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ABSTRACT. We construct hypergeometric sheaves whose geometric monodromy groups are the finite
symplectic groups Sp,,,(¢) for any odd n > 3, for ¢ any power of an odd prime p. We construct other
hypergeometric sheaves whose geometric monodromy groups are the finite unitary groups GUr(q),
for any even n > 2, for ¢ any power of any prime p. Suitable Kummer pullbacks of these sheaves
yield local systems on A', whose geometric monodromy groups are Sp,,, (q), respectively SU,,(g), in
their total Weil representation of degree ¢", and whose trace functions are simple-to-remember one-
parameter families of two-variable exponential sums. The main novelty of this paper is three-fold.
First, it treats unitary groups GU,(q) with n even via hypergeometric sheaves for the first time.
Second, in both the symplectic and the unitary cases, it uses a maximal torus which is a product
of two sub-tori to furnish a generator of local monodromy at 0. Third, this is the first natural
occurrence of families of two-variable exponential sums in the context of finite classical groups.
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1. INTRODUCTION

Throughout this paper, p is a prime, and ¢ is a power of p. In our previous paper [KT3|, we
considered the problem of realizing the finite symplectic groups Sps,,(¢) when p is odd as monodromy
groups of “simple to remember” families of exponential sums on the affine line A! in characteristic
p, with the proviso that these families themselves be closely related to hypergeometric sheaves, and
the analogous problem for the finite unitary groups SU,(g). In the Spy,(q) case, we succeeded for
even n with p > 2 (and Sp,y(¢q) was treated in [KT1]). In the SU,(q) case, we succeeded for odd
n > 3, again when p was odd. For a long time, we did not believe that SU,(q) for n > 2 even could
be obtained from hypergeometric sheaves.

In this paper, we make use of a new approach, which allows us to treat the Sps,(q) case for
n > 3 odd, still with p odd, and the SU,(q) case for n > 2 even and any p. This approach is
based on the novel idea of constructing hypergeometric sheaves whose local monodromy at 0 uses
a generator of a maximal torus in the group which is a product of two sub-tori. Previously, known
hypergeometric sheaves for finite classical groups all have local monodromy at 0 that utilizes only
cyclic maximal tori of the classical group in question. This novel approach allows us to treat unitary
groups GU,(q) with n even via hypergeometric sheaves for the first time. Another principal novelty
of this paper is the use of the operation Cancel on hypergeometric sheaves [Ka-ESDE, 9.3.1] as
a way to obtain the explicit trace functions of our candidates for total Weil representations of
symplectic and unitary groups. Note that, even though these hypergeometric sheaves have a fairly
explicit shape predicted by local monodromy considerations, they individually do not have nice
trace functions. The use of Cancel allows us to show that suitable direct sums of them do have
nice trace functions. These trace functions are then used to prove that their monodromy groups
are finite, but these trace functions alone give us no clue what the finite monodromy groups are,
and in what representations they are occurring. We then prove group-theoretic recognition results
that identify these geometric monodromy groups as finite symplectic and unitary groups acting in
their total Weil representations. Further group-theoretic results are then established to identify the
occurring arithmetic monodromy groups.

This paper may also be viewed as a companion piece to [KT5], which determines which almost
quasisimple groups can possibly occur as monodromy groups of hypergeometric sheaves. The main
results, Theorems 6.4 and 7.4 of [KT5], show that if a finite classical group G in characteristic r
can be realized as the geometric monodromy group of a hypergeometric sheaf H on G,,/F,, then,
aside from a small and explicit list of exceptions, we necessarily have that » = p and that G is a
general linear group GL,(q), a general unitary group GU,(q), or a symplectic group Sp,,,(¢) with ¢
a power of p, and moreover the resulting representation of G is an irreducible Weil representation.
The converse problem of showing that such a finite classical group G acting in a Weil representation
does indeed occur as the geometric monodromy group of a hypergeometric sheaf H is the subject
of the current paper and [KT6]. As mentioned above, a major difference between the local systems
considered in this paper and the ones in [KT6] is the novel consideration of a product of two sub-tori
as local monodromy at 0 in this paper, which necessitates the development of new algebro-geometric
and group-theoretic tools.

Let us briefly discuss the “numerology” of our approach here. We are given a prime p, a strictly
positive power ¢ of p, and two positive integers

a,b.

We then define
M = ged(q* + 1,¢" + 1),

A:=(¢“+1)/M,B = (¢" +1)/M.
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Thus
ged(A, B) = 1.
Grosso modo, when M = 2, we find that we are dealing with Spy(, ) (¢), and that when M = g+1,
we are dealing with SU,44(q). A moment’s reflection shows that M = 2 is only possible if at least
one of a,b is even; a further technical constraint requires that the other be odd and this is why we
can only attain Sp,,(¢) for n > 3 odd. Similarly, M = ¢ + 1 is only possible if both a, b are odd;
this is why we can only attain SU,(q) for n even. Because M is a divisor of each of ¢* + 1 and
¢+ 1, M = 2 is only possible if ¢ is odd, whereas M = ¢ + 1 imposes no parity restriction on g.
This is what allows us to treat the SU,(q) case, n > 2 even, in any characteristic.
It then turns out that one-parameter families of two-variable exponential sums, of the shape

te B Y p(taw+ ot 4wl
TweEE

are what provide the sought after total Weil representations. This is in sharp contrast to the case of
SU,(q) with n odd or any Spy,(g), where the total Weil representations are incarnated by families
of one-variable exponential sums. Moreover, with n = a + b, it comes as a pleasant surprise
that the local systems with these trace functions realize total Weil representations of Sp,,(¢) and
of SU,(q). In the “overlap” case of Spy,(¢) with n odd, where we have both this two-variable
exponential sum approach and the already developed one-variable exponential sum approach to
total Weil representations, it would be interesting to understand the relation between the two
approaches.

The main result for symplectic groups is Theorem 15.7, which explicitly constructs hypergeo-
metric sheaves whose arithmetic and geometric monodromy groups realize Sps,,(¢) in its irreducible
Weil representations. Suitable Kummer pullbacks of these sheaves yield local systems over A!/F,
with the same monodromy groups and with trace functions being easy to remember one-parameter
families of two-variable exponential sums. Similar results for unitary groups (in any characteristic)
are established in Theorems 16.11, 16.12, and 17.5.

2. A VARIANT APPROACH TO FINITE MONODROMY, ESPECIALLY OF HYPERGEOMETRIC SHEAVES;
THE [N], METHOD

Let Hypy(X1,-- - Xn; P1,-- -, pm) be a hypergeometric sheaf of type (n,m), defined over a finite
field IF, in the strong sense that 1) is a nontrivial additive character of F, and each yx; and each p;
is a (possibly trivial) multiplicative character of ;. We assume that no x; is any p;.

If we pick an embedding of Q(pq—1) into Qy, we can view the multiplicative characters y; and pj
as taking values in Q(jq—1). So viewed, it makes sense to ask if the set (with multiplicity) consisting
of the upstairs characters x;, and the set (with multiplicity) consisting of the downstairs characters
pj, are each Galois stable (by the action of Gal(Q(ug—1)/Q)). [This notion does not depend on the
choice of embedding of Q(p4—1) into Qp, since any two embeddings differ by precomposition with an
element of Gal(Q(pq—1)/Q).] If both sets are Galois stable, we say that Hypy (X1, - - Xni P15+ -+ Pm)
has Galois stable sets of characters.

Lemma 2.1. Let Hypy(X1,-- -3 Xn; P15 - - -, Pm) be a hypergeometric of type (n, m) with Galois stable
sets of characters. Then we have the following results.

(i) For any finite extension field L/Fy, and any point t € L™, the trace
Trace(Froby, | Hypy(X1s - - - Xni P1s- - -+ Pm))

and the determinant

det (Froby, 1 |[Hypy(X1s-- -, Xn} Pls-- - Pm))
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both lie in Z[(Cp).
(ii) The “Gauss-twisted” sheaf

Hypy(X1s- - Xni P1,- - - Pm) (—Gauss (1), Xquadratic))_(n+m_1)deg

is pure of weight zero, for every embedding of Q; into C, and has traces in Z[(p)[1/p].

Proof. The two Galois extensions Q(y,)/Q and Q(uq—1)/Q are linearly disjoint, so we may view
Gal(Q(rg-1)/Q) as Gal(Q(pg-1, 1) /Qpp)) and Gal(Q(pp)/Q) as Gal(Q(pg—1, 1p) /Qpig-1))-

In the formulas below, we write ¢y, for ¢ o Tracer r,, and we write x; 1, for x; o Normp /g, .
The assertion about the trace is obvious from the explicit formula [Ka-ESDE, 8.2.7] for this trace,

namely
o=t S O =Yy [ (@) [ 25z (ws)-
IT; zi=t ]._[j Yj i J g J

This formula makes clear that the trace is an algebraic integer, and that the effect of

Gal(Q(pug-1)/Q) = Gal(Q(pg—1, 11p) / Q1))

is simply to permute the z; and to permute the y;. Thus the trace is an algebraic integer in the field
Q(pp), so lies in Z[(p]. This rationality, applied over finite extensions, given the same rationality
for the determinant (indeed for all the coefficients of the reversed characteristic polynomial

det(l — TFroby,r|Hypy(X1,-- > Xni P15 - - ,pm)).
We know [Ka-ESDE, 8.4.13] that Hypy(X1,---,Xn;P1,---,pm) is pure of weight n +m — 1, so
the “Gauss-twisted” sheaf is pure of weight zero. It results from the first assertion that this variant

of the Tate-twist has values in Z[(,]|[1/p], since the quadratic Gauss sum lies in Z[(,] and divides
p. O

Proposition 2.2. Let F be a lisse sheaf on G, /F, which is pure of weight zero and which has all
traces in Z[(p)[1/p]. Suppose that F is arithmetically semisimple. Fiz an integer N > 1 prime to p.
Then the following are equivalent.

(a) Glarith,F 15 finite.

(b) Ggeom,F is finite.

(c) All traces of F are algebraic integers, i.e., lie in Z[(p).

(d) For every finite extension L/Fy, for any chosen p-adic ord of Q(up, piyrx), and for every

multiplicative character x of L™, the sum

> X(t)Trace(Froby | F)
teLx
has ord, 1, > 0.
(e) For every finite extension L/F,, for any chosen p-adic ord of Q(up, ptprx), and for every
multiplicative character x of L™, the sum

Z X(t)NTrace(Frobt7L|}")
teL*
has ord, 1, > 0.

Proof. The equivalence of (c¢) and (d) results from the Mellin transform argument, cf. [KRLT1, 2.1,
2.2, 2.7], which also explains the equivalence of (a), (b), and (c). It is obvious that (d) implies (e).
It remains to show that (e) implies (d). We use the identity

Z x(t)N Trace(Frob, |F) = Z x(s) Z Trace(Frob 1| F) =

teLX seLX teLX tN=s



HYPERGEOMETRIC SHEAVES AND FINITE SYMPLECTIC AND UNITARY GROUPS 5

= Z X (s)Trace(Frobs r,|[N]«F).
seLX
The Kummer direct image [N],F remains pure of weight zero and arithmetically semisimple, with
all traces in Q(pup). Therefore by the equivalence of (a) through (b), applied to [N],F, we see that
[N].F has finite Gayign. Therefore its pullback [N]*[N],F has finite Gupign. But F is a direct factor
of this pullback, so F itself has finite Gayitn. [When Fy, contains the N th roots of unity, this pullback
is the direct sum of the multiplicative translates of F by the N roots of unity. If F, does not
contain the N*™® roots of unity, we break up the sum of these translates into clumps according to
the order of the N*® root of unity by which we translate. Each of these clumps lives over F,, and
F is the clump for the trivial translate.] O

3. OVERALL SET-UP
Here p is a prime, ¢ is a power of p,
a,b
are positive integers. We define
M = ged(¢® +1,¢° + 1),
A:=(¢*+1)/M,B = (¢® +1)/M.

Thus

ged(A, B) = 1.
We also fix integers «, 8 with

aA— BB =1,
We also fix a prime number ¢ # p, so as to be able to use Qg-cohomology, and we fix a choice of
nontrivial additive character v of F,,.

Given an integer n > 1 which is prime to p, we denote by Char(n) the group of multiplicative
characters of order dividing n. Given a multiplicative character p of finite order, we denote by

Char(n; p) := {x|x" = p}.
Thus Char(n) = Char(n;1).
In the above paragraph, the characters in question are the characters of finite order of the tame
fundamental group of G,/F,, which is the inverse limit of the multiplicative groups of the finite
subfields of [F,, with transition maps the norm. Thus the group of characters in question is the

direct limit of the groups Hom(k*,Q; ") under the inclusion maps, whenever ko /ki /Fp, are finite
extensions, given by
Hom(klx,@x) C Hom(k:QX,@X), X + X o Normy, /g, .
4. KLOOSTERMAN CANDIDATES
Given multiplicative characters x and p, each of order dividing M, such that the two sets
Char(A, x) and Char(B, p) are disjoint, we may speak of the Kloosterman sheaf
Kly(Char(MAB) \ (Char(A, x) U Char(B, p))).

Lemma 4.1. The two sets Char(A, x) and Char (B, p) fail to be disjoint if and only if p* = 5.

Proof. Suppose the two sets are not disjoint. Let A have A4 = y, AP = p. Then A48 = B and
AAB = p4. Conversely, if p* = P, then using the fact that gcd(A, B) = 1 we see that there is a
(necessarily unique) A with A =y, AB = p. Indeed, using the integers «, f with aA — B = 1,
then we have A = x®/p®. Notice that A itself has order dividing M. O
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Lemma 4.2. Choose integers k,l such that
kA —IB =1.
Consider the two injective group homomorphisms
Char(M) — Char(M) x Char(M),
given by
¢ap: A (M AP, Gp o (o), 0"),
with image groups Im g and Imy ;. Then the product group Char(M) x Char(m) is the product

ImAB X Im“@.

Proof. As we have two subgroups, each of order mm in an abelian group of order M?2, it suffices
to show that the intersection Im4 g NIm;y consists of the single element (1,1). To see this, note
that if (x, p) lies in the intersection, then on the one hand (x,p) = (A?, AB) for some A, hence
xB/p?* = 1. On the other hand, (x,p) = (0%, %) for some o, so pA/x® = 0. Thus ¢ = 1, and
hence (x, p) = (1, 1). O

Given multiplicative characters x and p, each of order dividing M, such that the two sets
Char(A, x) and Char(B, p) are disjoint, we denote by
Ki(M, A, B, x, p)
the Kloosterman sheaf

(4.2.1) Kly(Char(MAB) \ (Char(A4, x) U Char(B, p))).

We have the following twisting formula:
Lemma 4.3. For A a character of order dividing M, we have the twisting formula
LA ®KI(M, A, B,x,p) =KI(M,A, B, xA, pAP).
Remark 4.4. The rank of KI(M, A, B, x, p), namely MAB — A — B, is
(g™ = 1)/M.

Corollary 4.5. The above M (M — 1) sheaves KI(M, A, B, x, p) with xB # p? are precisely the
Ly twists, with A of order dividing M, of the M — 1 sheaves KI(A, B,d',c%) with o # 1 of order
dividing M .

Remark 4.6. We will often make constant field twists of the sheaves under consideration to achieve
weight zero. In odd characteristic, we will do this using the correct power of a choice of the quadratic
Gauss sum. In characteristic p = 2, so long as our ground field k is an even degree extension of F,
we will use the correct power of
pdeg(k/Fp)/2_
In other words, we define
—Gauss(ty, x2) = pleak/Fp)/2

when k/F, has even degree and p = 2, and proceed with the usual formalism of Gauss sums.

Theorem 4.7. Each of the above M(M — 1) sheaves KI(M, A, B, x,p) with xB # p? has finite
geometric monodromy group Ggeom. Over any finite field k/IF,, containing the M AB roots of unity,
the constant field twist

KI(M, A, B, x, p) ® (—1/Gauss(1)y, y2))de8 * (rank(K)—1)

is pure of weight zero and has finite arithmetic monodromy group Gayith-
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Proof. The purity of weight zero is simply the fact that a Kloosterman sheaf is pure of weight one
less than its rank. It suffices to show the finiteness of Gayith, since Ggeom < Garith- For this, we use
the Kubert V function. The criterion is that for all z € (Q/Z)yot p, and for every pair of integers
n,m mod M with Bn # Am mod M, we have

V(MABz) - V(Az +n/M) -V (Bx+m/M)+1>0.

In fact, we will prove this for every pair of integers n,m mod M. We will make use of the [N],
method, explained in §2, with N := M. The criterion becomes that for all x € (Q/Z)not p, and for
every pair of integers n, m mod M, we have

V(@ +1)(®+1D)z) = V((¢*+ Dz +n/M) - V((®+ 1)z +m/M)+1>0.
We rewrite this as
L+V((g* + 1)(¢" + D) > V((¢" + D) +n/M) + V((¢®° + 1)z +m/M).
Recall that the integrality of Jacobi sums gives
Viz)+V(y) 2 V(z+y),
which (replacing =,y by —x, —y) gives
L+ V(z+y) > V(z)+V(y).
Because both ¢% + 1 and ¢” + 1 are divisible by M, we have equalities in (Q/Z)not p
(¢" +D(¢" + Dz = (¢" + D((¢" + Dz +m/M), (¢"+1)(¢" + Dz = (¢" + 1)((¢" + D)z + n/M).
Using the first of these, and the inequality 1+ V(z +y) > V(x) + V(y), we get
L+ V((¢" + 1)(¢" + D)) = 1+ V((¢" + D((¢" + Dz + m/M)
> V(g*((¢" + V)a +m/M) + V((¢" + Dz +m/M))
=2V ((¢° + D)z +m/M).
Using the second of these, we get
L+ V((¢" + 1)(¢" + D)a) = 1+ V((¢" + 1)((¢" + Dz + n/M))
> V(" ((¢" + 1)z +n/M)) + V((¢" + D + n/M)
=2V ((¢“ + 1)x +n/(M).
Adding these last two inequalities, we get twice the asserted inequality. O

Lemma 4.8. If ¢AB is odd, then of the M(M — 1) sheaves KI(M, A, B, x, p) with x® # p?,
precisely two are geometrically self-dual. They are KI(M, A, B,1,x2) and KI(M, A, B, x2,1). Each
is symplectically self-dual. If ¢AB is even, none of these M (M —1) sheaves is geometrically self-dual.

Proof. Suppose first that ¢ is odd. Then M is even. If both A, B are odd, then these sheaves all
have even rank (namely MAB — A — B). Because M AB is even, each has determinant ya2/(xp).
Their sets of characters are stable by complex conjugation precise when each of y and p is its
own complex conjugate, i.e., when each is either 1 or xs. They cannot both be 1 or both be yo,
as these cases violate the disjointness condition. Both KI(M, A, B, 1, x2) and KI(M, A, B, x2,1)
are self-dual. Their determinants, being x2/(xp), are then both trivial, so the asserted symplectic
autoduality follows from [Ka-ESDE, 8.8.1-2].

Suppose now that ¢ is odd and precisely one of A, B is odd. [They cannot both be even because
their gcd = 1.] Then each sheaf has odd rank M AB — A — B, and one knows [Ka-ESDE, 8.8.1] that
in odd characteristic, no Kloosterman sheaf of odd rank is geometrically self-dual.
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Suppose now that ¢ is even. Then autoduality [Ka-ESDE, 8.8.1] would force each of x and p
to be its own complex conjugate, which in characteristic 2 forces them both to be trivial, and this
violates disjointness. O

In the rest of this section, we prove the primitivity of the Kloosterman sheaves KI(M, A, B, x, p)
with yZ # p# considered above (with one exception, see the statement of Corollary 4.12).

Lemma 4.9. Let N > 2 be a prime to p integer, A > 1 and B > 1 two divisors of N with
ged(A,B) =1 and A # B. Let A; C Char(N) be a Char(A)-orbit, and let By C Char(N) be a
Char(B)-orbit. Suppose that Ay and By are disjoint. Then the Kloosterman sheaf

Kl (Char(N) \ (A1 U By))
is not Kummer induced (and hence not induced, by Pink’s lemma [Ka-MG, Lemma 11]).

Proof. Suppose our Kloosterman sheaf Kl is Kummer induced, say is [d],F for some Kloosterman
sheaf F and some prime to p integer d. Then every x of order dividing d is a ratio of characters
occuring in KI, all of which have order dividing N. Thus d divides N. For x a character of order
d, we thus have

L, ®Kl=Kl,
which means precisely that we have an equality of sets
xChar(N) \ (xA; U xB;1) = Char(N) \ (A; U By).
Now yChar(N) is just Char(N), so inside Char(N) we have the equality of subsets
xA1 U xBy = A1 U By,

We will show that in fact yA; = A; and xB; = By. Once we know this, then y lies in both
Char(A) and in Char(B), so must be trivial (because gcd(A, B) = 1). This results from the
following elementary lemma.

Lemma 4.10. Let A, B be divisors of the prime to p integer N. Let S C Char(N) be a subset which
is the disjoint union of a Char(A)-orbit Ay and a Char(B)-orbit By. If A # B, then whenever
S = Ay U By with Ay a Char(A)-orbit and Bs a Char(B)-orbit, we have A1 = Az and B; = Bs.

Proof. Suppose first that A; N Ay is nonempty, say contains «. Then 4; = Ay = Char(A)a. From
this, we have S\ A; =S\ Ag, which is to say B; = Bs.

Similarly, if B; N Bs is nonempty, we again get the desired conclusion.

Suppose finally that both A; N Ay and By N By are both empty. The Ay C S\ A2 = Bs, and
By ¢ S\ By = Aj. Thus A; C By C Ajp, hence Ay = Bs. But this is impossible, because the two
sets have different cardinalities A and B respectively. 0

As explained above, once we have Lemma 4.10 we have proven Lemma 4.9. O

In Lemma 4.9, we omitted the case when ged(A, B) = 1 but A = B, i.e. the case when A = B = 1.
Here the situation is as follows.

Lemma 4.11. Let N > 2 be a prime to p integer, and x # p two distinct characters in Char(N).
Then the Kloosterman sheaf
Kly(Char(N) \ {x, p})

s primitive, i.e., not Kummer induced, except in the case when N is even and x = x2p, in which

case it is the Kummer induction [2],(L,2 ® Kly(Char(N/2)\ {1})).
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Proof. Exactly as in the proof of Lemma 4.9, if our Kloosterman sheaf is is [d].F for some Kloost-
erman sheaf F and some prime to p integer d > 1, then d|N and for any character o of order d, we
have an equality of sets

{ox,op} = {x, p}-
As ox # X, we must have oy = p, and similarly op = x. Thus 02 = 1, d = 2, and x = x2p. In this
case, we indeed have the asserted Kummer induction. O

Corollary 4.12. Given multiplicative characters x and p, each of order dividing M, such that the
two sets Char(A, x) and Char(B, p) are disjoint, the Kloosterman sheaf KCI(M, A, B, x, p) satisfies
condition (S+), except in the situation

M=qg+1liseven, A= B =1, and x = x2p.

Proof. Immediate from the primitivity lemmas 4.9 and 4.11, applied with N taken to be M AB,
thanks to [KT5, Thm. 1.2.1]. O

5. THE HYPERGEOMETRIC CANDIDATE

In this section, we consider the hypergeometric sheaf
(5.0.1) Hypy (Char(MAB) U {1} \ (Char(A) U Char(B)); 1),
which we denote
Hyp(M, A, B,1,1).

Theorem 5.1. The sheaf Hyp(M, A, B,1,1) has finite geometric monodromy group Ggeom. Over
any finite field k/F, containing the AB(q + 1) roots of unity, the constant field twist

Hyp(Mv A, B, 1, ]l) ® (—1/G3LISS(1/);€, XZ))deg xrank(Hyp))
1s pure of weight zero and has finite arithmetic monodromy group Garith-

Proof. The purity of weight zero is simply the fact that a hypergeometric sheaf of type (n,m)
with disjoint upstairs and downstairs characters is pure of weight n + m — 1. It suffices to show
the finiteness of Ggtn. For this, we use the Kubert V function. The criterion is that for all
z € (Q/Z)not p, we have

V(MABz)+V(z) — V(Az) = V(Bz) + V(—z) > 0.
If x = 0, this trivially holds. If x # 0, then V(z) + V(—z) = 1, and the inequality becomes
1+ V(MABz) > V(Ax) + V(Buz).
This is the n = m = 0 case of what was proven in Theorem 4.7. O

Lemma 5.2. If either ¢AB is odd or q is even, the sheaf Hyp(M, A, B,1,1) is, geometrically,
orthogonally self-dual. Otherwise, it is not geometrically self-dual.

Proof. This sheaf has rank MAB +1— A — B, and is of type (MAB +1— A — B,1). Its sets of
upstairs and downstairs characters are each stable by complex conjugation.

When g is odd, this sheaf is self-dual [Ka-ESDE, 8.8.1] precisely when MAB+1— A — B is odd.
But when ¢ is odd, M is even, so autoduality holds when A + B is even. But as ged(A4, B) = 1,
A + B is even precisely when both A, B are odd. In this case, the rank MAB +1— A — B is odd,
so the duality must be orthogonal.

When ¢ is even, this sheaf is self-dual [Ka-ESDE, 8.8.1]. Each of M, A, B is odd in this ¢ even
case, so the rank n is even. By [Ka-ESDE, 8.8.1], no hypergeometric sheaf of type (n, 1) with n even
is symplectically self-dual. Therefore in this case as well, the sheaf is, geometrically, orthogonally
self-dual (despite having even rank). O
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Lemma 5.3. We have the following results.
(i) If M =2, the hypergeometric sheaf Hyp(M, A, B,1,1) is primitive.
(ii) If M = q + 1, then except in the case ¢ = 3,a = b = 1, the hypergeometric sheaf
Hyp(M, A, B,1,1) is primitive.
(iii) If M =1, the hypergeometric sheaf Hyp(M, A, B,1,1) is primitive.

Proof. One knows [KRLT2, Cor. 2.3] that any hypergeometric sheaf of type (n,1) whose rank n is
not a power of p is primitive. If M = 2, Hyp(M, A, B, 1,1) has rank (¢°*°+1)/2, which is prime to p.
If M = g+1and a+b > 2, then Hyp(M, A, B, 1,1) has rank (¢°"°+q)/(g+1) = q(¢*T*"14+1)/(¢+1),
which is ¢ times a p-adic unit. Looking at the ord,, we see that the rank can only be a power of p
if the rank is ¢, and this happens only when a 4+ b = 2, i.e., when a =b = 1.

To finish case (ii), we now treat the case when M =g+ 1and a=b=1. Then A= B =1, and
Hyp(M, A, B,1,1) is Hyp(Char(qg+1)\{1}; 1), of type (¢, 1). It cannot be Kummer induced. For it
to be Belyi induced, there must exist positive integers Ag, By, both prime to p, with A9+ By = ¢, and
a nontrivial (otherwise the two sets Char(Ay, x) and Char(Bjy,X) will each contain 1) multiplicative
character x such that

Char(q + 1) \ {1} = Char(Ay, x) U Char(By,X).

Pick a multiplicative character p of full order ¢ + 1. At the expense of interchanging Ag and By, it
suffices to treat the case when p € Char(Ay, ), i.e. when p4° = y. Then y, being a power of p,
has order d|(q+ 1), and so p?0 = 1. Thus ¢+ 1)|dAg. On the other hand, Char(4y, x) contains a
character A of full order dAy. But any such character lies in Char(g+ 1), hence dAp|(¢+ 1). Thus
dAo = ¢ + 1. Similarly, Char(By,X) contains a character of full order dBy, so dBy|(¢ + 1). But
q+1=dAp, so dBy|dAy, hence By|Ay. But Ay + By = ¢, and p{ AgBy, so in fact ged(Ag, By) = 1.
Therefore By = 1, and hence A = ¢— 1. But dAg = g+ 1, s0 d(¢—1) = ¢+ 1. This is only possible
if ¢ = 3 and d = 2. Indeed, in this case, we have xy = 32, 49 = 2, By = 1, and in fact we do have

Char(4) \ {1} = Char(2, x2) U {x2}.

