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PHYSICS

Multiperiodic orbits from interacting soft spots
in cyclically sheared amorphous solids

Nathan C. Keim"?* and Joseph D. Paulsen®**

When an amorphous solid is deformed cyclically, it may reach a steady state in which the paths of constituent
particles trace out closed loops that repeat in each driving cycle. A remarkable variant has been noticed in simu-
lations where the period of particle motions is a multiple of the period of driving, but the reasons for this behavior
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have remained unclear. Motivated by mesoscopic features of displacement fields in experiments on jammed
solids, we propose and analyze a simple model of interacting soft spots—locations where particles rearrange
under stress and that resemble two-level systems with hysteresis. We show that multiperiodic behavior can arise
among just three or more soft spots that interact with each other, but in all cases it requires frustrated interac-
tions, illuminating this otherwise elusive type of interaction. We suggest directions for seeking this signature of

frustration in experiments and for achieving it in designed systems.

INTRODUCTION

A solid with perfectly elastic behavior deforms reversibly, in the sense
that all material points return to their initial positions when a load
is removed. Some amorphous solids may be prepared in a reversible
plastic state, wherein loading the material in one direction changes
its structure through many microscopic events, but loading it in the
reverse direction precisely undoes these changes (1-5). Each micro-
scopic event is localized to a soft spot (6) or shear-transformation
zone (Fig. 1A) (7), which resembles a two-level system that switches
under forward and reverse shear (4, 7-9).

Recent simulations using athermal quasi-static shear have revealed
an even more remarkable behavior in which the period of particle
motions is a multiple of the period of driving (1, 10), reminiscent of
the familiar action of a retractable pen. Such “multiperiodic” behavior
may sound quite tenuous, given the daunting number of mechani-
cally stable configurations and transitions in a packing of even a modest
size. Nevertheless, multiperiodicity has been observed in molecular
dynamics simulations of amorphous solids in two and three dimen-
sions for several kinds of particle interactions (1, 10-15). However,
the mechanism for this behavior has remained unclear, even as it
seems to be associated with an unjamming transition as the confin-
ing pressure is decreased (13).

Here, we show how multiperiodicity can arise in a simplified
coarse-grained model of interacting soft spots (Fig. 2). We identify
how the prevalence of multiperiodicity depends on the spatial arrange-
ment of the soft spots, and we show how to design the behavior on
demand. In all cases, the multiperiodic orbits are made possible by
frustrated interactions in our model. Our results show that frustrated
interactions between soft spots must be considered as an important
counterpart to the cooperative interactions that are used to explain
avalanches near the yielding transition (5, 16, 17).
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RESULTS

While experiments have not yet observed multiperiodic behavior,
they exhibit the microscopic phenomenology we wish to distill into
our model. Figure 1A shows a displacement field from an experiment
with two nearby soft spots (see Materials and Methods for details).
Each has the characteristics of an Eshelby inclusion—a small region
of plastic deformation that is coupled to a quadrupolar elastic de-
formation of the surrounding material. This extended deformation
induces or inhibits the rearrangement of other nearby soft spots, de-
pending on their relative placement (8, 16, 18). For example, Fig. 1A
is suggestive of a frustrated interaction, whereas the arrangement in
Fig. 1B suggests cooperative interactions.

Our jumping-off point is to consider the possible behaviors of
compact collections of N soft spots by modeling them as interacting
hysteretic elements or “hysterons” (8, 9). A hysteron has two possible
states, s; = +1; it transitions to the “+” state when the local field—equal
to the instantaneous global strain field H plus neighbor interactions—
reaches a fixed threshold H;. Likewise, it transitions to the “~” state
at a fixed threshold H;, < H;.To model the disorder of such pack-
ings, these thresholds are set as H;' = hi+u;jand H; = h; - u;
where h; is chosen with uniform probability from the interval [ -1,1],
and u; is chosen from [0, 2], for each hysteron independently. Hysteron
jimposes a local field on hysteron i equal to Ji;sj, where the coupling
strength Jj; is taken to be symmetric (J;; = Jj;) except where stated
otherwise. The magnitude of each Jj; (with i # j) is selected with
uniform probability so that | J;; | < 1.

To capture the effect of the characteristic quadrupolar elastic de-
formations of rearranging soft spots, the signs of the J; are dictated
by the spatial configuration of the hysterons. Pairs that are 45° off
the shear direction have a frustrated coupling (antiferromagnetic,
Jij Jji < 0), whereas pairs along 0° or 90° have a cooperative coupling
(ferromagnetic, Jij, J;; > 0). This rule assumes that all soft spots’ dis-
placement fields have approximately the same orientation and po-
larity relative to the direction of shear, which appears to be true broadly
in experiments (2, 4, 9, 18).

