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Abstract. We construct hypergeometric sheaves whose geometric monodromy groups are the finite
symplectic groups Sp2n(q) for any odd n ≥ 3, for q any power of an odd prime p. We construct other
hypergeometric sheaves whose geometric monodromy groups are the finite unitary groups GUn(q),
for any even n ≥ 2, for q any power of any prime p. Suitable Kummer pullbacks of these sheaves
yield local systems on A1, whose geometric monodromy groups are Sp2n(q), respectively SUn(q), in
their total Weil representation of degree qn, and whose trace functions are simple-to-remember one-
parameter families of two-variable exponential sums. The main novelty of this paper is three-fold.
First, it treats unitary groups GUn(q) with n even via hypergeometric sheaves for the first time.
Second, in both the symplectic and the unitary cases, it uses a maximal torus which is a product
of two sub-tori to furnish a generator of local monodromy at 0. Third, this is the first natural
occurrence of families of two-variable exponential sums in the context of finite classical groups.
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1. Introduction

Throughout this paper, p is a prime, and q is a power of p. In our previous paper [KT3], we
considered the problem of realizing the finite symplectic groups Sp2n(q) when p is odd as monodromy
groups of “simple to remember” families of exponential sums on the affine line A1 in characteristic
p, with the proviso that these families themselves be closely related to hypergeometric sheaves, and
the analogous problem for the finite unitary groups SUn(q). In the Sp2n(q) case, we succeeded for
even n with p > 2 (and Sp2(q) was treated in [KT1]). In the SUn(q) case, we succeeded for odd
n ≥ 3, again when p was odd. For a long time, we did not believe that SUn(q) for n ≥ 2 even could
be obtained from hypergeometric sheaves.

In this paper, we make use of a new approach, which allows us to treat the Sp2n(q) case for
n ≥ 3 odd, still with p odd, and the SUn(q) case for n ≥ 2 even and any p. This approach is
based on the novel idea of constructing hypergeometric sheaves whose local monodromy at 0 uses
a generator of a maximal torus in the group which is a product of two sub-tori. Previously, known
hypergeometric sheaves for finite classical groups all have local monodromy at 0 that utilizes only
cyclic maximal tori of the classical group in question. This novel approach allows us to treat unitary
groups GUn(q) with n even via hypergeometric sheaves for the first time. Another principal novelty
of this paper is the use of the operation Cancel on hypergeometric sheaves [Ka-ESDE, 9.3.1] as
a way to obtain the explicit trace functions of our candidates for total Weil representations of
symplectic and unitary groups. Note that, even though these hypergeometric sheaves have a fairly
explicit shape predicted by local monodromy considerations, they individually do not have nice
trace functions. The use of Cancel allows us to show that suitable direct sums of them do have
nice trace functions. These trace functions are then used to prove that their monodromy groups
are finite, but these trace functions alone give us no clue what the finite monodromy groups are,
and in what representations they are occurring. We then prove group-theoretic recognition results
that identify these geometric monodromy groups as finite symplectic and unitary groups acting in
their total Weil representations. Further group-theoretic results are then established to identify the
occurring arithmetic monodromy groups.

This paper may also be viewed as a companion piece to [KT5], which determines which almost
quasisimple groups can possibly occur as monodromy groups of hypergeometric sheaves. The main
results, Theorems 6.4 and 7.4 of [KT5], show that if a finite classical group G in characteristic r
can be realized as the geometric monodromy group of a hypergeometric sheaf H on Gm/Fp, then,
aside from a small and explicit list of exceptions, we necessarily have that r = p and that G is a
general linear group GLn(q), a general unitary group GUn(q), or a symplectic group Sp2n(q) with q
a power of p, and moreover the resulting representation of G is an irreducible Weil representation.
The converse problem of showing that such a finite classical group G acting in a Weil representation
does indeed occur as the geometric monodromy group of a hypergeometric sheaf H is the subject
of the current paper and [KT6]. As mentioned above, a major difference between the local systems
considered in this paper and the ones in [KT6] is the novel consideration of a product of two sub-tori
as local monodromy at 0 in this paper, which necessitates the development of new algebro-geometric
and group-theoretic tools.

Let us briefly discuss the “numerology” of our approach here. We are given a prime p, a strictly
positive power q of p, and two positive integers

a, b.

We then define

M := gcd(qa + 1, qb + 1),

A := (qa + 1)/M,B := (qb + 1)/M.
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Thus
gcd(A,B) = 1.

Grosso modo, when M = 2, we find that we are dealing with Sp2(a+b)(q), and that when M = q+1,

we are dealing with SUa+b(q). A moment’s reflection shows that M = 2 is only possible if at least
one of a, b is even; a further technical constraint requires that the other be odd and this is why we
can only attain Sp2n(q) for n ≥ 3 odd. Similarly, M = q + 1 is only possible if both a, b are odd;
this is why we can only attain SUn(q) for n even. Because M is a divisor of each of qa + 1 and
qb + 1, M = 2 is only possible if q is odd, whereas M = q + 1 imposes no parity restriction on q.
This is what allows us to treat the SUn(q) case, n ≥ 2 even, in any characteristic.

It then turns out that one-parameter families of two-variable exponential sums, of the shape

t ∈ E 7→
∑
x,w∈E

ψE(txw + xq
b+1 + wq

a+1)

are what provide the sought after total Weil representations. This is in sharp contrast to the case of
SUn(q) with n odd or any Sp2n(q), where the total Weil representations are incarnated by families
of one-variable exponential sums. Moreover, with n = a + b, it comes as a pleasant surprise
that the local systems with these trace functions realize total Weil representations of Sp2n(q) and
of SUn(q). In the “overlap” case of Sp2n(q) with n odd, where we have both this two-variable
exponential sum approach and the already developed one-variable exponential sum approach to
total Weil representations, it would be interesting to understand the relation between the two
approaches.

The main result for symplectic groups is Theorem 15.7, which explicitly constructs hypergeo-
metric sheaves whose arithmetic and geometric monodromy groups realize Sp2n(q) in its irreducible
Weil representations. Suitable Kummer pullbacks of these sheaves yield local systems over A1/Fq
with the same monodromy groups and with trace functions being easy to remember one-parameter
families of two-variable exponential sums. Similar results for unitary groups (in any characteristic)
are established in Theorems 16.11, 16.12, and 17.5.

2. A variant approach to finite monodromy, especially of hypergeometric sheaves;
the [N ]? method

Let Hypψ(χ1, . . . , χn; ρ1, . . . , ρm) be a hypergeometric sheaf of type (n,m), defined over a finite
field Fq in the strong sense that ψ is a nontrivial additive character of Fq and each χi and each ρj
is a (possibly trivial) multiplicative character of F×q . We assume that no χi is any ρj .

If we pick an embedding of Q(µq−1) into Q`, we can view the multiplicative characters χi and ρj
as taking values in Q(µq−1). So viewed, it makes sense to ask if the set (with multiplicity) consisting
of the upstairs characters χi, and the set (with multiplicity) consisting of the downstairs characters
ρj , are each Galois stable (by the action of Gal(Q(µq−1)/Q)). [This notion does not depend on the

choice of embedding of Q(µq−1) into Q`, since any two embeddings differ by precomposition with an
element of Gal(Q(µq−1)/Q).] If both sets are Galois stable, we say that Hypψ(χ1, . . . , χn; ρ1, . . . , ρm)
has Galois stable sets of characters.

Lemma 2.1. Let Hypψ(χ1, . . . , χn; ρ1, . . . , ρm) be a hypergeometric of type (n,m) with Galois stable
sets of characters. Then we have the following results.

(i) For any finite extension field L/Fq, and any point t ∈ L×, the trace

Trace
(
Frobt,L|Hypψ(χ1, . . . , χn; ρ1, . . . , ρm)

)
and the determinant

det
(
Frobt,L|Hypψ(χ1, . . . , χn; ρ1, . . . , ρm)

)
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both lie in Z[ζp].
(ii) The “Gauss-twisted” sheaf

Hypψ(χ1, . . . , χn; ρ1, . . . , ρm)(−Gauss(ψ, χquadratic))
−(n+m−1) deg

is pure of weight zero, for every embedding of Q` into C, and has traces in Z[ζp][1/p].

Proof. The two Galois extensions Q(µp)/Q and Q(µq−1)/Q are linearly disjoint, so we may view
Gal(Q(µq−1)/Q) as Gal(Q(µq−1, µp)/Q(µp)) and Gal(Q(µp)/Q) as Gal(Q(µq−1, µp)/Q(µq−1)).

In the formulas below, we write ψL for ψ ◦ TraceL/Fq , and we write χi,L for χi ◦NormL/Fq .
The assertion about the trace is obvious from the explicit formula [Ka-ESDE, 8.2.7] for this trace,

namely

(−1)n+m−1
∑

∏
i xi=t

∏
j yj

ψL(
∑
i

xi −
∑
j

yj)
∏
i

χi,L(xi)
∏
j

ρj,L(yj).

This formula makes clear that the trace is an algebraic integer, and that the effect of

Gal(Q(µq−1)/Q) ∼= Gal(Q(µq−1, µp)/Q(µp))

is simply to permute the xi and to permute the yj . Thus the trace is an algebraic integer in the field
Q(µp), so lies in Z[ζp]. This rationality, applied over finite extensions, given the same rationality
for the determinant (indeed for all the coefficients of the reversed characteristic polynomial

det
(
1− TFrobt,L|Hypψ(χ1, . . . , χn; ρ1, . . . , ρm

)
).

We know [Ka-ESDE, 8.4.13] that Hypψ(χ1, . . . , χn; ρ1, . . . , ρm) is pure of weight n + m − 1, so
the “Gauss-twisted” sheaf is pure of weight zero. It results from the first assertion that this variant
of the Tate-twist has values in Z[ζp][1/p], since the quadratic Gauss sum lies in Z[ζp] and divides
p. �

Proposition 2.2. Let F be a lisse sheaf on Gm/Fq which is pure of weight zero and which has all
traces in Z[ζp][1/p]. Suppose that F is arithmetically semisimple. Fix an integer N ≥ 1 prime to p.
Then the following are equivalent.

(a) Garith,F is finite.
(b) Ggeom,F is finite.
(c) All traces of F are algebraic integers, i.e., lie in Z[ζp].
(d) For every finite extension L/Fq, for any chosen p-adic ord of Q(µp, µ#L×), and for every

multiplicative character χ of L×, the sum∑
t∈L×

χ(t)Trace(Frobt,L|F)

has ordp,L ≥ 0.
(e) For every finite extension L/Fq, for any chosen p-adic ord of Q(µp, µ#L×), and for every

multiplicative character χ of L×, the sum∑
t∈L×

χ(t)NTrace(Frobt,L|F)

has ordp,L ≥ 0.

Proof. The equivalence of (c) and (d) results from the Mellin transform argument, cf. [KRLT1, 2.1,
2.2, 2.7], which also explains the equivalence of (a), (b), and (c). It is obvious that (d) implies (e).
It remains to show that (e) implies (d). We use the identity∑

t∈L×
χ(t)NTrace(Frobt,L|F) =

∑
s∈L×

χ(s)
∑

t∈L×,tN=s

Trace(Frobt,L|F) =
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=
∑
s∈L×

χ(s)Trace(Frobs,L|[N ]?F).

The Kummer direct image [N ]?F remains pure of weight zero and arithmetically semisimple, with
all traces in Q(µp). Therefore by the equivalence of (a) through (b), applied to [N ]?F , we see that
[N ]?F has finite Garith. Therefore its pullback [N ]?[N ]?F has finite Garith. But F is a direct factor
of this pullback, so F itself has finite Garith. [When Fq contains the N th roots of unity, this pullback

is the direct sum of the multiplicative translates of F by the N th roots of unity. If Fq does not

contain the N th roots of unity, we break up the sum of these translates into clumps according to
the order of the N th root of unity by which we translate. Each of these clumps lives over Fq, and
F is the clump for the trivial translate.] �

3. Overall set-up

Here p is a prime, q is a power of p,
a, b

are positive integers. We define
M := gcd(qa + 1, qb + 1),

A := (qa + 1)/M,B := (qb + 1)/M.

Thus
gcd(A,B) = 1.

We also fix integers α, β with
αA− βB = 1,

We also fix a prime number ` 6= p, so as to be able to use Q`-cohomology, and we fix a choice of
nontrivial additive character ψ of Fp.

Given an integer n ≥ 1 which is prime to p, we denote by Char(n) the group of multiplicative
characters of order dividing n. Given a multiplicative character ρ of finite order, we denote by

Char(n; ρ) := {χ|χn = ρ}.
Thus Char(n) = Char(n;1).

In the above paragraph, the characters in question are the characters of finite order of the tame
fundamental group of Gm/Fp, which is the inverse limit of the multiplicative groups of the finite

subfields of Fp, with transition maps the norm. Thus the group of characters in question is the

direct limit of the groups Hom(k×,Q`
×

) under the inclusion maps, whenever k2/k1/Fp are finite
extensions, given by

Hom(k×1 ,Q`
×

) ⊂ Hom(k×2 ,Q`
×

), χ 7→ χ ◦Normk2/k1 .

4. Kloosterman candidates

Given multiplicative characters χ and ρ, each of order dividing M , such that the two sets
Char(A,χ) and Char(B, ρ) are disjoint, we may speak of the Kloosterman sheaf

Klψ
(
Char(MAB) \ (Char(A,χ) tChar(B, ρ))

)
.

Lemma 4.1. The two sets Char(A,χ) and Char(B, ρ) fail to be disjoint if and only if ρA = χB.

Proof. Suppose the two sets are not disjoint. Let Λ have ΛA = χ,ΛB = ρ. Then ΛAB = χB and
ΛAB = ρA. Conversely, if ρA = χB, then using the fact that gcd(A,B) = 1 we see that there is a
(necessarily unique) Λ with ΛA = χ,ΛB = ρ. Indeed, using the integers α, β with αA − βB = 1,
then we have Λ = χα/ρβ . Notice that Λ itself has order dividing M . �
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Lemma 4.2. Choose integers k, l such that

kA− lB = 1.

Consider the two injective group homomorphisms

Char(M)→ Char(M)×Char(M),

given by
φA,B : Λ 7→ (ΛA,ΛB), φl,k : σ 7→ (σl, σk),

with image groups ImA,B and Iml,k. Then the product group Char(M)×Char(m) is the product

ImA,B × Iml,k.

Proof. As we have two subgroups, each of order mm in an abelian group of order M2, it suffices
to show that the intersection ImA,B ∩ Iml,k consists of the single element (1,1). To see this, note

that if (χ, ρ) lies in the intersection, then on the one hand (χ, ρ) = (ΛA,ΛB) for some Λ, hence
χB/ρA = 1. On the other hand, (χ, ρ) = (σl, σk) for some σ, so ρA/χB = σ. Thus σ = 1, and
hence (χ, ρ) = (1,1). �

Given multiplicative characters χ and ρ, each of order dividing M , such that the two sets
Char(A,χ) and Char(B, ρ) are disjoint, we denote by

Kl(M,A,B, χ, ρ)

the Kloosterman sheaf

(4.2.1) Klψ(Char(MAB) \ (Char(A,χ) tChar(B, ρ))).

We have the following twisting formula:

Lemma 4.3. For Λ a character of order dividing M , we have the twisting formula

LΛ ⊗Kl(M,A,B, χ, ρ) = Kl(M,A,B, χΛA, ρΛB).

Remark 4.4. The rank of Kl(M,A,B, χ, ρ), namely MAB −A−B, is

(qa+b − 1)/M.

Corollary 4.5. The above M(M − 1) sheaves Kl(M,A,B, χ, ρ) with χB 6= ρA are precisely the
LΛ twists, with Λ of order dividing M , of the M − 1 sheaves Kl(A,B, σl, σk) with σ 6= 1 of order
dividing M .

Remark 4.6. We will often make constant field twists of the sheaves under consideration to achieve
weight zero. In odd characteristic, we will do this using the correct power of a choice of the quadratic
Gauss sum. In characteristic p = 2, so long as our ground field k is an even degree extension of Fp,
we will use the correct power of

pdeg(k/Fp)/2.

In other words, we define

−Gauss(ψk, χ2) := pdeg(k/Fp)/2

when k/Fp has even degree and p = 2, and proceed with the usual formalism of Gauss sums.

Theorem 4.7. Each of the above M(M − 1) sheaves Kl(M,A,B, χ, ρ) with χB 6= ρA has finite
geometric monodromy group Ggeom. Over any finite field k/Fp containing the MAB roots of unity,
the constant field twist

Kl(M,A,B, χ, ρ)⊗ (−1/Gauss(ψk, χ2))deg×(rank(Kl)−1)

is pure of weight zero and has finite arithmetic monodromy group Garith.
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Proof. The purity of weight zero is simply the fact that a Kloosterman sheaf is pure of weight one
less than its rank. It suffices to show the finiteness of Garith, since Ggeom < Garith. For this, we use
the Kubert V function. The criterion is that for all x ∈ (Q/Z)not p, and for every pair of integers
n,m mod M with Bn 6= Am mod M , we have

V (MABx)− V (Ax+ n/M)− V (Bx+m/M) + 1 ≥ 0.

In fact, we will prove this for every pair of integers n,m mod M . We will make use of the [N ]?
method, explained in §2, with N := M . The criterion becomes that for all x ∈ (Q/Z)not p, and for
every pair of integers n,m mod M , we have

V ((qa + 1)(qb + 1)x)− V ((qa + 1)x+ n/M)− V ((qb + 1)x+m/M) + 1 ≥ 0.

We rewrite this as

1 + V ((qa + 1)(qb + 1)x) ≥ V ((qa + 1)x+ n/M) + V ((qb + 1)x+m/M).

Recall that the integrality of Jacobi sums gives

V (x) + V (y) ≥ V (x+ y),

which (replacing x, y by −x,−y) gives

1 + V (x+ y) ≥ V (x) + V (y).

Because both qa + 1 and qb + 1 are divisible by M , we have equalities in (Q/Z)not p

(qa + 1)(qb + 1)x = (qa + 1)((qb + 1)x+m/M), (qa + 1)(qb + 1)x = (qb + 1)((qa + 1)x+ n/M).

Using the first of these, and the inequality 1 + V (x+ y) ≥ V (x) + V (y), we get

1 + V ((qa + 1)(qb + 1)x) = 1 + V ((qa + 1)((qb + 1)x+m/M)

≥ V (qa((qb + 1)x+m/M) + V ((qb + 1)x+m/M))

= 2V ((qb + 1)x+m/M).

Using the second of these, we get

1 + V ((qa + 1)(qb + 1)x) = 1 + V ((qb + 1)((qa + 1)x+ n/M))

≥ V (qb((qa + 1)x+ n/M)) + V ((qa + 1)x+ n/M)

= 2V ((qa + 1)x+ n/(M).

Adding these last two inequalities, we get twice the asserted inequality. �

Lemma 4.8. If qAB is odd, then of the M(M − 1) sheaves Kl(M,A,B, χ, ρ) with χB 6= ρA,
precisely two are geometrically self-dual. They are Kl(M,A,B,1, χ2) and Kl(M,A,B, χ2,1). Each
is symplectically self-dual. If qAB is even, none of these M(M−1) sheaves is geometrically self-dual.

Proof. Suppose first that q is odd. Then M is even. If both A,B are odd, then these sheaves all
have even rank (namely MAB − A − B). Because MAB is even, each has determinant χ2/(χρ).
Their sets of characters are stable by complex conjugation precise when each of χ and ρ is its
own complex conjugate, i.e., when each is either 1 or χ2. They cannot both be 1 or both be χ2,
as these cases violate the disjointness condition. Both Kl(M,A,B,1, χ2) and Kl(M,A,B, χ2,1)
are self-dual. Their determinants, being χ2/(χρ), are then both trivial, so the asserted symplectic
autoduality follows from [Ka-ESDE, 8.8.1-2].

Suppose now that q is odd and precisely one of A,B is odd. [They cannot both be even because
their gcd = 1.] Then each sheaf has odd rank MAB−A−B, and one knows [Ka-ESDE, 8.8.1] that
in odd characteristic, no Kloosterman sheaf of odd rank is geometrically self-dual.
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Suppose now that q is even. Then autoduality [Ka-ESDE, 8.8.1] would force each of χ and ρ
to be its own complex conjugate, which in characteristic 2 forces them both to be trivial, and this
violates disjointness. �

In the rest of this section, we prove the primitivity of the Kloosterman sheaves Kl(M,A,B, χ, ρ)
with χB 6= ρA considered above (with one exception, see the statement of Corollary 4.12).

Lemma 4.9. Let N ≥ 2 be a prime to p integer, A ≥ 1 and B ≥ 1 two divisors of N with
gcd(A,B) = 1 and A 6= B. Let A1 ⊂ Char(N) be a Char(A)-orbit, and let B1 ⊂ Char(N) be a
Char(B)-orbit. Suppose that A1 and B1 are disjoint. Then the Kloosterman sheaf

Klψ(Char(N) \ (A1 tB1))

is not Kummer induced (and hence not induced, by Pink’s lemma [Ka-MG, Lemma 11]).

Proof. Suppose our Kloosterman sheaf Kl is Kummer induced, say is [d]?F for some Kloosterman
sheaf F and some prime to p integer d. Then every χ of order dividing d is a ratio of characters
occuring in Kl, all of which have order dividing N . Thus d divides N . For χ a character of order
d, we thus have

Lχ ⊗Kl ∼= Kl,
which means precisely that we have an equality of sets

χChar(N) \ (χA1 t χB1) = Char(N) \ (A1 tB1).

Now χChar(N) is just Char(N), so inside Char(N) we have the equality of subsets

χA1 t χB1 = A1 tB1.

We will show that in fact χA1 = A1 and χB1 = B1. Once we know this, then χ lies in both
Char(A) and in Char(B), so must be trivial (because gcd(A,B) = 1). This results from the
following elementary lemma.

Lemma 4.10. Let A,B be divisors of the prime to p integer N . Let S ⊂ Char(N) be a subset which
is the disjoint union of a Char(A)-orbit A1 and a Char(B)-orbit B1. If A 6= B, then whenever
S = A2 tB2 with A2 a Char(A)-orbit and B2 a Char(B)-orbit, we have A1 = A2 and B1 = B2.

Proof. Suppose first that A1 ∩A2 is nonempty, say contains α. Then A1 = A2 = Char(A)α. From
this, we have S \A1 = S \A2, which is to say B1 = B2.

Similarly, if B1 ∩B2 is nonempty, we again get the desired conclusion.
Suppose finally that both A1 ∩ A2 and B1 ∩ B2 are both empty. The A1 ⊂ S \ A2 = B2, and

B2 ⊂ S \ B1 = A1. Thus A1 ⊂ B2 ⊂ A1, hence A1 = B2. But this is impossible, because the two
sets have different cardinalities A and B respectively. �

As explained above, once we have Lemma 4.10 we have proven Lemma 4.9. �

In Lemma 4.9, we omitted the case when gcd(A,B) = 1 but A = B, i.e. the case when A = B = 1.
Here the situation is as follows.

Lemma 4.11. Let N ≥ 2 be a prime to p integer, and χ 6= ρ two distinct characters in Char(N).
Then the Kloosterman sheaf

Klψ(Char(N) \ {χ, ρ})
is primitive, i.e., not Kummer induced, except in the case when N is even and χ = χ2ρ, in which
case it is the Kummer induction [2]?

(
Lρ2 ⊗Klψ(Char(N/2) \ {1})

)
.
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Proof. Exactly as in the proof of Lemma 4.9, if our Kloosterman sheaf is is [d]?F for some Kloost-
erman sheaf F and some prime to p integer d > 1, then d|N and for any character σ of order d, we
have an equality of sets

{σχ, σρ} = {χ, ρ}.
As σχ 6= χ, we must have σχ = ρ, and similarly σρ = χ. Thus σ2 = 1, d = 2, and χ = χ2ρ. In this
case, we indeed have the asserted Kummer induction. �

Corollary 4.12. Given multiplicative characters χ and ρ, each of order dividing M , such that the
two sets Char(A,χ) and Char(B, ρ) are disjoint, the Kloosterman sheaf Kl(M,A,B, χ, ρ) satisfies
condition (S+), except in the situation

M = q + 1 is even, A = B = 1, and χ = χ2ρ.

Proof. Immediate from the primitivity lemmas 4.9 and 4.11, applied with N taken to be MAB,
thanks to [KT5, Thm. 1.2.1]. �

5. The hypergeometric candidate

In this section, we consider the hypergeometric sheaf

(5.0.1) Hypψ
(
Char(MAB) t {1} \ (Char(A) tChar(B));1

)
,

which we denote
Hyp(M,A,B,1,1).

Theorem 5.1. The sheaf Hyp(M,A,B,1,1) has finite geometric monodromy group Ggeom. Over
any finite field k/Fp containing the AB(q + 1) roots of unity, the constant field twist

Hyp(M,A,B,1,1)⊗ (−1/Gauss(ψk, χ2))deg×rank(Hyp))

is pure of weight zero and has finite arithmetic monodromy group Garith.

Proof. The purity of weight zero is simply the fact that a hypergeometric sheaf of type (n,m)
with disjoint upstairs and downstairs characters is pure of weight n + m − 1. It suffices to show
the finiteness of Garith. For this, we use the Kubert V function. The criterion is that for all
x ∈ (Q/Z)not p, we have

V (MABx) + V (x)− V (Ax)− V (Bx) + V (−x) ≥ 0.

If x = 0, this trivially holds. If x 6= 0, then V (x) + V (−x) = 1, and the inequality becomes

1 + V (MABx) ≥ V (Ax) + V (Bx).

This is the n = m = 0 case of what was proven in Theorem 4.7. �

Lemma 5.2. If either qAB is odd or q is even, the sheaf Hyp(M,A,B,1,1) is, geometrically,
orthogonally self-dual. Otherwise, it is not geometrically self-dual.

Proof. This sheaf has rank MAB + 1 − A − B, and is of type (MAB + 1 − A − B, 1). Its sets of
upstairs and downstairs characters are each stable by complex conjugation.

When q is odd, this sheaf is self-dual [Ka-ESDE, 8.8.1] precisely when MAB+ 1−A−B is odd.
But when q is odd, M is even, so autoduality holds when A + B is even. But as gcd(A,B) = 1,
A+B is even precisely when both A,B are odd. In this case, the rank MAB + 1−A−B is odd,
so the duality must be orthogonal.

When q is even, this sheaf is self-dual [Ka-ESDE, 8.8.1]. Each of M,A,B is odd in this q even
case, so the rank n is even. By [Ka-ESDE, 8.8.1], no hypergeometric sheaf of type (n, 1) with n even
is symplectically self-dual. Therefore in this case as well, the sheaf is, geometrically, orthogonally
self-dual (despite having even rank). �
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Lemma 5.3. We have the following results.

(i) If M = 2, the hypergeometric sheaf Hyp(M,A,B,1,1) is primitive.
(ii) If M = q + 1, then except in the case q = 3, a = b = 1, the hypergeometric sheaf
Hyp(M,A,B,1,1) is primitive.

(iii) If M = 1, the hypergeometric sheaf Hyp(M,A,B,1,1) is primitive.

Proof. One knows [KRLT2, Cor. 2.3] that any hypergeometric sheaf of type (n, 1) whose rank n is
not a power of p is primitive. If M = 2, Hyp(M,A,B,1,1) has rank (qa+b+1)/2, which is prime to p.
If M = q+1 and a+b > 2, thenHyp(M,A,B,1,1) has rank (qa+b+q)/(q+1) = q(qa+b−1+1)/(q+1),
which is q times a p-adic unit. Looking at the ordp, we see that the rank can only be a power of p
if the rank is q, and this happens only when a+ b = 2, i.e., when a = b = 1.