We now turn to the case M = 1. Then ¢ is even, A = ¢®+1,B = ¢* 4+ 1, and Hyp(M, A, B,1,1)
is
Hyp(Char(AB) U {1} \ (Char(A) U Char(B));1),
of rank ¢®*°. Just as above, this sheaf cannot be Kummer induced. If it is Belyi induced, there must
exist positive integers Ay, By, both prime to 2, with Ag+ By = ¢®?, and a nontrivial multiplicative
character x such that

Char(AB) U {1} \ (Char(A) U Char(B)) = Char(Ay, x) U Char(By, X).

Pick a multiplicative character p of full order AB. At the expense of interchanging Ay and By, it
suffices to treat the case when p € Char(Ay, ), i.e. when p4° = x. Then y, being a power of
p, has order d|AB, and so p?4® = 1. Thus AB|dAg. On the other hand, Char(Ag,x) contains
a character A of full order dAy. But any such character lies in Char(AB), hence dAy|AB. Thus
AB = dAg. Similarly, Char(By,¥) contains a character of full order dBy, so dBy|AB). But
AB = dAy, so dBy|dAp, and hence By|Ag. As above, Ay, By are both odd, but sum to a power ot
2, so ged(Ag, By) = 1. Therefore By = 1, and hence Ag = ¢®t* — 1. Thus

d(q*"" —1) = AB = (¢" + 1)(¢" + 1).

Because x is nontrivial, and of order prime to p = 2, we have d > 3. We cannot have a, b both odd,
otherwise M is divisible by ¢ + 1. The displayed equality is impossible, because d > 3, but

3"t —1) > (¢"+ 1)(¢" + 1).
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Indeed, this is equivalent to
20" = 3> "+ "+ 1, ie. *TP 4T — " — P+ 1> 5, e TP+ (¢ = 1)(¢" — 1) > 5.
But a, b are not both odd, so a+b > 3, and already the ¢®? term forces the asserted inequality. O

Corollary 5.4. We have the following results.

(i) If M = 2, the hypergeometric sheaf Hyp(M, A, B,1,1) satisfies (S+).
(ii) If M = q+ 1, then except in the case a = b =1 and q is one of {2,3,4,8,9} the hypergeo-
metric sheaf Hyp(M, A, B,1,1) satisfies (S+).
(iii) Suppose that M = 1. Then, except in the case ¢ = 2 and {a,b} = {1,2}, the hypergeometric
sheaf Hyp(M, A, B,1,1) satisfies (S+).

Proof. If M = 2, then ¢ must be odd, and one of a,b must be even (otherwise (¢ + 1)|M). Thus
the rank of Hyp(M, A, B,1,1) is

(" +1)/2> (33 +1)/2 = 14,

and we apply [KT5, 1.7].

If M = q+ 1, then the rank is (¢t + ¢)/(q + 1), and both of a,b are odd (simply because
¢V" +1=2mod g+1). If a = b =1, the rank is ¢, so we must exclude ¢ = 2,3,4,8,9. Otherwise
a+b > 4, so either the rank is 6 (when ¢ = 2 and a+b = 4) or it is > 21, and we apply [KT5, 1.10].

If M = 1, then g must be even (otherwise 2| M), and one of a, b must be even (otherwise (¢+1)|M).
The rank is ¢***. So we exclude the case ¢ = 2,a + b = 3 and apply [KT5, 1.7]. O

6. CANDIDATE FOR THE “TOTAL M- WEIL REPRESENTATION”
Recall that p is a prime, g is a power of p, a and b are positive integers,
M :=ged(¢® +1,¢"+1), A:=(¢*+1)/M, B:= (¢’ +1)/M.
Thus ged(A, B) = 1. We also fix integers «, 8 with
aA— BB =1.
We wish to study the direct sum

Total(M, A, B) := Hyp(M, A, B,1,1) b KI(M,A,B, 07", 67%).
c€Char(M),0#1

Theorem 6.1. The local system Total(M, A, B) is geometrically isomorphic to the arithmetically
semisimple local system on G, /F, whose trace function at a point v € E* = G,,(E), for E/F, a
finite extension, is given by

v (1/#E) Z Yp(MABzw — v Az vP Bw?" ).

T, weR
Subsequently, in §11, we will state and prove a more precise formulation, Theorem 11.4, of this
theorem.
7. FIRST STEPS TOWARD THE PROOF OF THEOREM 6.1: CANCELLING

Recall from [Ka-ESDE, 9.3.1], the operation Cancel on hypergeometric sheaves

Hypy (X1, -3 Xn3 P1s -+ Pm),
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defined whenever the sets, with multiplicity, of the upsairs and downstairs characters are not iden-
tical. Suppose that precisely r of the downstairs characters also occur upstairs. Renumber so that
xi = pi for 1 <4 <r. Then

CancelHypy (X1, .- Xni P1y -+ 5 Pm) = HYPH(Xra1s -+ > Xns Prats - - - Pm)s

a hypergeometric of type (n — r,m — r) whose upstairs and downstairs characters are disjoint.
The key fact about cancelling is the following theorem, which is proven (but not stated (!)) in
[Ka-ESDE, 8.4.7 and 8.4.13].

Theorem 7.1. Suppose that Hyp := Hypy(X1,- .- Xn} P15 - -+, Pm) @S a hypergeometric sheaf whose
upstairs and downstairs characters are not identical, and which is defined over a finite field k/F),
(i.e., all the x; and p; are of finite-order dividing (#k) — 1). Suppose that precisely r of the
downstairs characters also occur upstairs. Then Hyp is lisse on Gy, /k, mized of weight < n+m—1,
and its highest weight quotient [De, 3.4.1 (ii)] is (CancelHyp)(—r), which is pure of weight n+m—1.
More precisely, we have a short exact sequence of lisse sheaves on Gy, /k,

0 — (weight <n+m —2) — Hyp — (CancelHyp)(—r) — 0.

The virtue of Cancel is that it gives a convenient expression for each of the summands of
Total(M, A, B). We have the following two lemmas, which are immediate from the definitions.

Lemma 7.2. Suppose that p* # xB, so that KI(M, A, B, x, p) exists. Consider the hypergeometric
sheaf of type (M AB, A+ B)

Hypy(Char(M AB); Char(A, x) U Char(B, p)).
The KI(MAB, x, p) is its Cancel.
Lemma 7.3. Consider the hypergeometric sheaf of type (M AB, A+ B)
Hypy(Char(M AB); Char(A) U Char(B)).
Then Hyp(M, A, B,1,1) is its Cancel.

8. COMPUTING TRACES
In this section, we take as ground field
Ey :=Fp(pman)-

For each! divisor N of M AB, we define the following product of Gauss sums over Fj:

Gauss(N) := H (—Gauss(¥g,, x))-

x€Char(N)
We then define the twisting factor Gauss(M, A, B) as
Gauss(M, A, B) := Gauss(M AB)Gauss(A)Gauss(B).
Theorem 8.1. Let E/E; be a finite extension. The trace function of
Hypy(Char(M AB); Char(A, x) U Char(B, p)) ® Gauss(M, A, B)~°s(E/ED)
at a point v € E*, is given by
v (C)MAB=AZB-1S™ (M ABE — v A B P — of But) (P o) () (x* /%) ().
e wEEX

11f we are in characteristic 2, then both ¢* + 1 and ¢® + 1 are odd, hence their gcd = M is also odd, and hence
each of M, A, B is odd. So we will not need to ”interpret” the quadratic Gauss sum here, because it will not arise.
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Proof. The idea is to exploit the fact that Hyp,(Char(AM AB); Char(A, x) U Char(B, p)) is the

multiple ! multiplicative convolution
Hypy(Char(MAB); 0) %1« Hypy (0; Char(A, x)) xi,x Hypy (0; Char(B, p)).

We now make use of the direct image formula of [Ka-GKM, 5.6.2, first line of proof] and the
definition [Ka-ESDE, 8.2.1 (3)] to give simple formulas for the trace functions of each of the three

factors.
The trace function of Hypy(Char(M AB); () ® Gauss(M AB)~ dee(E/E1) g

se BX > Yp(MABz).

rEEX gMAB—=¢

The trace function of Hypy (; Char(A, x)) ® Gauss(A)~ 98(E/E) jg
te B w Y va(—A/y)x(y).

yeEX yA=t

The trace function of Hypy(; Char(B, p) @ Gauss(B)~de&(E/F1) g

u€ E*— Z YE(—B/z)p(z).

2€EX zB=uy

In general, the trace function of the ! multiplicative convolution of two hypergeometrics is minus
the multiplicative convolution of their trace functions. So the frace function of a triple ! multiplica-
tive convolution of two hypergeometrics is the the multiplicative convolution of their trace func-
tions, with no “extra” sign. In particular, the trace function of Hypy(Char(MAB); Char(A4, x) U
Char(B, p)) ® Gauss(M, A, B)~de&(E/E1) j5 the multiplicative convolution of the above three trace
functions. Thus it is

veEE ) > ve(MABz — Aly — B/2)x(y)p(2)
s, t,u € EX, z,y,z € EX,
stu = v ggMAB:s,yA:t,zB:u

= > Yp(MABz — Aly — B/2)x(y)p(2).
z,y,2€EX, xMAByAB—y
We now rewrite the range of summation as consisting of those x,y,z € E* satisfying
(&MBy)AB —

Y) v.

We then make use of €A — B = 1 to write v = v*4~PB 50 the range of summation becomes those
x,y,z € E* satisfying
—a, . MB_\A B
(v zMPy)d = (1/(v72))".
Because ged(A, B) = 1, there exists a unique w such that
v %MBy = B 1/(0P2) = wA.
Using the first equation, we solve for y in terms of x, w,
1/y = U_O‘xMB/wB,
and using the second equation we solve for z in terms of w,

1/z = vPw?.
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So the expression for the trace at time v € E* becomes

Z YE(MABz — Av=2MB jwB — BoPw)x(v*w? [2MP)p(v™P Juwh)

z,weRX
= Y ¢p(MABz — Av=2MP jwP — BoPw) (P pm ) (w) (x*p7F) (v),
z,weEX
the last equality because y has order dividing M, thus y(z™B) = 1. O

Corollary 8.2. For o € Char(M), the trace function of
Hypy (Char(M AB); Char(A,o~?) U Char(B,0~%)) ® Gauss(M, A, B)~ 48(E/E1)
at a point v € E*, is given by
v Z Vp(MABz — v~ *AzMB jw?B — v Bu)o(w).

zweEX
Proof. In the case when (x,p) = (677,07%), we have

XP/pt = o7 [om0h = o048 = gy = P,

O

Lemma 8.3. Suppose p is odd. Denote by K/Q the unique quadratic extension of Q inside Q((p).
If M = 2, then for each o € Char(M), the trace function of
Hypy(Char(M AB); Char(A, x) U Char(B, p)) ® Gauss(M, A, B)~ des(B/E)

viewed on Gy, /I, has values in K.

Proof. Take A € F)Y, and make the substitution (z,w) — (A%z, \2w).This does not change the sum
Z VYp(MABz — v~ *AzMB jwB — P Bu)o (w),

TwEEX
but it replaces 1 by its Gal(Q(¢,)/K) conjugate z — ¥(A\%x). Indeed, the term z is multiplied by
A2, the monomial w? is multiplied by A4 = A9"+1 = A2, and the monomial 2™ /w? is multiplied
by A48 /A28 which by the previous argument is equal to A\*/A\? = A2, O

Lemma 8.4. If M = q+1, or if p=2, then for each 0 € Char(M), the trace function of
Hypy(Char(M AB); Char(A, x) U Char(B, p)) ® Gauss(M, A, B)~ des(B/E)
viewed on Gy, /R 2, has values in Q(o).

Proof. If p = 2, this is obvious, because ¥ takes values in +1.
Suppose now that M = ¢+ 1. Take A € F)’, and make the substitution (z,w) + (Az, Aw).This
does not change the sum

Z Yp(MABz — v~ Az™MB jwP — P Bu)o(w),
z,weEX
but it replaces ¢ by its Gal(Q((,)/K) conjugate x — 1 (Ax). Indeed, the term z is multiplied by
A, the monomial w# is multiplied by A4 = M¢"+1/(@+1) = \ (because the exponent (¢% 4+ 1)/(q +
1) = 1mod (¢ — 1), and the monomial ™ /w? is multiplied by )\‘11”“1/)\]37 which by the previous
argument is equal to A2/ = \. Finally, the term o(w) is moved to o(Aw), but this is equal to o(w)
because A (or indeed any element of F), is the ¢ + 1 power of some element of IFj» (surjectivity of
the norm). O
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Corollary 8.5. The trace function of
P Hypy(Char(MAB); Char(A,0~7) U Char(B,0®)) ® Gauss(M, A, B)~ 4es(F/F1)
o€Char(M)
at a point v € E*, is given by
v Z Yp(MABzw — v AT VP Bw?*1).
rweEX
Proof. Indeed, the sum of the individual trace functions at a point v € E*, is given by

v Z Vp(MABz — v *AzMB P — v° Bw?) Z o(w)

z,weEX o€Char(M)
= Z Vp(MABx — v~ *AzMEB jiyMB — P BywAM),
TweEEX
Now make the substitution z — zw,w — w. O

9. DESCENT RESULTS
A reformulation of Theorem 8.1, taking into account [Ka-ESDE, 8.4.6.2], is the following.
Theorem 9.1. On (G,,)3/E, with coordinates (v, x,w), consider the lisse sheaf

I = Ly(MABe—v=AMB jwB —v8 Bud) @ LB /o) w) © Ly /p8)(v)-
For the projection
pry : (G2 /E — G, /E, (v,z,w)— v,
we have R (pry)i1(Fy,p) = 0 for i # 2, R*(pry)i((Fy,p) is lisse on Gy, /E, mized of weight < 2, and
there is an arithmetic isomorphism

R?(pry)1(Fyp) = Hypy(Char(MAB); Char(A, x) U Char(B, p)) ® Gauss(M, A, B)~ des(E/En)

Proof. The situation is that we are given three Kloosterman sheaves Kl4, Klp, and Klo of ranks
A, B,C with A+ B < C, and we form the triple ! multiplicative convolution of Klg, inv*Kl 4, and
inv*Klp. By definition, we first form their external tensor product

Kle Kinv*Kla Kinv*Kig
on (G,,)?, and then for the multiplication map
mults : (Gn)® = G, (s,t,u) — stu

we form R(mults)(Klc X inv*Kl4 K inv*Kig). The key fact is that because A + B < C, we have
Ri(multz); = 0 for i # 2, and R?(mults), is lisse, of rank C. To see this, we factor the multiplication
map as
mults = mult o (Id x multy3), (s,t,u) — (s, tu) — stu.

Then R(Id x multy3)1(Klc X inv*Ki4 K inv*Klp) is the external tensor product on G,, x G, of
Kle with R(mult),(inv*Kls X inv*Kig). The second factor has R(mult); = 0 for i # 1, and
R(mult),(inv*Kl4 K inv*Klp) is inv*Kla4p for a Kloosterman sheaf of rank A + B, cf. [Ka-GKM,
5.1]. Thus our triple convolution R(multg) is

R(mult),(Ke R inv*Kla4p).

Fibre by fibre over G,,, each stalk is the cohomology of the usual tensor product of Klc with a
multiplicative translate of Klayp. The first factor is totally wild of rank C' and has all co-slopes
1/C, the second is totally wild of rank A + B and has all co-slopes 1/(A + B) > 1/C. Thus the
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tensor product has rank A(B + C) with all co-slopes 1/(A + B). So each such tensor product has
Hi =0 fori# 1, and h! = Swan,, = C. Thus R{(mult),(Kc K inv*Klayp = 0 for i # 1, and the
R!(mult), has constant rank C, hence is lisse because it is a sheaf of perverse origin. Combining
these cohomological vanishings, we get the asserted vanishing of R’(multz); = 0 for i # 2, and the
fact that R?(mults), is lisse, of rank C.

In the case at hand, it is an exercise, using the explicit descriptions given in Theorem 8.1, of
the particular sheaves Kl4, Klp, and Klc in play, to rewrite the R(mults), as the R(pr;) of the
statement of the theorem. g

Corollary 9.2. Let Ey C E be any subfield over which x and p are defined. Then F makes sense
on (G,)3/Eo, and R?(pry)((F) on G,,/Ey is a lisse sheaf, mized of weight < 2, which, when pulled
back to G,/ Ey, is arithmetically isomorphic to

Hypy (Char(M AB); Char(A, x) U Char(B, p)) ® Gauss(M, A, B)~ dee(E/E1),
Its trace function is that given in Theorem 8.1, now valid on G,/ Ey.

Proof. The trace formula results from the Lefschetz trace formula [Gr]. O

Corollary 9.3. In the situation of Corollary 8.2, we have the following results.
(i) For o € Char(M) nontrivial, taking x,p in Theorem 9.1 to be =P 0%, the weight two
quotient [De, 3.4.1 (ii)] gryi—o(R2(pr1)1(Fy,p)) on Gp/Eg is an arithmetic descent of
KI(M,A,B,07%,67%)(—A — B) ® Gauss(M, A, B)~ de&(E/F1)
(ii) Taking X, p in Theorem 9.1 to be 1,1, the weight two quotient [De, 3.4.1 (ii)] gryi—s(R*(pri)1(Fy.p))
on Gy, /Eyp is an arithmetic descent of

Hyp(M, A, B,1,1)(—A — B + 1) ® Gauss(M, A, B)~ 9ee(E/E1)
10. INTERLUDE: RATIONALITY PROPERTIES OF HIGHEST WEIGHT QUOTIENTS

In this section, we consider the following general situation. We are given k/F,, a finite extension,
U/k smooth and geometrically connected of some dimension d > 0, and an integer w. Consider a
lisse Qg-sheaf F on U which is mixed of weight < w. We know [De, 3.4.9] that F admits a unique
“filtration by the weight”. In particular, F sits in a short exact sequence of lisse sheaves on U

0—>fwt<w—>f—>Fwt:w_>Oa
in which Fyt<q is mixed of weight < w and Fit—q, is pure of weight w.

Theorem 10.1. On U/k suppose that F is a lisse sheaf, mized of weight < w. Let K/Q be a finite
extension. Suppose that F has all traces in K. Then Fyi=yw has all its traces in K.

Proof. For each finite extension E/k, and each point u € U(E), the reversed characteristic polyno-
mial

det(1 — T'Frob, g|F)
lies in 1 + TK[T]. When we factor it over Q, say

rank(F)
det(1 — TFrob,g|F)= [[ (1-aT).
i=1
After suitable renumbering, we have
rank(Fwi=w) rank(Fw<w)

det(1 — TFrob, g|F) = ( H (1 —5iT)>< H (1 —'VjT)>,

i=1 j=1
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in which each f;, together will all its Gal(Q/Q) conjugates, has complex absolute value (#E)%/2,
while each v; together will all its Gal(Q/Q) conjugates, has complex absolute value (#E)vi/? for
some v; < w.

We now exploit this Galois invariance. Because the entire polynomial det(1 — T'Frob, g|F)

is (coefficient-wise) fixed by Gal(Q/K), it followss that each factor Hzinlk(]:m:“’)(l — BiT) and

Hzinlk (fw<”)(1 — ;T') separately has coefficients in K. The first of these factors is precisely

det(1 — TFroby | Fwt=w)-
This being true for every E/k and every u € U(E), Fyt=y has all its traces in K. g

11. END OF THE PROOF OF THEOREM 6.1
Each of the lisse sheaves
Hypy(Char(M AB); Char(A, s ?) U Char(B, 0~ %)) ® Gauss(M, A, B)~ des(E/E1)
is mixed of weight < 2. Their Cancel’s are, arithmetically, the lisse sheaves on G,,/E;
KI(M,A,B,0=%,67%)(—A — B) ® Gauss(M, A, B)~ dee(E/F1)
for o nontrivial in Char(M), and
Hyp(M, A, B,1,1)(—A — B+ 1) ® Gauss(M, A, B)~ dee(E/E1)
Each of these is pure of weight 2.
Theorem 11.1. Consider the M — 1 lisse sheaves
KI(M,A,B,0",67%)(=A - B+ 1) ® Gauss(M, A, B)~ dcs(E/E1)
for o nontrivial in Char(M), and
Hyp(M, A, B,1,1)(—A — B+ 2) ® Gauss(M, A, B)~ °8(E/E1)

each viewed on Gy, /Fp(1ar). Then we have the following results.

(i) If M = 2 (which forces p to be odd), each sheaf has all its traces in K, the unique quadratic
extension of Q inside Q((p).
(ii) If M = q+ 1, each sheaf indexed by o nontrivial in Char(M) has all its traces in Q(o).
The remaining one has traces in Q.
(iii) Fach of these M sheaves has finite arithmetic and geometric monodromy groups.
(iv) In both cases, each of the above M sheaves satisfies (S+); moreover, if n = a+ b > 3 then
each has an arithmetic and geometric monodromy group which is almost quasisimple.

Proof. (i) and (ii) are immediate on combining Lemmas 8.3 and 8.4 with Theorem 10.1, and (iii)
was proven in Theorems 4.7 and 5.1.

Next, let H be any of the above M sheaves and H be the arithmetic or geometric monodromy
group of H. Then the first statement in (iv) is already proved in Corollaries 4.12 and 5.4. Being
geometric, it applies to Ggeom. But as noted in [KT5, Lemma 1.1}, it applies a fortiori to the larger
Garith as well. This implies by [GT, Proposition 2.8] that, if H is not almost quasisimple, then
rank(H) = r™ for some prime 7 and H contains an extraspecial 7-group R of order 72! that acts
irreducibly on H. Suppose we are in the latter case. Then a generator z of Z(R) acts on H via
multiplication by (.

In the case M = 2, ¢ is necessarily odd (otherwise ¢ + 1,¢% + 1 are both odd) we have ™ =
rank(H) = (¢" £1)/2. Asn >3 and 21{¢q, (¢" £1)/2 is divisible by some primitive prime divisor
¢ > 2 by [Zs], whence r = ¢ > 2. On the other hand, ¢, € Q(¢,) by (i) and so r = p, a contradiction.
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Assume now that M = g+ 1, whence a,b are odd and n = a+ b > 4. If H is the hypergeometric
one, then rank(H) = q(¢" ! +1)/(q + 1) is the product of two relatively prime integers, each > 2,
and so it cannot be equal to ™. Hence H is Kloosterman, and rank(#) = (¢" —1)/(¢+1) =r™; in
particular, (n,q) # (6,2). As n > 4, this forces again by [Zs] that r is a primitive prime divisor of
q" — 1, in particular, r # 2 and 7 { (¢+ 1) (otherwise r would divide ¢? —1). This implies ¢, ¢ Q(o),
contradicting (ii). O

Remark 11.2. Suppose we are in the situation p = 2, M = 1. Then there is only the hypergeometric
sheaf, and its rank is ¢". So we cannot conclude its arithmetic and geometric monodromy groups
are almost quasisimple in this case.

The direct sum of our M sheaves is the weight 2 part of the local system whose trace function
at a point v € E*, is given by

v Z Yp(MABzw — v AT v Bw?"+h).
z,weRX
If we replace ¢ by t — 1 (t/M AB), this trace becomes

v Z Yp(zw — v ? L Vw1,
z,weEX
simply because MAB = A = B in [F),.
Let us admit momentarily the truth of the following theorem.

Theorem 11.3. Fiz integers d > 3,d > 2, both of which are prime to p. Consider the parameter
space S/, of pairs of one-variable polynomials (fa,ge) of degrees d and e respectively. We may
view S as the space

Gm x (AD)? x G, x (A1)°
of coefficients of f and g. On (A?)g, with “coordinates” (z,w, f,g), we have the Artin-Schreier
sheaf

Lop( (@) +g(w)+aw):
Denote by 7 : (A%)g — S, (x,w, f,g) — (f,g) the projection onto S. The higher direct images
Rim (Lop(f(2)+9(w)+aw)) vanish for i # 2, and RQW!(Ew(f(ng(w)ﬂw) is lisse of rank (d — 1)(e — 1)
and pure of weight 2.

We apply this with d = ¢*+1, e = ¢°+1, and with G,, embedded into S by (—v~®z¢ 1, —pBw?* 1),
Then we find that on G,,, there is a lisse local system of rank ¢®*® which is pure of weight 2, whose
trace function is

v Z Yp(zw — v gt Vw1,
zweE

This is the weight 2 part of the local system given by the same formula, but with z,w both
restricted to lying in G,,. Indeed, the difference is the sum of the terms with « = 0, which is a
one-variable sum over w which is pure of weight 1, the sum of the terms with w = 0, which is a
one-variable sum over x which is pure of weight 1, minus the single term with £ = w = 0, which is
pure of weight 0.

Here is a more geometric way of saying this. Consider the universal situation: we have the
inclusion of the open set j : U := (G, x G,,)s C A?%)g, with complement Zg, Z being the locus
zw = 0 in A%. Denoting by 7y and 77 the projections onto S, a piece of the long exact excision
sequence is

RY T2 (Ly(f()9)+on) = BEENLy(s@)+9()+om) = BEEONLy(f@)+9()+ay) = O-



HYPERGEOMETRIC SHEAVES AND FINITE SYMPLECTIC AND UNITARY GROUPS 19

the final 0 being R?(7z), (Ew(f(x)ﬂ( )+ay)), Which vanishes fibre by fibre. By Deligne’s main theorem
[De, 3.3.1], the first term is mixed of weight < 1, and the second term is mixed of weight < 2.
Therefore the third term is indeed the weight 2 quotient of the second term.

It remains only to prove Theorem 11.3.

Proof. To show that the RiW;(£¢(f(x)+g(w)+xw)) vanish for ¢ # 2, it suffices, thanks to proper base
change, to do so point by point. To show that the R27T!(£1/)(f(a:)+g(w)+xw)) is lisse of rank (d—1)(e—1),
we use the fact that it is a “sheaf of perverse origin”, so it suffices to show that at each point the
stalk has constant rank (d—1)(e—1). Once we know the R?m is lisse, to show it pure of weight 2, it
suffices to show punctual purity of weight 2. So what must be shown is that for any two polynomials
f, g of degrees d, e respectively over some finite field E/F), the cohomology groups

Ho(A® [, Ly(p(a)tgw) )
vanish for i # 2, and the H? has dimension (d — 1)(e — 1) and is pure of weight 2.

Write the sum
Z U(f (w) + zw)

as

Zw w)) FTy(Ly(f(z)) (W),

and view it as the trace of Frobenius on H} ((A'/Fp, Ly(g(u) @ FTyp(Ly(f()) to see its asserted purity.
More precisely, apply the Leray spectral sequence for the map pry : (x,w) +— w.Then by the
projection formula we have

R o)1 (Ly(f(a)+g(w)+aw) = Logw) @ B (pra)(Ly(f(z) + zw)).

The second tensor factor vanishes for 7 # 1, and for i = 1 it is the Fourier Transform F'Ty(Ly(f(z))-
Thus we have

HY(A? [Fp, Ly(f(a)+g(w)taw) = He (A Fp, Lygauw) @ FTp(Ly(f(a))-

One knows [Ka-MG, Theorem 17] that FTy(Ly () is lisse on the A of w, of rank d—1, with all
its oo-slopes d/(d —1). Because d > 3, these oo-slopes are < 2. But Ly,(,y) has oo-slope e > 2, and
thus Ly(g(w) @ FTy(Ly(f(z)) s lisse of rank d — 1 with all co-slopes e. The total wildness gives the
vanishing of this last cohomology group except possibly in degree one. The Euler-Poincaré formula
then shows the dimension is the asserted (d —1)(e —1). The total wildness, together with Deligne’s
main theorem [De, 3.2.3] gives the purity of weight 2. O

Theorem 11.4. (Theorem 6.1 made precise) Over the ground field Ey := Fyp(uaan), the direct
sum

Hyp(M, A, B,1,1)(—A— B +2) &y KI(M,A,B,07",067%)(—~A— B +1),
oc€Char(M),0#1

when further twisted by Gauss(M,A,B)_deg(E/El), s pure of weight zero and its trace function at
v € EX, E/E1 a finite extension, is given by

v (1/#E) Z Yp(MABzw — v AL — vP Bw?" ).
RIS
Definition 11.5. Fix «, 8 € Z such that «A — B = 1. Let us denote by
W(M, A, B)
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the arithmetically semisimple local system on G,, /IF,, whose trace function at v € E*, E/F), a finite
extension, is given by
1 b a
Vi —— MABzw — v~ Az? 1 — P Bw?" 1),

The pullback of W(M, A, B) to G,,/E; remains arithmetically semisimple (because m1(G,,/E1)
is a subgroup of finite index in (G, /F)))), so this pullback is the above direct sum (as both are
arithmetically semisimple and have the same trace functions).