Our simulations, available as an open-source Python package
(19), probe the system evolution under athermal, quasi-static, oscil-
latory driving between —H, and +H,. We initialize the system with
H « -1 and all hysterons negative (s; = —1), and we evolve forward
using an event-based method. Since flipping one hysteron may prompt
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Fig. 1. Interacting soft spots and periodic orbits in experiments on a cyclically
sheared 2D jammed solid. (A) Particle displacements around two rearranging
soft spots (approximate centers marked with @) undergoing horizontal shear. Colors
denote displacements along the two principal axes of shear. The displacements
oppose each other at the center of the panel, suggesting a frustrated interaction.
Inset: Schematic of the frustrated interaction (dashed lines). (B) Displacements
around a group of several soft spots, suggesting cooperative interactions. Inset:
Schematic of cooperative interactions (solid lines). (C) Steady-state particle paths,
which are closed with the same period as the driving. Multiperiodic paths would
have a longer period. Background: Experimental micrograph.

a neighbor to flip, we wait for avalanches at fixed field until a stable
state is reached; the hysteron farthest past its threshold is flipped first
and all the local fields are updated between flips. In extremely rare
cases where no stable state can be found or two flips are degenerate,
the system is discarded. We continue driving until an absorbing state
is reached where the dynamics repeat under further driving.

To search for multiperiodic behavior efficiently given the cou-
plings Jjand thresholds H;, we note that increasing the driving am-
plitude Hj will not change the dynamics until it is large enough to
cause an additional hysteron to flip. Therefore, a finite set of Hy will
exhaust all possible dynamics under symmetric driving. To obtain
this set, for each of the 2" possible states, we compute the two values
of H that bound the interval of stability for the state. We then sort
the list of absolute values of these H and take the midpoints between
successive values as our set of Hy. We perform a series of simulations
starting with the smallest Hy and continuing until any multiperiodic
orbit is found. Such an “amplitude sweep” is likewise an efficient
method to search for unfamiliar behavior in experiments.

Comparing arrangements of hysterons
Figure 2 shows an example of a multiperiodic orbit that is achieved
for N =4 hysterons arranged on a square. The system cycles through
eight states over two driving periods, repeating this sequence indef-
initely thereafter. This is just one possible T = 2 orbit for this spatial
arrangement of N = 4 hysterons; it occurs with probability P = 8.37 x
107 (allowing permutation of hysterons and inversion of the Hy).
Figure 3 shows the prevalence of multiperiodicity in this and oth-
er compact arrangements of hysterons. The arrangements labeled a
to e show all the unique configurations where N = 4 hysterons are
placed within a 2 x 3 lattice that is oriented with the shear direction
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Fig. 2. Example of a T=2 orbit in our model of interacting hysterons. Inset: Ar-
rangement of the four hysterons with a mixture of cooperative and frustrated in-
teractions (solid and dashed lines, respectively). Main: Each large circle represents
a state of the system and is placed at the value of external field H at which the sys-
tem reaches that state. The close pair of states near H =1 constitutes an avalanche.
The time axis indicates only the sequence of events, since the simulation is quasi-static.

(up to reflections and rotations by 90°, which do not change the
interactions). As before, interactions are between all nearest-neighbor
pairs. Arrangement c has the highest probability of T = 2 among this
set. These arrangements are some of the simplest ones eliciting mul-
tiperiodicity in our model.

Arrangements fto h in Fig. 3 show the increasing prevalence of
multiperiodicity for N = 6, 8, and 9 hysterons on a square lattice.
Arrangement h is multiperiodic with P = 5.3 x 107, so that if a macro-
scopic amorphous solid has 20 of these configurations, it will have a
~10% chance of multiperiodicity. Notably, in contrast to the observed
behavior of amorphous systems of many particles (1, 3, 13, 20),
small clusters of soft spots reach periodic orbits after very few
cycles: For arrangement h, despite the space of 2” states, the longest
observed transient before a (multiperiodic) limit cycle was just 3
cycles, and it occurred in just 1 of 107 systems.