To finish case (ii), we now treat the case when M = q + 1 and a = b = 1. Then A = B = 1, and
Hyp(M,A,B,1,1) isHyp(Char(q+1)\{1};1), of type (q, 1). It cannot be Kummer induced. For it
to be Belyi induced, there must exist positive integers A0, B0, both prime to p, with A0+B0 = q, and
a nontrivial (otherwise the two sets Char(A0, χ) and Char(B0, χ) will each contain 1) multiplicative
character χ such that

Char(q + 1) \ {1} = Char(A0, χ) tChar(B0, χ).

Pick a multiplicative character ρ of full order q + 1. At the expense of interchanging A0 and B0, it
suffices to treat the case when ρ ∈ Char(A0, χ), i.e. when ρA0 = χ. Then χ, being a power of ρ,
has order d|(q+ 1), and so ρdA0 = 1. Thus q+ 1)|dA0. On the other hand, Char(A0, χ) contains a
character Λ of full order dA0. But any such character lies in Char(q+ 1), hence dA0|(q+ 1). Thus
dA0 = q + 1. Similarly, Char(B0, χ) contains a character of full order dB0, so dB0|(q + 1). But
q+ 1 = dA0, so dB0|dA0, hence B0|A0. But A0 +B0 = q, and p - A0B0, so in fact gcd(A0, B0) = 1.
Therefore B0 = 1, and hence A = q− 1. But dA0 = q+ 1, so d(q− 1) = q+ 1. This is only possible
if q = 3 and d = 2. Indeed, in this case, we have χ = χ2, A0 = 2, B0 = 1, and in fact we do have

Char(4) \ {1} = Char(2, χ2) t {χ2}.

We now turn to the case M = 1. Then q is even, A = qa + 1, B = qb + 1, and Hyp(M,A,B,1,1)
is

Hyp(Char(AB) t {1} \ (Char(A) tChar(B));1),

of rank qa+b. Just as above, this sheaf cannot be Kummer induced. If it is Belyi induced, there must
exist positive integers A0, B0, both prime to 2, with A0 +B0 = qa+b, and a nontrivial multiplicative
character χ such that

Char(AB) t {1} \ (Char(A) tChar(B)) = Char(A0, χ) tChar(B0, χ).

Pick a multiplicative character ρ of full order AB. At the expense of interchanging A0 and B0, it
suffices to treat the case when ρ ∈ Char(A0, χ), i.e. when ρA0 = χ. Then χ, being a power of
ρ, has order d|AB, and so ρdA0 = 1. Thus AB|dA0. On the other hand, Char(A0, χ) contains
a character Λ of full order dA0. But any such character lies in Char(AB), hence dA0|AB. Thus
AB = dA0. Similarly, Char(B0, χ) contains a character of full order dB0, so dB0|AB). But
AB = dA0, so dB0|dA0, and hence B0|A0. As above, A0, B0 are both odd, but sum to a power ot
2, so gcd(A0, B0) = 1. Therefore B0 = 1, and hence A0 = qa+b − 1. Thus

d(qa+b − 1) = AB = (qa + 1)(qb + 1).

Because χ is nontrivial, and of order prime to p = 2, we have d ≥ 3. We cannot have a, b both odd,
otherwise M is divisible by q + 1. The displayed equality is impossible, because d ≥ 3, but

3(qa+b − 1) > (qa + 1)(qb + 1).
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Indeed, this is equivalent to

2qa+b − 3 > qa + qb + 1, i.e. qa+b + qa+b − qa − qb + 1 > 5, i.e. qa+b + (qa − 1)(qb − 1) > 5.

But a, b are not both odd, so a+b ≥ 3, and already the qa+b term forces the asserted inequality. �

Corollary 5.4. We have the following results.

(i) If M = 2, the hypergeometric sheaf Hyp(M,A,B,1,1) satisfies (S+).
(ii) If M = q + 1, then except in the case a = b = 1 and q is one of {2, 3, 4, 8, 9} the hypergeo-

metric sheaf Hyp(M,A,B,1,1) satisfies (S+).
(iii) Suppose that M = 1. Then, except in the case q = 2 and {a, b} = {1, 2}, the hypergeometric

sheaf Hyp(M,A,B,1,1) satisfies (S+).

Proof. If M = 2, then q must be odd, and one of a, b must be even (otherwise (q + 1)|M). Thus
the rank of Hyp(M,A,B,1,1) is

(qa+b + 1)/2 ≥ (33 + 1)/2 = 14,

and we apply [KT5, 1.7].
If M = q + 1, then the rank is (qa+b + q)/(q + 1), and both of a, b are odd (simply because

qeven + 1 ≡ 2 mod q+ 1). If a = b = 1, the rank is q, so we must exclude q = 2, 3, 4, 8, 9. Otherwise
a+ b ≥ 4, so either the rank is 6 (when q = 2 and a+ b = 4) or it is ≥ 21, and we apply [KT5, 1.10].

If M = 1, then q must be even (otherwise 2|M), and one of a, b must be even (otherwise (q+1)|M).
The rank is qa+b. So we exclude the case q = 2, a+ b = 3 and apply [KT5, 1.7]. �

6. Candidate for the “total M- Weil representation”

Recall that p is a prime, q is a power of p, a and b are positive integers,

M := gcd(qa + 1, qb + 1), A := (qa + 1)/M, B := (qb + 1)/M.

Thus gcd(A,B) = 1. We also fix integers α, β with

αA− βB = 1.

We wish to study the direct sum

Total(M,A,B) := Hyp(M,A,B,1,1)
⊕

σ∈Char(M),σ 6=1

Kl(M,A,B, σ−β , σ−α).

Theorem 6.1. The local system Total(M,A,B) is geometrically isomorphic to the arithmetically
semisimple local system on Gm/Fp whose trace function at a point v ∈ E× = Gm(E), for E/Fp a
finite extension, is given by

v 7→ (1/#E)
∑
x,w∈E

ψE(MABxw − v−αAxqb+1 − vβBwqa+1).

Subsequently, in §11, we will state and prove a more precise formulation, Theorem 11.4, of this
theorem.

7. First steps toward the proof of Theorem 6.1: Cancelling

Recall from [Ka-ESDE, 9.3.1], the operation Cancel on hypergeometric sheaves

Hypψ(χ1, . . . , χn; ρ1, . . . , ρm),
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defined whenever the sets, with multiplicity, of the upsairs and downstairs characters are not iden-
tical. Suppose that precisely r of the downstairs characters also occur upstairs. Renumber so that
χi = ρi for 1 ≤ i ≤ r. Then

CancelHypψ(χ1, . . . , χn; ρ1, . . . , ρm) := Hypψ(χr+1, . . . , χn; ρr+1, . . . ρm),

a hypergeometric of type (n− r,m− r) whose upstairs and downstairs characters are disjoint.
The key fact about cancelling is the following theorem, which is proven (but not stated (!)) in

[Ka-ESDE, 8.4.7 and 8.4.13].

Theorem 7.1. Suppose that Hyp := Hypψ(χ1, . . . , χn; ρ1, . . . , ρm) is a hypergeometric sheaf whose
upstairs and downstairs characters are not identical, and which is defined over a finite field k/Fp
(i.e., all the χi and ρj are of finite–order dividing (#k) − 1). Suppose that precisely r of the
downstairs characters also occur upstairs. Then Hyp is lisse on Gm/k, mixed of weight ≤ n+m−1,
and its highest weight quotient [De, 3.4.1 (ii)] is (CancelHyp)(−r), which is pure of weight n+m−1.
More precisely, we have a short exact sequence of lisse sheaves on Gm/k,

0→ (weight ≤ n+m− 2)→ Hyp→ (CancelHyp)(−r)→ 0.

The virtue of Cancel is that it gives a convenient expression for each of the summands of
Total(M,A,B). We have the following two lemmas, which are immediate from the definitions.

Lemma 7.2. Suppose that ρA 6= χB, so that Kl(M,A,B, χ, ρ) exists. Consider the hypergeometric
sheaf of type (MAB,A+B)

Hypψ(Char(MAB); Char(A,χ) tChar(B, ρ)).

The Kl(MAB,χ, ρ) is its Cancel.

Lemma 7.3. Consider the hypergeometric sheaf of type (MAB,A+B)

Hypψ(Char(MAB); Char(A) tChar(B)).

Then Hyp(M,A,B,1,1) is its Cancel.

8. Computing traces

In this section, we take as ground field

E1 := Fp(µMAB).

For each1 divisor N of MAB, we define the following product of Gauss sums over E1:

Gauss(N) :=
∏

χ∈Char(N)

(−Gauss(ψE1 , χ)).

We then define the twisting factor Gauss(M,A,B) as

Gauss(M,A,B) := Gauss(MAB)Gauss(A)Gauss(B).

Theorem 8.1. Let E/E1 be a finite extension. The trace function of

Hypψ(Char(MAB); Char(A,χ) tChar(B, ρ))⊗ Gauss(M,A,B)− deg(E/E1)

at a point v ∈ E×, is given by

v 7→ (−1)MAB−A−B−1
∑

x,w∈E×
ψE(MABx− v−αAxMB/wB − vβBwA)(χB/ρA)(w)(χα/ρβ)(v).

1If we are in characteristic 2, then both qa + 1 and qb + 1 are odd, hence their gcd = M is also odd, and hence
each of M,A,B is odd. So we will not need to ”interpret” the quadratic Gauss sum here, because it will not arise.
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Proof. The idea is to exploit the fact that Hypψ(Char(MAB); Char(A,χ) t Char(B, ρ)) is the
multiple ! multiplicative convolution

Hypψ(Char(MAB); ∅) ?!,× Hypψ(∅; Char(A,χ)) ?!,× Hypψ(∅; Char(B, ρ)).

We now make use of the direct image formula of [Ka-GKM, 5.6.2, first line of proof] and the
definition [Ka-ESDE, 8.2.1 (3)] to give simple formulas for the trace functions of each of the three
factors.

The trace function of Hypψ(Char(MAB); ∅)⊗ Gauss(MAB)− deg(E/E1) is

s ∈ E× 7→
∑

x∈E×,xMAB=s

ψE(MABx).

The trace function of Hypψ(∅; Char(A,χ))⊗ Gauss(A)− deg(E/E1) is

t ∈ E× 7→
∑

y∈E×,yA=t

ψE(−A/y)χ(y).

The trace function of Hypψ(∅; Char(B, ρ)⊗ Gauss(B)− deg(E/E1) is

u ∈ E× 7→
∑

z∈E×,zB=u

ψE(−B/z)ρ(z).

In general, the trace function of the ! multiplicative convolution of two hypergeometrics is minus
the multiplicative convolution of their trace functions. So the frace function of a triple ! multiplica-
tive convolution of two hypergeometrics is the the multiplicative convolution of their trace func-
tions, with no “extra” sign. In particular, the trace function of Hypψ(Char(MAB); Char(A,χ) t
Char(B, ρ))⊗ Gauss(M,A,B)− deg(E/E1) is the multiplicative convolution of the above three trace
functions. Thus it is

v ∈ E× 7→
∑

s, t, u ∈ E×,
stu = v

∑
x, y, z ∈ E×,

xMAB = s, yA = t, zB = u

ψE(MABx−A/y −B/z)χ(y)ρ(z)

=
∑

x,y,z∈E×, xMAByAzB=v

ψE(MABx−A/y −B/z)χ(y)ρ(z).

We now rewrite the range of summation as consisting of those x, y, z ∈ E× satisfying

(xMBy)AzB = v.

We then make use of αA− βB = 1 to write v = vαA−βB, so the range of summation becomes those
x, y, z ∈ E× satisfying

(v−αxMBy)A = (1/(vβz))B.

Because gcd(A,B) = 1, there exists a unique w such that

v−αxMBy = wB, 1/(vβz) = wA.

Using the first equation, we solve for y in terms of x,w,

1/y = v−αxMB/wB,

and using the second equation we solve for z in terms of w,

1/z = vβwA.
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So the expression for the trace at time v ∈ E× becomes∑
x,w∈E×

ψE(MABx−Av−αxMB/wB −BvβwA)χ(vαwB/xMB)ρ(v−β/wA)

=
∑

x,w∈E×
ψE(MABx−Av−αxMB/wB −BvβwA)(χBρ−A)(w)(χαρ−β)(v),

the last equality because χ has order dividing M , thus χ(xMB) = 1. �

Corollary 8.2. For σ ∈ Char(M), the trace function of

Hypψ(Char(MAB); Char(A, σ−β) tChar(B, σ−α))⊗ Gauss(M,A,B)− deg(E/E1)

at a point v ∈ E×, is given by

v 7→
∑

x,w∈E×
ψE(MABx− v−αAxMB/wB − vβBwA)σ(w).

Proof. In the case when (χ, ρ) = (σ−β , σ−α), we have

χB/ρA = σ−βB/σ−αA = σαA−βB = σ, χα = ρβ .

�

Lemma 8.3. Suppose p is odd. Denote by K/Q the unique quadratic extension of Q inside Q(ζp).
If M = 2, then for each σ ∈ Char(M), the trace function of

Hypψ(Char(MAB); Char(A,χ) tChar(B, ρ))⊗ Gauss(M,A,B)− deg(E/E1),

viewed on Gm/Fp, has values in K.

Proof. Take λ ∈ F×p , and make the substitution (x,w) 7→ (λ2x, λ2w).This does not change the sum∑
x,w∈E×

ψE(MABx− v−αAxMB/wB − vβBwA)σ(w),

but it replaces ψ by its Gal(Q(ζp)/K) conjugate x 7→ ψ(λ2x). Indeed, the term x is multiplied by
λ2, the monomial wA is multiplied by λ2A = λq

a+1 = λ2, and the monomial xMB/wB is multiplied
by λ4B/λ2B, which by the previous argument is equal to λ4/λ2 = λ2. �

Lemma 8.4. If M = q + 1, or if p = 2, then for each σ ∈ Char(M), the trace function of

Hypψ(Char(MAB); Char(A,χ) tChar(B, ρ))⊗ Gauss(M,A,B)− deg(E/E1),

viewed on Gm/Fq2, has values in Q(σ).

Proof. If p = 2, this is obvious, because ψE takes values in ±1.
Suppose now that M = q + 1. Take λ ∈ F×p , and make the substitution (x,w) 7→ (λx, λw).This

does not change the sum∑
x,w∈E×

ψE(MABx− v−αAxMB/wB − vβBwA)σ(w),

but it replaces ψ by its Gal(Q(ζp)/K) conjugate x 7→ ψ(λx). Indeed, the term x is multiplied by

λ, the monomial wA is multiplied by λA = λ(qa+1)/(q+1) = λ (because the exponent (qa + 1)/(q +

1) ≡ 1 mod (q − 1), and the monomial xMB/wB is multiplied by λq
b+1/λB, which by the previous

argument is equal to λ2/λ = λ. Finally, the term σ(w) is moved to σ(λw), but this is equal to σ(w)
because λ (or indeed any element of F×q ), is the q + 1 power of some element of Fq2 (surjectivity of
the norm). �
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Corollary 8.5. The trace function of⊕
σ∈Char(M)

Hypψ(Char(MAB); Char(A, σ−β) tChar(B, σ−α))⊗ Gauss(M,A,B)− deg(E/E1)

at a point v ∈ E×, is given by

v 7→
∑

x,w∈E×
ψE(MABxw − v−αAxqb+1 − vβBwqa+1).

Proof. Indeed, the sum of the individual trace functions at a point v ∈ E×, is given by

v 7→
∑

x,w∈E×
ψE(MABx− v−αAxMB/wB − vβBwA)

∑
σ∈Char(M)

σ(w)

=
∑

x,w∈E×
ψE(MABx− v−αAxMB/wMB − vβBwAM ).

Now make the substitution x 7→ xw,w 7→ w. �

9. Descent results

A reformulation of Theorem 8.1, taking into account [Ka-ESDE, 8.4.6.2], is the following.

Theorem 9.1. On (Gm)3/E, with coordinates (v, x, w), consider the lisse sheaf

Fχ,ρ := Lψ(MABx−v−αAxMB/wB−vβBwA) ⊗ L(χB/ρA)(w) ⊗ L(χα/ρβ)(v).

For the projection
pr1 : (Gm)3/E 7→ Gm/E, (v, x, w) 7→ v,

we have Ri(pr1)!(Fχ,ρ) = 0 for i 6= 2, R2(pr1)!(Fχ,ρ) is lisse on Gm/E, mixed of weight ≤ 2, and
there is an arithmetic isomorphism

R2(pr1)!(Fχ,ρ) ∼= Hypψ(Char(MAB); Char(A,χ) tChar(B, ρ))⊗ Gauss(M,A,B)− deg(E/E1).

Proof. The situation is that we are given three Kloosterman sheaves KlA, KlB, and KlC of ranks
A,B,C with A+B < C, and we form the triple ! multiplicative convolution of KlC , inv?KlA, and
inv?KlB. By definition, we first form their external tensor product

KlC � inv?KlA � inv?KlB
on (Gm)3, and then for the multiplication map

mult3 : (Gm)3 → Gm, (s, t, u) 7→ stu

we form R(mult3)!(KlC � inv?KlA � inv?KlB). The key fact is that because A + B < C, we have
Ri(mult3)! = 0 for i 6= 2, and R2(mult3)! is lisse, of rank C. To see this, we factor the multiplication
map as

mult3 = mult ◦ (Id×mult2,3), (s, t, u) 7→ (s, tu) 7→ stu.

Then R(Id × mult2,3)!(KlC � inv?KlA � inv?KlB) is the external tensor product on Gm × Gm of
KlC with R(mult)!(inv?KlA � inv?KlB). The second factor has Ri(mult)! = 0 for i 6= 1, and
R(mult)!(inv?KlA � inv?KlB) is inv?KlA+B for a Kloosterman sheaf of rank A+ B, cf. [Ka-GKM,
5.1]. Thus our triple convolution R(mult3)! is

R(mult)!(KC � inv?KlA+B).

Fibre by fibre over Gm, each stalk is the cohomology of the usual tensor product of KlC with a
multiplicative translate of KlA+B. The first factor is totally wild of rank C and has all ∞-slopes
1/C, the second is totally wild of rank A + B and has all ∞-slopes 1/(A + B) > 1/C. Thus the
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tensor product has rank A(B + C) with all ∞-slopes 1/(A+ B). So each such tensor product has
H i
c = 0 for i 6= 1, and h1

c = Swan∞ = C. Thus Ri(mult)!(KC � inv?KlA+B = 0 for i 6= 1, and the
R1(mult)! has constant rank C, hence is lisse because it is a sheaf of perverse origin. Combining
these cohomological vanishings, we get the asserted vanishing of Ri(mult3)! = 0 for i 6= 2, and the
fact that R2(mult3)! is lisse, of rank C.

In the case at hand, it is an exercise, using the explicit descriptions given in Theorem 8.1, of
the particular sheaves KlA, KlB, and KlC in play, to rewrite the R(mult3)! as the R(pr1) of the
statement of the theorem. �

Corollary 9.2. Let E0 ⊂ E be any subfield over which χ and ρ are defined. Then F makes sense
on (Gm)3/E0, and R2(pr1)!(F) on Gm/E0 is a lisse sheaf, mixed of weight ≤ 2, which, when pulled
back to Gm/E0, is arithmetically isomorphic to

Hypψ(Char(MAB); Char(A,χ) tChar(B, ρ))⊗ Gauss(M,A,B)− deg(E/E1).

Its trace function is that given in Theorem 8.1, now valid on Gm/E0.

Proof. The trace formula results from the Lefschetz trace formula [Gr]. �

Corollary 9.3. In the situation of Corollary 8.2, we have the following results.

(i) For σ ∈ Char(M) nontrivial, taking χ, ρ in Theorem 9.1 to be σ−β , σ−α, the weight two
quotient [De, 3.4.1 (ii)] grwt=2(R2(pr1)!(Fχ,ρ)) on Gm/E0 is an arithmetic descent of

Kl(M,A,B, σ−β , σ−α)(−A−B)⊗ Gauss(M,A,B)− deg(E/E1).

(ii) Taking χ, ρ in Theorem 9.1 to be 1,1, the weight two quotient [De, 3.4.1 (ii)] grwt=2(R2(pr1)!(Fχ,ρ))
on Gm/E0 is an arithmetic descent of

Hyp(M,A,B,1,1)(−A−B + 1)⊗ Gauss(M,A,B)− deg(E/E1).

10. Interlude: rationality properties of highest weight quotients

In this section, we consider the following general situation. We are given k/Fp a finite extension,
U/k smooth and geometrically connected of some dimension d ≥ 0, and an integer w. Consider a
lisse Q`-sheaf F on U which is mixed of weight ≤ w. We know [De, 3.4.9] that F admits a unique
“filtration by the weight”. In particular, F sits in a short exact sequence of lisse sheaves on U

0→ Fwt<w → F → Fwt=w → 0,

in which Fwt<w is mixed of weight < w and Fwt=w is pure of weight w.

Theorem 10.1. On U/k suppose that F is a lisse sheaf, mixed of weight ≤ w. Let K/Q be a finite
extension. Suppose that F has all traces in K. Then Fwt=w has all its traces in K.

Proof. For each finite extension E/k, and each point u ∈ U(E), the reversed characteristic polyno-
mial

det(1− TFrobu,E |F)

lies in 1 + TK[T ]. When we factor it over Q, say

det(1− TFrobu,E |F) =

rank(F)∏
i=1

(1− αiT ).

After suitable renumbering, we have

det(1− TFrobu,E |F) =

(rank(Fwt=w)∏
i=1

(1− βiT )

)(rank(Fw<w)∏
j=1

(1− γjT )

)
,
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in which each βi, together will all its Gal(Q/Q) conjugates, has complex absolute value (#E)w/2,

while each γj together will all its Gal(Q/Q) conjugates, has complex absolute value (#E)vj/2 for
some vj < w.

We now exploit this Galois invariance. Because the entire polynomial det(1 − TFrobu,E |F)

is (coefficient-wise) fixed by Gal(Q/K), it followss that each factor
∏rank(Fwt=w)
i=1 (1 − βiT ) and∏rank(Fw<w)

j=1 (1− γjT ) separately has coefficients in K. The first of these factors is precisely

det(1− TFrobu,E |Fwt=w).

This being true for every E/k and every u ∈ U(E), Fwt=w has all its traces in K. �

11. End of the proof of Theorem 6.1

Each of the lisse sheaves

Hypψ(Char(MAB); Char(A, σ−β) tChar(B, σ−α))⊗ Gauss(M,A,B)− deg(E/E1)

is mixed of weight ≤ 2. Their Cancel’s are, arithmetically, the lisse sheaves on Gm/E1

Kl(M,A,B, σ−β , σ−α)(−A−B)⊗ Gauss(M,A,B)− deg(E/E1),

for σ nontrivial in Char(M), and

Hyp(M,A,B,1,1)(−A−B + 1)⊗ Gauss(M,A,B)− deg(E/E1).

Each of these is pure of weight 2.

Theorem 11.1. Consider the M − 1 lisse sheaves

Kl(M,A,B, σ−β , σ−α)(−A−B + 1)⊗ Gauss(M,A,B)− deg(E/E1),

for σ nontrivial in Char(M), and

Hyp(M,A,B,1,1)(−A−B + 2)⊗ Gauss(M,A,B)− deg(E/E1),

each viewed on Gm/Fp(µM ). Then we have the following results.

(i) If M = 2 (which forces p to be odd), each sheaf has all its traces in K, the unique quadratic
extension of Q inside Q(ζp).

(ii) If M = q + 1, each sheaf indexed by σ nontrivial in Char(M) has all its traces in Q(σ).
The remaining one has traces in Q.

(iii) Each of these M sheaves has finite arithmetic and geometric monodromy groups.
(iv) In both cases, each of the above M sheaves satisfies (S+); moreover, if n = a + b ≥ 3 then

each has an arithmetic and geometric monodromy group which is almost quasisimple.

Proof. (i) and (ii) are immediate on combining Lemmas 8.3 and 8.4 with Theorem 10.1, and (iii)
was proven in Theorems 4.7 and 5.1.

Next, let H be any of the above M sheaves and H be the arithmetic or geometric monodromy
group of H. Then the first statement in (iv) is already proved in Corollaries 4.12 and 5.4. Being
geometric, it applies to Ggeom. But as noted in [KT5, Lemma 1.1], it applies a fortiori to the larger
Garith as well. This implies by [GT, Proposition 2.8] that, if H is not almost quasisimple, then
rank(H) = rm for some prime r and H contains an extraspecial r-group R of order r2m+1 that acts
irreducibly on H. Suppose we are in the latter case. Then a generator z of Z(R) acts on H via
multiplication by ζr.

In the case M = 2, q is necessarily odd (otherwise qa + 1, qb + 1 are both odd) we have rm =
rank(H) = (qn ± 1)/2. As n ≥ 3 and 2 - q, (qn ± 1)/2 is divisible by some primitive prime divisor
` > 2 by [Zs], whence r = ` > 2. On the other hand, ζr ∈ Q(ζp) by (i) and so r = p, a contradiction.
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Assume now that M = q + 1, whence a, b are odd and n = a+ b ≥ 4. If H is the hypergeometric
one, then rank(H) = q(qn−1 + 1)/(q + 1) is the product of two relatively prime integers, each ≥ 2,
and so it cannot be equal to rm. Hence H is Kloosterman, and rank(H) = (qn− 1)/(q+ 1) = rm; in
particular, (n, q) 6= (6, 2). As n ≥ 4, this forces again by [Zs] that r is a primitive prime divisor of
qn−1, in particular, r 6= 2 and r - (q+ 1) (otherwise r would divide q2−1). This implies ζr /∈ Q(σ),
contradicting (ii). �

Remark 11.2. Suppose we are in the situation p = 2,M = 1. Then there is only the hypergeometric
sheaf, and its rank is qn. So we cannot conclude its arithmetic and geometric monodromy groups
are almost quasisimple in this case.

The direct sum of our M sheaves is the weight 2 part of the local system whose trace function
at a point v ∈ E×, is given by

v 7→
∑

x,w∈E×
ψE(MABxw − v−αAxqb+1 − vβBwqa+1).

If we replace ψ by t 7→ ψ(t/MAB), this trace becomes

v 7→
∑

x,w∈E×
ψE(xw − v−αxqb+1 − vβwqa+1),

simply because MAB = A = B in Fp.
Let us admit momentarily the truth of the following theorem.

Theorem 11.3. Fix integers d ≥ 3, d ≥ 2, both of which are prime to p. Consider the parameter
space S/Fp of pairs of one-variable polynomials (fd, ge) of degrees d and e respectively. We may
view S as the space

Gm × (A1)d × Gm × (A1)e

of coefficients of f and g. On (A2)S, with “coordinates” (x,w, f, g), we have the Artin-Schreier
sheaf

Lψ(f(x)+g(w)+xw).

Denote by π : (A2)S → S, (x,w, f, g) 7→ (f, g) the projection onto S. The higher direct images
Riπ!(Lψ(f(x)+g(w)+xw)) vanish for i 6= 2, and R2π!(Lψ(f(x)+g(w)+xw) is lisse of rank (d − 1)(e − 1)
and pure of weight 2.