Let us recall the underlying finiteness theorem.

Theorem 11.6. Let k be a finite field of characteristic p > 0, U/k a smooth, geometrically connected
k-scheme, £ # p, and G an arithmetically semisimple Qg-local system on U which is pure of weight
0 (for all embeddings of Qg into C). Then Gain s finite if and only if all traces of G are algebraic
integers.

To show the integrality of traces of W(M, A, B), we can apply the van der Geer—van der Vlugt
argument, cf. [KT2, Section 5] which uses [vdG-vdV], to show that W(M, A, B) has finite Gayith-
The key point is that for any finite extension E/F, and any v € E*, the F,-valued function on
E x E given by

F(z,w) = Traceg, (MABacw AL vﬁBwan)
is a quadratic form on F x E viewed as an F, vector space, with associated bilinear form
((m,w), (Xa W)> = F(ZL‘ + Xaw + W) - F(:L’,’w) - F(Xa W)
The resulting finiteness of G itn for W(M, A, B) gives another proof of Theorems 4.7 and 5.1.
Let us prove now some basic rationality results.
Theorem 11.7. We have the following results.
(i) Ifp is odd, then for any finite extension E/Fy, and any v € E*, Trace(Frob, p|W(M, A, B))
lies in the ring of integers of the subfield of Q((p) fized by the subgroup of squares in F. If
q 1s even, all these traces lie in 7Z.
(i-bis) For any finite extension E/F,2 and any v € E*, Trace(Frob, g|W(M, A, B)) lies in Z.
(i-ter) Ifq is a square, then for any finite extension E/F, and anyv € E*, Trace(Frob, g|W(M, A, B))
lies in 7.
(ii) If ab is odd, then for any finite extension E/F 2, and anyv € E*, Trace(Frob, g|W(M, A, B))
lies in 7.

Proof. The first assertion is that for any ¢ € F)}, if we replace ¢ by 12 : z Y(t%z), the trace does
not change. This is obvious, by the substitution (z,w) — (tz,tw). If ¢ is even, then v takes values
in +1, so the traces lie in Q, and are integral, so lie in Z.

For (i-bis), notice that any ¢ € F becomes a square in Fj2, say t = s? with s € IFZQ. Then the

substitution (z,w) — (sz, sw) gives the invariance of the sum under the entire group F.
Statements (i-ter) and (ii) result trivially from (i-bis). O
The arguments of van der Geer—van der Vlugt lead to the following theorem.

Theorem 11.8. We have the following results.

(i) If q is odd, then for any finite extension E/F,, and any v € E*,
| Trace(Frob, g|W(M, A, B))|?

is a power ¢ of q with 0 < m < 2a + 2b. If q is even, the values are either a power q™,
0<m<2a+2b, or0.
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(i-bis) For any subfield k C Fy, and any v € k>,
| Trace( Frob, x| W(M, A, B))/|?

is a power of #k (or possibly 0 if q is even).
(i-ter) If a,b are both odd, then for any subfield k C T2,

| Trace(Frob, x|W(M, A, B))[?

and any v € k™,

is either 1 or #k (or possibly 0 if q is even).

(ii) If a + b is even and q is odd, then for any finite extension E/Fp, and any v € E*,
Trace(Frob, g|\W(M, A, B)) is £¢™, with 0 <m < a+b. If a+b is even and q is even, the
values are either £¢™, 0 < m < a+b, or 0.

Proof. (a) Let E/F, be a finite extension. Fix v € E*. Denote

F(l‘,w) = TraCeE/Fp (MAB.%U) _ U—anqb+1 _ UﬂBwqa—’—l).

Then
(11.8.1) Trace(Frob, g|\W(M, A, B)) = (1/#E) Z V(F(x,w)),
(z,w)eEEXE
hence
| Trace(F'rob, g|W(M, A, B))|2 = (1/#(F x E)) Z Y(F(z,w) — F(X,W)).

(z,w)EEXE,(X,W)EEXE

With the substitution (z,w) — (z + X,w + W), (X, W) — (X, W), the above sum becomes

(1/#(E x E)) > ¥ (2, w), (X, W) (F(z,w))
(z,w)€EXE,(X,W)EEXE
1
(x,w)gEXE< #(E % E) (X,W%EXE ( )>

The inner sum

L/#EXE) > (((zw), (X, W)

(X,W)EEXE

vanishes unless (z,w) is orthogonal to every element of E x E, in which case this inner sum is 1.
Let us denote by Null(E) this null space. So we have

Trace(Froby, s V(M, A, B))> = Y @(F(z,w)).
(z,w)eNull(E)
If ¢ is odd, then F'(z,w) vanishes on the null space, as F(x,w) = (1/2)((z,w), (z,w)), so we get
| Trace(Frob, p|W(M, A, B))|? = #Null(E), q odd.

If ¢ is even, then F'(z,w) is an additive function on the null space. If this function is identically zero
on Null(E), we again get #Null(E). If it is nonzero, then we are summing a nontrivial character
over the null space, and we get 0.

(b) Now let us write down explicitly the null space. The null space does not change if we replace
F(z,w) by a nonzero F,-multiple. Using M as the multiple, we deal instead with

F(z,w) := Tracegr, (zw — Mo+ _ MoPwt ).
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Let us consider the slightly more general case of

(11.8.2) Fsi(x,w) := Traceg g, (zw — szl — ™1y

)

with both s,# € E*. Then the associated bilinear form ((z,w), (X, W)) is the Traceg g, of
(z+X)(w+W) —s(ac—i—X)qurl —t(w—H/V)anrl — (xw—sa:qurl —twqaﬂ) - (XVV—squ+1 —thaH) =

—2W +wX — s2X? — s2? X — twW?" — twd“ W,

which has the same Traceg/p, as
W +wX — (sa:)l/qbX —sa?' X — (tw) VW — tw? W =

= (z — (tw)Y"" — tw? YW + (w — (S:U)l/qb - sxqb)X.

Thus (z,w) lies in the null space if and only if (z,w) satisfies the two equations
(11.8.3) z = (tw)/" 4t w= (sz)"/ + 527

From this description of the null space, when E O F, we see that it is an [F, vector space, with
(x,w) — (Az, Aw) as the scalar multiplication by A € F,. When E C [, it is a vector space over E.
Moreover, if ab is odd and E O 2, then it is an F 2 vector space, with (z,w) — (Az, Aw) as the
scalar multiplication by A € Fga. If a+b is even and both a, b are even, then we are in the situation
for (a/2,b/2) and g := ¢*, and the null space is an F,-vector space, i.e., an [F,2 vector space. The
cardinality of the null space, being the square absolute value of a Frobenius trace, is at most the
square of the rank ¢ of W(M, A, B), simply because W(M, A, B) has finite G ai,. Thus the null
space has I, dimension at most 2a + 20b.

To get statement (i-ter), notice that because a, b are odd, for any element z € E C F 2, we have

20" = 20 = M1 = 10" and 24 = 29 = M9 = LV apd 2 = 27, (z+27) = (2 + 29)1.
Thus when £ C F 2, the equations for Null(E) are
x = (tw)? + tw!,w = (sz)? + sx?, ie., z = (t+tHw!,w = (s + s?)x.
So if (z,w) is in the Null space, then
= (t+17)(s+ s9)%% = (t +t9)(s + s9)z,

and for such an z, the pair (z,w = (s+ s9)z9) satisfies the equation x = (¢t +¢9)w? (simply because
w? = (54 59)127 = (s + s9)x.

If (t+t7)(s+s?) = 1, then the Null space is isomorphic to E by projection onto its = coordinate,
so has cardinality #E. If (t + t?)(s + s?) # 1, then the Null space is just the single point (0,0) of
cardinality 1.

To get statement (ii), we need only observe that when a+b is even, then Trace(F'rob, g|W(M, A, B))
is an integer. When ab is odd, this is (ii) of Theorem 11.7. When a and b are both even, then we
are in the situation for (a/2,b/2) and ¢?, and we apply (i-bis) of Theorem 11.7. O

In the case 2 1 ab, we can further strengthen Theorem 11.8:

Theorem 11.9. Suppose ab is odd. Then for any finite extension E of Fp2 and for any v € E,
Trace(Frob, g|\W(M, A, B)) is (—q)™ for 0 <m < a+b.
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Proof. By Theorem 11.7(ii) and Theorem 11.8(ii), we have that ¢(v) := Trace(Frob, g|W(M, A, B))

is £¢™ for 0 < m = m(v) < a+ b or 0. To prove that it is actually some (—g)™, it suffices to

show that (v) = 1(mod(q + 1)). To do this, we use the bijective map (z,w) + (oz, 0 'w) on

E x E~{(0,0)} for a fixed g € IFqXQ of order ¢ + 1; in fact, any orbit under this map on this set has
length ¢ 4+ 1. Note that, because both a, b are odd, we have

F(z,w) = F(gz, 0 'w), F(0,0) =0.
Thus with #F = ¢?¢, (11.8.1) implies that
() =1+ (¢ +1a
for some algebraic integer a € Z[(,]. Now a = (¢*¥p(v) — 1)/(g+ 1) is rational, whence a € Z. But
¢** = 1(mod (q + 1)), hence ¢(v) = ¢*%p(v) = 1(mod (g + 1)), as desired. O

Whatever the parity of a, b, we have the following strengthening of Theorem 11.8; see also Remark
15.8:

Theorem 11.10. Let q be a power of an odd prime p, E/F, a finite extension, and f(x), g(z) € E[z]
polynomials of the form

n m
fl@)=> aa?t, gla):=> bia? ",
=0 =0

with n, m strictly positive integers, and an, by, nonzero. Denote by Gaussg the quadratic Gauss sum
Gaussg := Gauss(Yg, x2).

Then we have the following results.
(i) The sum

Sy :=(1/Gaussg) Z Ye(f(z))

relk
is equal to :i:(Gauss]Fq)d for some integer d with 0 < d < 2n.
(i) For anyt € E, and with
F(z,y) = toy + f(x) + 9(y),

the sum

Sp = (1/#E) > vu(F(z,y))

z,yek

1s equal to :I:(Gauss]Fq)d for some integer d with 0 < d < 2(n +m).
In particular, S%, S% are each nonzero integers, which are + powers of q.
Proof. We begin with (i). We have the Fp-valued symmetric bilinear form (z.y); on E x E given
by

(@,9)5 = fl@+y) = flz) = f(y)

Its null space Nullf(E), the set of 2 € E such that (z,y); = 0 for all y € F, is an F, vector space
of dimension < 2n, defined by the equation

F@)+ > (az)/e = 0.
=0

The van der Geer-van der Vlugt argument gives

’Sf’2 = #Null;(F) = qdiqu(Nullf(E))'
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It will be more convenient to work with the “non-normalized” sum

So,f := Gaussg x Sp = Zd)E(f(a:))

zeE

Indeed, as (—Gaussg) = (—Gausqu)deg(E/Fq), it suffices to prove that Sy s is 4+ a power of Gauss, .
Let us denote by Sy r(—) the complex conjugate sum

Sop(=) =D vu(—f(z)).
zelR
Suppose first that ¢ is 1 mod 4. Then i € Fy, and f(iz) = —f(x). So in this case Sy ;(—) = So,f,
by the substitution x — iz, and hence

[S0.¢1* = So.S0.4(=) = S5,
proving that Sg  is a nonnegative power of ¢, and hence a power of Gaussp, .
Suppose next that ¢ is 3 mod 4. Then Sy ; lies in the field Q(Gaussy,) = Q(Gaussr,) = Q(y/—p)

(because ¢ is an odd power of p and p is 3 mod 4). We claim that the ratio Sy r/So r(—) is a unit
in the ring of integers of Q(y/—p). From the equality

S0,£50,f(—) = a power of ¢

we see that Sp ¢ and Sp r(—) are units at all finite places of residue characteristic other than p. As
they are Galois conjugate in Q(y/—p) C Q((p), which has a unique place over p, Sy r and Sy ¢(—)
have the same p-adic ord at this place. Being complex conjugates, they have the same absolute
value at the unique archimedean place. Therefore their ratio is a unit.

If p # 3, the only units in the ring of integers of Q(,/—p) are £1.

If p = 3, then Q(v/—p) = Q(¢3), and the units are now the sixth roots of unity. However, we
observe that because each exponent ¢’ + 1 is even, f(—z) = f(z), so we have

So,f € 14 2Z[(p).
To see this, choose a subset V' C E* of representatives of the quotient group £~ /(41) and writing

Sof() =1+ (Wu(f(@) +ve(f(-2) =1+2)_ ¥(f(z)).
zeV zeV

Similarly, So r(—) € 1+ 2Z[(p]. Thus for some unit u in the ring of integers of Q(y/—p), we have
So,f = uSp, ¢(—). Reducing mod the ideal (2) in Z[(,], we see that the unit u must lie in 14 2Z[(p).
Among the sixth roots of unity, only +1 lie in 1 + 2Z[(3]. Indeed, if u has order 3, then (u — 1)/2
would lie in Z[(3], which is nonsense because its norm down to Q is 3/4. And if ug has order 6,
then ug = —u for some u of order 3, so (—u — 1)/2 would lie in Z[(3], again nonsense because its
norm down to Q is 1/4.

So in all cases when ¢ is 3 mod 4, we have Sy y = £S5 f(—). If So 5 = So,r(—), then just as in
the case when ¢ is 1 mod 4, we have

|S0,¢1* = So.£S0.£(—) = 55 1,
proving that Sgy  Is a nonnegative power of g, and hence £S5 y is a power of Gaussy,. Suppose now
that So s = —So,f(—) is purely imaginary. Then if we write So y = A+B(14+/—p)/2 with A, B € Z,
we have A+B/2=0. Thus B = —2A, and Sy y = A+B(14+/—p)/2 = A—-A(1+\/—p) = —A\/—p.
This already shows that the square of Sy ; is an integer, namely —pA?. But this square has absolute
value a power of ¢, so A? is itself a nonnegative power of p, hence A is a nonnegative power of p,
so +A is a power of Gaussy,, and hence £S5 ; is a power of Gaussy,, say +5p 5 = (Gausst)d. Then
we recover d as the log to the base \/p of [Sp s|. But in absolute value, |Sp ¢|* is a power of g, so
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+[Sp,7| is a power of Gaussy, = j:(Gausst)deg(Fq/FP). Comparing absolute values, we see that d is a
multiple of deg(FF,/F,). Thus +S s is a power of Gaussr,, as asserted.

For (ii), we argue as follows. Suppose first that ¢ = 0, so that

F(z,y) = f(x) + g(y).

Then Sr = x2,£(—1)5¢S,, and the assertion is immediate from (i), applied to f and to g. If t # 0,
the change of variable (z,y) — (z/t,y) reduces us to the case when ¢t = 1 (with f replaced by
f(z/t)). We have the F,-valued symmetric bilinear form ((z.y), (X,Y))r on E% x E? given by

((z,9), (X, Y))r = F((z,y) + (X,Y)) = F(z,y) - f(X,Y).

Its null space Nullg(E?), the set of (z,y) € E? such that ((x,y),(X,Y))r =0 for all (X,Y) € E?
is an [F, vector space of dimension < 2n + 2m, defined by the two equations

y+ > (ax)/ =0, x4+ (biy)/* =0.
=0 =0

The van der Geer-van der Vlugt argument gives
’SF‘Q — #NUHF(EQ) _ qdim]pq(NullF(EQ)).
We now proceed exactly as in the proof of (i). We consider instead the “non-normalized” sum
Sor = (#E) x Sp = Y ¥p(F(z,y)),
z,yeE
and its complex conjugate
SO,F(_) = (#E) X SF = Z ¢E(_F(may))7
zyelk

When ¢ is 1 mod 4, the substitution (z, y) — (ix, iy) carries F(z,y) to —F(z,y), and so Sp r(—) =
So,r. Hence S&F = |So.r|? is a power of ¢, and so Sy  is a power of Gaussy, .

When ¢ is 3 mod 4, we use the same arguments as in (i). We take care of the extra possible units
in Z[(3] by observing that

So,r € 14 2Z][Gp]

to rule out units other than +1. We see this by observing that the sum is invariant under (x,y) —
(=, —y), an action which fixes the origin (0, 0), but which on E?\ {(0,0)} has all orbits of size 2.
We then treat the two cases Sy p = £S5 p(—) exactly as in the proof of (7). O

Corollary 11.11. Let q be a power of an odd prime p, and E a subfield of F,. Let
n . m .
f(z) = Zaixqurl € Elz], g(x):= Zbiquﬂ € Elx]
=0 =0
with n,m € Zso, and an, by, nonzero. Let t € E, and let F(z,y) := txy + f(z) + g(y). Then the
sums St, Sp formed over E as in Theorem 11.10 are each = a power of Gaussg.

Proof. Apply Theorem 11.10 over the ground field £ = [y, remembering that ¢ is a power of gg. [J

Remark 11.12. In characteristic p = 2, the sums Sy and Sr of Theorem 11.10 can both vanish.
For example, over Fy, Sy = 0 for f(z) = 23 + 2%, with the convention that Gaussp, = 2. And
over Fi6, Sp = 0 for F(x,y) = zy + v132® + vy3, for v any generator of the cyclic group FJs. This
phenomenon will be studied in [KT8] in more detail.
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12. A PULLBACK RESULT FOR W(M, A, B)

The main result of this section is the following theorem about a well chosen Kummer pullback of
the local system W(M, A, B) introduced in Definition 11.5.

Theorem 12.1. The Kummer pullback [MAB*W(M, A, B) of W(M, A, B) by v — vMAB s (or
more precisely, its extension across 0 by jx, for j : G, — Al the inclusion, is) lisse on A and pure
of weight 0.

Proof. Recall that the trace function of W(M, A, B) at v € E*, E/F, a finite extension, is given by
v (1/#E) Y vp(MABrw — v Az? ! — vf Buwt™*Y),
T, weEE
If we replace 1 by the nontrivial additive character ¢ — 1 (t/M AB), this formula becomes
v (/#B) Y dplaw —v o2 - oPur ),
zweE

simply because both M A, M B are 1 mod p. After the pullback by v — UMAB’ the trace function
becomes b
v (1/#E) Z b (zw — v OMAB g’ +1 _ SMAB q"+1y
r,weER
= (1/#E) Y vplaw— oA D) ga" L BB(g D) 0" 1y
r,wek

Ay w — v PByw, this becomes

v (1#E) Y e PPrw — o — ) = (1/#EB) > gp(vew — 27t -t

T, wEE T, WwEE

After the change of variable x — v

simply because A — BB = 1.

We will show in Theorem 12.2 below that this trace function, stripped of the 1/#FE factor, is
the trace function of a sheaf on A! which is lisse and pure of weight 2. All such sheaves are
geometrically semisimple (by purity) and have isomorphic semisimplifications (by Chebotarev),
hence are all geometrically isomorphic. Any such is geometrically isomorphic to W(M, A, B) on
Gum, 50 must agree geometrically with j,W(M, A, B) on Al O

To show this, let us consider the following slightly more general situation, similar to that of
Theorem 11.3.

Theorem 12.2. Fix integers d > 3,e > 2, both of which are prime to p. Fix one-variable poly-
nomials f(z) € Fplx] and g(w) € Fplw] of respective degrees d and e. On A3/F,, with coordinates
(v, z,w), form the Artin-Schreir sheaf

Lop(f(@)+g(w)+ozw):
Denote by
pry : A% — Al
the first projection (v,z,w) — v. Then
Rim i= BT (Ly(f (@) g(w)+vrw)
vanishes for i # 2, and R?m is lisse on A of rank (d —1)(e — 1) and pure of weight two, with trace
function given at v € E for E a finite extension of I, by

v Z YE(vzw + f(z) + g(w)).

T weE
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Proof. For i # 2, the asserted vanishing can be checked fibre by fibre. Over G,,, the substitution
x +— x /v, w — w reduces us to a particular case of the vanishing established in Theorem 11.3. Over
0, we have
R'mo—o = Hi(A?/Fp, Lo(5a) o)) =
= @jJrk:ng (Al/va 'Cw(f)) ® Hf(Al/va ﬁw(g))'

The asserted vanishing for i # 2 results from the (standard) fact that the H’/ and H’ here each
vanish unless j = k = 1. Because the R?m is a sheaf of perverse origin, it is lisse on A! of rank
(d—1)(e—1) if and only each stalk has dimension (d—1)(e—1). Over G,,, this results from Theorem
11.3 (after the same change of variable z — x/v,w — w. Over 0, it results from the (standard)
fact that H}(A'/F,, Ly(s)) has dimension d — 1, and HF (AT, Ly(g)) has dimension e — 1. Once
we know that R%m is pure of weight 2 on G,,, and lisse at 0, it is automatically pure of weight 2 on

Al, cf. [De, 1.8.10]. The formula for the trace is immediate from the Lefschetz trace formula, and
the vanishing of the R'm for ¢ # 2. g

13. DETERMINANTS

We now return to the consideration of the M lisse sheaves discussed in Theorem 11.1, except
that we do an additional Tate twist to be in weight 0. Thus

KI(M, A, B,0™?,67%)(=A — B+ 1) ® Gauss(M, A, B)~dea(E/E1),

for o nontrivial in Char(M), and

Hyp(M, A, B,1,1)(—A — B +2) ® Gauss(M, A, B)~ 4es(E/E1)

Each of them, by Theorems 4.7 and 5.1, has finite Gaitn. We viewed them as lisse sheaves on
Gm/En, for E; the field F,(uaprap). However, each has a descent to Gy, /Fp(par), as follows. Each
of them is the highest weight quotient (now weight zero) of the lisse sheaf on G,,/E; whose trace
function is

Z (1/#E)pp(MABz — v~ *AzMP /0P — 0P Buwt)o(w),
r,weRX
This sheaf has an obvious descent to Gy, /IF,(1ar) (just so the characters o of order dividing M are
defined). Its highest weight quotient is the desired descent. [Unfortunately, we do not know an
explicit formula for its trace function.] Let us call these descended sheaves

Go.

Strictly speaking, we should remember that their definition made use of chosen («, 5) with A —
BB =1, and denote them

Go,0,8-
If (e, B) is one such, then so is (a + B, + A).

Lemma 13.1. If integers «, A, 3, B satisfy «A — B =1, then ged(a + 5,A+ B) = 1.
Proof. If not, there exists a prime r which divides both a + 8 and A + B. So modulo r,
aA— BB =aA—(—a)(—A) =0,
a contradiction. |

Corollary 13.2. Given relatively prime integers A, B and a real constant X > 0, there exist integers
a, B with «A— BB =1 such that either a4+ = +1 or a+f is a prime P with P > X . In particular,
given an integer D > 1, there exist such o, B with ged(a+ B, D) = 1.
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Proof. Because ged(A, B) = 1, there exist integers g, o with agA — fpB = 1. If A+ B =0, then
(A,B) = +(1,—1), and then a + 8 = £1. If A+ B # 0, we argue as follows. For every integer n,
the pair (o, ) := (g + nB, By + nA) is another such pair. Then

on + Bn = (a0 + fo) + n(A + B).

By the previous Lemma 13.1, ged(ap + fo, A + B) = 1. Now apply Dirichlet’s theorem to the
sequence a,, + (8, for positive n if A+ B > 0, or to the sequence of negative n if A+ B < 0. O

Theorem 13.3. For o of order dividing M, the geometric determinant of G5 o g is
L MABf17(A71)7(371)£0a+B,
X2
with the understanding that if p = 2, then xo := 1.

Proof. By [Ka-ESDE, 8.11.6], the geometric determinant in each case is the product of the “upstairs”
characters. One has the general formula

I[[ to=ca 0L,
X€Char(A,p)
Therefore the geometric determinant of G, is £ (MAB-1-(A-D—(B- 1 Lyats. [If we are in characteristic

2, then each of M, A, B is odd, and the determlnant is just Lja+s.] O

Corollary 13.4. Choose «, 8 with A — BB = 1 and ged(a + 5, M) = 1 (possible by Corollary
13.2). Then there exists characters o of order dividing M such that the geometric determinant of
Go,a,8 has order M.

Proof. If p is odd, then M is even, and o + x20 is a bijection of Char(M). On the other hand,
o — 0P is another such bijection. If p = 2 or if the exponent of Y2 in the geometric determinant
of Gg.,p is even, simply take G, o g with o of full order M. If p is odd and the geometric determinant
of Gy 3 is 201 use the fact that the composite map

o 0P s xooF

is a bijection of Char(M), and take G, o 3, for any o1 whose image under this map is a character
of full order M. O

From Theorem 13.3, we get the following corollary.

Corollary 13.5. For any o, 8 with aA — BB = 1, and any o of order dividing M, the Kummer
pullback [M]*Gy o 8 has geometrically trivial determinant.

From Lemma 4.3, we see that we have
Lemma 13.6. For o of order dividing M, we have
EO’ & ga,a,ﬁ = ga,afB,BfA-

This “indeterminacy” in the “definition” of G, can be “corrected” by considering the Kummer
pullback
[M]*G,,
since [M]* kills the £, factor.

Theorem 13.7. Each sheaf [M]*G, has geometrically trivial determinant.
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Proof. From the explicit formulas for the geometric determinants in Theorem 13.3, it is clear that
they become trivial after [M]*. Indeed, in odd characteristic, M is even (since both ¢* + 1,¢" 4+ 1
are even), and hence [M]* kills both £,, and any power of £,. In any characteristic, [M]* kills any
power of L,. 0

Remark 13.8. Presumably (?) we should hope that each [M]*G, already has arithmetically trivial
determinant over the small field I}, or F 2, without any extension of scalars being needed.

14. SOME GENERAL RESULTS ON Ggeom AND Garith

First we recall the following result concerning the image of P(c0) in Ggeom:

Proposition 14.1. [KT5, Proposition 4.4] Let H be an (irreducible) hypergeometric sheaf of type
(D,m) in characteristic p, with D > m and with finite geometric monodromy group G' = Ggeom-
Then the following statements hold for the image Q of P(c0) in G:

(i) If H is not Kloosterman, i.e. if m >0, then Q NZ(G) = 1.
(ii) Suppose H is Kloosterman and D > 1. Then Q £ Z(G). If pt D, then QN Z(G) = 1. If p|D
then either QNZ(G) =1 or QNZ(G) = C,.
(iii) If D > 1, then 1 # Q/(Q NZ(G)) — G/Z(G) and p divides |G/Z(G)].
(iv) If D—m > 2, the determinant of G is a p'-group. If moreover pt D, then Z(G) is a p'-group.
(v) Suppose p = 2. Then the trace of any element g € G on H is 2-rational (i.e. lies in a cyclotomic
field Q((n) for some odd integer N); in particular, the 2-part of |Z(G)| is at most 2.

Lemma 14.2. Let X/F, be smooth and geometrically connected, k a topological field, and V a
finite dimensional continuous k-representation of m1(X). Denote by Garith < GL(V') the image of
mth (X = 71 (X)), and by Ggeom <\ Garith the image of m§°°™(X) := m1(X/F,). Let E/F, be a finite
extension. Then for any points vi,ve € X(E), the Garith-conjugacy classes Frob,, g, Frob,, g lie
the same Ggeom-coset in Garith k-

Proof. Let us explain this in the universal case. The key point is that we have the short exact
sequence of fundamental groups [SGA1, Exp. IX, Thm. 6.1]

1 — 7500 X) — miith(x) 8, Gal(F,/F,) — 1.

When we identify Gal(F,/F,) with the profinite completion of Z by decreeing that x — x¢ has degree
—1, then each Frob,, iz has degree deg(E/F,) in Gal(F,/F,). Hence for any elements g; € m"*"(X)

which lie in the conjugacy classes Frob,, g, the “ratio” gflgg has degree 0, i.e., lies in 75°°"(X),
which is precisely the subgroup of 78" (X)) consisting of elements of degree 0. U

Next we prove some general facts concerning pullbacks of local systems.