When the lattice is rotated by 45° (exchanging cooperative and
frustrated interactions, i.e., J; = —Ji;), no multiperiodic orbits are
observed (arrangements a’ to h’). This curious observation leads us
to note another special property of a’ to h’: If we assign a + or — state
to any one hysteron, we can then work outward and assign states to
all other hysterons, satistying every interaction. This is because these
arrangements are portions of an antiferromagnetic lattice, with ordered
ground states. While it is unclear why this property might suppress
multiperiodic behavior, it could be a starting point for a deeper un-
derstanding of multiperiodicity generally.

The above results demonstrate that multiperiodic orbits can
arise in our simple model constructed from coupled hysterons. In
the following sections, we identify which attributes of the model are
necessary for producing multiperiodicity.

Minimal number of hysterons
Empirically, we find that multiperiodic behavior is impossible for
N < 3 hysterons. N = 3 hysterons with symmetric couplings also do not
exhibit multiperiodic behavior. However, breaking the symmetry of
at least one interaction pair (J;; # J;;) is enough to allow a T'= 3 orbit,
if and only if all interactions are frustrated. Under these conditions,
we observe T = 3 with P = 4.67 x 107, with a single unique sequence
of states (see the Supplementary Materials). We observe T = 2 with
P =7.80 x 10, accounting for a variety of different sequences.
Asymmetric couplings in spin systems without external cyclic
driving (21-23) have been studied before, but the physical meaning
in a driven amorphous solid is unclear. One possible mechanism
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Fig. 3. How the prevalence of multiperiodicity depends on the spatial arrangements of the hysterons. Probabilities of orbits with period T=2,3,4,5, within the param-
eter space searched (J;;= J;), for eight arrangements of hysterons a to h. Arrangements f to h exhibit a greater variety of periods and are consistent with an exponential decrease in
probability as a function of the period (a straight line on these axes). In the diagrams along the x axis, solid (dashed) lines represent cooperative (frustrated) interactions with J; > 0 (Jj
< 0). For the complementary arrangements a’ to h’, no multiperiodic behavior was found. Error bars represent 68% confidence intervals; top’ bounds on zero probabilities

(omitted from the plot for visual clarity) are 1.3 x 107° (36).

might be for soft spots to change states on different time scales, so
that when the system is driven at finite frequency, a “slow” hysteron
could fail to change in part of the cycle, even when in strict terms it
is unstable.

Role of frustration

The observation that all interactions must be frustrated to elicit
multiperiodic behavior for N = 3 prompts us to further investigate
the role of frustration. In Fig. 4, we vary the fraction of interaction
pairs that are randomly chosen to be frustrated (Ji;, J; < 0), and we
plot the prevalence of multiperiodicity under these conditions. There
is a clear trend across all the data: Multiperiodic behavior becomes
exponentiallzr more scarce as the fraction of frustrated pairs is re-
duced from “/3 down to 0. In all cases, the probability is identically
zero in the absence of frustration, a result we have checked up to N=7.
Figure 4 also confirms that the topology of frustrated and coopera-
tive interactions can be just as important as their number: Arrange-
ment a’ in Fig. 3 has N = 4 and */3 of pairs frustrated, and yet we find
no multiperiodic orbits for that specific topology for either symmetric
or asymmetric interactions.

Multiperiodicity from nonhysteretic elements
The above results show how coupled hysterons can produce multi-
periodic orbits. We now show that hysteresis of the elements is not
a necessary ingredient for multiperiodicity. In the absence of hys-
teresis and when —1 < J;; = J; < 1, our model of an amorphous solid
reduces to a spin glass where each soft spot corresponds to an Ising
spin, governed by the Hamiltonian
H = _lZ]ijsiSj_sti (1)
28 7
We verified this by writing separate code for such a spin glass and
comparing the results with our coupled hysteron code with zero
hysteresis. Deutsch and Narayan (24) reported multiperiodic orbits
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Fig. 4. Occurrence of multiperiodic behavior for few hysterons. Probability is
plotted as a function of the fraction of interaction pairs that are frustrated for sym-
metric (J;; = J;) and asymmetric interactions. Error bars are smaller than the symbols.
Multiperiodic behavior becomes exponentially less common as the fraction of frus-
trated pairs is reduced from 2/3 down to 0, but with no observed multiperiodicity in
all 108 systems when there are no frustrated pairs. (A straight line on these axes
corresponds to an exponential trend.) For N=3 with symmetric interactions, we
observed no multiperiodic orbits at all.

in such spin glasses with as few as five spins, although they focused
on larger systems (N > 64). We now elucidate the conditions for
multiperiodicity with N = 5, under additional conditions that simplify
the interactions even further: All the spin couplings are antiferro-
magnetic (J;; < 0), and one or more of the couplings are randomly
set to zero.