We apply this with d = qb+1, e = qa+1, and with Gm embedded into S by (−v−αxqb+1,−vβwqa+1).
Then we find that on Gm, there is a lisse local system of rank qa+b which is pure of weight 2, whose
trace function is

v 7→
∑
x,w∈E

ψE(xw − v−αxqb+1 − vβwqa+1).

This is the weight 2 part of the local system given by the same formula, but with x,w both
restricted to lying in Gm. Indeed, the difference is the sum of the terms with x = 0, which is a
one-variable sum over w which is pure of weight 1, the sum of the terms with w = 0, which is a
one-variable sum over x which is pure of weight 1, minus the single term with x = w = 0, which is
pure of weight 0.

Here is a more geometric way of saying this. Consider the universal situation: we have the
inclusion of the open set j : U := (Gm × Gm)S ⊂ A2)S , with complement ZS , Z being the locus
xw = 0 in A2. Denoting by πU and πZ the projections onto S, a piece of the long exact excision
sequence is

R1(πZ)!(Lψ(f(x)+g(y)+xy))→ R2(πU )!(Lψ(f(x)+g(y)+xy))→ R2(π)!(Lψ(f(x)+g(y)+xy))→ 0.
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the final 0 being R2(πZ)!(Lψ(f(x)+g(y)+xy)), which vanishes fibre by fibre. By Deligne’s main theorem
[De, 3.3.1], the first term is mixed of weight ≤ 1, and the second term is mixed of weight ≤ 2.
Therefore the third term is indeed the weight 2 quotient of the second term.

It remains only to prove Theorem 11.3.

Proof. To show that the Riπ!(Lψ(f(x)+g(w)+xw)) vanish for i 6= 2, it suffices, thanks to proper base

change, to do so point by point. To show that the R2π!(Lψ(f(x)+g(w)+xw)) is lisse of rank (d−1)(e−1),
we use the fact that it is a “sheaf of perverse origin”, so it suffices to show that at each point the
stalk has constant rank (d−1)(e−1). Once we know the R2π! is lisse, to show it pure of weight 2, it
suffices to show punctual purity of weight 2. So what must be shown is that for any two polynomials
f, g of degrees d, e respectively over some finite field E/Fp, the cohomology groups

H i
c(A2/Fp,Lψ(f(x)+g(w)+xw))

vanish for i 6= 2, and the H2
c has dimension (d− 1)(e− 1) and is pure of weight 2.

Write the sum ∑
x,w

ψ(f(x) + g(w) + xw)

as ∑
w

ψ(g(w))FTψ(Lψ(f(x))(w),

and view it as the trace of Frobenius on H1
c ((A1/Fp,Lψ(g(w)⊗FTψ(Lψ(f(x)) to see its asserted purity.

More precisely, apply the Leray spectral sequence for the map pr2 : (x,w) 7→ w.Then by the
projection formula we have

Ri(pr2)!(Lψ(f(x)+g(w)+xw)) = Lψ(g(w) ⊗Ri(pr2)!(Lψ(f(x) + xw)).

The second tensor factor vanishes for i 6= 1, and for i = 1 it is the Fourier Transform FTψ(Lψ(f(x)).
Thus we have

H i
c(A2/Fp,Lψ(f(x)+g(w)+xw)) = H i−1

c (A1/Fp,Lψ(g(w) ⊗ FTψ(Lψ(f(x)).

One knows [Ka-MG, Theorem 17] that FTψ(Lψ(f(x)) is lisse on the A1 of w, of rank d−1, with all
its ∞-slopes d/(d− 1). Because d ≥ 3, these ∞-slopes are < 2. But Lψ(g(w) has ∞-slope e ≥ 2, and
thus Lψ(g(w) ⊗ FTψ(Lψ(f(x)) is lisse of rank d− 1 with all ∞-slopes e. The total wildness gives the
vanishing of this last cohomology group except possibly in degree one. The Euler-Poincaré formula
then shows the dimension is the asserted (d− 1)(e− 1). The total wildness, together with Deligne’s
main theorem [De, 3.2.3] gives the purity of weight 2. �

Theorem 11.4. (Theorem 6.1 made precise) Over the ground field E1 := Fp(µMAB), the direct
sum

Hyp(M,A,B,1,1)(−A−B + 2)
⊕

σ∈Char(M),σ 6=1

Kl(M,A,B, σ−β , σ−α)(−A−B + 1),

when further twisted by Gauss(M,A,B)− deg(E/E1), is pure of weight zero and its trace function at
v ∈ E×, E/E1 a finite extension, is given by

v 7→ (1/#E)
∑
x,w∈E

ψE(MABxw − v−αAxqb+1 − vβBwqa+1).

Definition 11.5. Fix α, β ∈ Z such that αA− βB = 1. Let us denote by

W(M,A,B)
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the arithmetically semisimple local system on Gm/Fp whose trace function at v ∈ E×, E/Fp a finite
extension, is given by

v 7→ 1

#E

∑
x,w∈E

ψE
(
MABxw − v−αAxqb+1 − vβBwqa+1

)
.

The pullback of W(M,A,B) to Gm/E1 remains arithmetically semisimple (because π1(Gm/E1)
is a subgroup of finite index in π1(Gm/Fp))), so this pullback is the above direct sum (as both are
arithmetically semisimple and have the same trace functions).

Let us recall the underlying finiteness theorem.

Theorem 11.6. Let k be a finite field of characteristic p > 0, U/k a smooth, geometrically connected
k-scheme, ` 6= p, and G an arithmetically semisimple Q`-local system on U which is pure of weight
0 (for all embeddings of Q` into C). Then Garith is finite if and only if all traces of G are algebraic
integers.

To show the integrality of traces of W(M,A,B), we can apply the van der Geer–van der Vlugt
argument, cf. [KT2, Section 5] which uses [vdG-vdV], to show that W(M,A,B) has finite Garith.
The key point is that for any finite extension E/Fp and any v ∈ E×, the Fp-valued function on
E × E given by

F (x,w) := TraceE/Fp
(
MABxw − v−αAxqb+1 − vβBwqa+1

)
is a quadratic form on E × E viewed as an Fp vector space, with associated bilinear form

〈(x,w), (X,W )〉 := F (x+X,w +W )− F (x,w)− F (X,W ).

The resulting finiteness of Garith for W(M,A,B) gives another proof of Theorems 4.7 and 5.1.
Let us prove now some basic rationality results.

Theorem 11.7. We have the following results.

(i) If p is odd, then for any finite extension E/Fp, and any v ∈ E×, Trace(Frobv,E |W(M,A,B))
lies in the ring of integers of the subfield of Q(ζp) fixed by the subgroup of squares in F×p . If
q is even, all these traces lie in Z.

(i-bis) For any finite extension E/Fp2 and any v ∈ E×, Trace(Frobv,E |W(M,A,B)) lies in Z.

(i-ter) If q is a square, then for any finite extension E/Fq and any v ∈ E×, Trace(Frobv,E |W(M,A,B))
lies in Z.

(ii) If ab is odd, then for any finite extension E/Fq2, and any v ∈ E×, Trace(Frobv,E |W(M,A,B))
lies in Z.

Proof. The first assertion is that for any t ∈ F×p , if we replace ψ by ψt2 : x 7→ ψ(t2x), the trace does
not change. This is obvious, by the substitution (x,w) 7→ (tx, tw). If q is even, then ψ takes values
in ±1, so the traces lie in Q, and are integral, so lie in Z.

For (i-bis), notice that any t ∈ F×p becomes a square in Fp2 , say t = s2 with s ∈ F×
p2

. Then the

substitution (x,w) 7→ (sx, sw) gives the invariance of the sum under the entire group F×p .
Statements (i-ter) and (ii) result trivially from (i-bis). �

The arguments of van der Geer–van der Vlugt lead to the following theorem.

Theorem 11.8. We have the following results.

(i) If q is odd, then for any finite extension E/Fq, and any v ∈ E×,

|Trace(Frobv,E |W(M,A,B))|2

is a power qm of q with 0 ≤ m ≤ 2a + 2b. If q is even, the values are either a power qm,
0 ≤ m ≤ 2a+ 2b, or 0.
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(i-bis) For any subfield k ⊆ Fq, and any v ∈ k×,

|Trace(Frobv,k|W(M,A,B))|2

is a power of #k (or possibly 0 if q is even).
(i-ter) If a, b are both odd, then for any subfield k ⊆ Fq2, and any v ∈ k×,

|Trace(Frobv,k|W(M,A,B))|2

is either 1 or #k (or possibly 0 if q is even).
(ii) If a + b is even and q is odd, then for any finite extension E/Fq2, and any v ∈ E×,

Trace(Frobv,E |W(M,A,B)) is ±qm, with 0 ≤ m ≤ a+ b. If a+ b is even and q is even, the
values are either ±qm, 0 ≤ m ≤ a+ b, or 0.

Proof. (a) Let E/Fp be a finite extension. Fix v ∈ E×. Denote

F (x,w) := TraceE/Fp(MABxw − v−αAxqb+1 − vβBwqa+1).

Then

(11.8.1) Trace(Frobv,E |W(M,A,B)) = (1/#E)
∑

(x,w)∈E×E

ψ(F (x,w)),

hence

|Trace(Frobv,E |W(M,A,B))|2 = (1/#(E × E))
∑

(x,w)∈E×E,(X,W )∈E×E

ψ(F (x,w)− F (X,W )).

With the substitution (x,w) 7→ (x+X,w +W ), (X,W ) 7→ (X,W ), the above sum becomes

(1/#(E × E))
∑

(x,w)∈E×E,(X,W )∈E×E

ψ
(
〈(x,w), (X,W )〉

)
ψ(F (x,w))

=
∑

(x,w)∈E×E

(
ψ(F (x,w)) · 1

#(E × E)

∑
(X,W )∈E×E

ψ
(
〈(x,w), (X,W )〉

))
.

The inner sum

(1/#(E × E))
∑

(X,W )∈E×E

ψ
(
〈(x,w), (X,W )〉

)
vanishes unless (x,w) is orthogonal to every element of E × E, in which case this inner sum is 1.
Let us denote by Null(E) this null space. So we have

|Trace(Frobv,E |W(M,A,B))|2 =
∑

(x,w)∈Null(E)

ψ(F (x,w)).

If q is odd, then F (x,w) vanishes on the null space, as F (x,w) = (1/2)〈(x,w), (x,w)〉, so we get

|Trace(Frobv,E |W(M,A,B))|2 = #Null(E), q odd.

If q is even, then F (x,w) is an additive function on the null space. If this function is identically zero
on Null(E), we again get #Null(E). If it is nonzero, then we are summing a nontrivial character
over the null space, and we get 0.

(b) Now let us write down explicitly the null space. The null space does not change if we replace
F (x,w) by a nonzero Fp-multiple. Using M as the multiple, we deal instead with

F (x,w) := TraceE/Fp(xw −Mv−αxq
b+1 −Mvβwq

a+1).
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Let us consider the slightly more general case of

(11.8.2) Fs,t(x,w) := TraceE/Fp(xw − sx
qb+1 − twqa+1),

with both s, t ∈ E×. Then the associated bilinear form 〈(x,w), (X,W )〉 is the TraceE/Fp of

(x+X)(w+W )−s(x+X)q
b+1−t(w+W )q

a+1−(xw−sxqb+1−twqa+1)−(XW−sXqb+1−tW qa+1) =

= xW + wX − sxXqb − sxqbX − twW qa − twqaW,
which has the same TraceE/Fp as

xW + wX − (sx)1/qbX − sxqbX − (tw)1/qaW − twqaW =

= (x− (tw)1/qa − twqa)W + (w − (sx)1/qb − sxqb)X.
Thus (x,w) lies in the null space if and only if (x,w) satisfies the two equations

(11.8.3) x = (tw)1/qa + twq
a
, w = (sx)1/qb + sxq

b
.

From this description of the null space, when E ⊇ Fq we see that it is an Fq vector space, with
(x,w) 7→ (λx, λw) as the scalar multiplication by λ ∈ Fq. When E ⊆ Fq, it is a vector space over E.
Moreover, if ab is odd and E ⊇ Fq2 , then it is an Fq2 vector space, with (x,w) 7→ (λx, λqw) as the
scalar multiplication by λ ∈ Fq2 . If a+ b is even and both a, b are even, then we are in the situation

for (a/2, b/2) and q0 := q2, and the null space is an Fq0-vector space, i.e., an Fq2 vector space. The
cardinality of the null space, being the square absolute value of a Frobenius trace, is at most the
square of the rank qa+b of W(M,A,B), simply because W(M,A,B) has finite Garith. Thus the null
space has Fq dimension at most 2a+ 2b.

To get statement (i-ter), notice that because a, b are odd, for any element z ∈ E ⊂ Fq2 , we have

zq
a

= zq = z1/q = z1/qa and zq
b

= zq = z1/q = z1/qb and z = zq
2
, (z + zq) = (z + zq)q.

Thus when E ⊂ Fq2 , the equations for Null(E) are

x = (tw)q + twq, w = (sx)q + sxq, i.e., x = (t+ tq)wq, w = (s+ sq)xq.

So if (x,w) is in the Null space, then

x = (t+ tq)(s+ sq)qxq
2

= (t+ tq)(s+ sq)x,

and for such an x, the pair (x,w := (s+ sq)xq) satisfies the equation x = (t+ tq)wq (simply because

wq = (s+ sq)qxq
2

= (s+ sq)x.
If (t+ tq)(s+ sq) = 1, then the Null space is isomorphic to E by projection onto its x coordinate,

so has cardinality #E. If (t + tq)(s + sq) 6= 1, then the Null space is just the single point (0, 0) of
cardinality 1.

To get statement (ii), we need only observe that when a+b is even, then Trace(Frobv,E |W(M,A,B))
is an integer. When ab is odd, this is (ii) of Theorem 11.7. When a and b are both even, then we
are in the situation for (a/2, b/2) and q2, and we apply (i-bis) of Theorem 11.7. �

In the case 2 - ab, we can further strengthen Theorem 11.8:

Theorem 11.9. Suppose ab is odd. Then for any finite extension E of Fq2 and for any v ∈ E×,
Trace(Frobv,E |W(M,A,B)) is (−q)m for 0 ≤ m ≤ a+ b.
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Proof. By Theorem 11.7(ii) and Theorem 11.8(ii), we have that ϕ(v) := Trace(Frobv,E |W(M,A,B))
is ±qm for 0 ≤ m = m(v) ≤ a + b or 0. To prove that it is actually some (−q)m, it suffices to
show that ϕ(v) ≡ 1(mod(q + 1)). To do this, we use the bijective map (x,w) 7→ (%x, %−1w) on
E ×E r {(0, 0)} for a fixed % ∈ F×

q2
of order q+ 1; in fact, any orbit under this map on this set has

length q + 1. Note that, because both a, b are odd, we have

F (x,w) = F (%x, %−1w), F (0, 0) = 0.

Thus with #E = q2d, (11.8.1) implies that

q2dϕ(v) = 1 + (q + 1)α

for some algebraic integer α ∈ Z[ζp]. Now α = (q2dϕ(v)− 1)/(q+ 1) is rational, whence α ∈ Z. But

q2d ≡ 1(mod (q + 1)), hence ϕ(v) ≡ q2dϕ(v) ≡ 1(mod (q + 1)), as desired. �

Whatever the parity of a, b, we have the following strengthening of Theorem 11.8; see also Remark
15.8:

Theorem 11.10. Let q be a power of an odd prime p, E/Fq a finite extension, and f(x), g(x) ∈ E[x]
polynomials of the form

f(x) =

n∑
i=0

aix
qi+1, g(x) :=

m∑
i=0

bix
qi+1,

with n,m strictly positive integers, and an, bm nonzero. Denote by GaussE the quadratic Gauss sum

GaussE := Gauss(ψE , χ2).

Then we have the following results.

(i) The sum

Sf := (1/GaussE)
∑
x∈E

ψE(f(x))

is equal to ±(GaussFq)
d for some integer d with 0 ≤ d ≤ 2n.

(ii) For any t ∈ E, and with

F (x, y) := txy + f(x) + g(y),

the sum

SF := (1/#E)
∑
x,y∈E

ψE(F (x, y))

is equal to ±(GaussFq)
d for some integer d with 0 ≤ d ≤ 2(n+m).

In particular, S2
f , S

2
F are each nonzero integers, which are ± powers of q.

Proof. We begin with (i). We have the Fp-valued symmetric bilinear form (x.y)f on E × E given
by

(x, y)f := f(x+ y)− f(x)− f(y).

Its null space Nullf (E), the set of x ∈ E such that (x, y)f = 0 for all y ∈ E, is an Fq vector space
of dimension ≤ 2n, defined by the equation

f(x) +

n∑
i=0

(aix)1/qi = 0.

The van der Geer-van der Vlugt argument gives

|Sf |2 = #Nullf (E) = qdimFq (Nullf (E)).
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It will be more convenient to work with the “non-normalized” sum

S0,f := GaussE × Sf =
∑
x∈E

ψE(f(x)).

Indeed, as (−GaussE) = (−GaussFq)deg(E/Fq), it suffices to prove that S0,f is ± a power of GaussFq .
Let us denote by S0,f (−) the complex conjugate sum

S0,f (−) :=
∑
x∈E

ψE(−f(x)).

Suppose first that q is 1 mod 4. Then i ∈ Fq, and f(ix) = −f(x). So in this case S0,f (−) = S0,f ,
by the substitution x 7→ ix, and hence

|S0,f |2 = S0,fS0,f (−) = S2
0,f ,

proving that S2
0,f is a nonnegative power of q, and hence a power of GaussFq .

Suppose next that q is 3 mod 4. Then S0,f lies in the field Q(GaussFq) = Q(GaussFp) = Q(
√
−p)

(because q is an odd power of p and p is 3 mod 4). We claim that the ratio S0,f/S0,f (−) is a unit
in the ring of integers of Q(

√
−p). From the equality

S0,fS0,f (−) = a power of q

we see that S0,f and S0,f (−) are units at all finite places of residue characteristic other than p. As
they are Galois conjugate in Q(

√
−p) ⊂ Q(ζp), which has a unique place over p, S0,f and S0,f (−)

have the same p-adic ord at this place. Being complex conjugates, they have the same absolute
value at the unique archimedean place. Therefore their ratio is a unit.

If p 6= 3, the only units in the ring of integers of Q(
√
−p) are ±1.

If p = 3, then Q(
√
−p) = Q(ζ3), and the units are now the sixth roots of unity. However, we

observe that because each exponent qi + 1 is even, f(−x) = f(x), so we have

S0,f ∈ 1 + 2Z[ζp].

To see this, choose a subset V ⊂ E× of representatives of the quotient group E×/(±1) and writing

S0,f (x) = 1 +
∑
x∈V

(ψE(f(x)) + ψE(f(−x))) = 1 + 2
∑
x∈V

ψ(f(x)).

Similarly, S0,f (−) ∈ 1 + 2Z[ζp]. Thus for some unit u in the ring of integers of Q(
√
−p), we have

S0,f = uS0,f (−). Reducing mod the ideal (2) in Z[ζp], we see that the unit u must lie in 1 + 2Z[ζp].
Among the sixth roots of unity, only ±1 lie in 1 + 2Z[ζ3]. Indeed, if u has order 3, then (u − 1)/2
would lie in Z[ζ3], which is nonsense because its norm down to Q is 3/4. And if u6 has order 6,
then u6 = −u for some u of order 3, so (−u − 1)/2 would lie in Z[ζ3], again nonsense because its
norm down to Q is 1/4.

So in all cases when q is 3 mod 4, we have S0,f = ±S0,f (−). If S0,f = S0,f (−), then just as in
the case when q is 1 mod 4, we have

|S0,f |2 = S0,fS0,f (−) = S2
0,f ,

proving that S2
0,f is a nonnegative power of q, and hence ±S0,f is a power of GaussFq . Suppose now

that S0,f = −S0,f (−) is purely imaginary. Then if we write S0,f = A+B(1+
√
−p)/2 with A,B ∈ Z,

we have A+B/2 = 0. Thus B = −2A, and S0,f = A+B(1+
√
−p)/2 = A−A(1+

√
−p) = −A

√
−p.

This already shows that the square of S0,f is an integer, namely −pA2. But this square has absolute
value a power of q, so A2 is itself a nonnegative power of p, hence A is a nonnegative power of p,
so ±A is a power of GaussFp , and hence ±S0,f is a power of GaussFp , say ±S0,f = (GaussFp)

d. Then

we recover d as the log to the base
√
p of |S0,f |. But in absolute value, |S0,f |2 is a power of q, so
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±|S0,f | is a power of GaussFq = ±(GaussFp)
deg(Fq/Fp). Comparing absolute values, we see that d is a

multiple of deg(Fq/Fp). Thus ±S0,f is a power of GaussFq , as asserted.

For (ii), we argue as follows. Suppose first that t = 0, so that

F (x, y) = f(x) + g(y).

Then SF = χ2,E(−1)SfSg, and the assertion is immediate from (i), applied to f and to g. If t 6= 0,
the change of variable (x, y) 7→ (x/t, y) reduces us to the case when t = 1 (with f replaced by
f(x/t)). We have the Fp-valued symmetric bilinear form ((x.y), (X,Y ))F on E2 × E2 given by

((x, y), (X,Y ))F := F ((x, y) + (X,Y ))− F (x, y)− f(X,Y ).

Its null space NullF (E2), the set of (x, y) ∈ E2 such that ((x, y), (X,Y ))F = 0 for all (X,Y ) ∈ E2,
is an Fq vector space of dimension ≤ 2n+ 2m, defined by the two equations

y +
n∑
i=0

(aix)1/qi = 0, x+
m∑
i=0

(biy)1/qi = 0.

The van der Geer-van der Vlugt argument gives

|SF |2 = #NullF (E2) = qdimFq (NullF (E2)).

We now proceed exactly as in the proof of (i). We consider instead the “non-normalized” sum

S0,F := (#E)× SF =
∑
x,y∈E

ψE(F (x, y)),

and its complex conjugate

S0,F (−) := (#E)× SF =
∑
x,y∈E

ψE(−F (x, y)),

When q is 1 mod 4, the substitution (x, y) 7→ (ix, iy) carries F (x, y) to −F (x, y), and so S0,F (−) =
S0,F . Hence S2

0,F = |S0,F |2 is a power of q, and so ±S0,F is a power of GaussFq .

When q is 3 mod 4, we use the same arguments as in (i). We take care of the extra possible units
in Z[ζ3] by observing that

S0,F ∈ 1 + 2Z[ζp]

to rule out units other than ±1. We see this by observing that the sum is invariant under (x, y) 7→
(−x,−y), an action which fixes the origin (0, 0), but which on E2 \ {(0, 0)} has all orbits of size 2.
We then treat the two cases S0,F = ±S0,F (−) exactly as in the proof of (i). �

Corollary 11.11. Let q be a power of an odd prime p, and E a subfield of Fq. Let

f(x) =

n∑
i=0

aix
qi+1 ∈ E[x], g(x) :=

m∑
i=0

bix
qi+1 ∈ E[x]

with n,m ∈ Z>0, and an, bm nonzero. Let t ∈ E, and let F (x, y) := txy + f(x) + g(y). Then the
sums Sf , SF formed over E as in Theorem 11.10 are each ± a power of GaussE.

Proof. Apply Theorem 11.10 over the ground field E = Fq0 , remembering that q is a power of q0. �

Remark 11.12. In characteristic p = 2, the sums Sf and SF of Theorem 11.10 can both vanish.
For example, over F4, Sf = 0 for f(x) = x3 + x5, with the convention that GaussF4 = 2. And

over F16, SF = 0 for F (x, y) = xy + v13x5 + vy3, for v any generator of the cyclic group F×16. This
phenomenon will be studied in [KT8] in more detail.
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12. A pullback result for W(M,A,B)

The main result of this section is the following theorem about a well chosen Kummer pullback of
the local system W(M,A,B) introduced in Definition 11.5.

Theorem 12.1. The Kummer pullback [MAB]?W(M,A,B) of W(M,A,B) by v 7→ vMAB is (or
more precisely, its extension across 0 by j?, for j : Gm → A1 the inclusion, is) lisse on A1 and pure
of weight 0.

Proof. Recall that the trace function of W(M,A,B) at v ∈ E×, E/Fp a finite extension, is given by

v 7→ (1/#E)
∑
x,w∈E

ψE(MABxw − v−αAxqb+1 − vβBwqa+1).

If we replace ψ by the nontrivial additive character t 7→ ψ(t/MAB), this formula becomes

v 7→ (1/#E)
∑
x,w∈E

ψE(xw − v−αxqb+1 − vβwqa+1),

simply because both MA,MB are 1 mod p. After the pullback by v 7→ vMAB, the trace function
becomes

v 7→ (1/#E)
∑
x,w∈E

ψE(xw − v−αMABxq
b+1 − vβMABwq

a+1)

= (1/#E)
∑
x,w∈E

ψE(xw − v−αA(qb+1)xq
b+1 − vβB(qa+1)wq

a+1).

After the change of variable x 7→ vαAx,w 7→ v−βBw, this becomes

v 7→ (1/#E)
∑
x,w∈E

ψE(vαA−βBxw − xqb+1 − wqa+1) = (1/#E)
∑
x,w∈E

ψE(vxw − xqb+1 − wqa+1),

simply because αA− βB = 1.
We will show in Theorem 12.2 below that this trace function, stripped of the 1/#E factor, is

the trace function of a sheaf on A1 which is lisse and pure of weight 2. All such sheaves are
geometrically semisimple (by purity) and have isomorphic semisimplifications (by Chebotarev),
hence are all geometrically isomorphic. Any such is geometrically isomorphic to W(M,A,B) on
Gm, so must agree geometrically with j?W(M,A,B) on A1. �

To show this, let us consider the following slightly more general situation, similar to that of
Theorem 11.3.

Theorem 12.2. Fix integers d ≥ 3, e ≥ 2, both of which are prime to p. Fix one-variable poly-
nomials f(x) ∈ Fp[x] and g(w) ∈ Fp[w] of respective degrees d and e. On A3/Fp, with coordinates
(v, x, w), form the Artin-Schreir sheaf

Lψ(f(x)+g(w)+vxw).

Denote by
pr1 : A3 7→ A1

the first projection (v, x, w) 7→ v. Then

Riπ! := Riπ!(Lψ(f(x)+g(w)+vxw))

vanishes for i 6= 2, and R2π! is lisse on A1 of rank (d− 1)(e− 1) and pure of weight two, with trace
function given at v ∈ E for E a finite extension of Fp by

v 7→
∑
x,w∈E

ψE(vxw + f(x) + g(w)).
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Proof. For i 6= 2, the asserted vanishing can be checked fibre by fibre. Over Gm, the substitution
x 7→ x/v, w 7→ w reduces us to a particular case of the vanishing established in Theorem 11.3. Over
0, we have

Riπ!|v=0 = H i
c(A2/Fp,Lψ(f(x)+g(w)))) =

= ⊕j+k=iH
j
c (A1/Fp,Lψ(f))⊗Hk

c (A1/Fp,Lψ(g)).