Lemma 14.3. Given a local system F on X/F,, and an Fg-morphism f:Y — X of Fy-schemes.
Then for any finite extension k/Fq, and any point v € Y (k), we have

FT’Obv,k|f*]: = FTObf(U)7k|]:.

Proof. Let us explain this in terms of representations of fundamental groups. When X, Y are each
connected, and we pick appropriate base points, f induces a homomorphism of fundamental groups
fe :m(Y/Fy) = m1(X/F,) which maps the conjugacy class of Frob,  in 71 (Y/F,) to the conjugacy
class of Froby(,y in m1(X/Fy). The local system F is a representation pr of m(X/F,), and its
pullback f*F is the representation pr o fi of m(Y/F,). O



30 NICHOLAS M. KATZ AND PHAM HUU TIEP

Theorem 14.4. Let N € Z>1 and let G be a finite group with a normal subgroup S such that
G/S = Cy. Let k be a finite field in which N is invertible and which contains the N roots
of unity. Let W be a local system on Gy,/k which has geometric monodromy group Ggeom and
arithmetic monodromy group Garithk, With Ggeom = Garith x = G. Then the [N Kummer pullback
Wn of W has geometric and arithmetic monodromy group Ggeomwy = Garith ke, wy = 5.

Proof. From the point of view of Galois theory, the fact that W has Garithk = Ggeom = G means
that we have a finite Galois extension L/k(t) with Gal(L/k(t)) = G, which is linearly disjoint from
the extension k/k, i.e., Lz/k(t) continues to have Gal(Lz/k(t)) = G.

When we form the [N] pullback, we replace the Galois extension L/k(t) by its compositum with
the finite Calois extension k(t'/N)/k(t). [It is Galois because k contains the N*® roots of unity.]
This new extension has Galois group Garith kv, - Similarly, when we replace the Galois extension
L7/k(t) by its compositum with the finite Galois extension k(t'/")/k(t), this new extension has
Galois group Ggeom,wy -

Consider a homomorphism

0:G— un(k)

with Ker(f) = S. This surjective homomorphism means that there is a subfield

k(t) C K C Ly,

with K/k(t) Galois, with Gal(K/k(t) = un(F,). But this extension K/k(t) is the function field
of a puy(F,)-covering of G,,/k. The only such covering is the [N] Kummer covering. Thus the
intermediate field K must be K = k(t'/V); we have

k(t) C k(tYN) ¢ Ly,

This in turn means that the compositum of the extension Ly/k(t) with k(t'/V)/k(t) is just the
extension LE/E(tl/ N). Tts Galois group is the index N normal subgroup of G on which 6 is trivial,
i.e. its Galois group is S.

Now let us consider the interaction of the homomorphism 6 with the extension L/k(t). Its
existence means that there is a subfield

k(t)Cc Ko C L,

with Ko/k(t) Galois, with group py(F,). This extension Ko/k(t) is the function field of a un(k)-
covering of G, /k, which when we extend scalars to k becomes the [N] Kummer covering. In general,
for any field & in which N is invertible and which contains the N*® roots of unity, the py (k)-coverings
of G,,/k are classified by the cokernel k[t, 1/t]* modulo the subgroup of N*" powers, cf. [SGA1, Cor.
6.5, Exp. XI]. The group of units k[t, 1/t]* is kXt”. Since geometrically our covering is adjoining
t'/N our covering must be k((at)'/N), for some a € k*. This means that if we take at instead of
t as the parameter of G,,/k, then Ko/k(t) is the extension k(t'/)/k(t). Thus the compositum of
L/k(t) with k(t'/N)/k(t) is just the extension L/k(t'/N). Its Galois group is the index N subgroup
of G on which 6 is trivial, i.e., its Galois group is S. ]

For possible later reference, we state the following corollary, which is immediate from the proof
of Theorem 14.4.

Corollary 14.5. With G,S, N as in Theorem 14.4, let k be an algebraically closed field in which
N is invertible and which contains the N™ roots of unity. Let W be a local system on G,,/k
which has geometric monodromy group Ggeom = G. Then [N|*W has geometric monodromy group

Ggeom,WN =S.
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Here is another version, which deals with Kummer pullbacks in fair generality. Let k be an
algebraically closed field of characteristic p > 0, and let G be a finite group which is a quotient
of 71(Gy,/k). One knows by [Abh, Proposition 6(III)] that the quotient of G by the subgroup
Op/(G) generated by its Sylow p-subgroups is a cyclic group of order prime to p; this is simply the
statement that the prime to p quotient of 71 (G, /k) is pro-cyclic, in fact non-canonically isomorphic
to [ 1z, Ze. Let us denote by n(G) this order:

n(G) == |G/O”(G)|.
Then the normal subgroups H <G such that G/H has order prime to p are precisely those containing
0" (G). Because G/OV (G) is cyclic of order n(G), such a subgroup H < G with G/H of order d
has d 1 n(G), and H is thus the unique normal subgroup Gy <1 G such that G/G4 = d is cyclic of
order d, and we have

n(Gy) = n(G)/d.

Theorem 14.6. Let G be a finite group. Let k be a finite field of characteristic p, and W a local
system on G, /k with
Garith,k = Ggeom =G.
Let N be a prime to p integer, and let
Ny := ged(N,n(Q)).
Suppose that k contains the Nt roots of unity, i.e. No|(#k —1). Then for Wy := [N[*W, we have
Garith,k,WN = Ggeom,WN = GN0~
Proof. Write N = NoNyp, with ged(Ny,n(G)/Ng) = 1. Then Wy = [N1[*Wy,. By Theorem 14.4
applied to Wh,,, we have
Gaurith,k,)/\/]\/0 = G'geom,VVN0 = GNov
and n(Gn,) = n(G)/No.

So we are reduced to treating universally the case when gcd(N,n(G)) = 1. Then Ggeomwy <G
is a normal subgroup of index dividing N. But there are none other than G itself. Therefore
Ggeom,WN = G. As Garith,k,WN < Garith,k,W = G but Garith,k,WN > Ggeom,WN = G, we have
Garith,k,WN = G as well. O

We now turn to a discussion of Gyt for a geometrically irreducible Qg-adic hypergeometric
sheaf H on G, /F; whose Ggeom is finite. To make clear the underlying structure, we will consider
the more general case of a smooth, geometrically connected variety X/F,, and a a geometrically
irreducible Q-adic sheaf 7 on X/F, whose Ggeom is finite. One knows that det(F) is geometrically
of finite order (e.g., because its Ggeom is a semisimple group inside GLy, cf. [De, 1.3.9]).

Lemma 14.7. There exists an (-adic unit C € Q; " such that det(F) @ C~ /% s arithmetically
of finite order. Moreover, any such C is determined up to multiplication by a root of unity.

Proof. To see this, choose an integer M > 1 such that det(F)®M is geometrically trivial. This
means precisely that arithmetically

det(F)®M = pdes/k

for some (-adic unit D € Q;". Then for any C with CM = D, det(F) @ C~de/k has arithmetic
order dividing M.

It is obvious that if C' works, then so does (C for any root of unity . Conversely, if C’ works,
then both det(F) @ C~9€/k and det(F) @ (C')~9°8/F are arithmetically of finite order, so their
ratio (C/C’)48/* is arithmetically of finite order, i.e., C'/C" is a root of unity. O
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Corollary 14.8. There exists an £-adic unit G € @X such that F @ G=98/F has finite arithmetic
determinant, and this condition determines G up to multiplication by a root of unity.

Proof. For F of rank D, any D™ root of the C' of Lemma 14.7 does the job, and G does the job if
and only if GP is some root of unity times C'. U

Lemma 14.9. Suppose F has finite Ggeom. Then F & G~ deg /k p s finite Garign if and only if its
arithmetic determinant is finite.

Proof. Gaitn cannot be finite if its determinant fails to be finite. To see that Gaitn is finite if its
determinant is finite and Ggeom is finite, use the fact that Gt normalizes Ggeom. Denote by N
the order of the finite group Aut(Ggeom). Then for v € Gaurith, v commutes with every element of
Ggeom- As Ggeom is an irreducible subgroup of GLp with D := rank(F), each N is a scalar. But
as Garith has a determinant of finite order, say M, each vV is a root of unity of order dividing M D.
Thus Lie(Gayitn) is killed by NM D, so Lie(Gaith) = 0 and hence G ity is finite. O

Let us recall the following criterion for finite airthmetic and geometric monodromy, cf. [KRLT1,
2.1, 2.2).

Proposition 14.10. Suppose we have (Fq, ¢, X) as above, with G a lisse Q¢ sheaf on X. Suppose

further that G is pure of weight zero (:= for all embeddings of Qq into C). Consider the following

four conditions.

(a) Garith 18 finite.

(b) All traces of G are algebraic integers. More precisely, for every finite extension L/F,, and for
every point v € X (L), Trace(Frobyr,;|G) is an algebraic integer.

(¢) Ggeom is finite.

(d) det(G) is arithmetically of finite order.

Then we have the implications
(a) = (b) = (c), (b) = (d).

If F is geometrically irreducible, we have (a) <= (b) <= (c). If F is arithmetically semisimple,
we have (a) <= (b).

Proposition 14.11. Suppose we have (Fy, ¢, X) as above, with G a lisse Qp sheaf on X which is
geometrically irreducible, and pure of integer weight w. Suppose that for some monomial in Gauss
sums over Fy, i.e., an expression of the form

A=+ [ (~Gauss(¢r,, x)™,

X€Char(g—1)

with exponents ny € Z, the constant field twist G ® A~ deg /Fa has algebraic integer traces, and hence
has finite arithmetic monodromy group, denoted Garith,a- Suppose further that p is odd. Then the
p-primary part of the finite cyclic group Z(Glarith,a) is independent of the choice of monomial A in
Gauss sums over IFy for which G @ A~ deg /Fa has algebraic integer traces.

Proof. By Chebotarev, every element in Gyritn, 4 is the image of some Frobenius F'roby, . The given
representation of Garith 4 is irreducible (because it is already irreducible on the subgroup Ggeom)-
So the Frobenii which land in Z(Gaith 4) are precisely those for which Froby g is a scalar, call
it a(L,z). Then in Gaith 4, this Frobenius gives the central scalar a(L,a;)/Adeg(L/Fq). If we use a
different monomial in Gauss sums, say A; for which G® A; dog /Fa pas algebraic integer traces, then
this same Frobenius gives the central scalar a(L, z) /A(feg(L/ ¥2) 30 what must be shown is that the
ratio A/A; is a root of unity of order prime to p.
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Since both G ® A~ 98 /Fa and G ® Ay deg /Fq have arithmetic determinants of finite order, it resuts
from Corollary 14.8 that the ratio A/A; is a root of unity. Now A/A; is itself a monomial in Gauss
sums. so the assertion results from the following lemma. O

Lemma 14.12. Suppose p is odd, F,/F,, a finite extension, and A a monomial in Gauss sums over
F, which is a root of unity. Then A has order prime to p.

Proof. Each Gauss sum over Fy lies in Q((p, (4—1). Thus A is a root of unity in this field. We will
show that in fact it lies in the subfield Q((,—1), whose only roots of unity are y;—1 (remember ¢ —1
is even). For this, it suffices to show that A is invariant under Gal(Q({p, (4—1)/Q({g—1)). This is
the group F)’, with o4, a € F}, mapping ¢, to ¢; and fixing (;—1. The claimed invariance holds for
A if and only if it holds for —A, so we may assume

A= H (—Gauss(yr,, x))™.
Xx€Char(g—1)
When we apply o, to A, we get
oa(A)= ] (—Gauss(tuzr,,x)™ =[] (—X(a)Gauss(¢ur,, x))"™ = Ala)A

x€Char(q—1) x€Char(q—1)
for A the character HXQChar(q_l)X”X. Suppose now that the order of A is not prime to p. The
roots of unity in Q({p,, (4—1) are the group

Fp(g—1) = Hp X Hg—1-

Then A9~ would be a p** root of unity, and a prime to p power of A9~! would be (p- Such a power
is itself a monomial in Gauss sums, so we would have

A =(p.
Then o4(A) = (¥ = (" 'A, but also 04(A) = A(a)A. Thus (¢! = A(a). The left side lies in 1,
the right side lies in jtq—1. Thus both are 1. In particular, A(a) =1, and A lies in Q((4—1). O

We now turn to the special case of geometrically irreducible hypergeometric sheaves H of type
(D,m) with D > m >0 on G,,/F,;. Thus we have

H =Hyp(x1,---, XD P15+ Pm)
with each x; and each p; a (possibly trivial) character of F o » such that for all 4, j, x; # pj.

Proposition 14.13. Suppose D —m > 2. Define
A = det(Frobr,|H).

Then we have the following results.

(i) A is a monomial in Gauss sums.

(ii) For any B with BP = A, the constant field twist H @ B~ /¥a has finite arithmetic deter-
minant Ly, for A == [, xi, of order dividing ¢ — 1.

(iii) Suppose p 1 D, and that H ® B~ 98 Fa on Gm/Fq, has finite arithmetic monodromy group
Garith- Then Z(Gaitn) has order prime to p.

(iv) Suppose that H has a descent Hy to Gy, /k, for some subfield k of Fy, in the sense that for
some monomial J in Gauss sums over Fq, the pullback of Ho to Gy, /Fy is arithmetically
isomorphic to H ® J/Fa_ Suppose further that for some monomial G in Gauss sums,
Ho @ G~ d8/k has finite Garith#o- If 1 D and p 1 deg(Fy/k), then Z(Garith,3,) has order

prime to p.
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Proof. When D —m > 2, one has the arithmetic determinant formula [Ka-ESDE, 8.12.2]
det(H) = Ly @ Ades/Fa,
with A :=[[, x; and with

A= A(-1)P PPV T (—Gauss(Yr,, xi/ps)-
(2]
Recall that ¢ is, up to sign, itself the square of the quadratic Gauss sum, to see that A is indeed
a monomial in Gauss sums. This formula makes (ii) obvious. To show (iii), let 7 be a scalar in
Glarith- As det(Garitn) lies in p14—1, we see that 7P = det(7) has order dividing ¢ — 1, so + has order
dividing D(q — 1), which is prime to p.
To show (iv), we argue as follows. Let us write

d = deg(F,/k).

Because Ho®G~8/k on G,, /k has finite G it 2,,G, 50 does its pullback to G, /F,. This pullback is
HJdee/Fq ®(G4)~deg /Fa_which is a constant field twist of 7 by a monomial in Gauss sums, namely
by G?/.J. Let us denote its Gaitn as Gaﬁth’%Gd/J. Thus Gamhﬂjgd/t] is a subgroup of Garith 2, of
index dividing d := deg(F,/k), which is prime to p. So if Gayith 7,,¢ contained a scalar of nontrivial
p power order, then 7¢ would be a scalar of nontrivial p power order in Garith, 1,64 /- So it suffices
to show that the center of G,1, 34,4/ 18 prime to p. We know this to be true for Garith, 3,5 by part
(iii). So it suffices to show that the ratio B/(G%/J), a priori a root of unity by Lemma 14.8, has
order prime to p. Since p t D, it suffices to show that the D™ power of this ratio has order prime

to p. But this D' power is a monomial in Gauss sums, namely AJP/G?P hence has order prime
to p by Lemma 14.12. O

Theorem 14.14. Suppose H is a geometrically irreducible hypergeometric sheaf H of type (D, m)
with D > m >0 on Gy, /Fy. Suppose Ggeom is finite. Then for Gauss(Yr,, x2) the quadratic Gauss
sum, with the convention that when q is even, we “define” —Gauss(Vr,, x2) := /4,

G = (—Gauss(¢r,, x2))P T, and C = GP,
det(H) @ C—de8 ¥a s arithmetically of finite order, and H @ G~ 98/Fa has finite Garitn.-

Proof. In view of Lemma 14.9, the two assertions are equivalent. Let us write simply 1 for ¢p,.
Define
A = A(=1)P=1gPP=D/2 T (~Gauss(B, xi/p5)).
2
By [Ka-ESDE, 8.12.2], det(H) ® A~ 9°€/Fq is arithmetically of finite order. The weight of A is
D(D —1)+mD =D(D+m—1).

We must show that A is (some root of unity)xGP. For this, it suffices to show that for every p-adic
ord, on Q((p,(4—1) (normalized to have ordy(g) = 1), we have

ord,(A) > ord,(GP) = D(D +m —1)/2.

For then A/GP is an algebraic integer in Q((p, (y—1) (since G?P divides ¢(P(P+m=1)) "all of whose
complex absolute values are 1, and hence A/GP is a root of unity.
For a character 7 of F;, and a chosen ordg, let us write

V(7) := ordy(Gauss(¢), 7)).
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Then
ordy(A) = D(D = 1)/2+ Y V(xi/p))
12
and the asserted inequality becomes
S V(xi/ps) = mD/2.

1,J
Let B have BP = A. Because Ggeom 1s finite, H @ B~ deg /Fq hags finite Gayitn. Therefore for each
t € Gu(Fy) =Fy, if we denote
H(t) := Trace(Frob,r,|H),
we have
ordg(H(t)) = (1/D)ordy(A), ordg(o(t)H(t)) = (1/D)ordy(A)
for every character o of F;*. Thus for every such o, we have
ordg( Y o(t)H(t)) > (1/D)ordy(A).
teFy
But one knows [Ka-ESDE, 8.2.8] that Zteﬁ,; o(t)H(t) is equal to
([T(~Gauss(w, xio))) (] (~Gauss(w, 7)) .
( J
Hence we have the inequality
Y Vixio)+ Y (V(pjo) = (1/D)DD = 1)/2+ Y V(xi/pj)]
i J 1]
for every o.
Apply this with o successively taken to be 1/p;, and add the resulting m inequalities. We get

D Vi) + Y V(pi/px) = (m/D)D(D = 1)/2+ > V(xi/p;)]-
ij gk i,
For each 7 # 1, we have
V(ir)+V(7) =1,
since the product of the corresponding Gauss sums is +¢q. Therefore

S V(pslpr) = mlm —1)/2.
ik

Writing X for >, - V(xi/p;), we have
Y+m(m—1)/2>m(D —-1)/2+ (m/D)%,
ie.,
(1=m/D)2>m(D—m)/2, ie. (D—-m)/D)X>m(D—-m)/2, ie X >mDJ/2,
as asserted. [It is only at this very last step that we use the hypothesis that D —m > 0.] O

Corollary 14.15. Suppose H is a geometrically irreducible hypergeometric sheaf H of type (D, m)
with D >m >0 on Gy, /Fy. Then Ggeom is finite if and only if for

G = (—Gauss(¢r,, x2)) P 1,

again with the convention that when q is even, we “define” —Gauss(vr,, x2) := /q, the constant
field twist H @ G~ des /Fa has finite Garign-
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15. DETERMINATION OF MONODROMY GROUPS: THE CASE M = 2
In this section we assume that
(15.0.1) 2lab, ged(a,b) =1, n=a+b, p>2, ¢=p’.

In particular, M = 2, A = (¢® +1)/2, B = (¢® +1)/2, ged(A, B) = 1. Fix a, 8 € Z such that
aA — BB =1 and 2 { (o + B) using Corollary 13.2. With this choice of parameters, the principal
objects of this section are the following local systems on G, /I, and Al /Fp, cf. Definition 11.5 and
Theorem 12.1.

Definition 15.1. Let us denote by
W(a,b)
the arithmetically semisimple local system on G,, /IF,, whose trace function at v € E*, E/F), a finite
extension, is given by
1 a
v —— Z VE (xw gt By +1).

#E
This is W(M, A, B) introduced in Definition 11.5, but with 1 replaced by t — ¢(t/M AB) = ¢ (2t).

T weEE

It results from Corollaries 9.2 and 9.3 that W(M, A, B) is the direct sum
W(M,A,B)=Kly® Ho

of descents (in the sense of the beginning of §13), from G, /Fp,(puara) to Gy, /Fp, of the Kloosterman
sheaf

Kl(2, A, B, x5,x3)(—A - B+1) = Kl (Char(24B) \ (Char(4, x;) Ui Char(B, x3))(—A — B+ 1),
see (4.2.1), and the hypergeometric sheaf
Hyp(2,A, B,1,1)(—A— B+2) = Hyp, (Char(2AB)U{1}\ (Char(A)UChar(B)); 1)(—A— B+2),
see (5.0.1) which went into the definition of W(M, A, B), the descents being the relevant systems
(grwt:2(R2(pr1)("rXaP»)(l)'
Definition 15.2. The Kummer pullback

W*(a,b) := [MAB]*W(a,b)
is a lisse sheaf on Al/F,, with trace function at v € E, E/F, a finite extension, given by

1

b a
Vi — E wE(v:rw — T +1).
#E
T,weE

In general, the local system W*(a,b) on A!/F, makes sense for ¢ any power of any prime p, and
any positive integers a,b. By Theorem 12.2, W*(a, b) is lisse of rank ¢®™ and pure of weight zero.
In this section, our interest is in the case when hypothesis (15.0.1) holds. In the next section, our
interest will be in the case when hypothesis (16.0.1) holds.

The explicit trace formulas allow us to prove:

Lemma 15.3. Given the hypothesis (15.0.1), the following statements hold.
(i) Let E be any subfield of F,. Then the squared absolute value of the trace at v =2 of W*(a,b)
is #E. Furthermore, the squared absolute value of the trace at v =4 of W(a,b) is #E.
(i) If p=3 and E = F,, the square of the trace at v =1 of W(a,b) is (—1)(4=1/2q.
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Proof. (i) By Definition 15.2, the trace at v =2 on W*(a, b) is

# > vpew -2 —w? # Y tp(—w—w)?) =D ve(=y*) =D ve@),

z,weEE z,weEE yeE yeE

a Gauss sum over E. Hence its squared absolute value is #E. For the statement in W(a,b) form,
just recall W*(a,b) = [MAB]*W(a,b), and note that M AB = 2(mod (¢ — 1)), whence 2M45 = 4
in F/, and we are done by using Lemma 14.3.

(i) By Definition 15.1, the trace at v =1 is

# > vplaw -2 —w?) = # S vp(—(@+w)?) =) ve(—y) =D voas@),

T,weE T, wEE yeE yeE

a Gauss sum over E = F,. Hence its square is (—1)@~1/2¢. O

Proposition 15.4. Given the hypothesis (15.0.1), suppose that for each e = £, there is a hyperge-
ometric sheaf He of rank (¢ — €)/2 in characteristic p with finite geometric monodromy group G,

which is almost quasisimple. Assume furthermore that GEOO) 1s 1rreducible on He and that g™ > 49.

(o0)

Then, for some v = =+, either G(yoo) is a cover of some Ay, or Gy
ma=nf.

is a quotient of Sps,, (p®) with

Proof. Let S denote the non-abelian composition factor of G, so that Se<1G¢/Z(Ge) < Aut(Se). As
G. is almost quasisimple, E(G,) = Gﬁ‘”). Next, since H, is hypergeometric, a generator of I(0) has
a simple spectrum on H., whence G, satisfies the condition (*) of [KT5]. Also, the condition ¢" > 49
implies that D, := rank(H.) > 24. Note that, since 2D, + € is a prime power (namely ¢"), D, # 28.
Hence, by [KT5, Theorem 6.4], S is not any of 26 sporadic simple groups. We will now assume

that neither GSFOO) nor G(_OO) is a cover of an alternating group, whence both S, and S_ are simple
groups of Lie type in characteristic 4 and r_, respectively. Now we can apply [KT5, Theorem
6.6] to conclude that there is some power s, of r. such that either S. = PSLa(s¢), or E(G,) is a
quotient of SLy,, (S¢), SUpm, (8¢), or Spy,,, (sc), and it acts on H, via one of its Weil representations.
As D, > 24, we have ry = p = r_ by [KT5, Theorem 7.4]. If furthermore S, = PSp,,, (s¢) with
Seme = ¢" then the statement follows with v = e.

Consider the case Se = PSU,,_(s¢) with m. > 2, and D, = (s + (—=1)"<s¢)/(sc + 1) or (s —
(=1)™)/(se +1). As p = re 1 D¢, we must have that D, = (s — (—=1)")/(se + 1). Now, if
€ = (—1)™<, then p divides

e (—1)Mme 9 gMe _1m6€_ _1)me
"= 92D, +6_2#+(71)m€: si'e + (—1)Mese — (—1) ’
Se+1 Se+1
a contradiction as p|s.. Recall that n > 3. Hence, if e = —(—1)"<, then p? divides
Me __ _1 Me 2 Me __ _1 Me 3
qn_2De+6—2 £ ( ) _(_1)77’15: Se ( ) (85+ )’
Se+1 se+ 1

again a contradiction.

It remains to consider the case S, = PSL,,_ (s¢) with m¢ > 2, and D, = (s — s¢)/(sc — 1) or
(sl —1)/(se — 1) for both € = £. As p = r¢ t D,, we must have that D, = (s’ —1)/(se —1). Now,
if e = —, then p divides

me _ | 25 — 5, — 1
_2D+e_2€ =P TP
—1 Se — 1

a contradiction as p|s.. Thus the statement follows with v = —. O
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Remark 15.5. Note that in the case ¢ = 3 of Proposition 15.4, the main result of [KT7] produces a
hypergeometric sheaf in characteristic p = 3 of rank (3" — 1)/2 and with the geometric monodromy
group being a quotient of GL,(3).

Next we prove a variation of [KT6, Theorem 6.4]:
Theorem 15.6. Let ¢ = p/ be a power of a prime p > 2, n € Z>1, and let L := Spy, (q) with

(n,q) # (1,3). Suppose that ® : G — GLy4n (C) is a faithful representation of a finite group G > L
with the following properties:

(a) ® is a sum of two representations, ®* of degree (¢" —1)/2 and ®~ of degree (¢" +1)/2;

(b) For all g € G, Tr(®(g)) € K == Q(+/(~1)®=1/2p);

(c) @| is a total Weil representation; and

(d) For all g € G, |Tr(®(g))|? is always a power of p.

Then the following statements hold.

(i) Ca(L) =Z(G) = C x Z(L), where Z(L) = (3) = Cs, and either
(o) |C] <2, or
(B) p =3 divides | det(®(Q))| for each e =+, 21 f, and C € {C3,Cs}.

In all cases, C' can be chosen to act via scalars in ®.

(ii) Embed L in T := Spy,¢(p) and extend ®|;, to a total Weil representation I' — GLgn (C) (which
we also denote by ®) using [KT6, Lemma 6.1]. Then there exist a divisor e|f and a standard
subgroup H := L x C, of I such that

Z(GL (C))®(G) = Z(GLyn (C))@(H).
Proof. (a) Since ®|z, is a total Weil representation, the central involution j of L satisfies ®(j) =
k - diag(Id, —Id) for some x = +. Hence, for any g € G we have by (b) that
Tr(2(g)) + KT (2(jg)) = 2Tr(27(g)), Tr(2(g)) — £Tr(2(jg)) = 2T (2™ (9))
both belong to K. Thus Tr(®¢(g)) € K for each ¢ = £. Now statement (i) follows from [KT6,
Lemma 6.3].

(b) Note that any element in Np(L) preserves the equivalence class of each of the Weil represen-
tations ®€|r, hence it can only induce a field automorphism of L (modulo Inn(L)). The subgroup
of all the field automorphisms of L is cyclic of order f, see [GLS, Theorem 2.5.12]. Thus we may
assume that there is some e|f such that G induces a cyclic subgroup of field automorphisms of L of
order e. Thus the action of G via conjugation on L induces the same automorphism subgroup as of
a standard subgroup H := L % (o) = Spy,,(q) X Ce of I'. As C(L) = Z(G) = CZ(L), we can write

(15.6.1) G =(CL,g),

where ¢ € G induce (via conjugation) the same automorphism of L as of o. It follows that
®¢(g)®¢(0) ! centralizes ®¢(L), and so by Schur’s lemma we have

(15.6.2) % (g) = ad*(0), 0™(g) = H0(0)

for some «, f € C*. As o has order e, we obtain that

(15.6.3) Z(G) > ¢(¢°) = diag(a® - 1d, p° - 1d).

