that R = E is a normal
extraspecial 2-group 2172 of G for some € = +.

Proof. Since G is a finite extraspecial normalizer, E<1G' < Ngq, . (c)(E) for an irreducible extraspe-
cial r-group E < GL;x(C) of order 172" and D = r™. By Theorem 7.4, p = r. If furthermore
p = 2, then, since Z(E) < Z(R) < Z(G) in Lemma 1.1(c), (ii) follows from Proposition 4.8(v).

From now on, assume p > 2, and let @ # 1 be the image in G of P(co). By Lemma 9.18(i),
W := dim Wild > 7. Now, if |Q| < 9, then the p-group @ has order p < 7, whence @ affords at most
p — 1 distinct, nontrivial, irreducible characters on Wild, which are all linear, andso W <p—1<6
by Proposition 4.10, a contradiction. Hence |Q| > 9, and so W > D/2 by Lemma 9.18(ii).

Now, (9.18.1) implies that G/(GNZ E) embeds in Sp,,, (p), and so admits a complex representation
A of degree (p™ —1)/2 < W, with kernel K of of order at most 2. Applying Theorem 4.14 to I" := G
and A, we conclude that A(G/(G N ZE)) is a finite cyclic p’-group. As |K| < 2 and p > 2, it
follows that G/(G N ZE) is an abelian p’-group. Also, note that GN ZE = Z(G)E since G > E.
Now, applying Theorem 8.5 to a generator gy of the image of I(0) in G, we see that the coset
90Z(G)E generates a cyclic, self-centralizing, maximal torus Cpni1 of Spy,(p). It follows that
G =Z(G)E(go). In fact, since G normalizes E(go) and E(go) contains gg, by Theorem 4.1 we have
G= E<g0> = FE X Cpn+1.

As go is a generator of 1(0), the “upstairs” characters of H are determined by the spectrum of gg
on H, which consists of all nontrivial (p™ + 1) roots of unity, hence they are just Charyn; 1 ~ {1}.
Suppose H is not Kloosterman, and we look at the image @ X (goo) of I(00) in G for some p'-element
Joo- By Hall’s theorem applied to the solvable group G, (g~) is contained in a conjugate of the Hall
subgroup (go). In particular, the spectrum of g, on H is the spectrum of some power g on H. But
‘H is irreducible, so the “downstairs” characters of H, which are determined by the spectrum of g,
on the tame part Tame, must be disjoint from the “upstairs”, whence m = dim Tame = 1 and the
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single “downstairs” character is 1. Thus # is the sheaf H; studied in [KT5, Corollary 8.2], which,
however, was shown therein to have Ggeom = PGL2(p™), a contradiction. O

Note that the case (p, Z(G)) = (2,C3) in Theorem 9.19(ii) can lead to non-Kloosterman sheaves —
indeed in [KT8] we constructed hypergeometric sheaves with Ggeom = 222" - Q5 (2) for any n > 4.

10. CONVERSE THEOREMS

Let us recall that, in Theorems 6.2, 6.4, and 6.6 we have classified all pairs (G,V), where G
is a finite almost quasisimple group and V a faithful irreducible CG-representation of G' in which
some element g € G has simple spectrum. Next, in Theorem 7.3 we show that if such a group G
occurs as Ggeom for a hypergeometric sheaf in characteristic p and in addition G is a finite group
of Lie type in characteristic r, then p = r unless dim(V) < 22. Theorem 7.4 gives an analogous
result in the case G is an extraspecial normalizer. The classification of triples (G, V, g) that satisfy
the Abhyankar condition at p, with G being almost quasisimple or an extraspecial normalizer, is
completed in Theorems 8.1, 8.2, 8.3, and 8.5.

However, as shown in §9, not all of these almost quasisimple triples (G,V,g) can give rise to
hypergeometric sheaves. The cases that can possibly occur hypergeometrically are the following:
(a) G/Z(G) = A, or S, with n > 5, and ¢ is as described in Theorem 6.2(i);

(b) G comes from GL,(q) in a Weil representation V' of degree (¢" —¢q)/(q¢—1) or (¢" —q)/(q—1),
q=p/,and 6(g) = (¢" —1)/(¢ — 1) with n > 3 (cf. Theorem 8.1), or G comes from GLx(q) or
GU2(q);

(c) G comes from Sps,,(q) in a Weil representation V of degree (¢" +1)/2 with n > 2, 24 ¢ = p/,
and g is of type («) and 6(g) = (¢" + 1)/2, or type (B), as described in Theorem 8.2(i);

(d) G comes from GU,(q) in a Weil representation V' of degree (¢" —q)/(¢+1) or (¢"+1)/(¢+1)
with 2{n >3, ¢ =p/, and 6(g9) = (¢" +1)/(¢ + 1), cf. Theorem 8.3(i);

(e) G comes from GU,(q) in a Weil representation V of degree (¢" +q)/(¢+1) or (¢" —1)/(¢+ 1)
with 2|n > 4, ¢ = p/, and g is is as described in Theorem 8.3(iii);

(f) A finite and explicit list of “non-generic” cases, including sporadic groups, as listed in Table 1.

The cases (a)—(e) are indeed shown to occur. Namely, the respective hypergeometric sheaves H

(in characteristic p in (b)—(e)) are explicitly constructed in Theorem 9.3 for case (a), in [KT5] and

Theorem 8.6 for case (b), in [KT6] for type («) in (c) and for (d) with 2 1 ¢, in [KT7] for type () in

(c) and for (e), and in [KT8| for case (d) with 2|q. (We also note the sheaves of rank (¢" —1)/(¢—1)

in case (b) are imprimitive and that fail (S+).) The extraspecial normalizers, and the sporadic and

non-generic cases in (f), are handled in [KT8] and [KRL], [KRLT1]-[KRLT4].
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