The asserted vanishing for i 6= 2 results from the (standard) fact that the Hj and Hj here each
vanish unless j = k = 1. Because the R2π! is a sheaf of perverse origin, it is lisse on A1 of rank
(d−1)(e−1) if and only each stalk has dimension (d−1)(e−1). Over Gm, this results from Theorem
11.3 (after the same change of variable x 7→ x/v, w 7→ w. Over 0, it results from the (standard)
fact that H1

c (A1/Fp,Lψ(f)) has dimension d− 1, and Hk
c (A1/Fp,Lψ(g)) has dimension e− 1. Once

we know that R2π! is pure of weight 2 on Gm and lisse at 0, it is automatically pure of weight 2 on
A1, cf. [De, 1.8.10]. The formula for the trace is immediate from the Lefschetz trace formula, and
the vanishing of the Riπ! for i 6= 2. �

13. Determinants

We now return to the consideration of the M lisse sheaves discussed in Theorem 11.1, except
that we do an additional Tate twist to be in weight 0. Thus

Kl(M,A,B, σ−β , σ−α)(−A−B + 1)⊗ Gauss(M,A,B)− deg(E/E1),

for σ nontrivial in Char(M), and

Hyp(M,A,B,1,1)(−A−B + 2)⊗ Gauss(M,A,B)− deg(E/E1),

Each of them, by Theorems 4.7 and 5.1, has finite Garith. We viewed them as lisse sheaves on
Gm/E1, for E1 the field Fp(µMAB). However, each has a descent to Gm/Fp(µM ), as follows. Each
of them is the highest weight quotient (now weight zero) of the lisse sheaf on Gm/E1 whose trace
function is ∑

x,w∈E×
(1/#E)ψE(MABx− v−αAxMB/wB − vβBwA)σ(w),

This sheaf has an obvious descent to Gm/Fp(µM ) (just so the characters σ of order dividing M are
defined). Its highest weight quotient is the desired descent. [Unfortunately, we do not know an
explicit formula for its trace function.] Let us call these descended sheaves

Gσ.
Strictly speaking, we should remember that their definition made use of chosen (α, β) with αA−

βB = 1, and denote them

Gσ,α,β .
If (α, β) is one such, then so is (α+B, β +A).

Lemma 13.1. If integers α,A, β,B satisfy αA− βB = 1, then gcd(α+ β,A+B) = 1.

Proof. If not, there exists a prime r which divides both α+ β and A+B. So modulo r,

αA− βB ≡ αA− (−α)(−A) = 0,

a contradiction. �

Corollary 13.2. Given relatively prime integers A,B and a real constant X > 0, there exist integers
α, β with αA−βB = 1 such that either α+β = ±1 or α+β is a prime P with P > X. In particular,
given an integer D > 1, there exist such α, β with gcd(α+ β,D) = 1.
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Proof. Because gcd(A,B) = 1, there exist integers α0, β0 with α0A− β0B = 1. If A+B = 0, then
(A,B) = ±(1,−1), and then α + β = ±1. If A + B 6= 0, we argue as follows. For every integer n,
the pair (αn, βn) := (α0 + nB, β0 + nA) is another such pair. Then

αn + βn = (α0 + β0) + n(A+B).

By the previous Lemma 13.1, gcd(α0 + β0, A + B) = 1. Now apply Dirichlet’s theorem to the
sequence αn + βn for positive n if A+B > 0, or to the sequence of negative n if A+B < 0. �

Theorem 13.3. For σ of order dividing M , the geometric determinant of Gσ,α,β is

L
χ
MAB−1−(A−1)−(B−1)
2

Lσα+β ,

with the understanding that if p = 2, then χ2 := 1.

Proof. By [Ka-ESDE, 8.11.6], the geometric determinant in each case is the product of the “upstairs”
characters. One has the general formula∏

χ∈Char(A,ρ)

Lχ = LχA−1
2
⊗ Lρ.

Therefore the geometric determinant of Gσ is L
χ
MAB−1−(A−1)−(B−1)
2

Lσα+β . [If we are in characteristic

2, then each of M,A,B is odd, and the determinant is just Lσα+β .] �

Corollary 13.4. Choose α, β with αA − βB = 1 and gcd(α + β,M) = 1 (possible by Corollary
13.2). Then there exists characters σ of order dividing M such that the geometric determinant of
Gσ,α,β has order M .

Proof. If p is odd, then M is even, and σ 7→ χ2σ is a bijection of Char(M). On the other hand,
σ 7→ σα+β is another such bijection. If p = 2 or if the exponent of χ2 in the geometric determinant
of Gσ,α,β is even, simply take Gσ,α,β with σ of full order M . If p is odd and the geometric determinant

of Gσ,α,β is χ2σ
α+β , use the fact that the composite map

σ 7→ σα+β 7→ χ2σ
α+β

is a bijection of Char(M), and take Gσ1,α,β , for any σ1 whose image under this map is a character
of full order M . �

From Theorem 13.3, we get the following corollary.

Corollary 13.5. For any α, β with αA − βB = 1, and any σ of order dividing M , the Kummer
pullback [M ]?Gσ,α,β has geometrically trivial determinant.

From Lemma 4.3, we see that we have

Lemma 13.6. For σ of order dividing M , we have

Lσ ⊗ Gσ,α,β ∼= Gσ,α−B,β−A.

This “indeterminacy” in the “definition” of Gσ can be “corrected” by considering the Kummer
pullback

[M ]?Gσ,
since [M ]? kills the Lσ factor.

Theorem 13.7. Each sheaf [M ]?Gσ has geometrically trivial determinant.
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Proof. From the explicit formulas for the geometric determinants in Theorem 13.3, it is clear that
they become trivial after [M ]?. Indeed, in odd characteristic, M is even (since both qa + 1, qb + 1
are even), and hence [M ]? kills both Lχ2 and any power of Lσ. In any characteristic, [M ]? kills any
power of Lσ. �

Remark 13.8. Presumably (?) we should hope that each [M ]?Gσ already has arithmetically trivial
determinant over the small field Fp or Fq2 , without any extension of scalars being needed.

14. Some general results on Ggeom and Garith

First we recall the following result concerning the image of P (∞) in Ggeom:

Proposition 14.1. [KT5, Proposition 4.4] Let H be an (irreducible) hypergeometric sheaf of type
(D,m) in characteristic p, with D > m and with finite geometric monodromy group G = Ggeom.
Then the following statements hold for the image Q of P (∞) in G:

(i) If H is not Kloosterman, i.e. if m > 0, then Q ∩ Z(G) = 1.
(ii) Suppose H is Kloosterman and D > 1. Then Q 6≤ Z(G). If p - D, then Q ∩ Z(G) = 1. If p|D

then either Q ∩ Z(G) = 1 or Q ∩ Z(G) ∼= Cp.
(iii) If D > 1, then 1 6= Q/(Q ∩ Z(G)) ↪→ G/Z(G) and p divides |G/Z(G)|.
(iv) If D−m ≥ 2, the determinant of G is a p′-group. If moreover p - D, then Z(G) is a p′-group.
(v) Suppose p = 2. Then the trace of any element g ∈ G on H is 2-rational (i.e. lies in a cyclotomic

field Q(ζN ) for some odd integer N); in particular, the 2-part of |Z(G)| is at most 2.

Lemma 14.2. Let X/Fq be smooth and geometrically connected, k a topological field, and V a
finite dimensional continuous k-representation of π1(X). Denote by Garith < GL(V ) the image of
πarith

1 (X) := π1(X), and by GgeomCGarith the image of πgeom
1 (X) := π1(X/Fq). Let E/Fq be a finite

extension. Then for any points v1, v2 ∈ X(E), the Garith-conjugacy classes Frobv1,E , F robv1,E lie
the same Ggeom-coset in Garith,k.

Proof. Let us explain this in the universal case. The key point is that we have the short exact
sequence of fundamental groups [SGA1, Exp. IX, Thm. 6.1]

1→ πgeom
1 (X)→ πarith

1 (X)
deg−−→ Gal(Fq/Fq)→ 1.

When we identify Gal(Fq/Fq) with the profinite completion of Z by decreeing that x 7→ xq has degree

−1, then each Frobvi,E has degree deg(E/Fq) in Gal(Fq/Fq). Hence for any elements gi ∈ πarith
1 (X)

which lie in the conjugacy classes Frobvi,E , the “ratio” g−1
1 g2 has degree 0, i.e., lies in πgeom

1 (X),

which is precisely the subgroup of πarith
1 (X) consisting of elements of degree 0. �

Next we prove some general facts concerning pullbacks of local systems.

Lemma 14.3. Given a local system F on X/Fq, and an Fq-morphism f : Y → X of Fq-schemes.
Then for any finite extension k/Fq, and any point v ∈ Y (k), we have

Frobv,k|f?F = Frobf(v),k|F .

Proof. Let us explain this in terms of representations of fundamental groups. When X,Y are each
connected, and we pick appropriate base points, f induces a homomorphism of fundamental groups
f? : π1(Y/Fq)→ π1(X/Fq) which maps the conjugacy class of Frobv,k in π1(Y/Fq) to the conjugacy
class of Frobf(v),k in π1(X/Fq). The local system F is a representation ρF of π1(X/Fq), and its
pullback f?F is the representation ρF ◦ f? of π1(Y/Fq). �
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Theorem 14.4. Let N ∈ Z≥1 and let G be a finite group with a normal subgroup S such that
G/S ∼= CN . Let k be a finite field in which N is invertible and which contains the N th roots
of unity. Let W be a local system on Gm/k which has geometric monodromy group Ggeom and
arithmetic monodromy group Garith,k, with Ggeom = Garith,k

∼= G. Then the [N ]? Kummer pullback
WN of W has geometric and arithmetic monodromy group Ggeom,WN

= Garith,k,WN
= S.

Proof. From the point of view of Galois theory, the fact that W has Garith,k = Ggeom = G means
that we have a finite Galois extension L/k(t) with Gal(L/k(t)) = G, which is linearly disjoint from
the extension k/k, i.e., Lk/k(t) continues to have Gal(Lk/k(t)) = G.

When we form the [N ] pullback, we replace the Galois extension L/k(t) by its compositum with

the finite Galois extension k(t1/N )/k(t). [It is Galois because k contains the N th roots of unity.]
This new extension has Galois group Garith,k,WN

. Similarly, when we replace the Galois extension

Lk/k(t) by its compositum with the finite Galois extension k(t1/N )/k(t), this new extension has
Galois group Ggeom,WN

.
Consider a homomorphism

θ : G� µN (k)

with Ker(θ) = S. This surjective homomorphism means that there is a subfield

k(t) ⊂ K ⊂ Lk,

with K/k(t) Galois, with Gal(K/k(t) ∼= µN (Fq). But this extension K/k(t) is the function field

of a µN (Fq)-covering of Gm/k. The only such covering is the [N ] Kummer covering. Thus the

intermediate field K must be K = k(t1/N ); we have

k(t) ⊂ k(t1/N ) ⊂ Lk,

This in turn means that the compositum of the extension Lk/k(t) with k(t1/N )/k(t) is just the

extension Lk/k(t1/N ). Its Galois group is the index N normal subgroup of G on which θ is trivial,
i.e. its Galois group is S.

Now let us consider the interaction of the homomorphism θ with the extension L/k(t). Its
existence means that there is a subfield

k(t) ⊂ K0 ⊂ L,

with K0/k(t) Galois, with group µN (Fq). This extension K0/k(t) is the function field of a µN (k)-

covering of Gm/k, which when we extend scalars to k becomes the [N ] Kummer covering. In general,
for any field k in which N is invertible and which contains the N th roots of unity, the µN (k)-coverings
of Gm/k are classified by the cokernel k[t, 1/t]× modulo the subgroup of N th powers, cf. [SGA1, Cor.
6.5, Exp. XI]. The group of units k[t, 1/t]× is k×tZ. Since geometrically our covering is adjoining

t1/N , our covering must be k((αt)1/N ), for some α ∈ k×. This means that if we take αt instead of

t as the parameter of Gm/k, then K0/k(t) is the extension k(t1/N )/k(t). Thus the compositum of

L/k(t) with k(t1/N )/k(t) is just the extension L/k(t1/N ). Its Galois group is the index N subgroup
of G on which θ is trivial, i.e., its Galois group is S. �

For possible later reference, we state the following corollary, which is immediate from the proof
of Theorem 14.4.

Corollary 14.5. With G,S,N as in Theorem 14.4, let k be an algebraically closed field in which
N is invertible and which contains the N th roots of unity. Let W be a local system on Gm/k
which has geometric monodromy group Ggeom

∼= G. Then [N ]?W has geometric monodromy group
Ggeom,WN

= S.
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Here is another version, which deals with Kummer pullbacks in fair generality. Let k be an
algebraically closed field of characteristic p > 0, and let G be a finite group which is a quotient
of π1(Gm/k). One knows by [Abh, Proposition 6(III)] that the quotient of G by the subgroup

Op′(G) generated by its Sylow p-subgroups is a cyclic group of order prime to p; this is simply the
statement that the prime to p quotient of π1(Gm/k) is pro-cyclic, in fact non-canonically isomorphic
to
∏
`6=p Z`. Let us denote by n(G) this order:

n(G) := |G/Op′(G)|.
Then the normal subgroups HCG such that G/H has order prime to p are precisely those containing

Op′(G). Because G/Op′(G) is cyclic of order n(G), such a subgroup H C G with G/H of order d
has d - n(G), and H is thus the unique normal subgroup Gd C G such that G/Gd = d is cyclic of
order d, and we have

n(Gd) = n(G)/d.

Theorem 14.6. Let G be a finite group. Let k be a finite field of characteristic p, and W a local
system on Gm/k with

Garith,k = Ggeom = G.

Let N be a prime to p integer, and let

N0 := gcd(N,n(G)).

Suppose that k contains the N th
0 roots of unity, i.e. N0|(#k− 1). Then for WN := [N ]?W, we have

Garith,k,WN
= Ggeom,WN

= GN0 .

Proof. Write N = N0N1, with gcd(N1, n(G)/N0) = 1. Then WN = [N1]?WN0 . By Theorem 14.4
applied to WN0 , we have

Garith,k,WN0
= Ggeom,WN0

= GN0 ,

and n(GN0) = n(G)/N0.
So we are reduced to treating universally the case when gcd(N,n(G)) = 1. Then Ggeom,WN

CG
is a normal subgroup of index dividing N . But there are none other than G itself. Therefore
Ggeom,WN

= G. As Garith,k,WN
≤ Garith,k,W = G but Garith,k,WN

≥ Ggeom,WN
= G, we have

Garith,k,WN
= G as well. �

We now turn to a discussion of Garith for a geometrically irreducible Q`-adic hypergeometric
sheaf H on Gm/Fq whose Ggeom is finite. To make clear the underlying structure, we will consider
the more general case of a smooth, geometrically connected variety X/Fq, and a a geometrically

irreducible Q`-adic sheaf F on X/Fq whose Ggeom is finite. One knows that det(F) is geometrically
of finite order (e.g., because its Ggeom is a semisimple group inside GL1, cf. [De, 1.3.9]).

Lemma 14.7. There exists an `-adic unit C ∈ Q`
×

such that det(F) ⊗ C− deg /k is arithmetically
of finite order. Moreover, any such C is determined up to multiplication by a root of unity.

Proof. To see this, choose an integer M ≥ 1 such that det(F)⊗M is geometrically trivial. This
means precisely that arithmetically

det(F)⊗M ∼= Ddeg /k

for some `-adic unit D ∈ Q`
×

. Then for any C with CM = D, det(F) ⊗ C− deg /k has arithmetic
order dividing M .

It is obvious that if C works, then so does ζC for any root of unity ζ. Conversely, if C ′ works,
then both det(F) ⊗ C− deg /k and det(F) ⊗ (C ′)− deg /k are arithmetically of finite order, so their

ratio (C/C ′)deg /k is arithmetically of finite order, i.e., C/C ′ is a root of unity. �
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Corollary 14.8. There exists an `-adic unit G ∈ Q`
×

such that F ⊗G− deg /k has finite arithmetic
determinant, and this condition determines G up to multiplication by a root of unity.

Proof. For F of rank D, any Dth root of the C of Lemma 14.7 does the job, and G does the job if
and only if GD is some root of unity times C. �

Lemma 14.9. Suppose F has finite Ggeom. Then F ⊗ G− deg /k has finite Garith if and only if its
arithmetic determinant is finite.

Proof. Garith cannot be finite if its determinant fails to be finite. To see that Garith is finite if its
determinant is finite and Ggeom is finite, use the fact that Garith normalizes Ggeom. Denote by N
the order of the finite group Aut(Ggeom). Then for γ ∈ Garith, γN commutes with every element of
Ggeom. As Ggeom is an irreducible subgroup of GLD with D := rank(F), each γN is a scalar. But
as Garith has a determinant of finite order, say M , each γN is a root of unity of order dividing MD.
Thus Lie(Garith) is killed by NMD, so Lie(Garith) = 0 and hence Garith is finite. �

Let us recall the following criterion for finite airthmetic and geometric monodromy, cf. [KRLT1,
2.1, 2.2].

Proposition 14.10. Suppose we have (Fq, `,X) as above, with G a lisse Q` sheaf on X. Suppose

further that G is pure of weight zero (:= for all embeddings of Q` into C). Consider the following
four conditions.

(a) Garith is finite.
(b) All traces of G are algebraic integers. More precisely, for every finite extension L/Fq, and for

every point x ∈ X(L), Trace(FrobL,x|G) is an algebraic integer.
(c) Ggeom is finite.
(d) det(G) is arithmetically of finite order.

Then we have the implications

(a) =⇒ (b) =⇒ (c), (b) =⇒ (d).

If F is geometrically irreducible, we have (a) ⇐⇒ (b) ⇐⇒ (c). If F is arithmetically semisimple,
we have (a) ⇐⇒ (b).

Proposition 14.11. Suppose we have (Fq, `,X) as above, with G a lisse Q` sheaf on X which is
geometrically irreducible, and pure of integer weight w. Suppose that for some monomial in Gauss
sums over Fq, i.e., an expression of the form

A = ±
∏

χ∈Char(q−1)

(−Gauss(ψFq , χ))nχ ,

with exponents nχ ∈ Z, the constant field twist G ⊗A− deg /Fq has algebraic integer traces, and hence
has finite arithmetic monodromy group, denoted Garith,A. Suppose further that p is odd. Then the
p-primary part of the finite cyclic group Z(Garith,A) is independent of the choice of monomial A in

Gauss sums over Fq for which G ⊗A− deg /Fq has algebraic integer traces.

Proof. By Chebotarev, every element in Garith,A is the image of some Frobenius FrobL,x. The given
representation of Garith,A is irreducible (because it is already irreducible on the subgroup Ggeom).
So the Frobenii which land in Z(Garith,A) are precisely those for which FrobL,x|G is a scalar, call

it α(L, x). Then in Garith,A, this Frobenius gives the central scalar α(L, x)/Adeg(L/Fq). If we use a

different monomial in Gauss sums, say A1 for which G⊗A− deg /Fq
1 has algebraic integer traces, then

this same Frobenius gives the central scalar α(L, x)/A
deg(L/Fq)
1 . So what must be shown is that the

ratio A/A1 is a root of unity of order prime to p.
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Since both G⊗A− deg /Fq and G ⊗A− deg /Fq
1 have arithmetic determinants of finite order, it resuts

from Corollary 14.8 that the ratio A/A1 is a root of unity. Now A/A1 is itself a monomial in Gauss
sums. so the assertion results from the following lemma. �

Lemma 14.12. Suppose p is odd, Fq/Fp a finite extension, and A a monomial in Gauss sums over
Fq which is a root of unity. Then A has order prime to p.

Proof. Each Gauss sum over Fq lies in Q(ζp, ζq−1). Thus A is a root of unity in this field. We will
show that in fact it lies in the subfield Q(ζq−1), whose only roots of unity are µq−1 (remember q− 1
is even). For this, it suffices to show that A is invariant under Gal(Q(ζp, ζq−1)/Q(ζq−1)). This is
the group F×p , with σa, a ∈ F×p , mapping ζp to ζap and fixing ζq−1. The claimed invariance holds for
A if and only if it holds for −A, so we may assume

A =
∏

χ∈Char(q−1)

(−Gauss(ψFq , χ))nχ .

When we apply σa to A, we get

σa(A) =
∏

χ∈Char(q−1)

(−Gauss(ψa,Fq , χ))nχ =
∏

χ∈Char(q−1)

(−χ(a)Gauss(ψa,Fq , χ))nχ = Λ(a)A

for Λ the character
∏
χ∈Char(q−1) χ

nχ . Suppose now that the order of A is not prime to p. The

roots of unity in Q(ζp, ζq−1) are the group

µp(q−1) = µp × µq−1.

Then Aq−1 would be a pth root of unity, and a prime to p power of Aq−1 would be ζp. Such a power
is itself a monomial in Gauss sums, so we would have

A = ζp.

Then σa(A) = ζap = ζa−1A, but also σa(A) = Λ(a)A. Thus ζa−1
p = Λ(a). The left side lies in µp,

the right side lies in µq−1. Thus both are 1. In particular, Λ(a) = 1, and A lies in Q(ζq−1). �

We now turn to the special case of geometrically irreducible hypergeometric sheaves H of type
(D,m) with D > m ≥ 0 on Gm/Fq. Thus we have

H = Hyp(χ1, . . . , χD; ρ1, . . . , ρm)

with each χi and each ρj a (possibly trivial) character of F×q , such that for all i, j, χi 6= ρj .

Proposition 14.13. Suppose D −m ≥ 2. Define

A := det(Frob1,Fq |H).

Then we have the following results.

(i) A is a monomial in Gauss sums.

(ii) For any B with BD = A, the constant field twist H⊗B− deg /Fq has finite arithmetic deter-
minant LΛ, for Λ :=

∏
i χi, of order dividing q − 1.

(iii) Suppose p - D, and that H ⊗ B− deg /Fq on Gm/Fq, has finite arithmetic monodromy group
Garith. Then Z(Garith) has order prime to p.

(iv) Suppose that H has a descent H0 to Gm/k, for some subfield k of Fq, in the sense that for
some monomial J in Gauss sums over Fq, the pullback of H0 to Gm/Fq is arithmetically

isomorphic to H ⊗ Jdeg /Fq . Suppose further that for some monomial G in Gauss sums,
H0 ⊗ G− deg /k has finite Garith,H0. If p - D and p - deg(Fq/k), then Z(Garith,H0) has order
prime to p.
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Proof. When D −m ≥ 2, one has the arithmetic determinant formula [Ka-ESDE, 8.12.2]

det(H) ∼= LΛ ⊗Adeg /Fq ,

with Λ :=
∏
i χi and with

A = Λ((−1)D−1qD(D−1)/2
∏
i,j

(−Gauss(ψFq , χi/ρj)).

Recall that q is, up to sign, itself the square of the quadratic Gauss sum, to see that A is indeed
a monomial in Gauss sums. This formula makes (ii) obvious. To show (iii), let γ be a scalar in
Garith. As det(Garith) lies in µq−1, we see that γD = det(γ) has order dividing q− 1, so γ has order
dividing D(q − 1), which is prime to p.

To show (iv), we argue as follows. Let us write

d := deg(Fq/k).

BecauseH0⊗G− deg /k on Gm/k has finite Garith,H0,G, so does its pullback to Gm/Fq. This pullback is

H⊗Jdeg /Fq⊗(Gd)− deg /Fq , which is a constant field twist of H by a monomial in Gauss sums, namely
by Gd/J . Let us denote its Garith as Garith,H,Gd/J . Thus Garith,H,Gd/J is a subgroup of Garith,H0,G of

index dividing d := deg(Fq/k), which is prime to p. So if Garith,H0,G contained a scalar of nontrivial

p power order, then γd would be a scalar of nontrivial p power order in Garith,H,Gd/J . So it suffices
to show that the center of Garith,H,Gd/J is prime to p. We know this to be true for Garith,H,B by part

(iii). So it suffices to show that the ratio B/(Gd/J), a priori a root of unity by Lemma 14.8, has
order prime to p. Since p - D, it suffices to show that the Dth power of this ratio has order prime
to p. But this Dth power is a monomial in Gauss sums, namely AJD/GdD, hence has order prime
to p by Lemma 14.12. �

Theorem 14.14. Suppose H is a geometrically irreducible hypergeometric sheaf H of type (D,m)
with D > m ≥ 0 on Gm/Fq. Suppose Ggeom is finite. Then for Gauss(ψFq , χ2) the quadratic Gauss
sum, with the convention that when q is even, we “define” −Gauss(ψFq , χ2) :=

√
q,

G := (−Gauss(ψFq , χ2))D+m−1, and C := GD,

det(H)⊗ C− deg /Fq is arithmetically of finite order, and H⊗G− deg /Fq has finite Garith.

Proof. In view of Lemma 14.9, the two assertions are equivalent. Let us write simply ψ for ψFq .
Define

A = Λ((−1)D−1qD(D−1)/2
∏
i,j

(−Gauss(ψ, χi/ρj)).

By [Ka-ESDE, 8.12.2], det(H)⊗A− deg /Fq is arithmetically of finite order. The weight of A is

D(D − 1) +mD = D(D +m− 1).

We must show that A is (some root of unity)×GD. For this, it suffices to show that for every p-adic
ordq on Q(ζp, ζq−1) (normalized to have ordq(q) = 1), we have

ordq(A) ≥ ordq(G
D) = D(D +m− 1)/2.

For then A/GD is an algebraic integer in Q(ζp, ζq−1) (since G2D divides q(D(D+m−1)), all of whose
complex absolute values are 1, and hence A/GD is a root of unity.

For a character τ of F×q , and a chosen ordq, let us write

V (τ) := ordq(Gauss(ψ, τ)).
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Then
ordq(A) = D(D − 1)/2 +

∑
i,j

V (χi/ρj)

and the asserted inequality becomes ∑
i,j

V (χi/ρj) ≥ mD/2.

Let B have BD = A. Because Ggeom is finite, H⊗B− deg /Fq has finite Garith. Therefore for each
t ∈ Gm(Fq) = F×q , if we denote

H(t) := Trace(Frobt,Fq |H),

we have
ordq(H(t)) ≥ (1/D)ordq(A), ordq(σ(t)H(t)) ≥ (1/D)ordq(A)

for every character σ of F×q . Thus for every such σ, we have

ordq(
∑
t∈F×q

σ(t)H(t)) ≥ (1/D)ordq(A).

But one knows [Ka-ESDE, 8.2.8] that
∑

t∈F×q σ(t)H(t) is equal to(∏
i

(−Gauss(ψ, χiσ))
)(∏

j

(−Gauss(ψ, ρiσ))
)
.

Hence we have the inequality∑
i

V (χiσ) +
∑
j

(V (ρjσ) ≥ (1/D)[D(D − 1)/2 +
∑
i,j

V (χi/ρj)]

for every σ.
Apply this with σ successively taken to be 1/ρj , and add the resulting m inequalities. We get∑

i,j

V (χi/ρj) +
∑
j,k

V (ρj/ρk) ≥ (m/D)[D(D − 1)/2 +
∑
i,j

V (χi/ρj)].

For each τ 6= 1, we have
V (τ) + V (τ) = 1,

since the product of the corresponding Gauss sums is ±q. Therefore∑
j,k

V (ρj/ρk) = m(m− 1)/2.

Writing Σ for
∑

i,j V (χi/ρj), we have

Σ +m(m− 1)/2 ≥ m(D − 1)/2 + (m/D)Σ,

i.e.,

(1−m/D)Σ ≥ m(D −m)/2, i.e. ((D −m)/D)Σ ≥ m(D −m)/2, i.e. Σ ≥ mD/2,
as asserted. [It is only at this very last step that we use the hypothesis that D −m > 0.] �

Corollary 14.15. Suppose H is a geometrically irreducible hypergeometric sheaf H of type (D,m)
with D > m ≥ 0 on Gm/Fq. Then Ggeom is finite if and only if for

G := (−Gauss(ψFq , χ2))D+m−1,

again with the convention that when q is even, we “define” −Gauss(ψFq , χ2) :=
√
q, the constant

field twist H⊗ G− deg /Fq has finite Garith.
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15. Determination of monodromy groups: The case M = 2

In this section we assume that

(15.0.1) 2|ab, gcd(a, b) = 1, n = a+ b, p > 2, q = pf .