On the other hand, Z(G) has exponent 2d, where d := ged(p, 3). It follows that
(15.6.4) a?de = e — 1,

Recall that @€ is irreducible over both L and H = L x C,. Hence by [Is, Lemma (8.14)(c)], for
each € = £ and for the coset oL we can find h® € L such that

(15.6.5) Tr(®¢(che)) # 0.
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Now using (15.6.2) we have
Tr(®T(gh™)) = Tr(a®™ (0)@T (hT)) = Tr(ad®™ (ch™)) = aTr(®T (ch™)).

But Tr(®*(ch™)) € K by [Gro, Lemma 13.5], and Tr(®*(gh™)) € K as shown in (i). Together with
(15.6.5), this shows that « € K. The same argument applied to A~ shows that 8 € K. On the other
hand, the only roots of unity in K are 41 if p > 3, and +¢, 0 < i < 2; in particular, they are (2d)*"
roots of unity. Hence, (15.6.4) now implies that |a| and |3| both divide ged(2de, 2d) = 2d.

We have shown that (8/a)?! = 1. As 21 d = ged(p, 3), replacing g by gj if necessary, we obtain
that in fact (8/a)? = 1. Consider the case a = 3. Then ®(g) = a®(c) by (15.6.2). Recalling that
®(C') consists of scalar matrices, we see from (15.6.1) that

Z(GLg (C))2(G) = ©(Z(GLg (C)))2(H),
as stated.

(c) It remains to consider the case o # 3, whence p = 3 and v := 3/« is a primitive cubic root
of unity. First we consider the case 3 { e. Hence (15.6.3) implies that Z(G) = Z(L)C contains
af - diag(Id,~¢ - Id). But this is impossible, since ®(C') consists of scalar matrices and ®(Z(L)) =
(k - diag(1d, —1d)).

Next we consider the case 2 { e. In this case, we can use the same arguments given in parts (i)
and (ii) of the proof of [KT6, Lemma 6.4] to show that we can choose g so that o = 3, and the
statement follows again.

In the general case, write e = ejes with e; being the 3-part of e, and so 2 1 e; and 3 1 es.
Correspondingly, we can also write g = g1g2 and 0 = 0109, with o1 being the 3-part of o, and g;
inducing the same automorphism of L as of 0;. Note that G = (G1,G2) and H = (Hy, Hy), where
G; :=(CL,g;) and H; = L x {(0;) for i = 1,2. The above two cases then yield

Z(GLgn (C))2(Gi) = ©(Z(GLyn (C)))2(H,)
for 1 = 1,2, whence the statement follows for G. [l
Now we can prove the main result concerning the symplectic groups:

Theorem 15.7. Let ¢ = p! be a power of a prime p > 2, and let n = a + b with a,b € Z>1, 2|ab,
and ged(a,b) = 1. Then the following statements hold.

(a) Over any finite extension k of Fy, the local system W(a,b) introduced in Definition 15.1 has
geometric and arithmetic monodromy groups Ggeom = Garith,x = (t) X Spa,(q), where Spy,(q)
acts on W(a,b) via one of its total Weil representations and t acts as the scalar —1 on W(a,b).

(b) Let Hepen(a,b) and Heoqq(a,b) denote the two irreducible subsheaves of even, respectively odd,
rank of W(a,b). Then their geometric and arithmetic monodromy groups are Sp,,,(q) in an even-
dimensional irreducible Weil representation, respectively Cy X PSps,, (q) in an odd-dimensional
wrreducible Weil representation.

(¢) Over any subfield k = Foi/a of By, the arithmetic monodromy group Gasithk of W(a,b) over k
satisfies Garith e = ((t) X Spa,(q)) - Cq4, and induces a subgroup Cy of outer field automorphisms
of Span(q). Moreover, Z(Garithi) = Z(Ggeom) = (t) X Z(Spa,(q)) = C3, and

Garith,k/Z(Garith,k) = PSpZn(Q) A C’d = PSpZn(Q) X Gal(Fq/k)

(d) Ower any finite extension k of Fy, the local system W(a, b) := W(a,b) ® Ly, has its geometric
and arithmetic monodromy groups Ggeom = Glarith,k = SP2,(q)-
(e) Over any finite extension k of Fy, the local system W*(a,b) introduced in Definition 15.2 has

its geometric and arithmetic monodromy groups Gyeom = Gy = (Ggeom) ™) = Spa,,(q)-
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(f) Over any subfield k =TF /0 of Fq, the arithmetic monodromy groups of W(a, b) and of W*(a,b)
are isomorphic to Sps,(q) - Cyq, both inducing a subgroup Cy of outer field automorphisms of
Span(q). Moreover, each group X of these two has Z(X) = Z(Sps,(q)) = Ca, and

X/Z(X) = PSpy,(q) x Cq = PSpy,(q) x Gal(F,/k).

Proof. (i) Let ® : Garith x — GLgn(C) denote the corresponding representation of Gaith r on W =
W(a,b). By Theorem 11.1, ® = & @ &, where deg(®) = (¢" — €)/2 and each of ®(Garith k)
and ®¢(Ggeom) is an irreducible almost quasisimple group for € = £. As Gaith k/Ggeom is cyclic, it
follows from [GT, Lemma 2.5] that

L= (Garith,k)(oo) = (Ggeom)(oo)

and ®¢(L) is irreducible, quasisimple.

By Theorem 11.8(i), Tr(®(g)) # 0 for all g € Garith,x. Applying [KT6, Proposition 6.7], we
conclude that L is quasisimple. Now, as the two irreducible summands of VW are hypergeometric
in characteristic p with finite monodromy, we see that Ggeom contains a p’-element g with simple
spectrum of order divisible by M AB.

Assume in addition that ¢" > 49. Then we can apply Proposition 15.4 to ®“(Ggeom). If L is
a cover of Ay, then, since deg(®€) > 24, we see by Theorem 6.2 and Lemma 9.1 of [KT5] that
N —1 = deg(®") = deg(®~), which is impossible. Hence ®¢(L) is a quotient of some Sps,,_ (p™)
with meac = nf. Now, using Theorem 11.8(i) and [KT6, Theorem 6.5], we have that

(15.7.1) L= San/d(qd) for some divisor d|n, and ®|y, is a total Weil representation.

Now we consider the remaining case (n,q) = (3,3), whence {deg(®"),deg(®)} = {13,14}.
Using [HM], we see that the quasisimple group L that is irreducible in both ®* and ®~ either
satisfies (15.7.1), or L = SLy(13). We also note by [KRLT2, Lemma 3.1] that P(co) acts on Kl
as an elementary abelian of order 3% and its image intersects Z(®*(G)) trivially by Proposition
14.1(ii). It follows that the image @ of P(0o) in G has order divisible by 3% and in fact 3% divides
|G/Z(G)| which is a divisor of |Aut(L/Z(L))|. This rules out the latter possibility L = SLy(13),
and thus (15.7.1) always hold.

Now, using Theorem 11.1(i) and [KT6, Lemma 6.3], for G € {Garith k, Ggeom } We have that

(15.7.2) Co(L) = Z(G) = C x Z(L),

for a cyclic scalar subgroup C, where |C| <2 or p =3 and |C| = 3, 6.

(ii) Recall that G' contains an element g of order divisible by M AB = (¢*+1)(¢®+1)/2. Without
loss of generality, we may assume that a > b, whence a > 2. It follows from [Zs] that |G| is divisible
by a primitive prime divisor ¢ of p?/ — 1; in particular,

(15.7.3) 0>2af+1>max(4,nf) > df,

and so ¢ is coprime to |Cg(L)| because of (15.7.2). As L < G, it follows that ¢ divides |[Aut(L)| =
|L| - df. Together with (15.7.3), this implies that ¢ divides |L|. Hence we can find some 1 <i <n/d
such that ¢ divides ¢*# — 1 = p?>#f — 1. The choice of £ now yields that 2af divides 2dif, i.e. a|di.
But @ > n/2 and di < n, so we must have that a = di, and so d|a. As d|n =a+ b by (15.7.1), we
also have that d|b. Since ged(a,b) =1 by (15.0.1), we conclude that d = 1. Thus G > L = Spy,,(q).

In the case G = Ggeom, any central element acts on the two individual subsheaves of rank
(¢"+£1)/2 as an element of p’-order by [KT5, Proposition 7.1}, whence |C| < 2. On the other hand,
by Corollary 13.4, some hypergeometric summand of WW(a, b) has nontrivial geometric determinant
L., hence Ggeom cannot be perfect. It follows that Ggeom = (t) x L with C' = (t) = Cy.
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(iii) Using Theorem 11.7(i), (i-bis), and Theorem 11.8(i), and the results of (ii), we can now
deduce from [KT6, Theorem 6.4] that Gayith k = Carithk X L, where either

(a) Carith,k = <t> = CQ, or
(B) Carithx = (t) x (2) = Cs, p=3, and 21 f.

Suppose we are in the case of (8). As GarithF, > Garithk, it follows that Cargnr, = Cg, and that
Garith,F,/Ggeom = O3, where C3 = (z) with 2z acting via as the scalar (3. Thus, modulo Ggeom,
any element Frob,y of Gaithr, is zdeg(k/Fq); in particular, the element g := Frob;r, over F, in
Garithr, is zh for some h € Ggeom. Recall from (ii) that Ggeom = (t) X Spy,(q), with t acting as
—1 and Sp,,,(¢) acting via one of its total Weil representations. Hence, by [GMT, Lemma 2.3],
m = (Tlr(<1>(h)))2 € Zo, and so (Tlr(<1>(g)))2 = m(? ¢ Z. On the other hand, by Lemma 15.3(ii),
the square of the trace at v = 1 over F, is +¢, a nonzero integer, a contradiction.

Thus («) must hold for all £ O F,, and statement (a) is proved completely.

Statement (b) now follows, by inspecting the image of Cy x Spy,,(¢) in individual irreducible Weil
representations.

(iv) To prove (c), we apply Theorem 15.6 to G = Glarith, 1 to obtain a divisor e|f and a standard
subgroup

(15.7.4) H 2 Spy,,(q) % Ce < SPaye(¢7/°) < Spays(p)
such that
(15.7.5) Z(GLygn (C))®(G) = Z(GLyn (C))B(H).

By [KT3, Theorem 3.5], there exists h € H such that |Tr(®(h))|> = ¢'/¢. Using (15.7.5), we can
write ®(h) = y®(g) for some g € G and v € C*. As g and h both have finite order, ~ is a root of
unity and so |y| = 1. It follows that |Tr(®(g))|> = |Tr(®(h)|> = ¢'/¢. Theorem 11.8(i-bis) applied
to W(a,b) over F 1/ implies that q'/¢ is a power of ¢'/%, i.e. e|d.

On the other hand, by Lemma 15.3(i), there exists ¢’ € G such that |Tr(®(g'))|> = ¢*/?. Using
(15.7.5), we can again write ®(g') = v'®(h’) for some h' € H and 7/ € C* with |7/| = 1. It follows
that |Tr(®(h))]? = |Tr(®(¢)|> = ¢/¢. Note that H embeds in Spy,.(¢"/¢) < I' (as a standard
subgroup), see (15.7.4). Hence [GMT, Lemma 2.3] applied to Spy,.(¢"/¢) implies that ¢*/? is a
power of ¢%/¢, i.e. dle.

We have shown that d = e. This implies that Gt induces the subgroup Cy of outer field
automorphisms of Garith,F, / Carith,r, = L. On the other hand, the index of Garithr, I Garithx =
GarithJFql /d divides d. This can happen only when Gaithx = Garitn,F, - C4, and that

Ctiinn (L) = Z(Garith k) = Z(Garithr,) = (t) x Z(L) = C3.

Now we can also identify Garith i/ Z(Garith k) With the subgroup PSps, (¢) X Gal(F,/k) inside Aut(L),
proving (c).

(v) Now we prove (d). Recall that Z(L) = (j), where j acts as —1 on the even-rank summand
Heven of W(a, b) and trivially on the odd-rank summand H,qq of W(a, b). On the other hand, ®(t) =
—Id, hence tj acts trivially on Heyen, and as —1 on Hegq. Since Garith ke = (tJ) X Spay,(¢) and Spo,, (q)
is perfect, it follows that H,qq has arithmetic determinant £,, and Hepen has trivial arithmetic
determinant. Hence, both Hyqq ® Ly, and Hepen @ Ly, have trivial arithmetic determinants.

Next, tensoring with £,, changes the trace at v € E* by a factor of x2(v) = £1. In particular,
it does not change the absolute value of the trace at any v € E*. Furthermore, the [2]* Kummer
pullbacks of W(a,b) and W(a, b) are isomorphic, and s0 Ggeom has a normal subgroup X of index
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at most 2, which is also a normal subgroup of Ggeom of index at most 2. Furthermore, as usual
Glarith,k/Ggeom is cyclic. It follows that

(éarith,k)(oo) = (égeom)(oo) = X(Oo) =L= Sp2n(Q)-

Applying [KT6, Theorem 6.4] to éarith’k and arguing as in (ii), we conclude that éarith,k =C x L,
where C' = (¢) and either ¢ € (), or p = 3 and ¢ € (t, z). [Note that condition (b) of [KT6, Theorem
6.4] is seen to be satisfied by applying Galois automorphisms to the two irreducible constituents of
different dimensions.] As shown above, ¢ has trivial determinant acting on the two subsheaves of
rank (¢" £ 1)/2, and this rules out the case where p = 3 but ¢ ¢ (t). As t has determinant —1 on
the odd-rank subsheaf, the case ¢ = t is also impossible. Thus ¢ = 1 and Garith’k = égeom = L.

(vi) For (e), we note that W*(a,b) is also arithmetically isomorphic to the [M AB]* Kummer
pullback of W(a,b). Hence G, is a normal subgroup of égeom = Sp,y,,(q), with cyclic quotient,

geom

and that G;rith,kz is a subgroup of Garithk = Ggeom- It follows that G, = G;rith,k‘ = Spa,(q).

geom

For (f), recall that G’arithfp contains Ggeom = C;’arith,yq = Spsy,(¢) as a normal subgroup with cyclic
quotient of order e that divides f := deg(F,/F,). We now look at the element g := Frobyr, €

GlarithF,- For any divisor ¢ of f, by Lemma 15.3 the squared absolute value of the trace of g¢ =

Frobyp,. on W(a,b), and so on VNV(a, b) as well, is p°. On the other hand, by (d) and [GMT, Lemma

2.3], the squared absolute value of the trace of any element in Gge., < Ggeom 0n W*(a, b) is a power

of ¢ = pf. Tt follows that ¢° ¢ égeom whenever c is a proper divisor of f. Hence we conclude that
e = f. Next, suppose that Gaitnr, induces a group of order €' of outer (field) automorphisms
of Ggeom = Spa,(¢); in particular, €'|f. Using Theorem 15.6 and [GMT, Lemma 2.3] (applied to
SPane (@/€) > Spoy,, (q) X Cr), we get that the squared absolute value p of the trace of g = Frobyp,
on W(a, b) is a power of ¢*/¢ = p//¢'. It follows that e = f.

Now, if Fq1 sa is a subfield of IFy, then éarithﬁ / @geom is cyclic of order dividing d and éarithJF

J1/d

has index at most f/d in éarith’]}?p = égeom - Uy, whence éaﬂthm
q

J1/d
= Ggeom - Cg, inducing the

1/d

subgroup Cy of outer field automorphisms of @geom. It follows that

Cq (Geeom) = Z(Garitnz,14) = Z(Clgeom) = Co,

Garith,]Fql/d

and we can identify Garith r . /Z(G geom) With the subgroup PSps,, (¢) % Gal(Fy/F j1/a) of Aut(Ggeom)-
q

The arithmetic monodromy group of W*(a,b) over F i/4 can be determined entirely similarly,
utilizing Lemma 15.3 for Froby,. O

Remark 15.8. As mentioned above, [GMT, Lemma 2.3] shows that the square of a total Weil
character of Sp,,,(q), ¢ any odd prime power, takes values + powers of ¢. This phenomenon is
explained in full generality by Theorem 11.10.
16. DETERMINATION OF MONODROMY GROUPS: THE CASE M =q+1 AND n >4
In this section we assume that
(16.0.1) 21 ab, ged(a,b) =1, n=a+b >4, p any prime, q = p’,

in particular, M = ¢+ 1, A= (¢ +1)/(¢+1), B=(¢®+1)/(q¢+ 1), ged(A,B) = 1. Fix o, 3 € Z
such that

(16.0.2) aA — BB =1 and o + 3 coprime to M
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using Corollary 13.2. With this choice of parameters, the principal objects of this section are the
following local systems on G,,/F, and A!/F,, cf. Definition 11.5 and Theorem 12.1.

Definition 16.1. Let us denote by
Wal(a,b) = W(a,b) := W(M, A, B)

the arithmetically semisimple local system on G, /IF,, whose trace function at v € E*, E/F), a finite
extension, is given by
1 a
Vi —— Z wE(xw — gL By H).

#E

This system W(M, A, B) is the descent (cf. the beginning of §13) from G,,/Fy(paman) to Gy, /Fp
of the direct sum of the Kloosterman sheaves

KIU(M,A,B,0~",67%)(—~A~B+1) = Kl,(Char(MAB)\(Char(A, s ?)UChar(B,o~*))(—A-B+1)
with 1 # o € Char(q + 1), see (4.2.1), and the hypergeometric sheaf
Hyp(M, A, B,1,1)(—A—B+2) = Hypy (Char(M AB)U{1}\(Char(A)UChar(B)); 1)(—A—B+2),

each summand being the relevant (gr,—s(R?(pry)(Fy,p)))(1), see (5.0.1).
Its Kummer pullback

zweER

W*(a,b) := [MAB]*W(M, A, B)
is a lisse sheaf on A, with trace function at v € E, E/F, a finite extension, given by

(16.1.1) v = #1E Z Vg (vew — 20+ _ wqa+1).

z,weE

Definition 16.2. When 2 { ¢, we also consider the local system W(a, b) := W(a,b) ® L,,, where
X2 is the quadratic character. By Theorem 13.3, the geometric determinant of W(a,b) is L,, and

the geometric determinant of W(a, b) is trivial.
First we prove an analogue of Lemma 15.3:

Lemma 16.3. Given any odd integers a,b > 1, the following statements hold.

(i) Suppose p > 2. Then for any subfield E of F, the squared absolute value of the trace of
Frob, g at v =2 on W*(a,b) as defined in (16.1.1) is #E. If in addition gcd(a,b) = 1, then
W*(a,b) = [MAB]*W(a,b), and hence the squared absolute value of the trace of Frob, g at
v =4 on W(a,b) is #E.

(ii) Suppose p = 2. Then for any subfield E = F2c of Fp2, the trace of Frobyp at v =0 on
W*(a,b) as defined in (16.1.1) is #E if 24 ¢ and 0 if 2|c.

Proof. (i) First we prove the statement in its WW*(a,b) form. By Definition 16.1, the trace at v = 2

is
1

#E

Following part (b) of the proof of Theorem 11.8 and taking s = ¢ := 1/2, we see that the squared
absolute value of this trace is #Null(F), where

a 1
Z Ve (20w — g0+ H) = Yo Z Vg (2w — g0t — wq'H).

r,weE z,wel

Null(E) = {(x, w) € B2 |z = (w/2)V7 + (w/2)?, w= (x/2)"7+ ($/2)q} ,
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cf. (11.8.3). We must show that for any = € F, the pair (z,w := (x/2)"/9 + (x/2)9) lies in Null(E).
But for any z € £ C F2 and with w = (z/2)Y9 + (2/2)9, we have that

(w/2)Y7 4+ (w/2)" = (/27 + (2/2) + (2/2) + (/2)7) /2 = 20/2 = 2.
Thus #Null(E) = #E, and the claim follows for W*(a, b). For W(a,b), note that M AB = 2(mod
(p— 1)) and so 2M48 = 4 in E, whence we are done by Lemma 14.3.
(ii) First we show that
(16.3.1) > et is #E if 24 c and 0 if 2c.
ek

Write ¢ = pf with p = 2. To say that F is a subfield of F,2 is to say that c[2f. If ¢ is odd
then c|f. Putting r := pl/¢, we have E = F,>. In this case, as both a,c are odd, we have
@+ 1=7r%+1=r+1(mod (r?> —1)). Then for ¥ € E = F,2, 29°*! = 2"+ € F,», and hence

2
Trr , /7, (m”‘l) ="t 4 T = 9 — 0.

Thus for z € £ =T,2,

Pp(ith) = (TYIFS/FQ (%’"”1)) B w<TrFr/F2 (Trs, o /p, (w”l))> = ¢(Try, /,(0)) = (0) = 1.

Hence Y, p ¥p(29" ™) = #E as claimed.
If ¢ is even, then 2f/c divides f, so that E is a subfield of F,. Therefore, 4"t = 22 for any

x € E, and so
> et = ye@?) =) ve) =0.

zeE zel zel
Now, the trace at v = 0 in question is

7 3 v 0™ = op S s 3 us ),

T, weEE el weFr
and the statement follows from (16.3.1). O

Lemma 16.4. Let Z be a finite abelian group, ¢ = p/ a prime power, and let \g, A1, . .., A\, € Irr(2).
(i) Suppose A := "1\ vanishes on Z ~ {1}. Then |Z| divides q + 1.
(ii) Suppose there is some z € Z such that A =Y 1, \; vanishes on Z~{1,z} and A(z) = —(q+1).
Then |Z| divides 2(q+ 1).
(iii) Suppose 2|n >4, A3 =1z, (n,q) # (4,2), and that

q
Si=X+DY A\,
=0
with D = (¢" — 1)/(q + 1), takes values only in {—¢",0,4p" | 0 < i
Then either |Z| divides q + 1, or Z contains an element z with \;(2)
In the latter case, |Z| divides 2(q + 1).
(iv) Suppose (n,q) = (4,2), A3 = 1z, and that

<nf—1} on Z ~ {1}.
=—1forall) <17 <q.

q
Si=X+DY A\,
=0
with D = (¢" —1)/(q+1) = 5, takes values only in {0,+q¢" | 0 <i<n—1} on Z~{1}. Then
either | Z| divides g+ 1, or Z = {1,z} = Cy with —Xo(2) = M (2) = A2(2).
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Proof. (i) Note that

_q+1
A, 1z7]z Ax) =
Izl Z; I
is an integer, whence the statement follows.
(ii) Let « be the linear character of the cyclic subgroup (z) sending z to —1. Since Z is abelian,
we can find a linear extension 5 of a to Z. Now
x +1)B1) - (¢+1)8(2) _ 2(¢+1)
Az = Bz)A(z =
1Z] Z |Z] |1Z]

ez
is an integer, whence the statement follows.
(iii) Consider any 1 # € Z. By the assumption, \o(x) = £1, and X(z) = 0, —¢", or £p’ for
some 0 < j<nf—1. Now
Z 3 X%(x) — N(x) =D - A(x),
and so A(z) = (X(x) — M\o(z))/D is both rational and an algebraic integer, whence

(16.4.1) D divides X(x) — Ao(x).
We will now show that
(16.4.2) Either X(x) = Ao(x) or X(z) = —¢".

Indeed, if (n, q) # (6,2), then p™f — 1 admits a primitive prime divisor £ by [Zs]; if (n,q) = (6,2), we
take ¢ := D = 21. In either case, ¢|D and so ¢ divides ¥(z) — Ao(x) by (16.4.1); furthermore, ¢ > 5.
Now if ¥(x) = 0 or —\o(z), then |X(x) — Ao(x)| < 2 < £, a contradiction. Suppose X () = £\o(z)p’
with 1 < j < nf — 1. Then ¢ divides p’ F 1. When (n,q) = (6,2), 0 < j < 5, so £ = 21 cannot
divide p’ — 1, again a contradiction. Consider now the case (n,q) # (6,2). Then £|(p* — 1) implies
by the choice of ¢ that nf|2j. However, 1 < j < nf, so we must have j = nf/2. In this case,

1< |8@) = do@)| <p +1=pY2+1=¢"?+1<("-1)/(¢q+1)=D

(using (n,q) # (4,2)), and this contradicts (16.4.1).

Now, if X(z) # —q" for all 1 # x € Z, then by (16.4.2) we have X(z) = Ag(z) and A(xz) = 0 for
all 1 # x € Z, whence the statement follows from (i).

Consider the case X(x) = —¢" for some 1 # x € Z. Then by (16.4.1) we must have that
Xo(z) = —1, and so

Y (i) = —Ax) = (No(z) - £(x))/D = q + 1,

i=0
implying that all roots of unity —\;(x) must be 1. Note that X is faithful by assumption, and fix an
element z € Z with %(z) = —¢", which implies that \;(z) = —1 for all 7. In this case, \;j(zz71) =1
for all i, and so ¥(zz~!) = ¢" and = = 2 by faithfulness of ¥.. We have shown that A(z) = —(¢+1)
for v = 2z, and A(z) =0 for all z € Z ~ {1, z}, and so the statement follows from (ii).

(iv) We continue to argue as in (iii) and note that (16.4.1) still holds. In particular, this rules
out the possibilities ¥(x) = —MXg(z), 0, £2, —Xo(z), and +8 for 1 # =z € Z. Thus X(z) €
{No(z), =4 o(x)} when 1 # z € Z. Now if X(x) # —4Ng(z) for all 1 # z € Z, then X(z) = Ao(x)
and A(z) = 0, whence |Z]| divides ¢ + 1 by (i).

Suppose that 3(z) = —4\g(z) for some 1 # x € Z. Then

2
S Xil@) = A(w) = (£(2) = Mo(@))/D = —Ao(a),
1=0
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and so (A1(x)/Ao(z)) + (Aa2(z)/Ao(x)) = —2. As \;j(z)’s are roots of unity, we must have that
—Xo(x) = Ai(z) = Aa(2).
Now, fix an element z € Z with ¥(z) = —4Xo(z), which implies that —Xo(2) = A\1(2) = A2(z). Then,
Mo(zz™h) = M(zz7h) = Ma(z271),

and so X(zz~ 1) = 16X\g(z2~!) € {£16}, whence = 2 by the assumption. Thus, when y € Z we
have that A(y) is equal to 3 if y = 1, —Ag(z) if y = 2z, and 0 otherwise. As in (ii), let « be the linear
character of the cyclic subgroup (z) sending z to Ao(z), and consider a linear extension § of a to

Z. Now _
1 * BMAM) +B(2)A(z) 2
BMz=—= D ByAy) = =7
is an integer, and so |Z| divides 2. Since z # 1, we have Z = {1, z} = Cy, as stated. O

For any prime power ¢ and any n > 2, recall that the finite unitary group GU(W) = GU,(q),
with W = IFZQ, admits a total Weil representation of degree ¢" over C, with character

(16.4.3) Cn,q(g) _ (_l)n(_q)dim[qu Ker(g—1w)

for any g € GU,(q), see e.g. [TZ2, (9)]. Fix primitive (¢ + 1) roots of unity o € C* and ¢ € FZQ.
Then G g = Yty Cfl’q is the sum of ¢ + 1 irreducible Weil characters of GU,(q), with

) -n" 1 ; im; r(g— L.
(16.4.4) C%jq(g) - (=1 Z Qll(—q)d F o Ker(g—c"1w)
=0

q+1

being the character of the irreducible summand of the total Weil representation of GU,(q), on which
the generator z := o - Id acts as the scalar @', see [TZ2, Lemma 4.1]. More intrinsically, pgr1(Fg2)
acts on GU,(q) by (§,g) + £g. For each C-valued character x of y411(Fy2), the corresponding Weil
character ¢y, is the x-isotypical component of (;, 4

Conlg) = (=)™ Z Y(C)(—Q)diquQ Ker(g€~1w)

+1
1 £€pq+1(Fy2)

If 2|q or if n > 3, then the restrictions (¢, of C,"l’q to SU,(q), 0 < i < ¢, are pairwise distinct irreducible
Weil characters of SU,(q), see [TZ2, Lemma 4.7].