With four couplings set to zero, no multiperiodic orbits were
observed in 10° systems. With 3 couplings set to 0, of 10” systems,
we observe multiperiodicity in 1932—all with period T = 3 and a
unique topology of interactions. This topology is shown in Fig. 5A
and in the inset to Fig. 5B as a portion of a triangular lattice. With-
out loss of generality, we break the mirror symmetry by requiring
| J34] < |Jo1| when spins are indexed left to right. This leads to
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Fig. 5. Multiperiodicity from frustrated nonhysteretic elements. (A) The four
distinct graphs on N = 5 vertices with three missing edges. Multiperiodic orbits were
found only in the rightmost graph, redrawn in (B) as a portion of a triangular lattice.
(B) Probability of period 3 near the Chebyshev center of the period 3 polytope for
the spin model in the inset, with J;, < Jss to lift a degeneracy. Squares: Probability
of falling within the polytope for 10° Gaussian-distributed points around the
Chebyshev center while keeping J14 = Jo5 = J15 = 0. Triangles: All J; are given random
errors. In this case, the seven-dimensional description does not apply; one would
need to characterize a distinct 10-dimensional polytope. Instead, 10* simulations
are run for each o.

an additional remarkable uniqueness: At the smallest Hy for
multiperiodicity in each system, there is a unique and highly sym-
metric steady-state orbit (see the Supplementary Materials).

Regions in parameter space

The evolution of this spin glass model is deterministic given the
coupling strengths J;;, an initial condition, and a driving protocol.
Working in the reverse direction, a sequence of states may be mapped
back to a region of the (high-dimensional) space of J;; that can give
this sequence; here, a subset of the unit hypercube [ —1,0]", where
n =7 is the number of nonzero couplings. Proceeding in this manner,
we find a set of 10 inequalities among the J; that bound the region
of parameter space corresponding to this T = 3 orbit, which we list
in the Supplementary Materials. The volume of this high-dimensional
polygon (i.e., polytope) is found to be 1.86 x 107,

To convert to a probability for multiperiodicity, we multiply this
volume by 2 for the indexing degeneracy we lifted, and by '/, to ac-
count for the probability of obtaining the correct network topology.
The latter factor may be found by noting that at least two of the three
removed edges must share a vertex and enumerating the remaining
cases. Thus, the above value is precisely the predicted probability of
multiperiodic behavior for some Hy. It agrees with how often we
observe T = 3 in our simulations: P = (1.93 + 0.04) x 107,

Such a detailed characterization of the high-dimensional phase
space of the J;; is useful for designing systems with robust multiperi-
odic behavior. For instance, we can compute (25) a Chebyshev center
for this polytope—a point that is farthest from its faces, which can
thus withstand the largest possible errors in J;; while remaining
multiperiodic. We find a Chebyshev center at
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0 -0.926 -0.370 0 0
-0.926 0 -0.519 -0.278 0
J ={-0.370 -0.519 0 -0.703 -0.297 (2)
0 -0.278 -0.703 0 -0.703
0 0 -0.297 -0.703 0

which is the center of a hypersphere of radius 0.074 that lies entirely
within the polytope. We report these coordinates to illustrate that
our method can give precise quantitative information about finite
regions of phase space that share a common orbit. At these coordi-
nates, T = 3 is attained for any H, in the range 1 < Hj < 1.685 (see
the Supplementary Materials). For the general case of normally dis-
tributed errors in Jj;, Fig. 5B shows that the probability of T = 3 remains
high for an SD ¢ up to several hundredths. Thus, the low probability
of multiperiodicity in this system stems from the enormity of the
parameter space rather than a need for fine-tuning.

This same methodology—starting from an orbit and working
backward to a region of parameter space—also applies to our model
of interacting hysteretic soft spots. For example, setting Hy = 1, a
Chebyshev center for the orbit in Fig. 2 is

0 -0.552 0.081 0.081
jo|-0552 0 0.670  0.280 (3a)
0.081  0.670 0 -0571
0.081 0280 -0571 0O
H" = [0 -0.105 0.762 0.953] (3b)
H = [-0.809 -0.220 -0.856 -1.047] (3¢)

which is a distance 0.081 from the nearest face. For the unique T =
3 orbit with N = 3 hysterons, a Chebyshev center is

0 -0.58 -0.172
J=1-0172 0  -0.586 (4a)
-0.586 -0.172 0
H" = [0.828 0.828 0.828] (4b)
H = [-0.828 -0.828 —0.828] (4c)

which is a distance 0.338 from the nearest face. Note the high degree
of symmetry at this Chebyshev center: Each hysteron has identical
H" and H', with identical asymmetric couplings that set up a clear
chirality in the system. In the Supplementary Materials, we further
characterize all of the above polytopes and list the inequalities that
bound them.