In particular, M = 2, A = (qa + 1)/2, B = (qb + 1)/2, gcd(A,B) = 1. Fix α, β ∈ Z such that
αA − βB = 1 and 2 - (α + β) using Corollary 13.2. With this choice of parameters, the principal
objects of this section are the following local systems on Gm/Fp and A1/Fp, cf. Definition 11.5 and
Theorem 12.1.

Definition 15.1. Let us denote by

W(a, b)

the arithmetically semisimple local system on Gm/Fp whose trace function at v ∈ E×, E/Fp a finite
extension, is given by

v 7→ 1

#E

∑
x,w∈E

ψE
(
xw − v−αxqb+1 − vβwqa+1

)
.

This is W(M,A,B) introduced in Definition 11.5, but with ψ replaced by t 7→ ψ(t/MAB) = ψ(2t).

It results from Corollaries 9.2 and 9.3 that W(M,A,B) is the direct sum

W(M,A,B) = Kl0 ⊕H0

of descents (in the sense of the beginning of §13), from Gm/Fp(µMAB) to Gm/Fp, of the Kloosterman
sheaf

Kl(2, A,B, χβ2 , χ
α
2 )(−A−B + 1) = Klψ

(
Char(2AB) \ (Char(A,χβ2 )tChar(B,χα2 )

)
(−A−B + 1),

see (4.2.1), and the hypergeometric sheaf

Hyp(2, A,B,1,1)(−A−B+2) = Hypψ
(
Char(2AB)t{1}\(Char(A)tChar(B));1

)
(−A−B+2),

see (5.0.1) which went into the definition of W(M,A,B), the descents being the relevant systems
(grwt=2(R2(pr1)(Fχ,ρ)))(1).

Definition 15.2. The Kummer pullback

W?(a, b) := [MAB]?W(a, b)

is a lisse sheaf on A1/Fp, with trace function at v ∈ E, E/Fp a finite extension, given by

v 7→ 1

#E

∑
x,w∈E

ψE
(
vxw − xqb+1 − wqa+1

)
.

In general, the local system W?(a, b) on A1/Fp makes sense for q any power of any prime p, and

any positive integers a, b. By Theorem 12.2, W?(a, b) is lisse of rank qa+b and pure of weight zero.
In this section, our interest is in the case when hypothesis (15.0.1) holds. In the next section, our
interest will be in the case when hypothesis (16.0.1) holds.

The explicit trace formulas allow us to prove:

Lemma 15.3. Given the hypothesis (15.0.1), the following statements hold.

(i) Let E be any subfield of Fq. Then the squared absolute value of the trace at v = 2 of W?(a, b)
is #E. Furthermore, the squared absolute value of the trace at v = 4 of W(a, b) is #E.

(ii) If p = 3 and E = Fq, the square of the trace at v = 1 of W(a, b) is (−1)(q−1)/2q.
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Proof. (i) By Definition 15.2, the trace at v = 2 on W?(a, b) is

1

#E

∑
x,w∈E

ψE(2xw − x2 − w2) =
1

#E

∑
x,w∈E

ψE
(
−(x− w)2

)
=
∑
y∈E

ψE(−y2) =
∑
y∈E

ψ−1,E(y2),

a Gauss sum over E. Hence its squared absolute value is #E. For the statement in W(a, b) form,
just recall W?(a, b) = [MAB]?W(a, b), and note that MAB ≡ 2(mod (q − 1)), whence 2MAB = 4
in E, and we are done by using Lemma 14.3.

(ii) By Definition 15.1, the trace at v = 1 is

1

#E

∑
x,w∈E

ψE(xw − x2 − w2) =
1

#E

∑
x,w∈E

ψE
(
−(x+ w)2

)
=
∑
y∈E

ψE(−y2) =
∑
y∈E

ψ−1,E(y2),

a Gauss sum over E = Fq. Hence its square is (−1)(q−1)/2q. �

Proposition 15.4. Given the hypothesis (15.0.1), suppose that for each ε = ±, there is a hyperge-
ometric sheaf Hε of rank (qn − ε)/2 in characteristic p with finite geometric monodromy group Gε,

which is almost quasisimple. Assume furthermore that G
(∞)
ε is irreducible on Hε and that qn > 49.

Then, for some γ = ±, either G
(∞)
γ is a cover of some AN , or G

(∞)
γ is a quotient of Sp2m(pa) with

ma = nf .

Proof. Let Sε denote the non-abelian composition factor of Gε, so that SεCGε/Z(Gε) ≤ Aut(Sε). As

Gε is almost quasisimple, E(Gε) = G
(∞)
ε . Next, since Hε is hypergeometric, a generator of I(0) has

a simple spectrum on Hε, whence Gε satisfies the condition (?) of [KT5]. Also, the condition qn > 49
implies that Dε := rank(Hε) > 24. Note that, since 2Dε + ε is a prime power (namely qn), Dε 6= 28.
Hence, by [KT5, Theorem 6.4], Sε is not any of 26 sporadic simple groups. We will now assume

that neither G
(∞)
+ nor G

(∞)
− is a cover of an alternating group, whence both S+ and S− are simple

groups of Lie type in characteristic r+ and r−, respectively. Now we can apply [KT5, Theorem
6.6] to conclude that there is some power sε of rε such that either Sε = PSL2(sε), or E(Gε) is a
quotient of SLmε(sε), SUmε(sε), or Sp2mε(sε), and it acts on Hε via one of its Weil representations.
As Dε > 24, we have r+ = p = r− by [KT5, Theorem 7.4]. If furthermore Sε = PSp2mε(sε) with
sεmε = qn then the statement follows with γ = ε.

Consider the case Sε = PSUmε(sε) with mε ≥ 2, and Dε = (smεε + (−1)mεsε)/(sε + 1) or (smεε −
(−1)mε)/(sε + 1). As p = rε - Dε, we must have that Dε = (smεε − (−1)mε)/(sε + 1). Now, if
ε = (−1)mε , then p divides

qn = 2Dε + ε = 2
smεε − (−1)mε

sε + 1
+ (−1)mε =

2smεε + (−1)mεsε − (−1)mε

sε + 1
,

a contradiction as p|sε. Recall that n ≥ 3. Hence, if ε = −(−1)mε , then p3 divides

qn = 2Dε + ε = 2
smεε − (−1)mε

sε + 1
− (−1)mε =

2smεε − (−1)mε(sε + 3)

sε + 1
,

again a contradiction.
It remains to consider the case Sε = PSLmε(sε) with mε ≥ 2, and Dε = (smεε − sε)/(sε − 1) or

(smεε − 1)/(sε− 1) for both ε = ±. As p = rε - Dε, we must have that Dε = (smεε − 1)/(sε− 1). Now,
if ε = −, then p divides

qn = 2Dε + ε = 2
smεε − 1

sε − 1
− 1 =

2smεε − sε − 1

sε − 1
,

a contradiction as p|sε. Thus the statement follows with γ = −. �
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Remark 15.5. Note that in the case q = 3 of Proposition 15.4, the main result of [KT7] produces a
hypergeometric sheaf in characteristic p = 3 of rank (3n− 1)/2 and with the geometric monodromy
group being a quotient of GLn(3).

Next we prove a variation of [KT6, Theorem 6.4]:

Theorem 15.6. Let q = pf be a power of a prime p > 2, n ∈ Z≥1, and let L := Sp2n(q) with
(n, q) 6= (1, 3). Suppose that Φ : G → GLqn(C) is a faithful representation of a finite group G B L
with the following properties:

(a) Φ is a sum of two representations, Φ+ of degree (qn − 1)/2 and Φ− of degree (qn + 1)/2;

(b) For all g ∈ G, Tr(Φ(g)) ∈ K := Q(
√

(−1)(p−1)/2p);
(c) Φ|L is a total Weil representation; and
(d) For all g ∈ G, |Tr(Φ(g))|2 is always a power of p.

Then the following statements hold.

(i) CG(L) = Z(G) = C × Z(L), where Z(L) = 〈j〉 ∼= C2, and either
(α) |C| ≤ 2, or
(β) p = 3 divides | det(Φε(G))| for each ε = ±, 2 - f , and C ∈ {C3, C6}.
In all cases, C can be chosen to act via scalars in Φ.

(ii) Embed L in Γ := Sp2nf (p) and extend Φ|L to a total Weil representation Γ→ GLqn(C) (which
we also denote by Φ) using [KT6, Lemma 6.1]. Then there exist a divisor e|f and a standard
subgroup H := Lo Ce of Γ such that

Z(GLqn(C))Φ(G) = Z(GLqn(C))Φ(H).

Proof. (a) Since Φ|L is a total Weil representation, the central involution j of L satisfies Φ(j) =
κ · diag(Id,−Id) for some κ = ±. Hence, for any g ∈ G we have by (b) that

Tr(Φ(g)) + κTr(Φ(jg)) = 2Tr(Φ+(g)), Tr(Φ(g))− κTr(Φ(jg)) = 2Tr(Φ−(g))

both belong to K. Thus Tr(Φε(g)) ∈ K for each ε = ±. Now statement (i) follows from [KT6,
Lemma 6.3].

(b) Note that any element in NΓ(L) preserves the equivalence class of each of the Weil represen-
tations Φε|L, hence it can only induce a field automorphism of L (modulo Inn(L)). The subgroup
of all the field automorphisms of L is cyclic of order f , see [GLS, Theorem 2.5.12]. Thus we may
assume that there is some e|f such that G induces a cyclic subgroup of field automorphisms of L of
order e. Thus the action of G via conjugation on L induces the same automorphism subgroup as of
a standard subgroup H := Lo 〈σ〉 ∼= Sp2n(q)oCe of Γ. As CG(L) = Z(G) = CZ(L), we can write

(15.6.1) G = 〈CL, g〉,
where g ∈ G induce (via conjugation) the same automorphism of L as of σ. It follows that
Φε(g)Φε(σ)−1 centralizes Φε(L), and so by Schur’s lemma we have

(15.6.2) Φ+(g) = αΦ+(σ), Φ−(g) = βΦ−(σ)

for some α, β ∈ C×. As σ has order e, we obtain that

(15.6.3) Z(G) 3 Φ(ge) = diag(αe · Id, βe · Id).

On the other hand, Z(G) has exponent 2d, where d := gcd(p, 3). It follows that

(15.6.4) α2de = β2de = 1.

Recall that Φε is irreducible over both L and H = L o Ce. Hence by [Is, Lemma (8.14)(c)], for
each ε = ± and for the coset σL we can find hε ∈ L such that

(15.6.5) Tr(Φε(σhε)) 6= 0.
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Now using (15.6.2) we have

Tr(Φ+(gh+)) = Tr(αΦ+(σ)Φ+(h+)) = Tr(αΦ+(σh+)) = αTr(Φ+(σh+)).

But Tr(Φ+(σh+)) ∈ K by [Gro, Lemma 13.5], and Tr(Φ+(gh+)) ∈ K as shown in (i). Together with
(15.6.5), this shows that α ∈ K. The same argument applied to h− shows that β ∈ K. On the other
hand, the only roots of unity in K are ±1 if p > 3, and ±ζi3, 0 ≤ i ≤ 2; in particular, they are (2d)th

roots of unity. Hence, (15.6.4) now implies that |α| and |β| both divide gcd(2de, 2d) = 2d.
We have shown that (β/α)2d = 1. As 2 - d = gcd(p, 3), replacing g by gj if necessary, we obtain

that in fact (β/α)d = 1. Consider the case α = β. Then Φ(g) = αΦ(σ) by (15.6.2). Recalling that
Φ(C) consists of scalar matrices, we see from (15.6.1) that

Z(GLqn(C))Φ(G) = Φ(Z(GLqn(C)))Φ(H),

as stated.

(c) It remains to consider the case α 6= β, whence p = 3 and γ := β/α is a primitive cubic root
of unity. First we consider the case 3 - e. Hence (15.6.3) implies that Z(G) = Z(L)C contains
αe · diag(Id, γe · Id). But this is impossible, since Φ(C) consists of scalar matrices and Φ(Z(L)) =
〈κ · diag(Id,−Id)〉.

Next we consider the case 2 - e. In this case, we can use the same arguments given in parts (i)
and (ii) of the proof of [KT6, Lemma 6.4] to show that we can choose g so that α = β, and the
statement follows again.

In the general case, write e = e1e2 with e1 being the 3-part of e, and so 2 - e1 and 3 - e2.
Correspondingly, we can also write g = g1g2 and σ = σ1σ2, with σ1 being the 3-part of σ, and gi
inducing the same automorphism of L as of σi. Note that G = 〈G1, G2〉 and H = 〈H1, H2〉, where
Gi := 〈CL, gi〉 and Hi = Lo 〈σi〉 for i = 1, 2. The above two cases then yield

Z(GLqn(C))Φ(Gi) = Φ(Z(GLqn(C)))Φ(Hi)

for i = 1, 2, whence the statement follows for G. �

Now we can prove the main result concerning the symplectic groups:

Theorem 15.7. Let q = pf be a power of a prime p > 2, and let n = a + b with a, b ∈ Z≥1, 2|ab,
and gcd(a, b) = 1. Then the following statements hold.

(a) Over any finite extension k of Fq, the local system W(a, b) introduced in Definition 15.1 has
geometric and arithmetic monodromy groups Ggeom = Garith,k = 〈t〉 × Sp2n(q), where Sp2n(q)
acts on W(a, b) via one of its total Weil representations and t acts as the scalar −1 on W(a, b).

(b) Let Heven(a, b) and Hodd(a, b) denote the two irreducible subsheaves of even, respectively odd,
rank ofW(a, b). Then their geometric and arithmetic monodromy groups are Sp2n(q) in an even-
dimensional irreducible Weil representation, respectively C2 × PSp2n(q) in an odd-dimensional
irreducible Weil representation.

(c) Over any subfield k = Fq1/d of Fq, the arithmetic monodromy group Garith,k of W(a, b) over k

satisfies Garith,k = (〈t〉 × Sp2n(q)) ·Cd, and induces a subgroup Cd of outer field automorphisms
of Sp2n(q). Moreover, Z(Garith,k) = Z(Ggeom) = 〈t〉 × Z(Sp2n(q)) ∼= C2

2 , and

Garith,k/Z(Garith,k) ∼= PSp2n(q) o Cd ∼= PSp2n(q) o Gal(Fq/k).

(d) Over any finite extension k of Fq, the local system W̃(a, b) := W(a, b) ⊗ Lχ2 has its geometric

and arithmetic monodromy groups G̃geom = G̃arith,k = Sp2n(q).
(e) Over any finite extension k of Fq, the local system W?(a, b) introduced in Definition 15.2 has

its geometric and arithmetic monodromy groups G?geom = G?arith,k = (Ggeom)(∞) = Sp2n(q).
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(f) Over any subfield k = Fq1/d of Fq, the arithmetic monodromy groups of W̃(a, b) and of W?(a, b)

are isomorphic to Sp2n(q) · Cd, both inducing a subgroup Cd of outer field automorphisms of
Sp2n(q). Moreover, each group X of these two has Z(X) = Z(Sp2n(q)) ∼= C2, and

X/Z(X) ∼= PSp2n(q) o Cd ∼= PSp2n(q) o Gal(Fq/k).

Proof. (i) Let Φ : Garith,k → GLqn(C) denote the corresponding representation of Garith,k on W :=
W(a, b). By Theorem 11.1, Φ ∼= Φ+ ⊕ Φ−, where deg(Φε) = (qn − ε)/2 and each of Φε(Garith,k)
and Φε(Ggeom) is an irreducible almost quasisimple group for ε = ±. As Garith,k/Ggeom is cyclic, it
follows from [GT, Lemma 2.5] that

L := (Garith,k)
(∞) = (Ggeom)(∞)

and Φε(L) is irreducible, quasisimple.
By Theorem 11.8(i), Tr(Φ(g)) 6= 0 for all g ∈ Garith,k. Applying [KT6, Proposition 6.7], we

conclude that L is quasisimple. Now, as the two irreducible summands of W are hypergeometric
in characteristic p with finite monodromy, we see that Ggeom contains a p′-element g with simple
spectrum of order divisible by MAB.

Assume in addition that qn > 49. Then we can apply Proposition 15.4 to Φε(Ggeom). If L is
a cover of AN , then, since deg(Φε) > 24, we see by Theorem 6.2 and Lemma 9.1 of [KT5] that
N − 1 = deg(Φ+) = deg(Φ−), which is impossible. Hence Φε(L) is a quotient of some Sp2mε(p

aε)
with mεaε = nf . Now, using Theorem 11.8(i) and [KT6, Theorem 6.5], we have that

(15.7.1) L ∼= Sp2n/d(q
d) for some divisor d|n, and Φ|L is a total Weil representation.

Now we consider the remaining case (n, q) = (3, 3), whence {deg(Φ+), deg(Φ−)} = {13, 14}.
Using [HM], we see that the quasisimple group L that is irreducible in both Φ+ and Φ− either
satisfies (15.7.1), or L ∼= SL2(13). We also note by [KRLT2, Lemma 3.1] that P (∞) acts on Kl0
as an elementary abelian of order 33 and its image intersects Z(Φ+(G)) trivially by Proposition
14.1(ii). It follows that the image Q of P (∞) in G has order divisible by 33 and in fact 33 divides
|G/Z(G)| which is a divisor of |Aut(L/Z(L))|. This rules out the latter possibility L ∼= SL2(13),
and thus (15.7.1) always hold.

Now, using Theorem 11.1(i) and [KT6, Lemma 6.3], for G ∈ {Garith,k, Ggeom} we have that

(15.7.2) CG(L) = Z(G) = C × Z(L),

for a cyclic scalar subgroup C, where |C| ≤ 2 or p = 3 and |C| = 3, 6.

(ii) Recall that G contains an element g of order divisible by MAB = (qa+1)(qb+1)/2. Without
loss of generality, we may assume that a > b, whence a ≥ 2. It follows from [Zs] that |G| is divisible
by a primitive prime divisor ` of p2af − 1; in particular,

(15.7.3) ` ≥ 2af + 1 > max(4, nf) ≥ df,

and so ` is coprime to |CG(L)| because of (15.7.2). As LCG, it follows that ` divides |Aut(L)| =
|L| · df . Together with (15.7.3), this implies that ` divides |L|. Hence we can find some 1 ≤ i ≤ n/d
such that ` divides q2di − 1 = p2dif − 1. The choice of ` now yields that 2af divides 2dif , i.e. a|di.
But a > n/2 and di ≤ n, so we must have that a = di, and so d|a. As d|n = a + b by (15.7.1), we
also have that d|b. Since gcd(a, b) = 1 by (15.0.1), we conclude that d = 1. Thus GB L ∼= Sp2n(q).

In the case G = Ggeom, any central element acts on the two individual subsheaves of rank
(qn± 1)/2 as an element of p′-order by [KT5, Proposition 7.1], whence |C| ≤ 2. On the other hand,
by Corollary 13.4, some hypergeometric summand of W(a, b) has nontrivial geometric determinant
Lχ2 , hence Ggeom cannot be perfect. It follows that Ggeom = 〈t〉 × L with C = 〈t〉 ∼= C2.
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(iii) Using Theorem 11.7(i), (i-bis), and Theorem 11.8(i), and the results of (ii), we can now
deduce from [KT6, Theorem 6.4] that Garith,k = Carith,k × L, where either

(α) Carith,k = 〈t〉 ∼= C2, or
(β) Carith,k = 〈t〉 × 〈z〉 ∼= C6, p = 3, and 2 - f .

Suppose we are in the case of (β). As Garith,Fq ≥ Garith,k, it follows that Carith,Fq
∼= C6, and that

Garith,Fq/Ggeom
∼= C3, where C3 = 〈z〉 with z acting via as the scalar ζ3. Thus, modulo Ggeom,

any element Frobv,k of Garith,Fq is zdeg(k/Fq); in particular, the element g := Frob1,Fq over Fq in
Garith,Fq is zh for some h ∈ Ggeom. Recall from (ii) that Ggeom = 〈t〉 × Sp2n(q), with t acting as
−1 and Sp2n(q) acting via one of its total Weil representations. Hence, by [GMT, Lemma 2.3],

m :=
(
Tr(Φ(h))

)2 ∈ Z 6=0, and so
(
Tr(Φ(g))

)2
= mζ2

3 /∈ Z. On the other hand, by Lemma 15.3(ii),
the square of the trace at v = 1 over Fq is ±q, a nonzero integer, a contradiction.

Thus (α) must hold for all k ⊇ Fq, and statement (a) is proved completely.
Statement (b) now follows, by inspecting the image of C2×Sp2n(q) in individual irreducible Weil

representations.

(iv) To prove (c), we apply Theorem 15.6 to G̃ := Garith,k to obtain a divisor e|f and a standard
subgroup

(15.7.4) H ∼= Sp2n(q) o Ce ≤ Sp2ne(q
1/e) ≤ Sp2nf (p)

such that

(15.7.5) Z(GLqn(C))Φ(G̃) = Z(GLqn(C))Φ(H).

By [KT3, Theorem 3.5], there exists h ∈ H such that |Tr(Φ(h))|2 = q1/e. Using (15.7.5), we can

write Φ(h) = γΦ(g) for some g ∈ G̃ and γ ∈ C×. As g and h both have finite order, γ is a root of

unity and so |γ| = 1. It follows that |Tr(Φ(g))|2 = |Tr(Φ(h)|2 = q1/e. Theorem 11.8(i-bis) applied

to W(a, b) over Fq1/d implies that q1/e is a power of q1/d, i.e. e|d.

On the other hand, by Lemma 15.3(i), there exists g′ ∈ G̃ such that |Tr(Φ(g′))|2 = q1/d. Using
(15.7.5), we can again write Φ(g′) = γ′Φ(h′) for some h′ ∈ H and γ′ ∈ C× with |γ′| = 1. It follows

that |Tr(Φ(h′))|2 = |Tr(Φ(g′)|2 = q1/d. Note that H embeds in Sp2ne(q
1/e) ≤ Γ (as a standard

subgroup), see (15.7.4). Hence [GMT, Lemma 2.3] applied to Sp2ne(q
1/e) implies that q1/d is a

power of q1/e, i.e. d|e.
We have shown that d = e. This implies that Garith,k induces the subgroup Cd of outer field

automorphisms of Garith,Fq/Carith,Fq
∼= L. On the other hand, the index of Garith,Fq in Garith,k =

Garith,F
q1/d

divides d. This can happen only when Garith,k = Garith,Fq · Cd, and that

CGarith,k
(L) = Z(Garith,k) = Z(Garith,Fq) = 〈t〉 × Z(L) ∼= C2

2 .

Now we can also identify Garith,k/Z(Garith,k) with the subgroup PSp2n(q)oGal(Fq/k) inside Aut(L),
proving (c).

(v) Now we prove (d). Recall that Z(L) = 〈j〉, where j acts as −1 on the even-rank summand
Heven ofW(a, b) and trivially on the odd-rank summand Hodd ofW(a, b). On the other hand, Φ(t) =
−Id, hence tj acts trivially on Heven and as −1 on Hodd. Since Garith,k = 〈tj〉×Sp2n(q) and Sp2n(q)
is perfect, it follows that Hodd has arithmetic determinant Lχ2 and Heven has trivial arithmetic
determinant. Hence, both Hodd ⊗ Lχ2 and Heven ⊗ Lχ2 have trivial arithmetic determinants.

Next, tensoring with Lχ2 changes the trace at v ∈ E× by a factor of χ2(v) = ±1. In particular,
it does not change the absolute value of the trace at any v ∈ E×. Furthermore, the [2]? Kummer

pullbacks of W(a, b) and W̃(a, b) are isomorphic, and so G̃geom has a normal subgroup X of index
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at most 2, which is also a normal subgroup of Ggeom of index at most 2. Furthermore, as usual

G̃arith,k/G̃geom is cyclic. It follows that

(G̃arith,k)
(∞) = (G̃geom)(∞) = X(∞) = L ∼= Sp2n(q).

Applying [KT6, Theorem 6.4] to G̃arith,k and arguing as in (ii), we conclude that G̃arith,k = C̃ × L,

where C̃ = 〈c̃〉 and either c̃ ∈ 〈t〉, or p = 3 and c̃ ∈ 〈t, z〉. [Note that condition (b) of [KT6, Theorem
6.4] is seen to be satisfied by applying Galois automorphisms to the two irreducible constituents of
different dimensions.] As shown above, c̃ has trivial determinant acting on the two subsheaves of
rank (qn ± 1)/2, and this rules out the case where p = 3 but c̃ /∈ 〈t〉. As t has determinant −1 on

the odd-rank subsheaf, the case c̃ = t is also impossible. Thus c̃ = 1 and G̃arith,k = G̃geom = L.

(vi) For (e), we note that W?(a, b) is also arithmetically isomorphic to the [MAB]? Kummer

pullback of W̃(a, b). Hence G?geom is a normal subgroup of G̃geom = Sp2n(q), with cyclic quotient,

and that G?arith,k is a subgroup of G̃arith,k = G̃geom. It follows that G?geom = G?arith,k = Sp2n(q).

For (f), recall that G̃arith,Fp contains G̃geom = G̃arith,Fq = Sp2n(q) as a normal subgroup with cyclic
quotient of order e that divides f := deg(Fq/Fp). We now look at the element g := Frob4,Fp ∈
G̃arith,Fp . For any divisor c of f , by Lemma 15.3 the squared absolute value of the trace of gc =

Frob4,Fpc onW(a, b), and so on W̃(a, b) as well, is pc. On the other hand, by (d) and [GMT, Lemma
2.3], the squared absolute value of the trace of any element in G?geom ≤ Ggeom onW?(a, b) is a power

of q = pf . It follows that gc /∈ G̃geom whenever c is a proper divisor of f . Hence we conclude that

e = f . Next, suppose that G̃arith,Fp induces a group of order e′ of outer (field) automorphisms

of G̃geom = Sp2n(q); in particular, e′|f . Using Theorem 15.6 and [GMT, Lemma 2.3] (applied to

Sp2ne′(q
1/e′) ≥ Sp2n(q)oCe′), we get that the squared absolute value p of the trace of g = Frob4,Fp

on W̃(a, b) is a power of q1/e′ = pf/e
′
. It follows that e′ = f .

Now, if Fq1/d is a subfield of Fq, then G̃arith,F
q1/d

/G̃geom is cyclic of order dividing d and G̃arith,F
q1/d

has index at most f/d in G̃arith,Fp = G̃geom · Cf , whence G̃arith,F
q1/d

= G̃geom · Cd, inducing the

subgroup Cd of outer field automorphisms of G̃geom. It follows that

CG̃arith,F
q1/d

(G̃geom) = Z(G̃arith,F
q1/d

) = Z(G̃geom) ∼= C2,

and we can identify G̃arith,F
q1/d

/Z(G̃geom) with the subgroup PSp2n(q)oGal(Fq/Fq1/d) of Aut(G̃geom).

The arithmetic monodromy group of W?(a, b) over Fq1/d can be determined entirely similarly,
utilizing Lemma 15.3 for Frob2,Fp . �

Remark 15.8. As mentioned above, [GMT, Lemma 2.3] shows that the square of a total Weil
character of Sp2n(q), q any odd prime power, takes values ± powers of q. This phenomenon is
explained in full generality by Theorem 11.10.