Formula (16.4.4) also makes sense for n = 1, except that C?,q becomes the zero class function on
GU;(q). With this convention, we note the following branching formulas, which generalize [KT4,
(2.0.3)]:

Lemma 16.5. (i) Let n = m + 1 with m,l € Z>1. Then the restriction of C};q to the natural
subgroup GU,,(q) x GU;(q) of GU,(q) is

Yo G BGy

0<rs<gq,
(@+D)|(r+s—1)

(ii) Let T = (t) be a cyclic mazimal torus of order ¢" — (=1)" of GUy(q), and let B be a generator
of the character group Irr(T). Then the restriction of ¢, , to T is

E B+ (—=1)"d; ol7.
0<r<gq"”— (=17,
(¢ +D)|(r —1)
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Proof. (i) Formula (16.4.3) shows that the restriction of (,4 to GUy(q) x GUi(q) is Gn,g X (1 q-
Now write z = diag(zm, 21) with z,, = o-1d € Z(GU,,(¢)) and z; = p - Id € Z(GU;(q)). The
desired formula then follows by looking up the g'-eigenspace of z in V,,, @V}, with V;,, affording the
GU,,(q)-character ¢, 4 and V; affording the GU;(g)-character ¢ q.

(ii) Note that no nontrivial power ¢ has eigenvalue 1 on 72, hence Cngt) = ()" for 1 £t €T

by (16.4.3), and thus (4|7 = ;1-16(_1)n_1 B7 + (=1)"17. We can choose t in such a way that
z = t(@"—(=D")/(a+1)  and then deduce the stated formula by looking up the g'-eigenspace for z in
Cn7q|T" |:|

The total Weil character > 1_, ¢} of SU,(q) can be characterized as follows:

Theorem 16.6. Let p be any prime and q be any power of p. Let L = SU,(q) with n > 3 and
(n,q) # (3,2). Suppose 1 is a (not necessarily irreducible) complex character of L such that

(a) (1) =4q";

(b) ¥(g) € {0,+¢" |0 <i<n} forallg € L; and

(c) every irreducible constituent of ¢ is among the ¢+ 1 irreducible Weil characters (¥, 0 < u < g,
of L.

Then v is the total Weil character, that is, ¥ = > 1 _, (.

Proof. (i) By assumption (c),
q
T/} = Z auC;t7
u=0

where a, € Z>¢. Setting r := (—1)" and comparing the degrees, we obtain

¢" — K -
(ap — )k = 1 (q+1—2au>;

u=0

in particular, ag — 1 is divisible by (¢" — k)/(¢ + 1). On the other hand,

v(1) 7" ¢ | _Coatl -1 _q¢"—k

—1§a0—1§

QM) (¢ +an)/la+l) T g q—1 g+1 =~ ¢+1°
since n > 3 and (n,q) # (3,2). It follows that

q
(16.6.1) ap=1, Y a,=q.
u=1

(ii) Now, view L as SU(W), where W = Fl; is endowed with an L-invariant non-degenerate

Hermitian form, and consider the subgroup H = SU3(q) of L that acts trivially on a non-degenerate
(n — 3)-dimensional subspace of W. An easy induction on n > 3 using Lemma 16.5(i) and (16.6.1)
shows that

q
(16.6.2) Yy = Zbucg, where b, := ¢" 3 + k(1 — ay),

u=0

in particular,

(16.6.3) bo=q""% Y bu=q""
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Also, let d := ged(2,q + 1), € = (441 be a primitive (¢ + 1)*" root of unity, and set

q
Y = Z by
u=1

for any k € Z, which in fact depends only on k(mod (¢ + 1)). Then (16.6.3) implies that
(16.6.4) Yo=¢""2 |Zk < "2

(iii) Here we consider the case ¢ > 4. This ensures that ¢ — 1 does not divide ¢ + 1. We will

use the character table (and the notation for various conjugacy classes) of H as displayed in [Geck,

Table 3.1]. Consider any k € Z with (¢+1)/2 1 k. Evaluating 1 at an element of the class Cék’_km ,

we have by (b) that
(16.6.5) =20+ Yo+ S+ =" 2" S+

belongs to
V:={0,+¢"|0<i<n}.

Next, as ¢ > 4, by adding g + 1 to k if necessary, which does not change ¥i, we may assume that

(¢ —1) 1 k. Evaluating v at an element of the class C;k) and using (b) again, we have that X € V.
Now, if [Zg| < ¢4, then

qn—l > qn—2 + 2qn—3 + 2qn—4 > ‘ZM > qn—2 + 2qn—3 o Qqn—4 > qn—Z’

contradicting (16.6.5). On the other hand, if ¥, = ¢" 2, respectively, —¢" 2, ¢" 73, then X} =
" 3(3q+2), " 3(2—q), ¢"3(q+4), respectively, which again contradicts (16.6.5). Together with
(16.6.4), this leaves only one possibility that ¥j, = —¢"~3. Now using (16.6.2), we deduce that

q
Z aye™® =0
k=0

if 1 <k <gqandk# (¢+1)/2. Thus the polynomial
q
Ft) = aut" € Z[t]
u=0

has e® with 1 < k < ¢, k # (¢ + 1)/2 as roots. Also, f(1) = 3¢ _ja, = ¢+ 1 by (16.6.1). If
2|g, it follows that f(t) is divisible by (971 —1)/(t — 1), and so f(t) = Y. ?_,t*. If 2} ¢, we have
that f(t) is divisible by (t4t! —1)/(t?> — 1), whence f(t) = (at +b)(t9~ 1 4973 + ... + > + 1) with
a,b € Q. Evaluating at ¢ = 1 we obtain a + b = 2. Next, b = f(0) = agp = 1, and so a = 1, whence
f(t) =>21_,t* again. In other words, a, = 1 for all u, as stated.

(iv) Assume now that ¢ = 2. Note that condition (b) implies that 1 is real-valued. However,
¢l = ¢2. It follows from (16.6.1) that a; = ag = 1, as stated.

Finally, we consider the case ¢ = 3. Then (! is real-valued when i = 0,2 and ?}L = (3. Again using
(16.6.1) and assuming that 1 is not the total Weil character, we must then have that ¢ = ¢° + 3¢2,
ie. (ap,a1,a2,a3) = (1,0,3,0). Now using (16.6.2) and evaluating ¢ at an involution g € H, we
obtain

P(g) =3"2 = 8(—1)"7,

which does not belong to V, a contradiction. O
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Remark 16.7. The total Weil character Y % ¢} of SU,(q) is characterized in Theorem 16.6 as
the unique character, whose irreducible constituents are among the g + 1 Weil characters (%, 0 <
u < ¢, and which takes values only among 0,+¢’, 0 < [ < n. One may wonder if an analogous
characterization can be found for the total Weil character ¢, , = > ¢, Cfl,q of GU,(q):

Is Cnyq the only character of GUy(q), whose irreducible constituents are among the (g + 1)* Weil
characters Cfqu)\j, 0 <i,j < q (where X is a fixed linear character of order ¢ + 1 of GU,(q), see
[TZ2, (10)]), and which takes values only among 0,+q', 0 <1< n?

Suppose 2 1 ¢ and let Yo = A@t1)/2 denote the unique quadratic character of GU,(q). Then
certainly X2(n,q also satisfies the same properties, and in fact, this is the character obtained when
we embed GU,(q) in Sp,,(¢) and restrict a total Weil character of Sp,,(q) to GUy(q), see e.g.
[KT3, Theorem 3.1].

However, there are other sums of irreducible Weil characters of GU,,(¢q) that also share the same
properties. For instance, consider any 1 < e < ¢ and the character > ! ¢ q)\el We may assume

that A\(g) = o whenever det(g) = o, 0 < d < . For such an element g € GU,(q), by (16.4.4) we

have . .
. . dlm]F Ker(g—o'-1w)
> A g) = o> o (—q)
=0

q
=0 =0
q

q
dimp 42 Ker(g— o Aw) i(l+d
(—q) DDA
=0 =0

-n" g im er(g—o-
=l Z(*Q)d e NN )8

_ (_1)n(_q)dlm]]<‘q2 Ker(gfg’de-lw);
in particular, > 7, ¢} q)\ei takes values only among (—1)"(—q)!, 0 <1 < g, as (4 does.
Another way of describing the character Y7 (! q)\ez is this. For each a € Z/(q + 1)Z, the map
of GU,(q) to itself given by

(16.7.1) Ve : g > g-det(g)°

is an endomorphism of GU,(q); furthermore, if det(g) = o? then Ker(g — 0% - 1y) = Ker(ve(g) —
1w ). For any representation ® of GU,(q),

g 2(7e(g)) = (g - det(9)°))

is another representation of GU,(q). Applying this construction to the total Weil representation
with character (4, we get a new representation whose character is Y 7, Cn g\ We also note
that, for e € Z/(q + 1)Z, . is an automorphism of GU,(g) precisely when ne + 1 is invertible in
Z)(q+1)Z.

Fix a primitive M ABY roots of unity ¢ € EX and € € C*, and set

£ =B, vi=e4, =P v.=€P,

so that p = €4 = vB and g = ¢4 = vB. With this, we can prove the following characterization of

the total Weil character ¢, 4 of GU,(q), cf. (16.4.3).

Theorem 16.8. Given the hypothesis (16.0.1), and let ® : G := GU,(q) — GL(C) be a faithful

complex representation that satisfies the following conditions:

(a) @ = @f_®;, where ®; is irreducible of degree (¢" —1)/(q + 1) + dj0, and ®q is self-dual if
1€ {a,b};
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(b) There is an element g € G such that ®;(g) has spectrum
{e10<i<MAB -1, ()" £ 0, ()7 # 0}
for 0 <j <gq, and that G = (|G, G], g).
Then there exists an automorphism v of G such that Tr(®(y(h)) = (nq(h) for all h € G.

Proof. (i) By hypothesis, g has both order and central order equal to MAB = (¢°+1)(¢"+1)/(q+1),
and ®;(g) has simple spectrum for 0 < j < ¢. Applying [KT5, Theorem 8.3], we see that gZ(G)
generates a cyclic maximal torus in G/Z(G), and, after a suitable conjugation, we may assume that

'g - diag({c, f_qc7 §q2c7 ct 75(_q)a7167 de V_qd7 Vq2d7 ey l/(_q)bild)

with ¢ € Z/(¢* +1)Z and d € Z/(¢” + 1)Z. Since g generates G' modulo [G, G], det(g) = 0T has
order ¢ + 1. Replacing € by another generator of uasap to change p to another element of order
q+ 1, we may therefore assume that ¢+ d = 1(mod (¢+1)). Now, the condition that g has central
order ¢" ! + 1 is equivalent to that 1 = £¢/yid = gi(¢B=dA) if and only if M ABIi, i.e.

(16.8.1) ged(e, A) = ged(d, B) = ged(eB — dA,q+ 1) = 1.

(ii) The element g belongs to the standard subgroup GU,(q) x GUy(q) of G. Hence we can apply
Lemma 16.5(i) to GU,(q) x GUp(g), and then apply Lemma 16.5(ii) to

7 1= diag(§,€79,67, .. €00T) € GUA(g), yi= (v, % p”,... WT07T) € GU(g),

to find that the spectrum of g = diag(z,y) in a Weil representation with character Q{q is the
left-hand-side of

(16.8.2) {STCV‘Sd |0<r<q* 0<s<¢ r+s=j(mod M)} =[]~ ([W} U J3/@]),

where we denote [ Vt] := {z € C | 2V =t} for any t € C. To show that the left-hand-side and the
right-hand-side of (16.8.2) are equal, suppose that £ v*¢ = ¢ v’ with

(16.8.3) 0<rr <q¢*, 0<s,s<¢ r+s=r+5 =j(mod M).
Then
(16.8.4) gr=rle — p(s'=s)d,

and so B(qg+1)(r —r')c divides A(g+1) = ord(&). But ged(A, B) = ged(e, A) =1 (see (16.0.1) and
(16.8.2)), hence we can write r — ' = Au for some u € Z. Likewise, we have s — s’ = Bv for some
v € Z, and now, from (16.8.3) and (16.8.4) we obtain

cu+dv=0, Au+Bv =20

in Z/(q+1)Z. The determinant ¢B — dA of this system is invertible in Z/(q+1)Z by (16.8.1), hence
u,v € (¢+1)Z, i.e. r =7r" and s = s’. Now we can readily check that, when (r,s) satisfies (16.8.3)
with s = 0, £"v*? runs over [ {/g%], and when (r, s) satisfies (16.8.3) with r = 0, £"°v*% runs over
[ %/0%], and this establishes the equality in (16.8.2).

(iii) Noting A = a and B = b modulo ¢ + 1 and using (16.0.1), we have that an — (o + )b =1
and so (a+ p)b=an—1in Z/(q+ 1)Z. Recalling c+d=11in Z/(q + 1)Z and using (16.0.2) and
(16.8.1), we then see that

(a+B)(chb—da) = (a+p)(b(1—d)—ad) = (a+B)(b—nd)
=an—1—(a+ p)nd =n(a—(a+p)d) -1
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is coprime to ¢ + 1. Thus
(16.8.5) ged(l+ne,q+1)=1
for e := (v + f)d — a = Bd — ae. This implies by Remark 16.7 that the map 7. of (16.7.1) is an
automorphism of G. Hence we can replace g by
Ye(g) = 2°g = diag(ﬁcl, §_qcl,§q2cl, .. ,f(_qyklc/, & ymad yq2d,, ... ,y(_q)bfld/),

where

di=c+Ae=c+ A(Bd— ac) = c(1 — aA) +dBA = —cBB + dBA = B(dA — ¢B)
and

d :=d+ Be =d+ B(8d — ac) =d(1+ B) — caB = daA — caB = a(dA — ¢B).
Setting ¢ := dA — cB, we have that
(16.8.6) ged(t,g+1) =1
by (16.8.1). Now, (16.8.2) applied to ¢’ and d’ shows that the spectrum of g in a Weil representation
with character (3, ; becomes

(16.8.7) [V ([ VeI u [ ¥ ')

(iv) Now we will determine the character ¢; of ®;. Any irreducible constituent of the restriction
(®;)|r to L := [G,G] = SU,(q) has degree dividing deg(®;), hence, by [TZ1, Theorem 4.1], it must
be equal to deg(®;) and in fact (®;)|; is an irreducible Weil character of L. Thus (¢;)|r = (¢ilg)|L
for some 0 < 7; < ¢; in fact, r; = 0 if and only if j = 0 (by degree comparison). Now, applying
[TZ2, Lemma 4.7], we see that

i = C:Lj,q)\sj
with 0 < s; < ¢, where A € Irr(GU,(q)) sends z € GU,(q) to @ whenever det(z) = ¢%. Since g
now has det(g) = o'*"¢, it follows from (16.8.7) that ®;(g) has spectrum

[ MAB) (@ | W] U o115 . [ B/ glars])

But, according to (b) the spectrum of ®;(g) is [ "¥/1] \ ([ /0] U[ ¥/ 0%]). It follows that

(1688) Q(l—l—ne)sj . [ A/Qtﬁrj] U g(l-l-ne)sj- . [ B/Qtocrj] — [ A/QBj [U[ B/Qaj]-

Since n > 4, we may assume that a > b and hence A > B. In this case, the set o(1+ne)s; . [4/0tP74]
of size A cannot be contained in the set [ §/0%7] of size B. Therefore, there exists some 6 that
belongs to both @(177¢)%i . [ {/0!F"i] and [ 4/07]. Now, both these two sets become 6 - [ ¥/1], and so

they are equal:

(16.8.9) e [/ @t [= [V @),
Equating the products of all elements in each set (and using 2t A), we get
(16.8.10) o118 otBri — 0BT e A(1 + ne)s; + tBr; = Bj in Z/(q +1)Z.

Assume in addition that 1 < j < ¢. Then (16.8.8) is an equality of two disjoint unions of two
subsets, so (16.8.9) implies

(16.8.11) o1Hme)si [ R/ gtar] = [ ¥/ god].

Again equating products over all elements in each set, we obtain
(16.8.12) B(1+ne)s; +tar; =aj in Z/(q + 1)Z.
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The system of linear equations (16.8.10) and (16.8.12), in two variables s; and r;, has determinant
(1+ne)t(aA— BB) = (14 ne)t, an invertible element in Z/(q+ 1)Z by (16.8.5) and (16.8.6). Hence
it has a unique solution s; =0, r; = j/t.

Assume now that j = 0. Then 79 = 0 as noted above. If b > 1, then B > 1, and (16.8.8) and
(16.8.9) imply that @+7®) . ([¥/1] \ {1}) = [¥/1] ~ {1}. In particular, for some 1 # 6 € [¥/1]
we have o(17m¢)%i9 ¢ [ ¥/1], whence (16.8.12) also holds, and we can conclude as above that sy = 0.
Suppose b = 1. Then (16.8.10) implies that A(1+ne)sg =0 and so (n—1)so =0inZ/(¢+1)Z. We
also have in this case that the character C27jA50 of the self-dual representation @ is real, whence
A% is real, i.e. 259 = 0in Z/(q + 1)Z. As 2|n, we conclude that s = 0.

Thus we have shown that ¢; = QJ/ 5 for 0 < j < ¢q. Hence the character of & is

q
> Gla =2 Cha = Gna

q
=0 =0
as stated. O

Proposition 16.9. Given the hypothesis (16.0.1), suppose that for some 6 = 0 or 1, there is a
hypergeometric sheaf H of rank D = (¢" — 1)/(q¢ + 1) + 0 in characteristic p with finite geometric
monodromy group G, which is almost quasisimple. Assume furthermore that G is irreducible on
‘H and that the following conditions hold.
(@) If (n,q) = (4,2), then G/Z(G) contains an element g of order 9, and furthermore G(>°)
admits only real-valued traces on H.
(B) If (n,q) = (4,3), then G/Z(G) contains an element g of order 28 and an elementary abelian
subgroup Q = C3.
(v) If (n,q) = (6,2), then G/Z(G) contains an element g of order 33 and an elementary abelian
subgroup Q = CS.
Then one of the following statements holds.
(i) G is a cover of some Ay with N > 8.
(i) G is a quotient of SU,(q).
(iii) ¢ =2, v =0, and G is a quotient of SLy,/2(4)-

Proof. Let S denote the non-abelian composition factor of G, so that S <1 G/Z(G) < Aut(S). As
G is almost quasisimple, E(G) = G(*). Next, since H is hypergeometric, a generator of 1(0) has a
simple spectrum on #, whence G satisfies the condition (x) of [KT5].

(A) First we consider the generic case, that is, where D > 23. Note that the given rank D cannot
be equal to 23, 24, or 28, since n > 4. As D > 23, it follows from [KT5, Theorem 7.4] that S is not
any of 26 sporadic simple groups. We will now assume that G(°°) is not a cover of an alternating
group, whence S is a simple groups of Lie type in some characteristic r. Now we can apply [KT5,
Theorem 7.6] to conclude that there is some power s of r such that either S = PSLy(s), or E(G)
is a quotient of SL,,(s), SU,,(s), or Sps,,(s), and it acts on H via one of its Weil representations.
Furthermore, as D > 23, we have r = p by [KT5, Theorem 8.5].

(a) Consider the case S = PSLy,(s) with m > 2, and
D=(s"—s)/(s—=1)or (s"—1)/(s—1).

If D= (¢"+¢q)/(qg+1), then p|D, whence (¢" +¢q)/(¢ +1) = (s — s)/(s —1). Comparing the
p-part, we obtain s = ¢ and

ST s+l =" ) (s D)= (" =) (s—1) =5 4+ 4P s+ 1.
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Since n > 4, it follows that m > 3, and —s + 1 = s + 1(mod s®), which is impossible.

Suppose D = (¢"—1)/(¢+1), i.e. ¥ =0. Then p|(D+1), whence D = (s™—1)/(s—1) = 1( mod p)
and so p = 2. If moreover s = 2, then 2™ = D+ 1 = (¢" + q)/(q + 1), and so, by comparing the
2-part, we obtain ¢ = 2™ = D, which is impossible since n > 4. Thus s > 4. If ¢ > 4, then
D=(G"-1)/(g+1) =q—1=—1(mod4) and D = (s —1)/(s — 1) = s+ 1 = 1(mod4), a
contradiction. If ¢ = 2 and s > 8, then D = (¢" —1)/(¢+1) = —¢* + ¢ — 1 = —3(mod 8) and
D= (s"—-1)/(s—1)=s+1=1(mod 8), again a contradiction. Thus (¢, s) = (2,4) and n = 2m,
leading to (iii).

(b) Next we consider the case S = PSpy,,(s) with m > 1 and 21 s, and D = (s™ +1)/2. In
particular, p f D, hence D = (¢" — 1)/(¢ + 1) = —1(mod p). Now 2D = —2(mod p), so we must
have D = (s™ +1)/2 and p = 3. Comparing the p-part of (¢" 4+ ¢)/(¢ + 1) = (s™ + 3)/2, we get
q = 3 and 3" — 2s™ = 3, a contradiction, as s > 3 is a 3-power.

(c) It remains to consider the case S = PSU,,(s) with m > 2, and

D = (s™ + (=1)™s) /(s + 1) or (™ — (=1)™)/(s + 1).

If D=(q"+q)/(q+1), then p|D, whence (¢" +¢q)/(¢+ 1) = (s + (=1)™s)/(s + 1). Comparing
the p-part, we obtain s = ¢ and m = n, as stated in (ii).
Suppose D = (¢" —1)/(¢+1). Then pt D, whence

(16.9.1) D= (s"—(-1)™)/(s+1) = (—1)™ (mod p).

If moreover 2|m, then we get (¢"+¢q)/(¢+1) = D+1 = (s"+s)/(s+1), and so ¢ = s by comparing
the p-part, whence we also get m = n, again leading to (ii). Assume 2 { m. Then using (16.9.1)
and p|(¢" +¢q)/(g+ 1) = D + 1, we see that p = 2. Now, if ¢,s > 4, then D = (¢" —1)/(¢+ 1) =
g—1=—-1(mod4) and D = (s"+1)/(s+1) =—s+1=1(mod 4), a contradiction. Thus either ¢
or s equals to 2. Since (¢" —1)/(¢+1) = (s" —1)/(s+ 1), we also get

s+q+2=q"(s+1)—s"(g+1)

is divisible by 8, whence {s,q} = {2,4}. Now, if (¢,s) = (2,4), then (2" —1)/3 = (4™ +1)/5
and 52" —3-4™ = 8 with n > 4 and m > 3, a contradiction. Finally, if (¢,s) = (4,2), then
(4" —=1)/b=(2"+1)/3 and 3-4" —5-2™ =8 with n > 4 and m > 5, again a contradiction.

(B) Now we consider the remaining cases where D < 22, that is, where (n,q) = (4,2) and
D =5,6,or (n,q) = (4,3) and D = 20,21, or (n,q) = (6,2) and D = 21, 22.

In the first case, by assumption («), G/Z(G) < Aut(S) contains an element g of order 9. This
rules out all possible covers G(>) of S that can have irreducible representations of degree 5 or 6 by
[HM]: S = As6,7, PSL2(5,7,9,11,13), PSL3(4), SU3(3), and J, leaving out only the possibilities
that G(*) = SU,(2) or 61 - PSU4(3). The latter case is also ruled out for the reason that G(*°)
would then admit traces 6(s.

Next suppose that D = 20. By assumption (8), G/Z(G) < Aut(S) contains an element g of
order 28 and a subgroup Q = Cj. This rules out all possible covers G(®) of S that can have
irreducible representations of degree 20 by [HM]: S = Azg, PSLy(19,41), PSL3(4), PSU3(5), and
SU4(2), leaving out only the possibility that G(>) is a quotient of SU4(3).

Suppose now that D = 21. By assumptions (/) and (), either G/Z(G) < Aut(S) contains an
element g of order 28 and a subgroup Q = C3, or G/Z(G) < Aut(S) contains an element g of order
33 and a subgroup @ = C§. This rules out all possible covers G(®) of S that can have irreducible
representations of degree 21 by [HM]: S = A7 g9, PSLy(41,43), PSL3(4), SU3(3), PSU3(5), Spe(2),
My, and J, leaving out only the possibilities that G(°°) = PSU4(3) when ¢ = 3 and G(®) = QU (2)
when ¢ = 2.
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Finally, let D = 22. By assumption (v), G/Z(G) < Aut(S) contains an element g of order 33.
This rules out all possible covers G(°) of S that can have irreducible representations of degree 22 by
[HM]: S = PSLy(23,43), Mays, HS, and McL, leaving out only the possibility G(*) = PSUg(2). O

Proposition 16.10. Let q be a prime power, 2|n € Z>4, and let L be a perfect finite group with a

faithful representation ® : L — GLgn (C) that satisfies the following conditions:

(a) ® = ®)_,®; is a sum of g+1 irreducible constituents, of degree deg(®;) = (¢" —1)/(g+1) +d;0;

(b) Each L; := ®;(L) is quasisimple, with simple quotient S; = L;/Z(L;) being either PSU,(q) or
an alternating group Ay, with N; > 8; and

(c) |Te(®(g))| is always a q-power for all g € L.

Then L = SUy(q), and ® is the total Weil representation.

Proof. (i) First we will construct certain elements in SU,,(¢) and Ay with N > 8.

Let p denote the smallest irreducible character of Ay of degree N — 1 and labeled by the partition
(N —1,1), and choose g; € Ay to be a single (N — 2)-cycle if 2 { N and a disjoint product of two
(N — 2)/2 cycles if 2|N; this ensures that p(g1) = 1. Similarly, choose g2 € Ay to be a single
(N — 3)-cycle if 2|N and a disjoint product of two (N — 3)/2-cycles if 2 { N; this ensures that
plg2) = 2.

Next, if (n,q) # (6,2), by [Zs] there exists a primitive prime divisor £ of p™/ — 1 = ¢" — 1 (which
will then be coprime to ¢ + 1) and an element h € SU,(¢) of order £. Then the character formula
[TZ2, Lemma 4.1] for the irreducible Weil characters ¢! of SU,,(gq), of degree (¢" + q)/(q + 1) when
i=0and (¢" —1)/(¢g+ 1) when 0 < i < ¢, shows that

Gn(h) = dip.
The same conclusion holds in the case (n,q) = (6,2), by taking ¢ = 7, see the character table of
SUg(2) [GAP].
(ii) Now we will use [KT6, Proposition 6.7] and modify its proof to our case. First, conditions
(a) and (b) imply by [KT6, Proposition 6.7] that
(16.10.1) L=Ri*Rox...x Ry,
is a central product of quasisimple groups, each being a cover of some Ay, or PSU,(q).

We aim to show that m = 1, that is, L is quasisimple. Assume the contrary: m > 1. In
accordance with (16.10.1) we can express

Q=0 1 KXW, X...XV,;,
as an outer tensor product of ¥;; € Irr(Ry), 1 < k < m. It follows that L; = ®;(L) is a central
product V;1(R1) * U;2(Ra) * ... % ¥; ,(Ry,) of (normal) subgroups. Since L; is quasisimple and
since each Ry, is also quasisimple, we conclude that all but one ¥, ;. are trivial, say for all k # k;.
This implies that
Li = ®i(L) = Wi, (Ri;) = i(Ry,)-
On the other hand, the faithfulness of ® implies that each R; with 1 < j < m must be acting

nontrivially in some ®;. So we can partition {®q, ®1,...,P,} into a disjoint union X; UXp ... UA,,
of non-empty subsets such that for each 1 < ¢ < m and for all ®; € X; we have
(16.10.2) L; =9;(L) = ;(Ry)

but ®;(R;) is trivial for all 7/ € {1,2,...,m} \ {t}. Relabeling the R;’s (and interchanging their
order in (16.10.1)) if necessary, we may assume that ®¢ € X;. Furthermore, since deg(®;) # 8, 14,
Theorem 6.2 and Lemma 9.1 of [KT5] imply that if R; is a cover of Ay, with N; > 8 in (16.10.2),
then L; = Ay, and (®;)|a,, is the smallest representation of degree N; —1. Likewise, [K'T5, Theorem
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6.6] implies that if R; is a cover of PSU,(¢) in (16.10.2), then L; is a quotient of SU,(¢) and the
SU,(q)-character afforded by ®; is one of the ¢ + 1 irreducible Weil characters le 0<I1<q.