DISCUSSION

We have shown how multiperiodicity can arise from the interactions
of a small number of localized soft spots with simple, physically mo-
tivated interactions. Previous studies of this behavior using molec-
ular dynamics simulations did not consider localization to soft spots
(1, 10-15), while previous attempts to understand it using simpli-
fied models (26-28) did not pursue a microscopic picture of the
system, e.g., of the sequence or spatial structure of rearrangements.
In this work, by focusing on small systems, probing the effect of the
spatial structure of the elements, and using an amplitude sweep for
the driving field, we have provided a concrete and thorough foundation
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for addressing the origin of multiperiodicity in amorphous solids,
where its robust appearance in simulations has not been well under-
stood. While we have not specialized to particular distributions of
parameter values that are a subject of current research (17, 29), our
general model is nevertheless able to capture a detail of the multi-
periodicity found in molecular dynamics simulations: We observe an
approximately exponential decay of probability with the period of
the limit cycle, T (e.g., in arrangements f to k in Fig. 3), a trend that
was reported by Lavrentovich et al. (13) in simulations on jammed
solids. The findings of Lavrentovich et al. that multiperiodicity may
be associated with an unjamming transition prompt the question of
the role of soft spot interactions in this critical transition.

Our results show that frustrated interactions are always neces-
sary for multiperiodic behavior. This comports with existing theory
about the random-field Ising model (30), which showed that with-
out frustration, it supports return-point memory—a behavior that
precludes a multiperiodic response. These findings suggest that multi-
periodicity should be taken as a conspicuous signature of frustration—a
counterpart to the yielding and shear-banding behaviors that are often
attributed to cooperative interactions (5, 16, 17).

Our results also offer guidance to experiments searching for multi-
periodicity in amorphous solids. Because interactions among soft
spots are crucial, strain amplitudes should be large enough to en-
sure a high density of switching soft spots but small enough to allow
a periodic steady state—consistent with results of prior simulations
that we can now rationalize with our model. Such experiments also
promise to reveal the role of soft spot interactions near yielding
(8, 17) and to probe the limits of the return-point memory behavior
that is incompatible with frustration (8, 9, 30-32). However, exper-
iments must overcome measurement error and a high susceptibility
to mechanical noise in this regime (4, 9). We have shown that rela-
tively few soft spots are sufficient for multiperiodic behavior, so that
localized clusters of soft spots may be the dominant way that multi-
periodicity emerges in large systems. Dividing observations of a large
experimental system into regions of ©(10) soft spots could thus en-
hance sensitivity to multiperiodic orbits while rejecting the effects
of mechanical noise or initial conditions playing out elsewhere.
Furthermore, it would test the hypothesis that multiperiodic behav-
ior is highly localized rather than being a strictly emergent behavior
spread out among many interacting particles. Combinations of small
groups with incommensurate periods may be a way for longer-period
orbits to arise.

We have also shown that specific multiperiodic behaviors among
spins and hysterons correspond to convex regions in high-dimensional
parameter space, bounded by systems of inequalities. This both serves
as an additional check of our modeling and paves the way for the
rational design of systems with these behaviors, for example, as the
basis for a digital counter. Most promising are the N = 5 spin con-
figuration (Fig. 5, inset) and the N = 3 and N = 4 hysteron configu-
rations (Figs. 2 to 4), each of which is conducive to a real-space physical
implementation, with network topology and bond strengths that
might be realized in the lab.

MATERIALS AND METHODS

Details for Fig. 1

The experimental particle trajectories and micrograph used for Fig. 1
were obtained using methods described in (9), by cyclically shearing
a monolayer of bidisperse polystyrene particles adsorbed at an
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oil-water interface. Because these particles exhibit long-range elec-
trostatic repulsion (33), the material is a disordered, frictionless soft
solid. We shear each sample between parallel boundaries that are
1.5 mm apart and 18 mm long; the material extends far beyond the
open ends of this working sample. We image an approximately 1.4 x
1.9 mm region within the working sample. In fig. S1, we show mi-
crographs corresponding to Fig. 1(A and B).