16. Determination of monodromy groups: The case M = q + 1 and n ≥ 4

In this section we assume that

(16.0.1) 2 - ab, gcd(a, b) = 1, n = a+ b ≥ 4, p any prime, q = pf ,

in particular, M = q + 1, A = (qa + 1)/(q + 1), B = (qb + 1)/(q + 1), gcd(A,B) = 1. Fix α, β ∈ Z
such that

(16.0.2) αA− βB = 1 and α+ β coprime to M
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using Corollary 13.2. With this choice of parameters, the principal objects of this section are the
following local systems on Gm/Fp and A1/Fp, cf. Definition 11.5 and Theorem 12.1.

Definition 16.1. Let us denote by

Wα(a, b) =W(a, b) :=W(M,A,B)

the arithmetically semisimple local system on Gm/Fp whose trace function at v ∈ E×, E/Fp a finite
extension, is given by

v 7→ 1

#E

∑
x,w∈E

ψE
(
xw − v−αxqb+1 − vβwqa+1

)
.

This system W(M,A,B) is the descent (cf. the beginning of §13) from Gm/Fp(µMAB) to Gm/Fp
of the direct sum of the Kloosterman sheaves

Kl(M,A,B, σ−β , σ−α)(−A−B+1) = Klψ
(
Char(MAB)\(Char(A, σ−β)tChar(B, σ−α)

)
(−A−B+1)

with 1 6= σ ∈ Char(q + 1), see (4.2.1), and the hypergeometric sheaf

Hyp(M,A,B,1,1)(−A−B+2) = Hypψ
(
Char(MAB)t{1}\(Char(A)tChar(B));1

)
(−A−B+2),

each summand being the relevant (grwt=2(R2(pr1)(Fχ,ρ)))(1), see (5.0.1).
Its Kummer pullback

W?(a, b) := [MAB]?W(M,A,B)

is a lisse sheaf on A1, with trace function at v ∈ E, E/Fp a finite extension, given by

(16.1.1) v 7→ 1

#E

∑
x,w∈E

ψE
(
vxw − xqb+1 − wqa+1

)
.

Definition 16.2. When 2 - q, we also consider the local system W̃(a, b) := W(a, b) ⊗ Lχ2 , where
χ2 is the quadratic character. By Theorem 13.3, the geometric determinant of W(a, b) is Lχ2 and

the geometric determinant of W̃(a, b) is trivial.

First we prove an analogue of Lemma 15.3:

Lemma 16.3. Given any odd integers a, b ≥ 1, the following statements hold.

(i) Suppose p > 2. Then for any subfield E of Fq2, the squared absolute value of the trace of
Frobv,E at v = 2 on W?(a, b) as defined in (16.1.1) is #E. If in addition gcd(a, b) = 1, then
W?(a, b) = [MAB]?W(a, b), and hence the squared absolute value of the trace of Frobv,E at
v = 4 on W(a, b) is #E.

(ii) Suppose p = 2. Then for any subfield E = Fq2/c of Fq2, the trace of Frobv,E at v = 0 on

W?(a, b) as defined in (16.1.1) is #E if 2 - c and 0 if 2|c.

Proof. (i) First we prove the statement in its W?(a, b) form. By Definition 16.1, the trace at v = 2
is

1

#E

∑
x,w∈E

ψE
(
2xw − xqb+1 − wqa+1)

=
1

#E

∑
x,w∈E

ψE
(
2xw − xq+1 − wq+1

)
.

Following part (b) of the proof of Theorem 11.8 and taking s = t := 1/2, we see that the squared
absolute value of this trace is #Null(E), where

Null(E) =
{

(x,w) ∈ E2 | x = (w/2)1/q + (w/2)q, w = (x/2)1/q + (x/2)q
}
,



44 NICHOLAS M. KATZ AND PHAM HUU TIEP

cf. (11.8.3). We must show that for any x ∈ E, the pair (x,w := (x/2)1/q + (x/2)q) lies in Null(E).

But for any x ∈ E ⊆ Fq2 and with w = (x/2)1/q + (x/2)q, we have that

(w/2)1/q + (w/2)q =
(
(x/2)1/q2 + (x/2) + (x/2) + (x/2)q

2)
/2 = 2x/2 = x.

Thus #Null(E) = #E, and the claim follows for W?(a, b). For W(a, b), note that MAB ≡ 2(mod
(p− 1)) and so 2MAB = 4 in E, whence we are done by Lemma 14.3.

(ii) First we show that

(16.3.1)
∑
x∈E

ψE(xq
a+1) is #E if 2 - c and 0 if 2|c.

Write q = pf with p = 2. To say that E is a subfield of Fq2 is to say that c|2f . If c is odd

then c|f . Putting r := pf/c, we have E = Fr2 . In this case, as both a, c are odd, we have
qa + 1 = rac + 1 ≡ r + 1(mod (r2 − 1)). Then for x ∈ E = Fr2 , xq

a+1 = xr+1 ∈ Fr2 , and hence

TrFr2/Fr(x
r+1) = xr+1 + xr

2+r = 2xr+1 = 0.

Thus for x ∈ E = Fr2 ,

ψE(xq
a+1) = ψ

(
TrFs/F2

(
xq

a+1
))

= ψ

(
TrFr/F2

(
TrFr2/Fr(x

r+1)
))

= ψ
(
TrFr/F2

(0)
)

= ψ(0) = 1.

Hence
∑

x∈E ψE(xq
a+1) = #E as claimed.

If c is even, then 2f/c divides f , so that E is a subfield of Fq. Therefore, xq
a+1 = x2 for any

x ∈ E, and so ∑
x∈E

ψE(xq
a+1) =

∑
x∈E

ψE(x2) =
∑
x∈E

ψE(x) = 0.

Now, the trace at v = 0 in question is

1

#E

∑
x,w∈E

ψE
(
xq

b+1 + wq
a+1)

=
1

#E

∑
x∈E

ψE(xq
b+1)

∑
w∈E

ψE(wq
a+1),

and the statement follows from (16.3.1). �

Lemma 16.4. Let Z be a finite abelian group, q = pf a prime power, and let λ0, λ1, . . . , λq ∈ Irr(Z).

(i) Suppose Λ :=
∑q

i=0 λi vanishes on Z r {1}. Then |Z| divides q + 1.
(ii) Suppose there is some z ∈ Z such that Λ =

∑q
i=0 λi vanishes on Zr{1, z} and Λ(z) = −(q+1).

Then |Z| divides 2(q + 1).
(iii) Suppose 2|n ≥ 4, λ2

0 = 1Z , (n, q) 6= (4, 2), and that

Σ := λ0 +D

q∑
i=0

λi,

with D := (qn − 1)/(q + 1), takes values only in {−qn, 0,±pi | 0 ≤ i ≤ nf − 1} on Z r {1}.
Then either |Z| divides q + 1, or Z contains an element z with λi(z) = −1 for all 0 ≤ i ≤ q.
In the latter case, |Z| divides 2(q + 1).

(iv) Suppose (n, q) = (4, 2), λ2
0 = 1Z , and that

Σ := λ0 +D

q∑
i=0

λi,

with D := (qn− 1)/(q+ 1) = 5, takes values only in {0,±qi | 0 ≤ i ≤ n− 1} on Z r {1}. Then
either |Z| divides q + 1, or Z = {1, z} ∼= C2 with −λ0(z) = λ1(z) = λ2(z).
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Proof. (i) Note that

[Λ, 1Z ]Z =
1

|Z|
∑
x∈Z

Λ(x) =
q + 1

|Z|

is an integer, whence the statement follows.

(ii) Let α be the linear character of the cyclic subgroup 〈z〉 sending z to −1. Since Z is abelian,
we can find a linear extension β of α to Z. Now

[β,Λ]Z =
1

|Z|
∑
x∈Z

β(x)Λ(x) =
(q + 1)β(1)− (q + 1)β(z)

|Z|
=

2(q + 1)

|Z|

is an integer, whence the statement follows.

(iii) Consider any 1 6= x ∈ Z. By the assumption, λ0(x) = ±1, and Σ(x) = 0, −qn, or ±pj for
some 0 ≤ j ≤ nf − 1. Now

Z 3 Σ(x)− λ0(x) = D · Λ(x),

and so Λ(x) = (Σ(x)− λ0(x))/D is both rational and an algebraic integer, whence

(16.4.1) D divides Σ(x)− λ0(x).

We will now show that

(16.4.2) Either Σ(x) = λ0(x) or Σ(x) = −qn.
Indeed, if (n, q) 6= (6, 2), then pnf −1 admits a primitive prime divisor ` by [Zs]; if (n, q) = (6, 2), we
take ` := D = 21. In either case, `|D and so ` divides Σ(x)− λ0(x) by (16.4.1); furthermore, ` ≥ 5.
Now if Σ(x) = 0 or −λ0(x), then |Σ(x)−λ0(x)| ≤ 2 < `, a contradiction. Suppose Σ(x) = ±λ0(x)pj

with 1 ≤ j ≤ nf − 1. Then ` divides pj ∓ 1. When (n, q) = (6, 2), 0 ≤ j ≤ 5, so ` = 21 cannot
divide pj − 1, again a contradiction. Consider now the case (n, q) 6= (6, 2). Then `|(p2j − 1) implies
by the choice of ` that nf |2j. However, 1 ≤ j < nf , so we must have j = nf/2. In this case,

1 ≤ |Σ(x)− λ0(x)| ≤ pj + 1 = pnf/2 + 1 = qn/2 + 1 < (qn − 1)/(q + 1) = D

(using (n, q) 6= (4, 2)), and this contradicts (16.4.1).
Now, if Σ(x) 6= −qn for all 1 6= x ∈ Z, then by (16.4.2) we have Σ(x) = λ0(x) and Λ(x) = 0 for

all 1 6= x ∈ Z, whence the statement follows from (i).
Consider the case Σ(x) = −qn for some 1 6= x ∈ Z. Then by (16.4.1) we must have that

λ0(x) = −1, and so
q∑
i=0

(−λi(x)) = −Λ(x) = (λ0(x)− Σ(x))/D = q + 1,

implying that all roots of unity −λi(x) must be 1. Note that Σ is faithful by assumption, and fix an
element z ∈ Z with Σ(z) = −qn, which implies that λi(z) = −1 for all i. In this case, λi(xz

−1) = 1
for all i, and so Σ(xz−1) = qn and x = z by faithfulness of Σ. We have shown that Λ(x) = −(q+ 1)
for x = z, and Λ(x) = 0 for all x ∈ Z r {1, z}, and so the statement follows from (ii).

(iv) We continue to argue as in (iii) and note that (16.4.1) still holds. In particular, this rules
out the possibilities Σ(x) = −λ0(x), 0, ±2, −λ0(x), and ±8 for 1 6= x ∈ Z. Thus Σ(x) ∈
{λ0(x),−4λ0(x)} when 1 6= x ∈ Z. Now if Σ(x) 6= −4λ0(x) for all 1 6= x ∈ Z, then Σ(x) = λ0(x)
and Λ(x) = 0, whence |Z| divides q + 1 by (i).

Suppose that Σ(x) = −4λ0(x) for some 1 6= x ∈ Z. Then

2∑
i=0

λi(x) = Λ(x) = (Σ(x)− λ0(x))/D = −λ0(x),
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and so (λ1(x)/λ0(x)) + (λ2(x)/λ0(x)) = −2. As λi(x)’s are roots of unity, we must have that

−λ0(x) = λ1(x) = λ2(x).

Now, fix an element z ∈ Z with Σ(z) = −4λ0(z), which implies that −λ0(z) = λ1(z) = λ2(z). Then,

λ0(xz−1) = λ1(xz−1) = λ2(xz−1),

and so Σ(xz−1) = 16λ0(xz−1) ∈ {±16}, whence x = z by the assumption. Thus, when y ∈ Z we
have that Λ(y) is equal to 3 if y = 1, −λ0(z) if y = z, and 0 otherwise. As in (ii), let α be the linear
character of the cyclic subgroup 〈z〉 sending z to λ0(z), and consider a linear extension β of α to
Z. Now

[β,Λ]Z =
1

|Z|
∑
y∈Z

β(y)Λ(y) =
β(1)Λ(1) + β(z)Λ(z)

|Z|
=

2

|Z|

is an integer, and so |Z| divides 2. Since z 6= 1, we have Z = {1, z} ∼= C2, as stated. �

For any prime power q and any n ≥ 2, recall that the finite unitary group GU(W ) = GUn(q),
with W := Fnq2 , admits a total Weil representation of degree qn over C, with character

(16.4.3) ζn,q(g) = (−1)n(−q)dimF
q2

Ker(g−1W )

for any g ∈ GUn(q), see e.g. [TZ2, (9)]. Fix primitive (q + 1)th roots of unity % ∈ C× and % ∈ F×
q2

.

Then ζn,q =
∑q

i=0 ζ
i
n,q is the sum of q + 1 irreducible Weil characters of GUn(q), with

(16.4.4) ζin,q(g) =
(−1)n

q + 1

q∑
l=0

%il(−q)dimF
q2

Ker(g−%l·1W )

being the character of the irreducible summand of the total Weil representation of GUn(q), on which
the generator z := % · Id acts as the scalar %i, see [TZ2, Lemma 4.1]. More intrinsically, µq+1(Fq2)
acts on GUn(q) by (ξ, g) 7→ ξg. For each C-valued character χ of µq+1(Fq2), the corresponding Weil
character ζχ,n is the χ-isotypical component of ζn,q:

ζχ,n(g) =
(−1)n

q + 1

∑
ξ∈µq+1(Fq2 )

χ(ζ)(−q)dimF
q2

Ker(gξ−1W )
.

If 2|q or if n ≥ 3, then the restrictions ζin of ζin,q to SUn(q), 0 ≤ i ≤ q, are pairwise distinct irreducible
Weil characters of SUn(q), see [TZ2, Lemma 4.7].

Formula (16.4.4) also makes sense for n = 1, except that ζ0
1,q becomes the zero class function on

GU1(q). With this convention, we note the following branching formulas, which generalize [KT4,
(2.0.3)]:

Lemma 16.5. (i) Let n = m + l with m, l ∈ Z≥1. Then the restriction of ζin,q to the natural
subgroup GUm(q)×GUl(q) of GUn(q) is∑

0 ≤ r, s ≤ q,
(q + 1)|(r + s− i)

ζrm,q � ζ
s
l,q.

(ii) Let T = 〈t〉 be a cyclic maximal torus of order qn− (−1)n of GUn(q), and let β be a generator
of the character group Irr(T ). Then the restriction of ζin,q to T is∑

0 ≤ r < qn − (−1)n,
(q + 1)|(r − i)

βr + (−1)nδi,01T .
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Proof. (i) Formula (16.4.3) shows that the restriction of ζn,q to GUm(q) × GUl(q) is ζm,q � ζl,q.
Now write z = diag(zm, zl) with zm = % · Id ∈ Z(GUm(q)) and zl = % · Id ∈ Z(GUl(q)). The
desired formula then follows by looking up the %i-eigenspace of z in Vm�Vl, with Vm affording the
GUm(q)-character ζm,q and Vl affording the GUl(q)-character ζl,q.

(ii) Note that no nontrivial power ti has eigenvalue 1 on Fnq2 , hence ζn,q(t
i) = (−1)n for 1 6= ti ∈ T

by (16.4.3), and thus ζn,q|T =
∑qn−(−1)n−1

j=0 βj + (−1)n1T . We can choose t in such a way that

z = t(q
n−(−1)n)/(q+1), and then deduce the stated formula by looking up the %i-eigenspace for z in

ζn,q|T . �

The total Weil character
∑q

i=0 ζ
i
n of SUn(q) can be characterized as follows:

Theorem 16.6. Let p be any prime and q be any power of p. Let L = SUn(q) with n ≥ 3 and
(n, q) 6= (3, 2). Suppose ψ is a (not necessarily irreducible) complex character of L such that

(a) ψ(1) = qn;
(b) ψ(g) ∈ {0,±qi | 0 ≤ i ≤ n} for all g ∈ L; and
(c) every irreducible constituent of ψ is among the q+ 1 irreducible Weil characters ζun , 0 ≤ u ≤ q,

of L.

Then ψ is the total Weil character, that is, ψ =
∑q

u=0 ζ
u
n .

Proof. (i) By assumption (c),

ψ =

q∑
u=0

auζ
u
n ,

where au ∈ Z≥0. Setting κ := (−1)n and comparing the degrees, we obtain

(a0 − 1)κ =
qn − κ
q + 1

(
q + 1−

q∑
u=0

au

)
;

in particular, a0 − 1 is divisible by (qn − κ)/(q + 1). On the other hand,

−1 ≤ a0 − 1 ≤ ψ(1)

ζ0
n(1)

− 1 =
qn

(qn + qκ)/(q + 1)
− 1 ≤ q3

q2 − q
− 1 =

q2 − q + 1

q − 1
<
q3 − 1

q + 1
≤ qn − κ

q + 1
,

since n ≥ 3 and (n, q) 6= (3, 2). It follows that

(16.6.1) a0 = 1,

q∑
u=1

au = q.

(ii) Now, view L as SU(W ), where W = Fnq2 is endowed with an L-invariant non-degenerate

Hermitian form, and consider the subgroup H ∼= SU3(q) of L that acts trivially on a non-degenerate
(n− 3)-dimensional subspace of W . An easy induction on n ≥ 3 using Lemma 16.5(i) and (16.6.1)
shows that

(16.6.2) ψH =

q∑
u=0

buζ
u
3 , where bu := qn−3 + κ(1− au),

in particular,

(16.6.3) b0 = qn−3,

q∑
u=1

bu = qn−2.
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Also, let d := gcd(2, q + 1), ε = ζq+1 be a primitive (q + 1)th root of unity, and set

Σk :=

q∑
u=1

buε
uk

for any k ∈ Z, which in fact depends only on k(mod (q + 1)). Then (16.6.3) implies that

(16.6.4) Σ0 = qn−2, |Σk| ≤ qn−2.

(iii) Here we consider the case q ≥ 4. This ensures that q − 1 does not divide q + 1. We will
use the character table (and the notation for various conjugacy classes) of H as displayed in [Geck,

Table 3.1]. Consider any k ∈ Z with (q+ 1)/2 - k. Evaluating ψ at an element of the class C
(k,−k,0)
6 ,

we have by (b) that

(16.6.5) Σ′k := 2b0 + Σ0 + Σk + Σ−k = qn−2 + 2qn−3 + Σk + Σk

belongs to

V := {0,±qi | 0 ≤ i ≤ n}.
Next, as q ≥ 4, by adding q + 1 to k if necessary, which does not change Σk, we may assume that

(q − 1) - k. Evaluating ψ at an element of the class C
(k)
7 and using (b) again, we have that Σk ∈ V .

Now, if |Σk| ≤ qn−4, then

qn−1 > qn−2 + 2qn−3 + 2qn−4 ≥ |Σ′k| ≥ qn−2 + 2qn−3 − 2qn−4 > qn−2,

contradicting (16.6.5). On the other hand, if Σk = qn−2, respectively, −qn−2, qn−3, then Σ′k =
qn−3(3q+ 2), qn−3(2− q), qn−3(q+ 4), respectively, which again contradicts (16.6.5). Together with
(16.6.4), this leaves only one possibility that Σk = −qn−3. Now using (16.6.2), we deduce that

q∑
k=0

auε
uk = 0

if 1 ≤ k ≤ q and k 6= (q + 1)/2. Thus the polynomial

f(t) :=

q∑
u=0

aut
u ∈ Z[t]

has εk with 1 ≤ k ≤ q, k 6= (q + 1)/2 as roots. Also, f(1) =
∑q

u=0 au = q + 1 by (16.6.1). If
2|q, it follows that f(t) is divisible by (tq+1 − 1)/(t − 1), and so f(t) =

∑q
u=0 t

u. If 2 - q, we have
that f(t) is divisible by (tq+1 − 1)/(t2 − 1), whence f(t) = (at+ b)(tq−1 + tq−3 + . . .+ t2 + 1) with
a, b ∈ Q. Evaluating at t = 1 we obtain a+ b = 2. Next, b = f(0) = a0 = 1, and so a = 1, whence
f(t) =

∑q
u=0 t

u again. In other words, au = 1 for all u, as stated.

(iv) Assume now that q = 2. Note that condition (b) implies that ψ is real-valued. However,

ζ1
n = ζ2

n. It follows from (16.6.1) that a1 = a2 = 1, as stated.

Finally, we consider the case q = 3. Then ζin is real-valued when i = 0, 2 and ζ1
n = ζ3

n. Again using
(16.6.1) and assuming that ψ is not the total Weil character, we must then have that ψ = ζ0

n + 3ζ2
n,

i.e. (a0, a1, a2, a3) = (1, 0, 3, 0). Now using (16.6.2) and evaluating ψ at an involution g ∈ H, we
obtain

ψ(g) = 3n−2 − 8(−1)n−3,

which does not belong to V, a contradiction. �
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Remark 16.7. The total Weil character
∑q

i=0 ζ
i
n of SUn(q) is characterized in Theorem 16.6 as

the unique character, whose irreducible constituents are among the q + 1 Weil characters ζun , 0 ≤
u ≤ q, and which takes values only among 0,±ql, 0 ≤ l ≤ n. One may wonder if an analogous
characterization can be found for the total Weil character ζn,q =

∑q
i=0 ζ

i
n,q of GUn(q):

Is ζn,q the only character of GUn(q), whose irreducible constituents are among the (q + 1)2 Weil
characters ζin,qλ

j, 0 ≤ i, j ≤ q (where λ is a fixed linear character of order q + 1 of GUn(q), see

[TZ2, (10)]), and which takes values only among 0,±ql, 0 ≤ l ≤ n?

Suppose 2 - q and let χ̃2 = λ(q+1)/2 denote the unique quadratic character of GUn(q). Then
certainly χ̃2ζn,q also satisfies the same properties, and in fact, this is the character obtained when
we embed GUn(q) in Sp2n(q) and restrict a total Weil character of Sp2n(q) to GUn(q), see e.g.
[KT3, Theorem 3.1].

However, there are other sums of irreducible Weil characters of GUn(q) that also share the same
properties. For instance, consider any 1 ≤ e ≤ q and the character

∑q
i=0 ζ

i
n,qλ

ei. We may assume

that λ(g) = %d whenever det(g) = %d, 0 ≤ d ≤ q. For such an element g ∈ GUn(q), by (16.4.4) we
have

q∑
i=0

ζin,qλ
ei(g) =

(−1)n

q + 1

q∑
i=0

%edi
q∑
l=0

%il(−q)dimF
q2

Ker(g−%l·1W )

=
(−1)n

q + 1

q∑
l=0

(−q)dimF
q2

Ker(g−%l·1W ) ·
q∑
i=0

%i(l+de)

=
(−1)n

q + 1

q∑
l=0

(−q)dimF
q2

Ker(g−%l·1W ) · (q + 1)δl,−de

= (−1)n(−q)dimF
q2

Ker(g−%−de·1W )
;

in particular,
∑q

i=0 ζ
i
n,qλ

ei takes values only among (−1)n(−q)l, 0 ≤ l ≤ q, as ζn,q does.

Another way of describing the character
∑q

i=0 ζ
i
n,qλ

ei is this. For each a ∈ Z/(q + 1)Z, the map
of GUn(q) to itself given by

(16.7.1) γe : g 7→ g · det(g)e

is an endomorphism of GUn(q); furthermore, if det(g) = %d then Ker(g − %−de · 1W ) = Ker(γe(g)−
1W ). For any representation Φ of GUn(q),

g 7→ Φ(γe(g)) = Φ(g · det(g)e))

is another representation of GUn(q). Applying this construction to the total Weil representation
with character ζn,q, we get a new representation whose character is

∑q
i=0 ζ

i
n,qλ

ei. We also note
that, for e ∈ Z/(q + 1)Z, γe is an automorphism of GUn(q) precisely when ne + 1 is invertible in
Z/(q + 1)Z.

Fix a primitive MABth roots of unity ε ∈ Fq
×

and ε ∈ C×, and set

ξ := εB, ν := εA, ξ := εB, ν := εB,

so that % = ξA = νB and % = ξA = νB. With this, we can prove the following characterization of
the total Weil character ζn,q of GUn(q), cf. (16.4.3).

Theorem 16.8. Given the hypothesis (16.0.1), and let Φ : G := GUn(q) → GLqn(C) be a faithful
complex representation that satisfies the following conditions:

(a) Φ = ⊕qj=0Φj, where Φj is irreducible of degree (qn − 1)/(q + 1) + δj,0, and Φ0 is self-dual if

1 ∈ {a, b};
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(b) There is an element g ∈ G such that Φj(g) has spectrum{
εi | 0 ≤ i ≤MAB − 1, (εi)A 6= %βj , (εi)B 6= %αj

}
for 0 ≤ j ≤ q, and that G = 〈[G,G], g〉.

Then there exists an automorphism γ of G such that Tr(Φ(γ(h)) = ζn,q(h) for all h ∈ G.

Proof. (i) By hypothesis, g has both order and central order equal to MAB = (qa+1)(qb+1)/(q+1),
and Φj(g) has simple spectrum for 0 ≤ j ≤ q. Applying [KT5, Theorem 8.3], we see that gZ(G)
generates a cyclic maximal torus in G/Z(G), and, after a suitable conjugation, we may assume that

g = diag
(
ξc, ξ−qc, ξq

2c, . . . , ξ(−q)a−1c, νd, ν−qd, νq
2d, . . . , ν(−q)b−1d

)
with c ∈ Z/(qa + 1)Z and d ∈ Z/(qb + 1)Z. Since g generates G modulo [G,G], det(g) = %c+d has
order q + 1. Replacing ε by another generator of µMAB to change % to another element of order
q+ 1, we may therefore assume that c+ d ≡ 1(mod (q+ 1)). Now, the condition that g has central

order qn−1 + 1 is equivalent to that 1 = ξic/νid = εi(cB−dA) if and only if MAB|i, i.e.

(16.8.1) gcd(c, A) = gcd(d,B) = gcd(cB − dA, q + 1) = 1.

(ii) The element g belongs to the standard subgroup GUa(q)×GUb(q) of G. Hence we can apply
Lemma 16.5(i) to GUa(q)×GUb(q), and then apply Lemma 16.5(ii) to

x := diag
(
ξ, ξ−q, ξq

2
, . . . , ξ(−q)a−1) ∈ GUa(q), y :=

(
ν, ν−q, νq

2
, . . . , ν(−q)b−1) ∈ GUb(q),

to find that the spectrum of g = diag(x, y) in a Weil representation with character ζjn,q is the
left-hand-side of

(16.8.2)
{
ξrcνsd | 0 < r ≤ qa, 0 < s ≤ qb, r + s ≡ j(mod M)

}
= [

MAB
√

1] r
(
[ A
√
%cj ] ∪ [ B

√
%dj ]

)
,

where we denote [ N
√
t] := {z ∈ C | zN = t} for any t ∈ C. To show that the left-hand-side and the

right-hand-side of (16.8.2) are equal, suppose that ξrcνsd = ξr
′cνs

′d with

(16.8.3) 0 ≤ r, r′ ≤ qa, 0 ≤ s, s′ ≤ qb, r + s ≡ r′ + s′ ≡ j(mod M).