Following the proof of [KT6, Proposition 6.7], first we consider the case where
(16.10.3) for each 1 <t <m, there exists x; € R; such that Tr(®;(z;)) = 0 for all &; € A;.
Setting y := x1x5 ... x¢, we see that
Te(®;(y)) = Tr(®;(z)) = 0
for all ®; € X;. It follows that Tr(®(y)) = >_7 , Tr(®;(y)) = 0, contradicting (c).
Next we consider the case R; is a cover of some Ay,. Since ®g € &}, we must have

N1 —1=deg(®o) = (¢" +q)/(qg+1).

It follows that R; cannot have an irreducible character of degree Ny —2 = (¢" — 1)/(¢ + 1), and
so X1 = {®p}. It also follows that, for each ¢ > 2, X} consists only of some of the ®; of the same
degree (¢" —1)/(¢+1). Now the elements constructed in (i) guarantee that (16.10.3) holds, and so
we are done as above.

We have shown that R; is a cover of PSU,(q). If, moreover, X1 = {®¢}, then we again see that,

for each ¢ > 2, A} consists only of some of the ®; of the same degree (¢" — 1)/(¢ + 1), whence
(16.10.3) holds, and we are done as above. So we may assume that

(16.10.4) X1 2 {®}.

Now we consider the case where some R; is a cover of some Ay;. As mentioned above, this can
happen only when N; —1 = deg(®;) = (¢" —1)/(¢+1) (for some ¢ > 0). Thus we may assume that
there is some

1<s<gq
such that exactly s representations ®; with ¢ > 0 occur in (16.10.2) with R; a cover of Ay,. For
any such (quasisimple) Ry, and for any ®; € X, ®;(R;) = Apn,. As @ = @!_®; is faithful and @,
is trivial on Ry for all i' ¢ X, we conclude that R; = Ap,. For any such R;, we fix an element
g1 € Ry of type g1 and an element g;» € Ry of type go exhibited in (i).

Each of the remaining R; is a cover of PSU,(¢). As mentioned above, the restriction of each
®; € X, is obtained from an irreducible Weil representation of SU,(q). Using the faithfulness of @,
we can view R; as a quotient of SU,(q). For such an Ry, fix an element g;1 = g12 € R of order £
as in (i).

Now, in accordance with (16.10.1) we consider the elements

g =91,1921---9m,1, g’ = 01,2922 ---9m,2
in L. Their construction and the considerations in (i) imply that
Tr(®(g9)) =1+ s, Tr(®(g)) =1+ 2s.
By (c), both 1+ s and 1 + 2s are p-powers, and this is impossible since s > 1.

We have shown that each R, 1 < ¢t < m, is a cover of PSU,(¢q), hence a quotient of SU,(q).
Now, in accordance with (16.10.1) we consider the element

g" = hghg e hm,

where h; € R; has order / as in (ii) — note that the Rj-component is trivial. Now the considerations
in (i) together with (16.10.4) show that

¢" > Tr(@(g") = Y deg(®:) >2(¢" —1)/(g+1) > ¢" ",
P, eX;
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again contradicting (c).
(iii) We have shown that L is quasisimple. If L is a cover of Ay, then we see that
N — 1 = deg(®) = deg(®1),

which is impossible. Hence each ®;(L) is a quotient of SU,(g), and so we can view L as a quotient
of SU,(gq) by a central subgroup, by the faithfulness of ®. Applying Theorem 16.6 and using the
faithfulness of the total Weil character, we conclude that L = SU,(q), and it acts in ® via its total
Weil representation. O

Now we can prove the main result concerning unitary groups:

Theorem 16.11. Let ¢ = p! be a power of a prime p, and let n = a +b > 4 with a,b € L1,
2t ab, and ged(a,b) = 1. Then the following statements hold for the arithmetic monodromy groups
Garith ks Garlth,k, and geometric monodromy groups Ggeom, Ggeom of the local systems W(a,b) and

W(a, b) introduced in Definitions 16.1 and 16.2 over any finite extension k of IF 2

(a) Garithk = Ggeom = GUp(q), and (Ggeom)(oo) ~ SU,(q) acts on W(a,b) via its total Weil
representation. Furthermore, we can identify Ggeom with GU,(q) in such a way that the action
of GUy(q) on W(a,b) affords the total Weil character ¢, q.

(b) Let H; be any of the ¢+ 1 hypergeometric constituents of W(a,b). Then H; has arithmetic and
geometric monodromy groups Garlthk Gloom» Ghoom/Z(Glcom) = PGUL(q), and Z(Glyyp,) is
cyclzc of order dividing q + 1. .

(c) Garlth,k = Ggeom =~ GU,(q), and (égeom)(m) >~ SU,(q) acts on W(a,b) via its total Weil
representation. Furthermore, we can identify égeom with GUy(q) in such a way that the action of

GU,(q) on VV/(a, b) affords the total Weil character (, ¢x2, with x2 denoting the linear character
of order 2 of GU,(q).

(d) The local system W*(a,b) introduced in Definition 16.1 has its geometric monodromy group and
arithmetic monodromy group Gy, . = Ggeom = SUn(q)-

Proof. (i) Let ® : G := Garithy — GLgn(C) denote the corresponding representation of Garith
on W := W(a,b). By Theorem 11.1, & = &7 (®;, where deg(®;) = (¢" — 1)/(¢ + 1) + b0, and
each of ®;(Garithx) and P;(Ggeom) is an irreducible almost quasisimple group for 0 < i < g. As
Glarith,k/Ggeom 18 cyclic, it follows from [GT, Lemma 2.5] that

L= (Garith,k)(oo) = (Ggeom)(oo)
and ®;(L) is irreducible, quasisimple. Also, by Theorem 11.9, we have that
(16.11.1) Tr(®(x)) is a power of (—q) for all z € Gaurith k-

Next, the ¢ 4+ 1 irreducible summands H; of W are hypergeometric in characteristic p with finite
monodromy. Recalling the construction of these sheaves, we see that Ggeom <G contains a p’-element
g (namely, a generator of the image of I(0)), of order MAB = (¢* + 1)(¢” + 1)/(¢ + 1), with simple
spectrum consisting of at least MAB — A — B = (¢*** —1)/(q¢+ 1) < MAB/2. Let Ny denote the
order of ¢Z(G) in G/Z(G). Then we have No|MAB (as ¢™A48 = 1) and Ny > MAB/2 (since the
spectrum of g consists of all N§! roots of some fixed root of unity, but g has more than M AB/2
distinct eigenvalues). It follows that Ny = M AB.

We can also check that the assumptions (a)-(y) of Proposition 16.9 hold in the cases where
(" —1)/(¢ + 1) < 23, that is, where (n,q) = (4,2), (4,3), and (6,2). Indeed, we can see by
Proposition 14.1 that the image @Q of P(0o) acting on any H; intersects Z(Gt. ) trivially, and so

geom
Q— G seom/ Z(G geom) furthermore, @ is elementary abelian of order 24, 3%, and 2° in these cases

by [KRLT2, Lemma 3.1]. Finally, the sheaf Hg of rank (¢" 4+ q)/(q + 1) is self-dual.
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Now we can apply Proposition 16.9. In the case of 16.9(iii), we have ¢ = 2, G{*®) is a quotient of
SL,/2(4), and N = (2% +1)(2° +1)/3 > (4"/2 — 1)/3, contradicting [KT5, Theorem 7.6(ii)]. Hence,
we conclude that each ®;(L) is either a cover of some Ay or a quotient of SU,(¢). Now using
(16.11.1) and applying Proposition 16.10, we obtain that L = SU,(q), and it acts on W via its total
Weil representation.

(ii) In this part of the proof, let H denote either Gaith i 0r Ggeom. Since each of (®;)|, extends
to H > L, but only inner-diagonal automorphisms of SU,,(¢q) fixes each of the ¢ + 1 Weil characters
¢t, we see that H can only induce inner-diagonal automorphisms of L. As Cy(L) = Z(H), it
follows that PSU,(¢) < H/Z(H) < PGU,(q), and the same holds for the, arithmetic or geometric,
monodromy group K; of each of the ¢ + 1 individual hypergeometric sheaves H; (as K; is just the
image of H acting on ;). Since K; has its I(0) being cyclic of order M AB = (¢*+1)(¢*+1)/(¢+1),
by [KT5, Theorem 8.3] we must have that K;/Z(K;) = PGU,(q), and so

(16.11.2) H/Z(H) = PGU,(q).

Now let A; be the central character of Z(H) acting on H;, 0 < i < q. Recall that ® has integer
traces by Theorem 11.9, and so it is self-dual. But ®¢ is the unique irreducible constituent of ®
of degree D + 1, hence ®( is self-dual; in particular, )\% is trivial. Now, Theorem 11.9 implies
that ¥ := Ao + D Y.7 4 \; satisfies all the hypotheses of Lemma 16.4; moreover, (16.11.1) rules
out the existence of the trace —¢". Hence, by Lemma 16.4, either Z(Ggeom) < Z(Garithx) has
order dividing ¢ + 1, or (n,q) = (4,2) and Z(Ggeom) < Z(Garith,x) < C2. Suppose we are in the
latter case; in particular, Z(Ggeom) < Co2. By (16.11.2), Ggeom/Z(Ggeom) = SU4(2) is simple, and
50 Ggeom € {SU4(2),Spy(3),C2 x SU4(2)}. On the other hand, by Corollary 13.4, at least one
of the sheaves H; has geometric determinant of order M = 3 and so Ggeom projects onto C3, a
contradiction. Therefore, we have shown that

(16.11.3) Z(Ggeom) < Z(Garith k) has order dividing g + 1;

i

in particular, Z(G" ;. ;) is cyclic of order dividing ¢ + 1.
(iii) Recall that W*(a,b) is the [M AB]* Kummer pullback of W(a,b). Hence Ggeom/G
a cyclic group of order dividing M AB; also, G

geom

geom is
has no nontrivial p’-quotient. On the other
hand, as shown above, L = (Ggeom)® = SU,(g) is a quasisimple normal subgroup of Ggeom, and
furthermore, by (16.11.2), |Ggeom/L| = |Ggeom|/|PGUn(q)| = |Z(Ggeom)| divides ¢ + 1, which is
coprime to p. It follows that

(16.11.4) Ggeom = L = SUn(q).
(iv) We now have that d := |Ggeom/Ggeom| = |Ggeom/L| = |Z(Ggeom)| divides g+ 1. Furthermore,
by Corollary 13.4, some hypergeometric summand of W(a, b), of rank (¢" —1)/(g+1), has geometric

determinant £, with v of order exactly M = g+1. [We note that when 2 1 ¢, the respective summand
(¢"—1)/(g+1)

of W(a, b) will have the same geometric determinant £,,, since x, = 1.] This implies that
the order d of the quotient Ggeom/Ggeom 18 divisible by ¢ + 1. We conclude that d = ¢ + 1, and
(16.11.5) Ggeom/Ggeom = Cor1, 1Z(Ggeom)| = ¢+ 1.

To determine Gyyith,k, We note by (16.11.2) that

‘Garith,k/L| - ‘Garith,k‘/’PGUn(QN = |Z(Garith,k)‘

which divides ¢ + 1 by (16.11.3). On the other hand, Gyith r contains the normal subgroup Ggeom
of order (¢ + 1) - |L|. It follows that Gayith k = Ggeom-
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(v) Next we will prove the abstract group isomorphism H := Ggeom = GU(W) = GU,(¢) with
W :=TF},. First, using (16.11.5) and L = Gieop = SUp(q), we can write

(16.11.6) H=(L,g)

for some element g € H. We can view L as the commutator subgroup of GU(W') = GU,(¢), and
then fix some extension of (®;)|1, to GU,(q), with character (;,, specified in [KT3, (3.1.2)], which
we also denote by ®;. As mentioned in (iv), Cy(L) = Z(H), and H induces the full group of
inner-diagonal automorphisms of L, which is the one induced by elements by GU,(¢q) acting on L
via conjugation. It follows that we can find an element h € GU,(q) such that

(16.11.7) g and h induce the same automorphism of L = SU,(q);

furthermore, changing g to another representative in its coset gG if necessary, we can make sure
that

(16.11.8) h = diag(o, 1,1,...,1)

for some p € IFqXQ of order ¢ + 1, and so

(16.11.9) ord(h) =q¢+1, LN(h) =1.

The choice (16.11.7) of h ensures that ®;(g)®;(h)~! centralizes ®;(L), whence
(16.11.10) ®;(g) = a;®;(h)

for some a; € C*. In fact, a; is a root of unity because both ¢g and h have finite order.

Recall by [KT3, (3.1.2)] (evaluated at h) that 0 # Tr(®;(h)) € Q({4+1). On the other hand, since
o is chosen to have order g + 1, Tr(®;(g)) € Q({4+1) by Theorem 11.1. Hence the root of unity «;
belongs to Q({4+1) by (16.11.10). If 2|(g + 1) then it follows that

(16.11.11) altt =1

for all j. In the case 2|q, we have Oz?(q“) = 1. Replacing g by ¢ and h by h?, which still fulfills
(16.11.7)—(16.11.10) and which replaces each o by aJQ-, we then see that (16.11.11) holds in this case
as well. Together with (16.11.9) and (16.11.10), this implies that ®;(g)9™! = Id for all j, whence
®(g)9™! = 1d and g9™! = 1 by faithfulness of ®. Recalling (16.11.5) and (16.11.6), we must then

have that
(16.11.12) ord(9) =¢+1, LN{g) = 1.

Thus H = L x (g) and GU,(q) = L x (h) are two split extensions of L = SU,(q) by Cy41. Now
using (16.11.7), (16.11.9), and (16.11.12), one can readily check that the map sg’ — sh?, s € L and
0 < i < g, yields a group isomorphism ¢ : H = GU,(q).

(vi) Now, applying Theorem 14.4 to the system W := W(a,b) and N := M, we see that
Wi = [M]*W(a,b) has arithmetic monodromy group Gasithkw,, = SUn(q). It follows that the
arithmetic monodromy group G}, ;. of W*(a,b) = [AB[*W)y is contained in SU,(q) = Ggeom
whence G} i, 1 = Geom = SUn(q).

geom

To determine Glyith i, We note by (16.11.2) that

’Garith,k/L‘ = ‘Garith,k’/|PGUn(Q)| = |Z(Garith,k)‘

which divides ¢ + 1 by (16.11.3). On the other hand, Gayith , contains the normal subgroup Ggeom
of order (¢ + 1) - |L|. It follows that Garith k = Ggeom-
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(vii) Next we identify the character of Ggeom on W(a,b). Let (go) denote the image of I(0) in
H = Ggeom- Then we can relabel ®; so that the spectrum of ®;(go) equals

{e'losi<sMAB-1, () # 0%, () # 0},

and furthermore ®( is self-dual. Note that, since H/L is cyclic, (L, gp) is normal in H and so
contains the normal closure of (go) in H. But the normal closure of (go) in H equals H by [KT5,
Theorem 4.1], hence (L, go) = H. Now we can apply Theorem 16.8 to obtain v € Aut(H) such that
Tr(®(y(2))) = Cng(z) for all z € H. Thus, adjusting the identification « : H = GU,(q) by o, we
see that H =2 GU,,(q) acts on W(a,b) with the total Weil character ¢, .

(viii) Now we again assume p > 2 and turn our attention to W(a,b). The arguments in (i), (ii)
also apply to G’mth,k and égeom. The only difference is that instead of (16.11.1) we can now say
only that all traces are +¢™, 0 < m < n.

Hence, when we apply Lemma 16.4(iii), we cannot (yet) rule out the existence of the trace —q",
and so, instead of (16.11.3), we now have

Z(Ggeom) < Z(Garith,k) has order dividing 2(¢ + 1).

But now we note that [M]*W(a,b) is arithmetically isomorphic to [M]*W(a,b) = Wp,. Hence
L = SU,(q) = Ggeomwy = Garith,k,w,, is @ normal subgroup of G’geom of index dividing M and a
subgroup of éarith,k of index dividing M. With this extra information, the arguments in (iv), (v)
can now be repeated verbatim to show that Ggeom = GU,(q); in particular, |Ggeom/L| = M. As
éarith,k > G’geom and [éarith’k : L]|M, we conclude that G’arith’k = égeom.

To identify the character ¢ of Ggeom acting on W(a,b), let (go) denote the image of I(0) in
H = égeom. Again applying [KT5, Theorem 4.1], we see that gy generates H modulo [H, H]; in
particular, x2(go) = —1. Note that tensoring with £,, has the effect of multiplying the eigenvalues
of go by —1. Tt follows that, the eigenvalues of gy in a representation of H affording the character
Px2 are the same as the eigenvalues of gy acting on W(a,b). By the result of (vii), we know that
@X2 = Cn,q, hence @ = (, 4X2 as stated in (c). O

The final result of this section determines the arithmetic monodromy groups of W(a,b), W(a,b),
and W*(a, b).

Theorem 16.12. Let ¢ = p/ be a power of a prime p, and let n = a+b > 4 with a,b € Z>1, 21 ab,
and ged(a,b) = 1. Then over any subfield k = F,2/a of Fp2 the following statements hold.

(i) The arithmetic monodromy group Garith i of W(a,b), respectively G’arith,k ofVNV(a, b), is GU,(q)-
Cyq, which in each case induces a subgroup of outer field automorphisms of SUy(q) of order d.
Furthermore,

Garith i/ Z(GU,(q)) 2 Garien i/ Z(GU,(q)) = PGU,(q) x Gal(F 2 /k).

(ii) The arithmetic monodromy group Gritn g Of the local system W*(a,b) is SU,(q) - Cy4, and
induces a subgroup of outer field automorphisms of SU,(q) of order d, modulo the inner-
diagonal automorphisms of SUp(q).

Proof. (i) First we determine the order of cyclic quotients Gayith k/Ggeom and G;rim i/ Geom-

Suppose that p > 2. Recall that Gaitnr, contains Ggeom = Garithfqg as a normal subgroup
with cyclic quotient of order e that divides 2f := deg(F,2/F,). We now look at the element
g := Frobyr, € Gaithr,- For any divisor ¢ of 2f, by Lemma 16.3 the absolute value of the trace
of g¢ = Frobyp,. on W(a,b) is p°/2. On the other hand, by Theorem 16.11(a), the absolute value
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of the trace of any element in Ggeom on W(a,b) is a power of g = pf. Tt follows that ¢¢ ¢ Ggeom
whenever ¢ is a proper divisor of 2f. Hence we conclude that e = 2f. Now, since k = F 2/a is a
subfield of F g2, then Garith k /Ggeom is cyclic of order dividing d and Gayith 1 has index at most 2f/d
in Garith,]Fp = G1geom : C12f7 whence Garith,k = Ggeom -Cy.

The structure of G;mh’k / Gieom can be determined entirely similarly, utilizing Lemma 16.3 for
Frobyy,.

Next we assume p = 2 and consider the element h € G 4, p, provided by Frobyr,. By Lemma

16.3(ii), when ¢[2f the trace of h?f/¢ = Frobyp 2. on W*(a,b) is 0 if 2c, and ¢?/cif 24 ¢ In
q

particular, if ¢ > 1 this trace is not a power of —q, and so h?//¢ ¢ G% . by the result of (a). Thus

geom
W3 € Gl but h/¢ ¢ G for any 1 < c|2f. It follows that |G v, /Greom| = 2/, and more

geom
generally |G} ), 1/ Ggeom| = d, as above.

To show that |Garith,Fy/Geeom| = 2f, we note that G;rith,]Fg is a subgroup of Gayith 7,- Thus the
element h € G;rith’Fg also lies in Garitn,r, and moreover the representation of Garith,r, on W(a,b)
restricts to the representation of G’;ﬁth’FQ on W*(a,b). So viewing h as lying in G arith,F,, for each
divisor ¢ of 2f with ¢ > 1, the trace of h2//¢ on W(a,b) is not a (—q)-power and so h2/¢ ¢ G geom.
Hence |Garith 7y /Geeom| = 2f, and we can conclude as above.

(ii) Let ® denote the representation of Gaitnr, on W(a,b), with character, say, ¢. Next we
show that Garith,]Fp cannot contain any element z which acts as the scalar —1 on W(a,b). Assume
the contrary. First, by Theorem 16.11(a), no element in Ggeom can have trace —¢" on W(a,b),
hence z ¢ Ggeom- Now, if p > 2, then, as shown in (i), Garith,r, = (9, Ggeom). Hence we can find
0 <j<2f—1such that z € nggeom. As 2% € Ggeom but z ¢ Ggeom, we have g% € Ggeom With
4 > 0, which implies j = f by (i). Thus g/ = zgg for some gy € Ggeom = GUp(q). As ®(2) = —1d,
we then obtain that ¢(gf) = —¢(go). But this is a contradiction, since

|go(gf)| = ‘Trace(Fr0b4,Fq|W(a, b))‘ =/
as mentioned in (i), whereas ¢(go) is a power of —g by Theorem 16.11(a). Similarly, if p = 2,
then, as shown in (i), Garithr, = (R, Ggeom). Hence we can again find 0 < j < 2f — 1 such that
z € thgeom. As 22 € Ggeom but z ¢ Ggeom, We have h¥ e Ggeom With j > 0, which implies j = f
again by (i). Thus h/ = zgy for some gy € Ggeom = GU,(q). As ®(z) = —Id, we then obtain that
©(h?) = —p(go). But this is a contradiction, since
o(h!) = Trace (Frobo g, |W*(a,b)) =0
as mentioned in (i), whereas ¢(go) is a power of —¢, in particular nonzero, by Theorem 16.11(a).

(iii) Now we study the subgroup
Zi = Chanr ,,, (SUn(2))
q

for any d|2f, and aim to show that
(16.12.1) Zos 22 Cypr.

Recall by Theorem 16.11(a) that the restriction of ® to SU,(g) is a sum of ¢ + 1 pairwise non-
isomorphic irreducible Weil representations. It follows that Z,; fixes each of these ¢ + 1 summands,
and acts via scalars on each of them, inducing a linear character A\;, 0 < ¢ < ¢. In particular,
Z4 is a finite abelian group. We can label these characters so that Ay corresponds to the unique
hypergeometric summand Hg (of rank (¢" +¢)/(¢+ 1)) of W(a,b). We claim that

(16.12.2) o(x) € {0,4p' |0 <i<nf—1} and A\o(x) € {£1}, forall 1 # z € Z,
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if p=2, orif p > 2 but d|f. Indeed, by Theorem 11.7 (i), respectively (i-bis), ¢(y) is an integer for
any y € Gaith k- In particular, the representation of Gaith  on Ho is self-dual, and so Ag(x) = £1.
Furthermore, by Theorem 11.8(i-ter), |p(z)|? is either 0 or a power of p, hence the integer ¢(z)
itself is also 0 or £+ a power of p. Moreover, ¢(z) # —¢" by (ii), and ¢(z) = ¢" implies x = 1 by
faithfulness of . Hence (16.12.2) follows.

Assume now that p = 2. Note that

(16.12.3) Zoy > 21 = CGUn(q)(SUn(Q)) = Cg1.

Also, (16.12.2) implies that Zy; satisfies the assumptions in Lemma 16.4. If (n,q) # (4,2), then
Lemma 16.4(iii) implies that |Zs¢| divides ¢ + 1. Together with (16.12.3), this implies (16.12.1).
Suppose (n,q) = (4,2). Then (16.12.3) and Lemma 16.4(iv) again imply that |Zyf| divides ¢ + 1,
and so (16.12.1) follows again.

(iv) Here we assume that p > 2. Using (16.12.2) and Lemma 16.4(iii), we obtain that |Z¢| divides
q+1. Since Zy > Z1 = Cqu, (¢)(SUn(q)) = Cy11, we conclude that

(16.12.4) Z; = Cpir = Z(Glgeom)-

Assume now that (16.12.1) does not hold, i.e. Zoy > Zy. As Garith,lpp2 has index 2 in Garitnr, by
(i), we have that Zy fG”ithin? = GarithF,, whence

| Z2g| = |Garith F, [ GaritnF o | - [ 25 = 2(q + 1).
It follows that
(16.12.5) Loy = (t, Zf>

for some 2-element ¢, say of order 2° for some e € Z>1. Recall that ¢t acts as a scalar «; on each of
the g+ 1 subsheaves H; of W(a,b), hence a; € Q((2¢). Next, by Theorem 16.11(a), the trace of each
element y € Ggeom On each H; is its trace in some Weil representation with character Cf;q, hence
belonging to Q((4+1) by (16.4.4). Now, by (16.12.4) and (16.12.5), any element x € Zy¢ is ty for
some ¢ € Z and some y € Ggeom, 50 we get p(x) € Q((ae, (q+1). On the other hand, p(x) € Q((p)
by Theorem 11.7(i). Thus
e(x) € Q(C2e, Gg41) NQ(G) = Q,

i.e. p(x) € Z. Furthermore, |p(z)|? is a p-power by Theorem 11.8(i-ter), so we conclude that o(x)
is £ a p-power. Next, recall from Theorem 16.11(a) that Ggeom acts on Hg via its Weil character
¢y, which is trivial at Z(Ggeom). It follows that Ag(u) = 1 for all u € Zy. As t* € Zy, we must
have that Ao(t)? = A\o(t?) = 1, i.e. Ag(t) = £1. Thus A takes values +1 on Zys. We have therefore
shown that (16.12.2) holds for d = 2f as well. Now we can again apply Lemma 16.4(iii) to see that
the equality |Za¢| = 2(¢ 4+ 1) must imply the existence of some element z € Zyy that acts as the
scalar —1 on W(a, b), which is impossible by (ii).

(v) We have shown that (16.12.1) holds, that is, Zoy = Cgy1 = Z(Ggeom). Together with the
result of (i), it implies that, while acting via conjugation on SU,(q), Garith,F, induces a subgroup
of automorphisms of order 2f|PGU,(q)|, which is exactly [Aut(SUn(q))|. Hence Gaitnr, induces
the full group Cyy of outer field automorphisms of SU,(¢) (modulo inner-diagonal automorphisms),
whereas GU,,(¢) induces the full group of inner-diagonal automorphisms of SU,,(¢). Since Gayith r >
GU,(q), it follows that Gaith x induces the full group Cy of outer field automorphisms of SU,,(g).
Using (16.12.1) again, we can identify Garitnx/Z(Ggeom) With the subgroup PGU,,(q) x Gal(F,2/k)
of Aut(SU,(q)).

Next, the generator g when p > 2 and h when p = 2 of Gyitn,r, modulo Ggeom, induces an outer
field automorphism of SU,(q) of order 2f modulo inner-diagonal automorphisms of SU,(gq). As
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*
geom

Ghith F, is also generated by g, respectively by h, modulo G = SU,(q), we obtain the statement

for G;rith’k as well.

(vi) To identify the arithmetic monodromy group of W(a, b) over F »/a (when p > 2), we note
that the absolute value of the trace of g° = Frobyp . on W(a, b) is still p¢/2 when ¢|2f, whereas the
absolute value of the trace of any element in Ggeom is £ a power of ¢ but never —¢", by Theorem

16.11(c). Now we can repeat the arguments in (i) verbatim to obtain that Gaith k = Ggeom - Ca-
Next, note that, since 2|n, the determinant on IFZQ of any central element y of GU,,(¢) is a square in

[q+1, hence x2(y) = 1 and so, by Theorem 16.11(a), (c), y still acts trivially on the hypergeometric
summand of W(a,b). Now, applying Theorem 11.8(i-ter) to éarith’]pr and repeating the arguments

of (ii)—(iv), we obtain that éarith’]Fp induces the full group Cay of outer field automorphisms of
SU,(q), and so we are done with C?arith’k as well. O

17. DETERMINATION OF MONODROMY GROUPS: THE CASE M =q+ 1 AND n =2

In this section we assume that

(17.0.1) pany prime, g =p/, M =¢+1, A=B=1.
Fix o, 8 € Z such that «A — B = 1 and o + 8 coprime to M, i.e.
(17.0.2) a=pf+1and ged(l1+25,g+1)=1.

With this choice of parameters, the principal objects of this section are the local systems
Wa(1,1) =W(1,1) := W(M, A, B)
on G, /F, and
Wi(1,1) = W*(1,1) .= [MAB]*W(M, A, B)
on Al/ [F, as introduced in Definition 16.1; moreover, we can and will view « as an integer modulo

q + 1. In particular, W,(1,1) is the arithmetically semisimple local system on G,,/F, whose trace
function at v € E*, E/F), a finite extension, is given by

1 _
UHE Z Yp(zw —v O‘wqﬂ—vﬂwqﬂ).