Each material is prepared by combining small and large sulfate
latex microspheres (Invitrogen) in suspension, in roughly equal num-
ber, and dispersing them at an oil-water interface (9). The small and
large particles in Fig. 1A have average diameters of 3.8 and 5.2 um, and
the particles in Fig. 1(B and C) have average diameters of 3.5 and 5.4 um,
although it is ultimately each particle’s electric dipole strength that
determines its effective size in the packing (33). Although aggregates
of several particles can form during the preparation process, they do
not seem to be strongly correlated with the locations of soft spots.

We obtained the plotted displacements (Fig. 1, A and B) by com-
paring the position of each particle at two different times and sub-
tracting the average motion of the region of surrounding material
with radius 16.5a, where a is the mode of the interparticle distance,
determined from the pair correlation function g(r) (4, 9, 34). We
chose times when the shear strain y = 0 (the midpoint of shearing),
one full cycle apart. Figure 1A shows displacements in a portion of
the system upon switching from strain amplitude 0.038 to 0.055.
Figure 1B shows displacements in a different experiment upon
switching from strain amplitude 0.045 to 0.050.

To obtain the plotted trajectory loops (Fig. 1C), we used positions
over a full cycle of shearing at strain amplitude 0.055. Rather than
subtracting the average motion within the region shown, we sub-
tract the motion of a set of particles centered ~35 um below this
region, so that the particles in the field of view appear to be dis-
placed horizontally by the global shearing motion.

Inequalities for regions of parameter space

For a system of spins, inequalities that bound regions of parameter
space may contain only the parameters Hy and Jj; as variables. To
generate such inequalities from a sequence of states, we follow a
method that parallels our simulation algorithm. Two examples illus-
trate our approach. We first consider a spin i that flips to the + state
as H is increased. At this instant, the spin has become marginally
unstable, so that

H+ Z]iij =0
7

(5)

At this same instant, the other spins are stable, since otherwise
they would have flipped before spin i did. For instance, if spin k # i
is in the — state,

H+ Z}kij <0 (6)
7

where we use the previous states s; of the spins before spin i flipped.
Substituting Eq. 5 into Inequality 6 yields an inequality that contains
only the unknowns Jj;, as desired. As a second example, we imagine
that the flipping of spin i causes another spin / to flip immediately (an
avalanche). This tells us not only that spin / is unstable at the same
value of H given by Eq. 5 but also that, at that instant, it is farther past
its threshold of stability than every other spin. The avalanche ends
when all spins are stable; this observation leads to further inequalities
by again combining Eq. 5 and Inequality 6 (where Inequality 6 is

50f6

20T ‘01 ABIAL UO AJISIOATU() 9)B)S BIUBAJASUUS] J& S10°00UdI0S mma//:sdPY woly popeo[umo(



SCIENCE ADVANCES | RESEARCH ARTICLE

flipped for spins in the + state). A similar method applies to a system
of hysterons, with H; and H; as additional unknowns on the right-
hand side of Eq. 5 and Inequality 6 as needed. In general, additional
inequalities are needed to denote that | H | < Hy at all times.

The resulting inequalities define a high-dimensional polygon
(polytope). We use the Python package pycddlib (based on CppLis)
to remove any redundant inequalities and the pypoman package (25)
to compute Chebyshev centers. The full sets of inequalities for select
orbits, further characterizations of the polytopes, and checks of the
inequalities against our simulation results are given in the Supple-
mentary Materials.

Period 3 polytope volume in the spin model

To compute the volume of the period 3 polytope for N = 5 spins, we
first convert from a set of inequalities to a set of vertices, using the
Python package pycddlib. We then compute the volume of the con-
vex hull of these points with the SciPy module spatial. ConvexHull.
We find it to be 1.863 x 10™*. Measuring this volume using Monte
Carlo integration with 10® points gives consistent results: (1.857 +
0.010) x 10~* The full set of inequalities defining the polytope, and
the 14 vertices they define, is given in the Supplementary Materials.

Organizing the hysteron simulation orbits

Comparing orbits lets us meaningfully group and count systems with
equivalent orbits. We represent each simulation’s output as a directed
cyclic graph of states and manipulate it with the NetworkX package
(35). We obtain the orbit by extracting the longest simple cycle in
this graph. This removes trivial excursions: For instance, a system
may transition from state + — + to + + + as H is increased and then
return directly to + — + as H is decreased; we generally find many
other randomly generated systems in which this excursion is miss-
ing. To compare these extracted orbits, we then account for all pos-
sible permutations of hysterons’ identities, reversal of the sequence,
and inversion of the system (exchanging all the + and — states).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/33/eabg7685/DC1
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