Then

(16.8.4) ξ(r−r′)c = ν(s′−s)d,

and so B(q+ 1)(r− r′)c divides A(q+ 1) = ord(ξ). But gcd(A,B) = gcd(c, A) = 1 (see (16.0.1) and
(16.8.2)), hence we can write r − r′ = Au for some u ∈ Z. Likewise, we have s− s′ = Bv for some
v ∈ Z, and now, from (16.8.3) and (16.8.4) we obtain

cu+ dv = 0, Au+Bv = 0

in Z/(q+1)Z. The determinant cB−dA of this system is invertible in Z/(q+1)Z by (16.8.1), hence
u, v ∈ (q + 1)Z, i.e. r = r′ and s = s′. Now we can readily check that, when (r, s) satisfies (16.8.3)

with s = 0, ξrcνsd runs over [ A
√
%cj ], and when (r, s) satisfies (16.8.3) with r = 0, ξrcνsd runs over

[ B
√
%dj ], and this establishes the equality in (16.8.2).

(iii) Noting A ≡ a and B ≡ b modulo q + 1 and using (16.0.1), we have that αn− (α + β)b = 1
and so (α+ β)b = αn− 1 in Z/(q + 1)Z. Recalling c+ d = 1 in Z/(q + 1)Z and using (16.0.2) and
(16.8.1), we then see that

(α+ β)(cb− da) = (α+ β)
(
b(1− d)− ad

)
= (α+ β)(b− nd)

= αn− 1− (α+ β)nd = n
(
α− (α+ β)d

)
− 1
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is coprime to q + 1. Thus

(16.8.5) gcd(1 + ne, q + 1) = 1

for e := (α + β)d − α = βd − αc. This implies by Remark 16.7 that the map γe of (16.7.1) is an
automorphism of G. Hence we can replace g by

γe(g) = zeg = diag
(
ξc
′
, ξ−qc

′
, ξq

2c′ , . . . , ξ(−q)a−1c′ , νd
′
, ν−qd

′
, νq

2d′ , . . . , ν(−q)b−1d′
)
,

where

c′ := c+Ae = c+A(βd− αc) = c(1− αA) + dβA = −cβB + dβA = β(dA− cB)

and
d′ := d+Be = d+B(βd− αc) = d(1 + βB)− cαB = dαA− cαB = α(dA− cB).

Setting t := dA− cB, we have that

(16.8.6) gcd(t, q + 1) = 1

by (16.8.1). Now, (16.8.2) applied to c′ and d′ shows that the spectrum of g in a Weil representation

with character ζjn,q becomes

(16.8.7) [
MAB
√

1] r
(
[ A
√
%tβj ] ∪ [ B

√
%tαj ]

)
.

(iv) Now we will determine the character ϕj of Φj . Any irreducible constituent of the restriction
(Φj)|L to L := [G,G] ∼= SUn(q) has degree dividing deg(Φj), hence, by [TZ1, Theorem 4.1], it must

be equal to deg(Φj) and in fact (Φj)|L is an irreducible Weil character of L. Thus (ϕj)|L = (ζ
rj
n,q)|L

for some 0 ≤ rj ≤ q; in fact, rj = 0 if and only if j = 0 (by degree comparison). Now, applying
[TZ2, Lemma 4.7], we see that

ϕj = ζ
rj
n,qλ

sj

with 0 ≤ sj ≤ q, where λ ∈ Irr(GUn(q)) sends x ∈ GUn(q) to %d whenever det(x) = %d. Since g
now has det(g) = %1+ne, it follows from (16.8.7) that Φj(g) has spectrum

[
MAB
√

1] r
(
%(1+ne)sj · [ A

√
%tβrj ] ∪ %(1+ne)sj · [ B

√
%tαrj ]

)
.

But, according to (b) the spectrum of Φj(g) is [ MAB
√

1] r
(
[ A
√
%βj ] ∪ [ B

√
%αj ]

)
. It follows that

(16.8.8) %(1+ne)sj · [ A
√
%tβrj ] ∪ %(1+ne)sj · [ B

√
%tαrj ] = [ A

√
%βj [∪[ B

√
%αj ].

Since n ≥ 4, we may assume that a > b and hence A > B. In this case, the set %(1+ne)sj · [ A
√
%tβrj ]

of size A cannot be contained in the set [ B
√
%αj ] of size B. Therefore, there exists some θ that

belongs to both %(1+ne)sj · [ A
√
%tβrj ] and [ A

√
%βj ]. Now, both these two sets become θ · [ A

√
1], and so

they are equal:

(16.8.9) %(1+ne)sj · [ A
√
%tβrj [= [ A

√
%βj ].

Equating the products of all elements in each set (and using 2 - A), we get

(16.8.10) %A(1+ne)sj%tβrj = %βj , i.e. A(1 + ne)sj + tβrj = βj in Z/(q + 1)Z.
Assume in addition that 1 ≤ j ≤ q. Then (16.8.8) is an equality of two disjoint unions of two
subsets, so (16.8.9) implies

(16.8.11) %(1+ne)sj · [ B
√
%tαrj ] = [ B

√
%αj ].

Again equating products over all elements in each set, we obtain

(16.8.12) B(1 + ne)sj + tαrj = αj in Z/(q + 1)Z.
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The system of linear equations (16.8.10) and (16.8.12), in two variables sj and rj , has determinant
(1 +ne)t(αA−βB) = (1 +ne)t, an invertible element in Z/(q+ 1)Z by (16.8.5) and (16.8.6). Hence
it has a unique solution sj = 0, rj = j/t.

Assume now that j = 0. Then r0 = 0 as noted above. If b > 1, then B > 1, and (16.8.8) and

(16.8.9) imply that %(1+ne)sj ·
(
[ B
√

1] r {1}
)

= [ B
√

1] r {1}. In particular, for some 1 6= θ ∈ [ B
√

1]

we have %(1+ne)sjθ ∈ [ B
√

1], whence (16.8.12) also holds, and we can conclude as above that s0 = 0.
Suppose b = 1. Then (16.8.10) implies that A(1+ne)s0 = 0 and so (n−1)s0 = 0 in Z/(q+1)Z. We
also have in this case that the character ζ0

n,jλ
s0 of the self-dual representation Φ0 is real, whence

λs0 is real, i.e. 2s0 = 0 in Z/(q + 1)Z. As 2|n, we conclude that s0 = 0.

Thus we have shown that ϕj = ζ
j/t
n,q for 0 ≤ j ≤ q. Hence the character of Φ is

q∑
j=0

ζj/tn,q =

q∑
j=0

ζjn,q = ζn,q,

as stated. �

Proposition 16.9. Given the hypothesis (16.0.1), suppose that for some δ = 0 or 1, there is a
hypergeometric sheaf H of rank D = (qn − 1)/(q + 1) + δ in characteristic p with finite geometric

monodromy group G, which is almost quasisimple. Assume furthermore that G(∞) is irreducible on
H and that the following conditions hold.

(α) If (n, q) = (4, 2), then G/Z(G) contains an element g of order 9, and furthermore G(∞)

admits only real-valued traces on H.
(β) If (n, q) = (4, 3), then G/Z(G) contains an element g of order 28 and an elementary abelian

subgroup Q ∼= C4
3 .

(γ) If (n, q) = (6, 2), then G/Z(G) contains an element g of order 33 and an elementary abelian
subgroup Q ∼= C6

2 .

Then one of the following statements holds.

(i) G(∞) is a cover of some AN with N ≥ 8.

(ii) G(∞) is a quotient of SUn(q).

(iii) q = 2, γ = 0, and G(∞) is a quotient of SLn/2(4).

Proof. Let S denote the non-abelian composition factor of G, so that S C G/Z(G) ≤ Aut(S). As

G is almost quasisimple, E(G) = G(∞). Next, since H is hypergeometric, a generator of I(0) has a
simple spectrum on H, whence G satisfies the condition (?) of [KT5].

(A) First we consider the generic case, that is, where D ≥ 23. Note that the given rank D cannot
be equal to 23, 24, or 28, since n ≥ 4. As D ≥ 23, it follows from [KT5, Theorem 7.4] that S is not

any of 26 sporadic simple groups. We will now assume that G(∞) is not a cover of an alternating
group, whence S is a simple groups of Lie type in some characteristic r. Now we can apply [KT5,
Theorem 7.6] to conclude that there is some power s of r such that either S = PSL2(s), or E(G)
is a quotient of SLm(s), SUm(s), or Sp2m(s), and it acts on H via one of its Weil representations.
Furthermore, as D ≥ 23, we have r = p by [KT5, Theorem 8.5].

(a) Consider the case S = PSLm(s) with m ≥ 2, and

D = (sm − s)/(s− 1) or (sm − 1)/(s− 1).

If D = (qn + q)/(q + 1), then p|D, whence (qn + q)/(q + 1) = (sm − s)/(s − 1). Comparing the
p-part, we obtain s = q and

sn−2 − . . .+ s2 − s+ 1 = (sn−1 + 1)/(s+ 1) = (sm−1 − 1)/(s− 1) = sm−1 + . . .+ s2 + s+ 1.
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Since n ≥ 4, it follows that m ≥ 3, and −s+ 1 ≡ s+ 1(mod s3), which is impossible.
Suppose D = (qn−1)/(q+1), i.e. γ = 0. Then p|(D+1), whence D = (sm−1)/(s−1) ≡ 1( mod p)

and so p = 2. If moreover s = 2, then 2m = D + 1 = (qn + q)/(q + 1), and so, by comparing the
2-part, we obtain q = 2m = D, which is impossible since n ≥ 4. Thus s ≥ 4. If q ≥ 4, then
D = (qn − 1)/(q + 1) ≡ q − 1 ≡ −1(mod 4) and D = (sm − 1)/(s − 1) ≡ s + 1 ≡ 1(mod 4), a
contradiction. If q = 2 and s ≥ 8, then D = (qn − 1)/(q + 1) ≡ −q2 + q − 1 ≡ −3(mod 8) and
D = (sm − 1)/(s− 1) ≡ s+ 1 ≡ 1(mod 8), again a contradiction. Thus (q, s) = (2, 4) and n = 2m,
leading to (iii).

(b) Next we consider the case S = PSp2m(s) with m ≥ 1 and 2 - s, and D = (sm ± 1)/2. In
particular, p - D, hence D = (qn − 1)/(q + 1) ≡ −1(mod p). Now 2D ≡ −2(mod p), so we must
have D = (sm + 1)/2 and p = 3. Comparing the p-part of (qn + q)/(q + 1) = (sm + 3)/2, we get
q = 3 and 3n − 2sm = 3, a contradiction, as s > 3 is a 3-power.

(c) It remains to consider the case S = PSUm(s) with m ≥ 2, and

D = (sm + (−1)ms)/(s+ 1) or (sm − (−1)m)/(s+ 1).

If D = (qn + q)/(q + 1), then p|D, whence (qn + q)/(q + 1) = (sm + (−1)ms)/(s + 1). Comparing
the p-part, we obtain s = q and m = n, as stated in (ii).

Suppose D = (qn − 1)/(q + 1). Then p - D, whence

(16.9.1) D = (sm − (−1)m)/(s+ 1) ≡ (−1)m−1(mod p).

If moreover 2|m, then we get (qn+q)/(q+1) = D+1 = (sm+s)/(s+1), and so q = s by comparing
the p-part, whence we also get m = n, again leading to (ii). Assume 2 - m. Then using (16.9.1)
and p|(qn + q)/(q + 1) = D + 1, we see that p = 2. Now, if q, s ≥ 4, then D = (qn − 1)/(q + 1) ≡
q− 1 ≡ −1(mod 4) and D = (sm + 1)/(s+ 1) ≡ −s+ 1 ≡ 1(mod 4), a contradiction. Thus either q
or s equals to 2. Since (qn − 1)/(q + 1) = (sm − 1)/(s+ 1), we also get

s+ q + 2 = qn(s+ 1)− sm(q + 1)

is divisible by 8, whence {s, q} = {2, 4}. Now, if (q, s) = (2, 4), then (2n − 1)/3 = (4m + 1)/5
and 5 · 2n − 3 · 4m = 8 with n ≥ 4 and m ≥ 3, a contradiction. Finally, if (q, s) = (4, 2), then
(4n − 1)/5 = (2m + 1)/3 and 3 · 4n − 5 · 2m = 8 with n ≥ 4 and m ≥ 5, again a contradiction.

(B) Now we consider the remaining cases where D ≤ 22, that is, where (n, q) = (4, 2) and
D = 5, 6, or (n, q) = (4, 3) and D = 20, 21, or (n, q) = (6, 2) and D = 21, 22.

In the first case, by assumption (α), G/Z(G) ≤ Aut(S) contains an element g of order 9. This

rules out all possible covers G(∞) of S that can have irreducible representations of degree 5 or 6 by
[HM]: S = A5,6,7, PSL2(5, 7, 9, 11, 13), PSL3(4), SU3(3), and J2, leaving out only the possibilities

that G(∞) = SU4(2) or 61 · PSU4(3). The latter case is also ruled out for the reason that G(∞)

would then admit traces 6ζ3.
Next suppose that D = 20. By assumption (β), G/Z(G) ≤ Aut(S) contains an element g of

order 28 and a subgroup Q ∼= C4
3 . This rules out all possible covers G(∞) of S that can have

irreducible representations of degree 20 by [HM]: S = A7,8, PSL2(19, 41), PSL3(4), PSU3(5), and

SU4(2), leaving out only the possibility that G(∞) is a quotient of SU4(3).
Suppose now that D = 21. By assumptions (β) and (γ), either G/Z(G) ≤ Aut(S) contains an

element g of order 28 and a subgroup Q ∼= C4
3 , or G/Z(G) ≤ Aut(S) contains an element g of order

33 and a subgroup Q ∼= C6
2 . This rules out all possible covers G(∞) of S that can have irreducible

representations of degree 21 by [HM]: S = A7,8,9, PSL2(41, 43), PSL3(4), SU3(3), PSU3(5), Sp6(2),

M22, and J2, leaving out only the possibilities that G(∞) = PSU4(3) when q = 3 and G(∞) = SU6(2)
when q = 2.
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Finally, let D = 22. By assumption (γ), G/Z(G) ≤ Aut(S) contains an element g of order 33.

This rules out all possible covers G(∞) of S that can have irreducible representations of degree 22 by
[HM]: S = PSL2(23, 43), M22, HS, and McL, leaving out only the possibility G(∞) = PSU6(2). �

Proposition 16.10. Let q be a prime power, 2|n ∈ Z≥4, and let L be a perfect finite group with a
faithful representation Φ : L→ GLqn(C) that satisfies the following conditions:

(a) Φ = ⊕qi=0Φi is a sum of q+1 irreducible constituents, of degree deg(Φi) = (qn−1)/(q+1)+δi,0;
(b) Each Li := Φi(L) is quasisimple, with simple quotient Si = Li/Z(Li) being either PSUn(q) or

an alternating group ANi with Ni ≥ 8; and
(c) |Tr(Φ(g))| is always a q-power for all g ∈ L.

Then L ∼= SUn(q), and Φ is the total Weil representation.

Proof. (i) First we will construct certain elements in SUn(q) and AN with N ≥ 8.
Let ρ denote the smallest irreducible character of AN of degree N−1 and labeled by the partition

(N − 1, 1), and choose g1 ∈ AN to be a single (N − 2)-cycle if 2 - N and a disjoint product of two
(N − 2)/2-cycles if 2|N ; this ensures that ρ(g1) = 1. Similarly, choose g2 ∈ AN to be a single
(N − 3)-cycle if 2|N and a disjoint product of two (N − 3)/2-cycles if 2 - N ; this ensures that
ρ(g2) = 2.

Next, if (n, q) 6= (6, 2), by [Zs] there exists a primitive prime divisor ` of pnf − 1 = qn − 1 (which
will then be coprime to q + 1) and an element h ∈ SUn(q) of order `. Then the character formula
[TZ2, Lemma 4.1] for the irreducible Weil characters ζin of SUn(q), of degree (qn + q)/(q + 1) when
i = 0 and (qn − 1)/(q + 1) when 0 < i ≤ q, shows that

ζin(h) = δi,0.

The same conclusion holds in the case (n, q) = (6, 2), by taking ` = 7, see the character table of
SU6(2) [GAP].

(ii) Now we will use [KT6, Proposition 6.7] and modify its proof to our case. First, conditions
(a) and (b) imply by [KT6, Proposition 6.7] that

(16.10.1) L = R1 ∗R2 ∗ . . . ∗Rm
is a central product of quasisimple groups, each being a cover of some ANi or PSUn(q).

We aim to show that m = 1, that is, L is quasisimple. Assume the contrary: m > 1. In
accordance with (16.10.1) we can express

Φi = Ψi,1 �Ψi,2 � . . .�Ψi,m

as an outer tensor product of Ψi,k ∈ Irr(Rk), 1 ≤ k ≤ m. It follows that Li = Φi(L) is a central
product Ψi,1(R1) ∗ Ψi,2(R2) ∗ . . . ∗ Ψi,m(Rm) of (normal) subgroups. Since Li is quasisimple and
since each Rk is also quasisimple, we conclude that all but one Ψi,k are trivial, say for all k 6= ki.
This implies that

Li = Φi(L) = Ψi,ki(Rki) = Φi(Rki).

On the other hand, the faithfulness of Φ implies that each Rj with 1 ≤ j ≤ m must be acting
nontrivially in some Φi. So we can partition {Φ0,Φ1, . . . ,Φq} into a disjoint union X1tX2t . . .tXm
of non-empty subsets such that for each 1 ≤ t ≤ m and for all Φi ∈ Xt we have

(16.10.2) Li = Φi(L) = Φi(Rt)

but Φi(Rj′) is trivial for all j′ ∈ {1, 2, . . . ,m} r {t}. Relabeling the Rj ’s (and interchanging their
order in (16.10.1)) if necessary, we may assume that Φ0 ∈ X1. Furthermore, since deg(Φi) 6= 8, 14,
Theorem 6.2 and Lemma 9.1 of [KT5] imply that if Rt is a cover of ANt with Nt ≥ 8 in (16.10.2),
then Li ∼= ANt and (Φi)|ANt is the smallest representation of degree Nt−1. Likewise, [KT5, Theorem
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6.6] implies that if Rt is a cover of PSUn(q) in (16.10.2), then Li is a quotient of SUn(q) and the
SUn(q)-character afforded by Φi is one of the q + 1 irreducible Weil characters ζ ln, 0 ≤ l ≤ q.

Following the proof of [KT6, Proposition 6.7], first we consider the case where

(16.10.3) for each 1 ≤ t ≤ m, there exists xt ∈ Rt such that Tr(Φi(xt)) = 0 for all Φi ∈ Xt.
Setting y := x1x2 . . . xt, we see that

Tr(Φi(y)) = Tr(Φi(xt)) = 0

for all Φi ∈ Xt. It follows that Tr(Φ(y)) =
∑q

i=0 Tr(Φi(y)) = 0, contradicting (c).

Next we consider the case R1 is a cover of some AN1 . Since Φ0 ∈ X1, we must have

N1 − 1 = deg(Φ0) = (qn + q)/(q + 1).

It follows that R1 cannot have an irreducible character of degree N1 − 2 = (qn − 1)/(q + 1), and
so X1 = {Φ0}. It also follows that, for each t ≥ 2, Xt consists only of some of the Φi of the same
degree (qn− 1)/(q+ 1). Now the elements constructed in (i) guarantee that (16.10.3) holds, and so
we are done as above.

We have shown that R1 is a cover of PSUn(q). If, moreover, X1 = {Φ0}, then we again see that,
for each t ≥ 2, Xt consists only of some of the Φi of the same degree (qn − 1)/(q + 1), whence
(16.10.3) holds, and we are done as above. So we may assume that

(16.10.4) X1 % {Φ0}.
Now we consider the case where some Rj is a cover of some ANj . As mentioned above, this can

happen only when Nj − 1 = deg(Φi) = (qn− 1)/(q+ 1) (for some i > 0). Thus we may assume that
there is some

1 ≤ s ≤ q
such that exactly s representations Φi with i > 0 occur in (16.10.2) with Rt a cover of ANt . For
any such (quasisimple) Rt, and for any Φi ∈ Xt, Φi(Rt) ∼= ANt . As Φ = ⊕qi=0Φi is faithful and Φi′

is trivial on Rt for all i′ /∈ Xt, we conclude that Rt ∼= ANt . For any such Rt, we fix an element
gt,1 ∈ Rt of type g1 and an element gt,2 ∈ Rt of type g2 exhibited in (i).

Each of the remaining Rt is a cover of PSUn(q). As mentioned above, the restriction of each
Φi ∈ Xt is obtained from an irreducible Weil representation of SUn(q). Using the faithfulness of Φ,
we can view Rt as a quotient of SUn(q). For such an Rt, fix an element gt,1 = gt,2 ∈ Rt of order `
as in (i).

Now, in accordance with (16.10.1) we consider the elements

g = g1,1g2,1 . . . gm,1, g
′ = g1,2g2,2 . . . gm,2

in L. Their construction and the considerations in (i) imply that

Tr(Φ(g)) = 1 + s, Tr(Φ(g′)) = 1 + 2s.

By (c), both 1 + s and 1 + 2s are p-powers, and this is impossible since s ≥ 1.

We have shown that each Rt, 1 ≤ t ≤ m, is a cover of PSUn(q), hence a quotient of SUn(q).
Now, in accordance with (16.10.1) we consider the element

g′′ = h2h3 . . . hm,

where hi ∈ Ri has order ` as in (ii) – note that the R1-component is trivial. Now the considerations
in (i) together with (16.10.4) show that

qn > Tr(Φ(g′′)) =
∑

Φi∈X1

deg(Φi) > 2(qn − 1)/(q + 1) > qn−1,
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again contradicting (c).

(iii) We have shown that L is quasisimple. If L is a cover of AN , then we see that

N − 1 = deg(Φ0) = deg(Φ1),

which is impossible. Hence each Φi(L) is a quotient of SUn(q), and so we can view L as a quotient
of SUn(q) by a central subgroup, by the faithfulness of Φ. Applying Theorem 16.6 and using the
faithfulness of the total Weil character, we conclude that L = SUn(q), and it acts in Φ via its total
Weil representation. �

Now we can prove the main result concerning unitary groups:

Theorem 16.11. Let q = pf be a power of a prime p, and let n = a + b ≥ 4 with a, b ∈ Z≥1,
2 - ab, and gcd(a, b) = 1. Then the following statements hold for the arithmetic monodromy groups

Garith,k, G̃arith,k, and geometric monodromy groups Ggeom, G̃geom of the local systems W(a, b) and

W̃(a, b) introduced in Definitions 16.1 and 16.2 over any finite extension k of Fq2.

(a) Garith,k = Ggeom
∼= GUn(q), and (Ggeom)(∞) ∼= SUn(q) acts on W(a, b) via its total Weil

representation. Furthermore, we can identify Ggeom with GUn(q) in such a way that the action
of GUn(q) on W(a, b) affords the total Weil character ζn,q.

(b) Let Hi be any of the q+ 1 hypergeometric constituents of W(a, b). Then Hi has arithmetic and
geometric monodromy groups Giarith,k = Gigeom, Gigeom/Z(Gigeom) ∼= PGUn(q), and Z(Gigeom) is
cyclic of order dividing q + 1.

(c) G̃arith,k = G̃geom
∼= GUn(q), and (G̃geom)(∞) ∼= SUn(q) acts on W̃(a, b) via its total Weil

representation. Furthermore, we can identify G̃geom with GUn(q) in such a way that the action of

GUn(q) on W̃(a, b) affords the total Weil character ζn,qχ2, with χ2 denoting the linear character
of order 2 of GUn(q).

(d) The local system W?(a, b) introduced in Definition 16.1 has its geometric monodromy group and
arithmetic monodromy group G?arith,k = G?geom = SUn(q).

Proof. (i) Let Φ : G := Garith,k → GLqn(C) denote the corresponding representation of Garith,k

on W := W(a, b). By Theorem 11.1, Φ ∼= ⊕qi=0Φi, where deg(Φi) = (qn − 1)/(q + 1) + δi,0, and
each of Φi(Garith,k) and Φi(Ggeom) is an irreducible almost quasisimple group for 0 ≤ i ≤ q. As
Garith,k/Ggeom is cyclic, it follows from [GT, Lemma 2.5] that

L := (Garith,k)
(∞) = (Ggeom)(∞)

and Φi(L) is irreducible, quasisimple. Also, by Theorem 11.9, we have that

(16.11.1) Tr(Φ(x)) is a power of (−q) for all x ∈ Garith,k.

Next, the q + 1 irreducible summands Hi of W are hypergeometric in characteristic p with finite
monodromy. Recalling the construction of these sheaves, we see that GgeomCG contains a p′-element

g (namely, a generator of the image of I(0)), of order MAB = (qa + 1)(qb + 1)/(q+ 1), with simple
spectrum consisting of at least MAB −A−B = (qa+b − 1)/(q + 1) < MAB/2. Let N0 denote the
order of gZ(G) in G/Z(G). Then we have N0|MAB (as gMAB = 1) and N0 > MAB/2 (since the
spectrum of g consists of all N th

0 roots of some fixed root of unity, but g has more than MAB/2
distinct eigenvalues). It follows that N0 = MAB.

We can also check that the assumptions (α)–(γ) of Proposition 16.9 hold in the cases where
(qn − 1)/(q + 1) ≤ 23, that is, where (n, q) = (4, 2), (4, 3), and (6, 2). Indeed, we can see by
Proposition 14.1 that the image Q of P (∞) acting on any Hi intersects Z(Gigeom) trivially, and so

Q ↪→ Gigeom/Z(Gigeom); furthermore, Q is elementary abelian of order 24, 34, and 26 in these cases
by [KRLT2, Lemma 3.1]. Finally, the sheaf H0 of rank (qn + q)/(q + 1) is self-dual.
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Now we can apply Proposition 16.9. In the case of 16.9(iii), we have q = 2, G(∞) is a quotient of

SLn/2(4), and N = (2a + 1)(2b + 1)/3 > (4n/2 − 1)/3, contradicting [KT5, Theorem 7.6(ii)]. Hence,
we conclude that each Φi(L) is either a cover of some AN or a quotient of SUn(q). Now using
(16.11.1) and applying Proposition 16.10, we obtain that L = SUn(q), and it acts onW via its total
Weil representation.

(ii) In this part of the proof, let H denote either Garith,k or Ggeom. Since each of (Φi)|L extends
to H BL, but only inner-diagonal automorphisms of SUn(q) fixes each of the q+ 1 Weil characters
ζin, we see that H can only induce inner-diagonal automorphisms of L. As CH(L) = Z(H), it
follows that PSUn(q) ≤ H/Z(H) ≤ PGUn(q), and the same holds for the, arithmetic or geometric,
monodromy group Ki of each of the q + 1 individual hypergeometric sheaves Hi (as Ki is just the
image of H acting on Hi). Since Ki has its I(0) being cyclic of order MAB = (qa+1)(qb+1)/(q+1),
by [KT5, Theorem 8.3] we must have that Ki/Z(Ki) ∼= PGUn(q), and so

(16.11.2) H/Z(H) ∼= PGUn(q).