T,weE

It is the descent (cf. the beginning of §13) from G,,/F,2 to G,,/F, of the direct sum of the
Kloosterman sheaves

Ki(M, A, B,O'_’B,O'_a)(—l) = Kly (Char(q +1)~ {J_’B, U_O‘})(—l),
with 1 # o € Char(q+ 1), see (4.2.1), and the hypergeometric sheaf
Hyp(M, A, B,1,1) = Hypy (Char(q + 1) ~ {1};1),
see (5.0.1). Its Kummer pullback W%(1,1) = [q + 1]*W,(1,1) is a lisse sheaf on A!, with trace

function at v € E, E/F, a finite extension, given by

1
v ) Z Vg (vxw — gt — qu).
zweE

First we prove a unitary analogue of [KT7, Lemma 7.1]:

Lemma 17.1. Let V = C? and let ® : G — GL(V) be a faithful representation such that

(a) Tr(®(g)) € {1,—q,¢*} forallg € G.
(b) ® = @ (®;, where the ®; € Irr(G) are pairwise inequivalent.
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Then |G| = |GUa(q)|.

Proof. Let r := #{g € G | Tr(®(g9)) = —q} and let s := #{g € G | Tr(®(g9)) = 1}, so that
|G| =7+ s+ 1 by (a). The assumption (b) implies for ¢ := Tr(®) that

0 = o, 10] P —rg+s gttt +s
Pele = T r+s+1 "
Solving for r and s, we obtain r = ¢3—1, s = ¢* —¢> —¢, and so |G| = (¢>—1)(¢*+¢q) = |GUaz(q)|. O

The total Weil character (34 of GUa(q), cf. (16.4.3), decomposes as > ¢ (2, with (o €
Irr(GUz(q)) of degree g — 1 + d; 0 and pairwise distinct. The larger-degree character (2 restricts
to the Steinberg character St of L = SLa(q) = SUs(g). Furthermore, if 1 < i < ¢/2 then ;2 and
Cq—1—i,2 restrict to the same irreducible character (denoted 6; in [Do, §38]) of L = SLa(q), and those
lq/2] characters are pairwise distinct. If 2 { g, then (((4—1)/2,2)|z is the sum of two distinct irre-
ducible characters (denoted 71,72 in [Do, §38]) of degree (¢ —1)/2. We will refer to these characters
0;, and also 71,12 when 2 1 ¢, as irreducible Weil characters of SUa(q), and ((2,4)|1 as the total Weil
character of L, now viewed as SUa(q).

Now we prove an analogue of Theorem 16.6, which characterizes the total Weil representation of

SUa(q).

Theorem 17.2. Let p be any prime, q be any power of p, ¢ > 4, and let L = SLa(q). Suppose ¢ is

a reducible complex character of L such that

(a) (1) = ¢

(b) w(9) € {1, —q,¢*} for all g € L;

(c) every irreducible constituent of ¢ is among the irreducible Weil characters St, 0;, 0 < i < q/2,
and also n1,m2 when 2t q, of L.

Then ¢ is the total Weil character (C2.4)|1 of L.

Proof. (i) We will use the character tables of SLa(g), Theorem 38.1 of [Do] for 2 1 ¢ and Theorem
38.2 of [Do] for 2|q. Write

, a0+ 1=y ¢la

(17.2.1) — { a-St+ 20,0, + com + eama, 214,

a-St—l—zgizl bigi, 2‘(],
with coefficients a,b;,¢; € Z>o. Evaluating ¢ at an element x of order ¢ — 1, we see by (b) that
o(y) = a is a (—¢)-power with 0 < a < ¢(1)/St(1) = g, which is possible only when a = 1. As
before, let @ denote a primitive (¢ 4 1) root of unity in C.

First suppose that 2|g. Then Y, b; = (¢*—¢q)/(¢—1) = ¢ by degree comparison in (17.2.1). Next,
we fix an element y € L of order ¢ + 1, and for 1 <[ < ¢/2 we have

oy') =-1- Z bi(e" +e7").

It follows that

qa/2 q/2 q/2 q/2
> o) =—q/2-> b (Z(Q” + Q‘”)) = —q/2+ Zbi = q/2.

=1 i=1 =1

As each o(y!) is either 1 or —¢, we must have that ¢(y') = 1 for all 1 < I < ¢/2. Thus, the
polynomial
a/2

F) = bi(t 1) + 2 € QY]

=1
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of degree ¢ has all @', 1 <1 < ¢ as roots. Since f(1) = 22(1/2 b; +2 = 2q + 2, we conclude that
ft) =207 —1)/(t — 1), i.e. b =2 for all 4, and so ¢ = ((a,q)|L, as stated.

(ii) Assume now that 21 ¢q. Then Y, b; + (c1 +¢2)/2 = (¢ — q) /(¢ — 1) = ¢ by degree comparison
n (17.2.1). Evaluating ¢ at an element u € L of order p and another element v € L of order p that
is not conjugate to u, we obtain

B c1+ e c1 — ¢y B c1+ ¢ C1 —C2
1 A

where € := (—=1)(@=1/2, Thus p(u) + ¢(v) = —2¢. As each of ¢(u), ¢(v) is either 1 or —¢, we must
have that p(u) = —¢ = ¢(v), whence ¢; = ¢z =: ¢, and so

s
Next we evaluate ¢ at the central involution j of L:

e(j)=q+(q-1) Zb ) —ce(qg —1).

In particular,

7 o(3) = $(1) — p(d) = 2~ 1)( b+ 3 0)
2%

is divisible by 2(¢ — 1). On the other hand, <,0( i) € {1,—q,¢*} and ¢ > 4, so ¢(j) # —q, and either

(17.2.2) v(§) = ¢,

2ti 2|i
or

. 1+e€ +1
(17.2.3) 0(§) =1, sz- +ge= qT '
2ti 2|i

_gq—1
-

As above, we fix an element y € L of order ¢ + 1, and for 1 <[ < (¢ — 1)/2 we then have

(q—1)/2
(y }: bi(@" + 07") — 2¢(—1)"
It follows that
(g-1)/2 (¢=1)/2 (e=1)/2 ' (g—1)/2
Yo e =—-(@-1/2- > bi( > (e"+ Q‘”)) 2¢ ) (-1)
I=1 i=1 I=1 I=1
(g—1)/2
—(q—1)/2 - Z bi( —1)") +c(l—¢)
—@—1/2+2§:@+c1—@m)
2li

In the case of (17.2.2), Zlq_l /2 o) = —(g—1)/2+2¢ > (¢—1)/2, a contradiction. Hence (17.2.3)
holds, and we have that Zlq /2 o) =—(g—1)/2+ (¢ —1) = (g —1)/2. As each ¢(y') is either
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1 or —¢, we must have that ¢(y') =1 for all 1 <1 < (¢ —1)/2. Thus, the polynomial

(¢-1)/2
gty = bi(tTT T 4 17) 4+ 2t TT/2 2 € Q]
i=1
of degree ¢ has all @' # £1, 0 <[ < g, as roots, and so g(t) = (at + )(t‘”1 1)/(t? — 1) for some
a,b € Q. Since b = g(0) =2 and (a+b)(¢+1)/2 = g(1) = 22 D2p 4 9c 42 =2¢+2, we
conclude that a = b = 2, g(t) = 2(t471 —1)/(t — 1), i.e. b; = 2 for all i and ¢; = co = 1, and so
© = (C2,4)|L, as stated. O

A characterization of the total Weil character (2, of GUa(q), cf. (16.4.3), is given in the next
result, which is an analogue of Theorem 16.8:

Theorem 17.3. Let q be any prime power, @ = (411, and let ® : G := GUz(q) — GLp2(C) be a
faithful complex representation that satisfies the following conditions:

(a) & = @?:(ﬂ)j with ®; being irreducible of degree ¢ — 1+ 650;
(b) There is an element g € G such that ®;(g) has spectrum {g" | 0 <i < gq, i # 0,5} for0 < j <gq,
and that G = ([G, G, g).

Then there exists an automorphism v of G such that Tr(®(y(h)) = (2,4(h) for all h € G.

Proof. The spectra of ®;(g) show that g has both order and central order ¢ + 1 in G. Thus, for
a fixed o € F;z of order ¢ + 1, after a suitable conjugation, we may assume that g = diag(o®, o)
with ¢,d € Z/(q+ 1)Z. Since g generates G modulo [G,G], det(g) has order ¢ + 1. Changing p to
another element of order ¢ + 1, we may therefore assume that ¢+ d = 1. Now, the condition that g
has central order ¢ + 1 is equivalent to that ged(1 — 2¢,q+ 1) = 1. As noted in Remark 16.7, since
14+2(c—1) =2¢—1is coprime to g + 1, the map .1 of (16.7.1) is an automorphism of G. Hence
we can replace g by v.-1(g) = diag(p, 1) and thus assume that

(17.3.1) g = diag(p, 1).

We will use the character table of G as given in [E]. In particular, the character ¢y of ®q is

denoted tho) therein, and by (b) we have

—1=po(g) = x{(9) = —@",

whence tg = 0. Furthermore, the character ¢; of ®;, 1 < j < g, is denoted X(tj’uj)

q—1

tj,uj € Z/(q + 1)Z with t; # u; (and Xétﬁ’lu' ) = X((]u]’ 7)) Using (b) and (17.3.1), we then have

therein for some

107 = p(g") = X1 (g) =~ — 0"
for 1 <i < gq. Viewing 0 < t;,u; < ¢ and setting f;(x) := 2% + 2% — 2/ — 1 € Q[z], we see that f;
has degree at most ¢ and vanishes at all o, 1 < i < ¢. It follows that fj(x) is identically zero, i.e.
{tou} = {05}, |
We have shown that the character of ® is x(go) + 25:1 X((ff)l). Direct check shows that the latter
character is (24, and so we are done. For later use, we also note that, for the central element

z := diag(e, 0), Xg V(z)=(g- e, ie.
(17.3.2) Pi(z) =@ -1d.
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Lemma 17.4. Denote by H the hypergeometric component of W(1, 1), with the choice (a, 8) = (1,0)
of (a, B) with A — B = o — = 1. Denote by Hop the lisse sheaf of weight 0 on G, /F, which
is the weight 0 quotient of the lisse sheaf on Gy, /F), which is mized of weight < 0 and whose trace
function is given at v € E* for E/F, a finite extension by

v (1/#E) Z Yp(z —v et w — w).

(z,w)eEX xEX

Denote by Fu o the lisse sheaf on G, /F, whose trace function is given at v € E* for E/F, a finite
extension by
v (1/#E) Z Ye(r — v et fw —w).
(zeEweEX

Then we have the following results.

(i) Ho,o is geometrically isomorphic to H.

(ii) Fi,0 is pure of weight zero, and its pullback to G, /F, is arithmetically isomorphic to the

lisse sheaf F1 of [KT7, Section 4] with n = 2 there.
(ii) Ho,o is arithmetically isomorphic to Fy .

Proof. For the first assertion, H is geometrically the Cancel of Hyp(Char(g+1); 1, 1), cf. Corollary
9.3 (ii), whose trace function is that of Hoo (up to a constant field twist), cf. Corollary 8.2. For
the second assertion, the trace function of Fj o, restricted to extensions E/IF,, is identical to that
of Fq, cf. [KT7, Section 4] in the case n = 2. For the third assertion, we know by (ii) that

v (1/#E) Z Ye(r — v a2 w — w)

(zeE,weEX*

is pure of weight zero. We must show that it is the weight zero quotient of

v~ (1/#E) Z Yp(z — v tz? fw — w).

(z,w)EEX x EX

Equivalently, we must show that their difference is mixed of weight < —1. But their difference is

vie (I/#E) Y. yele—v 2% fw—w) = (1/#E) > tp(—w) = —1/#E.

z=0,weEX weEX

The main result of this section is the following theorem, which complements Theorem 16.11:

Theorem 17.5. Let ¢ = p/ > 4 be a power of a prime p. Then the following statements hold for
the geometric and arithmetic monodromy groups Geeom and Garith e Of the local system W(1,1) over
any finite extension k of Fge.

(a) Garithk = Ggeom = GUa(q). Furthermore, we can identify Ggeom with GUa(q) in such a way
that the action of GUa(q) on W(1,1) affords the total Weil character (o 4.

(b) Let H; be any of the ¢+ 1 hypergeometric constituents of W(1,1). Then H; has arithmetic and
geometric monodromy groups G;rith’k = Géeom, Géeom/Z(Géeom) = PGUs(q), and Z(Géeom) is
cyclic of order dividing q + 1.

(c) Over any subfield F 2/a of Fgz, the arithmetic monodromy group Garith,FqQ/d of W(1,1) is GUz(q)-

Cy, and induces a subgroup of outer field automorphisms of SU2(q) of order d/ ged(2,d). Fur-

thermore, Cg (SUa(q)) has order (¢ + 1) - ged(2,d), and

arith,F
’ q2/d

Garith»FqQ/d/CGarith, (SU2(q)) g PGU2(q) X Gal(Fq2 /qung(27d>/d)‘

F
42/d
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(d) The local system W*(1,1) has its geometric monodromy group and arithmetic monodromy group
Grithk = Ggeom = (Ggeom) ™) = SUy(q), with SUa(q) acting via its total Weil representation.
Furthermore, over any subfield F 2/a of F2, the arithmetic monodromy group of W*(1,1) is
SUa(q) - Cy4, and induces a subgroup of outer automorphisms of SUs(q) of order d/ ged(2,d),
modulo the inner-diagonal automorphisms of SUa(q).

Proof. (i) Let @ : G := Garith, = GLgn(C) denote the corresponding representation of Garith i on
W :=W(1,1). By Theorem 11.1, ® = @?_ ®;, where deg(®;) = ¢ — 1+ ;0. Now, by Theorem 11.9
we have

(17.5.1) Tr(®(u)) =1, —q, or ¢%, for all u € Garith, k-
It follows from Lemma 17.1 that |Ggeom| = |GU2(q)| = |Garith k|, and so
(17.5.2) G := Ggeom = Glarith,k has order equal to |GUsz(q)].

Next, note that the hypergeometric summand Hg of rank ¢ is precisely the sheaf Hq considered in
[KT7, §1], hence

(17.5.3) Do(G) = G2y = PGLa(q) = PGUz(q)

geom
by [KT7, Corollary 8.2].

(iii) Next we take L := G(>). Then L has S := PSUy(q) as a composition factor, and so we
can write |L| = e - [PSUa(q)| = eq(¢® — 1)/ ged(2,q — 1) for some e € Z>1. On the other hand, by
Corollary 13.4, some hypergeometric summand of W(1,1) has geometric determinant £, with v of
order exactly M = g+ 1, whence ¢ + 1 divides |G/[G, G]|. It now follows from (17.5.2) that ¢ + 1
divides |G/L| = (¢+1) - ged(2,q — 1) /e, i.e.

(17.5.4) elged(2,q —1).

Since |G//L| divides the p’-integer (¢ + 1) - ged(2,¢ — 1), we have that L > O (G). On the other
hand, G/OP (G) is cyclic for G = Ggeom by [Abh, Proposition 6(III)], therefore O (G) > L. Thus
L = O”(G), and so the integer n(G) defined prior to Theorem 14.6 is (¢ + 1) - ged(2,q — 1)/e, a
multiple of ¢ + 1 by (17.5.4). Now applying Theorem 14.6 to W*(1,1) = [¢ + 1]*W, we see that

Grithk: = Gheoms moreover, G, has index ¢ + 1 in G and contains L as a normal subgroup of

index gcd(2,q — 1)/e. But W*(1,1) is a local system on A!, so G geom has no nontrivial p’-quotient.
Thus we conclude that e = ged(2,qg — 1), and |L| = [SU2(q)|. Recall that L is perfect and has
S = PSUs(q) as a composition factor. If 2|q, we must have that L = SUs(q). If 2t ¢, then L admits
a normal subgroup L of order 2 such that L/L; = S. In this case, L1 < Z(L), and so L = SUy(q)
as well. Thus we have shown that

(1755) ;rith,k: = G* =L= SUQ(q)

geom

Moreover, the geometric determinant £, mentioned above now implies that

(17.5.6) G/L = Cyp1, G = (L,g).
(iii) More generally, let us consider the kernel K of ®y. By (17.5.2) and (17.5.3),
(17.5.7) |K| = |G|/[PGUz(q)| = q + 1.

Next, K N L is the kernel of the representation (®g)|r, of degree ¢. First we note that any represen-
tation (®;)|r cannot be trivial, as otherwise ®;(G) would have order dividing

|G/L| = q+1 < (¢ — 1)* < rank(H,)?,

contradicting the irreducibility of G on H;. In particular, this holds for (®o)|r. Now if 2|g, then
L = S is simple, and so K N L =1 = Z(L). It follows that |[KL| = |G|, and so G = K x L and
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K = G/L = Cy4q by (17.5.6), whence there exists ¢ : G = GUz(q). We also note that, since the
smallest degree of nontrivial irreducible representations of SU2(q) is ¢ — 1, all (®;)|1, are irreducible,
and afford characters St or 6;, whence ®|, is the total Weil representation by (17.5.1) and Theorem
17.2.

(iv) In this and the next parts of the proof we will assume 2 { g. If (®g)|r is reducible, then
each irreducible constituent of it has degree < ¢/3 < (¢ — 1)/2, contrary to the fact that every
nontrivial irreducible representation of L = SLy(q) has degree > (¢ — 1)/2. Hence (®g)|z is an
irreducible representation of degree ¢, i.e. its Steinberg representation, and so K N L = Z(L). As
[K,L] < KNL,in both cases we now have [[K, L], L] = 1, and so by the Three Subgroups Lemma
and by the perfectness of L we have that [K, L] = [K, [L, L]] is contained in [[K, L], L] =1, i.e.

(17.5.8) K < Cgl(L).

We have also shown that each irreducible constituent of (®;)|y, is of degree g (hence it is the Steinberg
representation) if ¢ = 0, or of degree ¢ — 1 or (¢ —1)/2 if 1 <i < g and thus affords the character 6;
or 7, in the notation of Theorem 17.2. Together with (17.5.1), Theorem 17.2 applied to L implies
that ®|7, is the total Weil representation of L = SUs(q), as stated in (a). In particular, the character
of ®|r, contains exactly two irreducible constituents of degree (¢ — 1)/2, namely 71 and 7.

By Corollary 4.12; for any 1 < i < ¢, H; satisfies the condition (S+), except for the sheaf
KI(M, A, B,078,07%) with 0% 8 = x4, equivalently, 0 = 2 (recall that o — 3 = 1). We will choose
our labeling so that this sheaf is H,1)/2. Hence, if i # (¢ + 1)/2 then the normal subgroup L of
G acts irreducibly on H; by [GT, Lemma 2.5].

Suppose for a moment that K # Cg(L). By (17.5.7) and (17.5.8), we then have |Cg(L)| >
2(¢ + 1). On the other hand, Cg(L) N L = Z(L) has order 2. Hence |Cq(L)L| > (¢+ 1)|L| = G,
and so G = Cg(L) o L, a central product with Cq(L) N L = Z(L) = K N L. Tt follows that
Ca(L)] = 2(g + 1), and

G/(KNL)=Cg(L)/Z(L) x L)Z(L),

a direct product of a group of order ¢ + 1 and the simple group S = PSUs(q). Thus G/(K N L)
cannot map onto G/K = ®¢(G) = PGU;(gq), contrary to (17.5.3). Thus we have shown that

(17.5.9) K = Cg(L).

(v) We can view L as the commutator subgroup of GUs(q). Recalling G/Cqg(L) = PGU;y(g) from
(17.5.3) and (17.5.9), we now see that G induces the full group of inner-diagonal automorphisms of
L, which is the one induced by elements by GUs(q) acting on L via conjugation. It follows that we
can find an element h € GUs(q) such that

(17.5.10) g and h induce the same automorphism of L = SUs(q);

furthermore, changing g to another representative in its coset gG if necessary, we can ensure that
(17.5.11) h = diag(o,1)

for some p € IFqXQ of order ¢ 4+ 1, and so

(17.5.12) ord(h) =q+1, LN(h) =1.

Next, as shown in (iv), if j # 0,(¢ + 1)/2 then (®;)|r is irreducible, of degree ¢ — 1. Each such
representation extends to a representation ®; of GUg(g). Moreover, as one can check using the
character table of GUa(q) [E, §6],

(17.5.13) 0 # Tr(®;(h)) € Qo) = Q(¢y+1)
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(indeed, any irreducible representation of degree ¢ — 1 of GUz(q) is reducible over SUs(q) if and
only its trace at h is zero). Furthermore, the choice (17.5.10) of h, and again the irreducibility of
(@;)|1 established in (iv) ensure that ®;(g)®;(h)~" centralizes ®;(L), whence

(17514) (I)j(g) = Ozji)j(h)
for some a; € C*. In fact, ; is a root of unity because both g and h have finite order. Also, since
o in Definition 16.1 is chosen to have order dividing ¢ + 1, Tr(®;(g)) € Q({4+1) by Theorem 11.1.
Hence the root of unity a; belongs to Q((g+1) by (17.5.14). As 2|(¢ + 1), it follows that

a?+1 -1
for all j # 0, (¢ + 1)/2. Together with (17.5.12) and (17.5.14), this implies that ®;(g)?*! = Id for
all j # 0, (g + 1)/2. In particular, g9*! € G has trace ¢ — 1 on all H; with j # 0, (¢ + 1)/2. Hence

@) = [3 @, )
j=0
>0 T(@(g )]~ [Te(@o(g™ )| = [Tr(@(gs1)2(9 )]
J#0,(g+1)/2

>(q—1)2—q—(q—1)=¢"—4g+2>q+2

(as ¢ > 5). It follows from (17.5.1) that Tr(®(g?*!)) = ¢ and so g?*! = 1 by faithfulness of ®.
Recalling (17.5.6), we must then have that

(17.5.15) ord(9) =¢+1, LN{g) = 1.

Thus G = L x (g) and GUa(q) = L x (h) are two split extensions of L = SUs(q) by Cy41. Now
using (17.5.10), (17.5.12), and (17.5.15), one can readily check that the map sg’ — sh’, s € L and
0 < i < g, yields a group isomorphism ¢ : G = GUsz(q).

(vi) Now we return to the general case of any prime p. Statement (b), both for 2|¢ and 2 1 g,
follows by applying ®; to G = Ggeom = Glarith k-

To complete the proof of (a), let (go) denote the image of I(0) in G = Ggeom. First we consider
the case @ = 1. Then we can relabel ®; so that the spectrum of ®;(go) equals {o’ | i # 0, j}. Note
that, since G/L is cyclic, (L, go) is normal in G and so contains the normal closure of (go) in G.
But the normal closure of (go) in G equals G by [KT5, Theorem 4.1}, hence (L, go) = G. Now we
can apply Theorem 17.3 (and its proof) to obtain v € Aut(G) such that Tr(®(y(z))) = (o,4(2) for
all x € G, v(g) = diag(p,1), cf. (17.3.1), and ~(z) = diag(e, 0) acts in ®; via the scalar g’ for
a generator z of Z(G), cf. (17.3.2). In particular, adjusting the identification ¢ by o, we see that
G = GUy(q) acts on Wi(1,1) with the total Weil character (2 4. We also note that the local system
Wi(1,1) gives rise to a surjection

¢ :m(Gp/Fp) - G,
and composing with ®;, it realizes the hypergeometric sheaf H;.

Next, we consider the general case of any («, ) satisfying (17.0.2). As noted in Remark 16.7, the
map g defined in (16.7.1) is an automorphism of G = GUz(q). Since vg(g0) = gozP, the spectrum
of v5(go) in ®; is {@' 1 i # «j, Bj}. Now we twist the representation ® of GUa(g) on Wi(1,1) by
v to obtain

W(2) = B(r5(x)) and ¥, (2) = ©,(y5())
for all z € G. Note that 75 does not change any unipotent element in G, hence

Te(W(y)) = Tr(2;(y))
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for all p-elements y € G. It follows from [KT5, Theorem 5.1] that composing 1 with ¥; realizes a

hypergeometric sheaf ﬁo of type (¢,1) when j = 0 and a Kloosterman sheaf #; of rank ¢ — 1 when
1 < j < gq. The spectrum of ¥;(go) when j > 0 shows that

H; = KI(Char(q + 1) ~ {o77%,0795})

for a fixed character o of order g+1. Likewise, the “upstairs” characters of Ho are Char(g+1)~{1}.
We show that the “downstairs” character is 1. Indeed, the image of I(cc) in G, = PGUs(q)

geom
is an elementary abelian group of order ¢ extended semidirectly by Cy—1. Now, Wy still affords

(0)

the same character x4’ as of ®g, so a generator of this C;_1 has trace 1 in Wq, showing that the
“downstairs” character is 1. Thus

q
P H; =wa,1),
=0

with its geometric monodromy group acting via ¥ = ® o 3.

(vii) Note that Lemma 16.3 also holds when a = b = 1. Hence, the same arguments as in part
(i) of the proof of Theorem 16.12, using the a = b =1 case of Lemma 16.3, show that

(17'5'16) Garith,Fp/Ggeom = ;rith,Fp/Ggeom = CQf’
in fact,
(17517) Gzrith,ﬂ*‘p - <g*7 Ggeom>7

where g* = Froba g, when p > 2 and g* = Froby, when p = 2.

Next, as shown in Lemma 17.4, the hypergeometric summand Hg of W(1,1) is arithmetically
isomorphic to the sheaf Hq considered in [KT7, §1]. By [KT7, Theorem 8.3, the latter has arithmetic
monodromy group (GLz(q) x Cf)/A over F),, where A is the kernel of the action of GL2(g) x Cf on
H1 and Cf induces the full outer automorphism group (of order f) of the simple group PSLa(q);
furthermore |A| = ¢ 41 by [KT7, Corollary 8.2]. Thus, if B is the kernel of the action of GarithF,
on Ho, then Guritnr,/B = (GLz2(q) x Cf)/A, and so |B| = 2(q + 1). We note that B centralizes
L = Ggeom = SU2(q). Indeed, as L is perfect, [B, L] = [B,[L, L]] is contained in [B N L, L]. Now
BNL<L, and any normal subgroup of order < 2(¢+1) of L is central in L. Hence [BNL, L] = 1, and
so [B, L] = 1, as claimed. Also, (GL2(¢) X Cf)/A induces the full automorphism group PGL2(q) X Cf
of PSLa(q) = PSUsy(q). Hence |Cg (SUz2(q))| = 2(¢+1), and the statements in (c) for GaienF,
follow.

Furthermore, as shown in Lemma 16.3, when j|2f, Trace(®((g*)?)) can be a power of —q only for
j = 2f. Since Trace(®(h)) is a power of —q for any h € Ggeom and Gieom < Ggeom, it then follows
from (17.5.17) that

arith,Fp

* _
arith,F, N Ggeom - Ggeom'

Together with (17.5.16), this implies that Gaitnr, = G FpGgeom Now, Ggeom induces only

inner-diagonal automorphisms of SUs(q) whereas Glaritn,F, induces the full automorphism group of

SUs(q). It follows that G;rith’Fp must induce the full group C} of outer field automorphisms of

SUs(q), and thus (d) follows for G*

arith,F*

Note that Ggeom = GU2(gq) induces tﬁe full subgroup PGUz2(q) of inner-diagonal automorphisms
of SUz(g), and the cyclic quotient GasitnF,/Ggeom = Coy maps onto the group Cy of outer field
automorphisms of SUs(q), hence with kernel Cy, the unique subgroup of order 2 in it, which then
must coincide with Gasitn,F,/Ggeom- Arguing as in part (i) of the proof of Theorem 16.12, we also
obtain (c) and (d) for Gayith,F and G}, 7 O

q2/d 2/
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Note that the extra ged(2, d) factor in Theorem 17.5(c) and (d), compared to Theorem 16.12, is
explained by the fact that the transpose-inverse automorphism of SU,,(¢) becomes an inner-diagonal
automorphism when n = 2.
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