Now let λi be the central character of Z(H) acting on Hi, 0 ≤ i ≤ q. Recall that Φ has integer
traces by Theorem 11.9, and so it is self-dual. But Φ0 is the unique irreducible constituent of Φ
of degree D + 1, hence Φ0 is self-dual; in particular, λ2

0 is trivial. Now, Theorem 11.9 implies
that Σ := λ0 + D

∑q
i=0 λi satisfies all the hypotheses of Lemma 16.4; moreover, (16.11.1) rules

out the existence of the trace −qn. Hence, by Lemma 16.4, either Z(Ggeom) ≤ Z(Garith,k) has
order dividing q + 1, or (n, q) = (4, 2) and Z(Ggeom) ≤ Z(Garith,k) ≤ C2. Suppose we are in the
latter case; in particular, Z(Ggeom) ≤ C2. By (16.11.2), Ggeom/Z(Ggeom) ∼= SU4(2) is simple, and
so Ggeom ∈ {SU4(2), Sp4(3), C2 × SU4(2)}. On the other hand, by Corollary 13.4, at least one
of the sheaves Hi has geometric determinant of order M = 3 and so Ggeom projects onto C3, a
contradiction. Therefore, we have shown that

(16.11.3) Z(Ggeom) ≤ Z(Garith,k) has order dividing q + 1;

in particular, Z(Giarith,k) is cyclic of order dividing q + 1.

(iii) Recall that W?(a, b) is the [MAB]? Kummer pullback of W(a, b). Hence Ggeom/G
?
geom is

a cyclic group of order dividing MAB; also, G?geom has no nontrivial p′-quotient. On the other

hand, as shown above, L = (Ggeom)(∞) = SUn(q) is a quasisimple normal subgroup of Ggeom, and
furthermore, by (16.11.2), |Ggeom/L| = |Ggeom|/|PGUn(q)| = |Z(Ggeom)| divides q + 1, which is
coprime to p. It follows that

(16.11.4) G?geom = L = SUn(q).

(iv) We now have that d := |Ggeom/G
?
geom| = |Ggeom/L| = |Z(Ggeom)| divides q+1. Furthermore,

by Corollary 13.4, some hypergeometric summand ofW(a, b), of rank (qn−1)/(q+1), has geometric
determinant Lν with ν of order exactly M = q+1. [We note that when 2 - q, the respective summand

of W̃(a, b) will have the same geometric determinant Lν , since χ
(qn−1)/(q+1)
2 = 1.] This implies that

the order d of the quotient Ggeom/G
?
geom is divisible by q + 1. We conclude that d = q + 1, and

(16.11.5) Ggeom/G
?
geom

∼= Cq+1, |Z(Ggeom)| = q + 1.

To determine Garith,k, we note by (16.11.2) that

|Garith,k/L| = |Garith,k|/|PGUn(q)| = |Z(Garith,k)|

which divides q + 1 by (16.11.3). On the other hand, Garith,k contains the normal subgroup Ggeom

of order (q + 1) · |L|. It follows that Garith,k = Ggeom.
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(v) Next we will prove the abstract group isomorphism H := Ggeom
∼= GU(W ) ∼= GUn(q) with

W := Fnq2 . First, using (16.11.5) and L = G?geom
∼= SUn(q), we can write

(16.11.6) H = 〈L, g〉

for some element g ∈ H. We can view L as the commutator subgroup of GU(W ) ∼= GUn(q), and

then fix some extension of (Φj)|L to GUn(q), with character ζ̃j,n specified in [KT3, (3.1.2)], which
we also denote by Φj . As mentioned in (iv), CH(L) = Z(H), and H induces the full group of
inner-diagonal automorphisms of L, which is the one induced by elements by GUn(q) acting on L
via conjugation. It follows that we can find an element h ∈ GUn(q) such that

(16.11.7) g and h induce the same automorphism of L = SUn(q);

furthermore, changing g to another representative in its coset gG if necessary, we can make sure
that

(16.11.8) h = diag(%, 1, 1, . . . , 1)

for some % ∈ F×
q2

of order q + 1, and so

(16.11.9) ord(h) = q + 1, L ∩ 〈h〉 = 1.

The choice (16.11.7) of h ensures that Φj(g)Φj(h)−1 centralizes Φj(L), whence

(16.11.10) Φj(g) = αjΦj(h)

for some αj ∈ C×. In fact, αj is a root of unity because both g and h have finite order.
Recall by [KT3, (3.1.2)] (evaluated at h) that 0 6= Tr(Φj(h)) ∈ Q(ζq+1). On the other hand, since

σ is chosen to have order q + 1, Tr(Φj(g)) ∈ Q(ζq+1) by Theorem 11.1. Hence the root of unity αj
belongs to Q(ζq+1) by (16.11.10). If 2|(q + 1) then it follows that

(16.11.11) αq+1
j = 1

for all j. In the case 2|q, we have α
2(q+1)
j = 1. Replacing g by g2 and h by h2, which still fulfills

(16.11.7)–(16.11.10) and which replaces each αj by α2
j , we then see that (16.11.11) holds in this case

as well. Together with (16.11.9) and (16.11.10), this implies that Φj(g)q+1 = Id for all j, whence
Φ(g)q+1 = Id and gq+1 = 1 by faithfulness of Φ. Recalling (16.11.5) and (16.11.6), we must then
have that

(16.11.12) ord(g) = q + 1, L ∩ 〈g〉 = 1.

Thus H = L o 〈g〉 and GUn(q) = L o 〈h〉 are two split extensions of L ∼= SUn(q) by Cq+1. Now
using (16.11.7), (16.11.9), and (16.11.12), one can readily check that the map sgi 7→ shi, s ∈ L and
0 ≤ i ≤ q, yields a group isomorphism ι : H ∼= GUn(q).

(vi) Now, applying Theorem 14.4 to the system W := W(a, b) and N := M , we see that
WM := [M ]?W(a, b) has arithmetic monodromy group Garith,k,WM

= SUn(q). It follows that the
arithmetic monodromy group G?arith,k of W?(a, b) = [AB]?WM is contained in SUn(q) = G?geom,

whence G?arith,k = G?geom = SUn(q).

To determine Garith,k, we note by (16.11.2) that

|Garith,k/L| = |Garith,k|/|PGUn(q)| = |Z(Garith,k)|

which divides q + 1 by (16.11.3). On the other hand, Garith,k contains the normal subgroup Ggeom

of order (q + 1) · |L|. It follows that Garith,k = Ggeom.
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(vii) Next we identify the character of Ggeom on W(a, b). Let 〈g0〉 denote the image of I(0) in
H = Ggeom. Then we can relabel Φj so that the spectrum of Φj(g0) equals{

εi | 0 ≤ i ≤MAB − 1, (εi)A 6= %βj , (εi)B 6= %αj
}
,

and furthermore Φ0 is self-dual. Note that, since H/L is cyclic, 〈L, g0〉 is normal in H and so
contains the normal closure of 〈g0〉 in H. But the normal closure of 〈g0〉 in H equals H by [KT5,
Theorem 4.1], hence 〈L, g0〉 = H. Now we can apply Theorem 16.8 to obtain γ ∈ Aut(H) such that
Tr
(
Φ(γ(x))

)
= ζn,q(x) for all x ∈ H. Thus, adjusting the identification ι : H ∼= GUn(q) by σ, we

see that H ∼= GUn(q) acts on W(a, b) with the total Weil character ζn,q.

(viii) Now we again assume p > 2 and turn our attention to W̃(a, b). The arguments in (i), (ii)

also apply to G̃arith,k and G̃geom. The only difference is that instead of (16.11.1) we can now say
only that all traces are ±qm, 0 ≤ m ≤ n.

Hence, when we apply Lemma 16.4(iii), we cannot (yet) rule out the existence of the trace −qn,
and so, instead of (16.11.3), we now have

Z(Ggeom) ≤ Z(Garith,k) has order dividing 2(q + 1).

But now we note that [M ]?W̃(a, b) is arithmetically isomorphic to [M ]?W(a, b) = WM . Hence

L = SUn(q) = Ggeom,WM
= Garith,k,WM

is a normal subgroup of G̃geom of index dividing M and a

subgroup of G̃arith,k of index dividing M . With this extra information, the arguments in (iv), (v)

can now be repeated verbatim to show that G̃geom
∼= GUn(q); in particular, |G̃geom/L| = M . As

G̃arith,k ≥ G̃geom and [G̃arith,k : L]|M , we conclude that G̃arith,k = G̃geom.

To identify the character ϕ̃ of G̃geom acting on W̃(a, b), let 〈g0〉 denote the image of I(0) in

H̃ := G̃geom. Again applying [KT5, Theorem 4.1], we see that g0 generates H̃ modulo [H̃, H̃]; in
particular, χ2(g0) = −1. Note that tensoring with Lχ2 has the effect of multiplying the eigenvalues

of g0 by −1. It follows that, the eigenvalues of g0 in a representation of H̃ affording the character
ϕ̃χ2 are the same as the eigenvalues of g0 acting on W(a, b). By the result of (vii), we know that
ϕ̃χ2 = ζn,q, hence ϕ̃ = ζn,qχ2 as stated in (c). �

The final result of this section determines the arithmetic monodromy groups of W(a, b), W̃(a, b),
and W?(a, b).

Theorem 16.12. Let q = pf be a power of a prime p, and let n = a+ b ≥ 4 with a, b ∈ Z≥1, 2 - ab,
and gcd(a, b) = 1. Then over any subfield k = Fq2/d of Fq2 the following statements hold.

(i) The arithmetic monodromy group Garith,k ofW(a, b), respectively G̃arith,k of W̃(a, b), is GUn(q)·
Cd, which in each case induces a subgroup of outer field automorphisms of SUn(q) of order d.
Furthermore,

Garith,k/Z(GUn(q)) ∼= G̃arith,k/Z(GUn(q)) ∼= PGUn(q) o Gal(Fq2/k).

(ii) The arithmetic monodromy group G?arith,k of the local system W?(a, b) is SUn(q) · Cd, and

induces a subgroup of outer field automorphisms of SUn(q) of order d, modulo the inner-
diagonal automorphisms of SUn(q).

Proof. (i) First we determine the order of cyclic quotients Garith,k/Ggeom and G?arith,k/G
?
geom.

Suppose that p > 2. Recall that Garith,Fp contains Ggeom = Garith,Fq2 as a normal subgroup

with cyclic quotient of order e that divides 2f := deg(Fq2/Fp). We now look at the element
g := Frob4,Fp ∈ Garith,Fp . For any divisor c of 2f , by Lemma 16.3 the absolute value of the trace

of gc = Frob4,Fpc on W(a, b) is pc/2. On the other hand, by Theorem 16.11(a), the absolute value
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of the trace of any element in Ggeom on W(a, b) is a power of q = pf . It follows that gc /∈ Ggeom

whenever c is a proper divisor of 2f . Hence we conclude that e = 2f . Now, since k = Fq2/d is a

subfield of Fq2 , then Garith,k/Ggeom is cyclic of order dividing d and Garith,k has index at most 2f/d
in Garith,Fp = Ggeom · C2f , whence Garith,k = Ggeom · Cd.

The structure of G?arith,k/G
?
geom can be determined entirely similarly, utilizing Lemma 16.3 for

Frob2,Fp .

Next we assume p = 2 and consider the element h ∈ G?arith,F2
provided by Frob0,F2 . By Lemma

16.3(ii), when c|2f the trace of h2f/c = Frob0,F
q2/c

on W?(a, b) is 0 if 2|c, and q2/c if 2 - c. In

particular, if c > 1 this trace is not a power of −q, and so h2f/c /∈ G?geom by the result of (a). Thus

h2f ∈ G?geom but h2f/c /∈ G?geom for any 1 < c|2f . It follows that |G?arith,F2
/G?geom| = 2f , and more

generally |G?arith,k/G
?
geom| = d, as above.

To show that |Garith,F2/Ggeom| = 2f , we note that G?arith,F2
is a subgroup of Garith,F2 . Thus the

element h ∈ G?arith,F2
also lies in Garith,F2 and moreover the representation of Garith,F2 on W(a, b)

restricts to the representation of G?arith,F2
on W?(a, b). So viewing h as lying in Garith,F2 , for each

divisor c of 2f with c > 1, the trace of h2f/c on W(a, b) is not a (−q)-power and so h2f/c /∈ Ggeom.
Hence |Garith,F2/Ggeom| = 2f , and we can conclude as above.

(ii) Let Φ denote the representation of Garith,Fp on W(a, b), with character, say, ϕ. Next we
show that Garith,Fp cannot contain any element z which acts as the scalar −1 on W(a, b). Assume
the contrary. First, by Theorem 16.11(a), no element in Ggeom can have trace −qn on W(a, b),
hence z /∈ Ggeom. Now, if p > 2, then, as shown in (i), Garith,Fp = 〈g,Ggeom〉. Hence we can find

0 ≤ j ≤ 2f − 1 such that z ∈ gjGgeom. As z2 ∈ Ggeom but z /∈ Ggeom, we have g2j ∈ Ggeom with

j > 0, which implies j = f by (i). Thus gf = zg0 for some g0 ∈ Ggeom = GUn(q). As Φ(z) = −Id,

we then obtain that ϕ(gf ) = −ϕ(g0). But this is a contradiction, since

|ϕ(gf )| =
∣∣Trace

(
Frob4,Fq |W(a, b)

)∣∣ =
√
q

as mentioned in (i), whereas ϕ(g0) is a power of −q by Theorem 16.11(a). Similarly, if p = 2,
then, as shown in (i), Garith,F2 = 〈h,Ggeom〉. Hence we can again find 0 ≤ j ≤ 2f − 1 such that
z ∈ hjGgeom. As z2 ∈ Ggeom but z /∈ Ggeom, we have h2j ∈ Ggeom with j > 0, which implies j = f

again by (i). Thus hf = zg0 for some g0 ∈ Ggeom = GUn(q). As Φ(z) = −Id, we then obtain that

ϕ(hf ) = −ϕ(g0). But this is a contradiction, since

ϕ(hf ) = Trace
(
Frob0,Fq |W?(a, b)

)
= 0

as mentioned in (i), whereas ϕ(g0) is a power of −q, in particular nonzero, by Theorem 16.11(a).

(iii) Now we study the subgroup

Zd := CGarith,F
q2/d

(SUn(q))

for any d|2f , and aim to show that

(16.12.1) Z2f
∼= Cq+1.

Recall by Theorem 16.11(a) that the restriction of Φ to SUn(q) is a sum of q + 1 pairwise non-
isomorphic irreducible Weil representations. It follows that Zd fixes each of these q + 1 summands,
and acts via scalars on each of them, inducing a linear character λi, 0 ≤ i ≤ q. In particular,
Zd is a finite abelian group. We can label these characters so that λ0 corresponds to the unique
hypergeometric summand H0 (of rank (qn + q)/(q + 1)) of W(a, b). We claim that

(16.12.2) ϕ(x) ∈ {0,±pi | 0 ≤ i ≤ nf − 1} and λ0(x) ∈ {±1}, for all 1 6= x ∈ Zd
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if p = 2, or if p > 2 but d|f . Indeed, by Theorem 11.7 (i), respectively (i-bis), ϕ(y) is an integer for
any y ∈ Garith,k. In particular, the representation of Garith,k on H0 is self-dual, and so λ0(x) = ±1.
Furthermore, by Theorem 11.8(i-ter), |ϕ(x)|2 is either 0 or a power of p, hence the integer ϕ(x)
itself is also 0 or ± a power of p. Moreover, ϕ(x) 6= −qn by (ii), and ϕ(x) = qn implies x = 1 by
faithfulness of ϕ. Hence (16.12.2) follows.

Assume now that p = 2. Note that

(16.12.3) Z2f ≥ Z1 = CGUn(q)(SUn(q)) = Cq+1.

Also, (16.12.2) implies that Z2f satisfies the assumptions in Lemma 16.4. If (n, q) 6= (4, 2), then
Lemma 16.4(iii) implies that |Z2f | divides q + 1. Together with (16.12.3), this implies (16.12.1).
Suppose (n, q) = (4, 2). Then (16.12.3) and Lemma 16.4(iv) again imply that |Z2f | divides q + 1,
and so (16.12.1) follows again.

(iv) Here we assume that p > 2. Using (16.12.2) and Lemma 16.4(iii), we obtain that |Zf | divides
q + 1. Since Zf ≥ Z1 = CGUn(q)(SUn(q)) = Cq+1, we conclude that

(16.12.4) Zf = Cq+1 = Z(Ggeom).

Assume now that (16.12.1) does not hold, i.e. Z2f > Zf . As Garith,Fp2 has index 2 in Garith,Fp by

(i), we have that Z2fGarith,Fp2 = Garith,Fp , whence

|Z2f | = |Garith,Fp/Garith,Fp2 | · |Zf | = 2(q + 1).

It follows that

(16.12.5) Z2f = 〈t, Zf 〉

for some 2-element t, say of order 2e for some e ∈ Z≥1. Recall that t acts as a scalar αi on each of
the q+1 subsheaves Hi ofW(a, b), hence αi ∈ Q(ζ2e). Next, by Theorem 16.11(a), the trace of each

element y ∈ Ggeom on each Hi is its trace in some Weil representation with character ζi
′
n,q, hence

belonging to Q(ζq+1) by (16.4.4). Now, by (16.12.4) and (16.12.5), any element x ∈ Z2f is tcy for
some c ∈ Z and some y ∈ Ggeom, so we get ϕ(x) ∈ Q(ζ2e , ζq+1). On the other hand, ϕ(x) ∈ Q(ζp)
by Theorem 11.7(i). Thus

ϕ(x) ∈ Q(ζ2e , ζq+1) ∩Q(ζp) = Q,
i.e. ϕ(x) ∈ Z. Furthermore, |ϕ(x)|2 is a p-power by Theorem 11.8(i-ter), so we conclude that ϕ(x)
is ± a p-power. Next, recall from Theorem 16.11(a) that Ggeom acts on H0 via its Weil character
ζ0
n,q which is trivial at Z(Ggeom). It follows that λ0(u) = 1 for all u ∈ Zf . As t2 ∈ Zf , we must

have that λ0(t)2 = λ0(t2) = 1, i.e. λ0(t) = ±1. Thus λ0 takes values ±1 on Z2f . We have therefore
shown that (16.12.2) holds for d = 2f as well. Now we can again apply Lemma 16.4(iii) to see that
the equality |Z2f | = 2(q + 1) must imply the existence of some element z ∈ Z2f that acts as the
scalar −1 on W(a, b), which is impossible by (ii).

(v) We have shown that (16.12.1) holds, that is, Z2f = Cq+1 = Z(Ggeom). Together with the
result of (i), it implies that, while acting via conjugation on SUn(q), Garith,Fp induces a subgroup
of automorphisms of order 2f |PGUn(q)|, which is exactly |Aut(SUn(q))|. Hence Garith,Fp induces
the full group C2f of outer field automorphisms of SUn(q) (modulo inner-diagonal automorphisms),
whereas GUn(q) induces the full group of inner-diagonal automorphisms of SUn(q). Since Garith,k ≥
GUn(q), it follows that Garith,k induces the full group Cd of outer field automorphisms of SUn(q).
Using (16.12.1) again, we can identify Garith,k/Z(Ggeom) with the subgroup PGUn(q) o Gal(Fq2/k)
of Aut(SUn(q)).

Next, the generator g when p > 2 and h when p = 2 of Garith,Fp modulo Ggeom, induces an outer
field automorphism of SUn(q) of order 2f modulo inner-diagonal automorphisms of SUn(q). As
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G?arith,Fp is also generated by g, respectively by h, modulo G?geom = SUn(q), we obtain the statement

for G?arith,k as well.

(vi) To identify the arithmetic monodromy group of W̃(a, b) over Fq2/d (when p > 2), we note

that the absolute value of the trace of gc = Frob4,Fpc on W̃(a, b) is still pc/2 when c|2f , whereas the

absolute value of the trace of any element in G̃geom is ± a power of q but never −qn, by Theorem

16.11(c). Now we can repeat the arguments in (i) verbatim to obtain that G̃arith,k = G̃geom · Cd.
Next, note that, since 2|n, the determinant on Fnq2 of any central element y of GUn(q) is a square in

µq+1, hence χ2(y) = 1 and so, by Theorem 16.11(a), (c), y still acts trivially on the hypergeometric

summand of W̃(a, b). Now, applying Theorem 11.8(i-ter) to G̃arith,Fp2 and repeating the arguments

of (ii)–(iv), we obtain that G̃arith,Fp induces the full group C2f of outer field automorphisms of

SUn(q), and so we are done with G̃arith,k as well. �

17. Determination of monodromy groups: The case M = q + 1 and n = 2

In this section we assume that

(17.0.1) p any prime, q = pf , M = q + 1, A = B = 1.

Fix α, β ∈ Z such that αA− βB = 1 and α+ β coprime to M , i.e.

(17.0.2) α = β + 1 and gcd(1 + 2β, q + 1) = 1.

With this choice of parameters, the principal objects of this section are the local systems

Wα(1, 1) =W(1, 1) :=W(M,A,B)

on Gm/Fp and
W?
α(1, 1) =W?(1, 1) := [MAB]?W(M,A,B)

on A1/Fp as introduced in Definition 16.1; moreover, we can and will view α as an integer modulo
q + 1. In particular, Wα(1, 1) is the arithmetically semisimple local system on Gm/Fp whose trace
function at v ∈ E×, E/Fp a finite extension, is given by

v 7→ 1

#E

∑
x,w∈E

ψE
(
xw − v−αxq+1 − vβwq+1

)
.

It is the descent (cf. the beginning of §13) from Gm/Fq2 to Gm/Fp of the direct sum of the
Kloosterman sheaves

Kl(M,A,B, σ−β , σ−α)(−1) = Klψ
(
Char(q + 1) r {σ−β , σ−α}

)
(−1),

with 1 6= σ ∈ Char(q + 1), see (4.2.1), and the hypergeometric sheaf

Hyp(M,A,B,1,1) = Hypψ
(
Char(q + 1) r {1};1

)
,

see (5.0.1). Its Kummer pullback W?
α(1, 1) = [q + 1]?Wα(1, 1) is a lisse sheaf on A1, with trace

function at v ∈ E, E/Fp a finite extension, given by

v 7→ 1

#E

∑
x,w∈E

ψE
(
vxw − xq+1 − wq+1

)
.

First we prove a unitary analogue of [KT7, Lemma 7.1]:

Lemma 17.1. Let V = Cq2 and let Φ : G→ GL(V ) be a faithful representation such that

(a) Tr(Φ(g)) ∈ {1,−q, q2} for all g ∈ G.
(b) Φ ∼= ⊕qi=0Φi, where the Φi ∈ Irr(G) are pairwise inequivalent.
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Then |G| = |GU2(q)|.
Proof. Let r := #{g ∈ G | Tr(Φ(g)) = −q} and let s := #{g ∈ G | Tr(Φ(g)) = 1}, so that
|G| = r + s+ 1 by (a). The assumption (b) implies for ϕ := Tr(Φ) that

0 = [ϕ, 1G]G =
q2 − rq + s

r + s+ 1
, q + 1 = [ϕ,ϕ]G =

q4 + rq2 + s

r + s+ 1
.

Solving for r and s, we obtain r = q3−1, s = q4−q2−q, and so |G| = (q2−1)(q2+q) = |GU2(q)|. �

The total Weil character ζ2,q of GU2(q), cf. (16.4.3), decomposes as
∑q

i=0 ζi,2, with ζi,2 ∈
Irr(GU2(q)) of degree q − 1 + δi,0 and pairwise distinct. The larger-degree character ζ0,2 restricts
to the Steinberg character St of L = SL2(q) ∼= SU2(q). Furthermore, if 1 ≤ i ≤ q/2 then ζi,2 and
ζq−1−i,2 restrict to the same irreducible character (denoted θi in [Do, §38]) of L = SL2(q), and those
bq/2c characters are pairwise distinct. If 2 - q, then (ζ(q−1)/2,2)|L is the sum of two distinct irre-
ducible characters (denoted η1, η2 in [Do, §38]) of degree (q−1)/2. We will refer to these characters
θi, and also η1, η2 when 2 - q, as irreducible Weil characters of SU2(q), and (ζ2,q)|L as the total Weil
character of L, now viewed as SU2(q).

Now we prove an analogue of Theorem 16.6, which characterizes the total Weil representation of
SU2(q).

Theorem 17.2. Let p be any prime, q be any power of p, q ≥ 4, and let L = SL2(q). Suppose ϕ is
a reducible complex character of L such that

(a) ϕ(1) = q2;
(b) ϕ(g) ∈ {1,−q, q2} for all g ∈ L;
(c) every irreducible constituent of ϕ is among the irreducible Weil characters St, θi, 0 ≤ i ≤ q/2,

and also η1, η2 when 2 - q, of L.

Then ϕ is the total Weil character (ζ2,q)|L of L.

Proof. (i) We will use the character tables of SL2(q), Theorem 38.1 of [Do] for 2 - q and Theorem
38.2 of [Do] for 2|q. Write

(17.2.1) ϕ =

{
a · St +

∑(q−1)/2
i=1 biθi + c1η1 + c2η2, 2 - q,

a · St +
∑q/2

i=1 biθi, 2|q,
with coefficients a, bi, ci ∈ Z≥0. Evaluating ϕ at an element x of order q − 1, we see by (b) that
ϕ(y) = a is a (−q)-power with 0 ≤ a ≤ ϕ(1)/St(1) = q, which is possible only when a = 1. As
before, let % denote a primitive (q + 1)th root of unity in C.

First suppose that 2|q. Then
∑

i bi = (q2−q)/(q−1) = q by degree comparison in (17.2.1). Next,
we fix an element y ∈ L of order q + 1, and for 1 ≤ l ≤ q/2 we have

ϕ(yl) = −1−
q/2∑
i=1

bi
(
%il + %−il

)
.

It follows that
q/2∑
l=1

ϕ(yl) = −q/2−
q/2∑
i=1

bi

( q/2∑
l=1

(
%il + %−il

))
= −q/2 +

q/2∑
i=1

bi = q/2.

As each ϕ(yl) is either 1 or −q, we must have that ϕ(yl) = 1 for all 1 ≤ l ≤ q/2. Thus, the
polynomial

f(t) =

q/2∑
i=1

bi
(
tq+1−i + ti

)
+ 2 ∈ Q[t]
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of degree q has all %l, 1 ≤ l ≤ q as roots. Since f(1) = 2
∑q/2

i=1 bi + 2 = 2q + 2, we conclude that
f(t) = 2(tq+1 − 1)/(t− 1), i.e. bi = 2 for all i, and so ϕ = (ζ2,q)|L, as stated.

(ii) Assume now that 2 - q. Then
∑

i bi + (c1 + c2)/2 = (q2− q)/(q− 1) = q by degree comparison
in (17.2.1). Evaluating ϕ at an element u ∈ L of order p and another element v ∈ L of order p that
is not conjugate to u, we obtain

ϕ(u) = −
∑
i

bi −
c1 + c2

2
+
√
εq
c1 − c2

2
, ϕ(v) = −

∑
i

bi −
c1 + c2

2
−√εq c1 − c2

2
,

where ε := (−1)(q−1)/2. Thus ϕ(u) + ϕ(v) = −2q. As each of ϕ(u), ϕ(v) is either 1 or −q, we must
have that ϕ(u) = −q = ϕ(v), whence c1 = c2 =: c, and so

(q−1)/2∑
i=1

bi + c = q.

Next we evaluate ϕ at the central involution j of L:

ϕ(j) = q + (q − 1)
∑
i

bi(−1)i − cε(q − 1).

In particular,

q2 − ϕ(j) = ϕ(1)− ϕ(j) = 2(q − 1)
(∑

2-i

bi +
1 + ε

2
c
)

is divisible by 2(q − 1). On the other hand, ϕ(j) ∈ {1,−q, q2} and q ≥ 4, so ϕ(j) 6= −q, and either

(17.2.2) ϕ(j) = q2,
∑
2-i

bi +
1 + ε

2
c = 0,

∑
2|i

bi +
1− ε

2
c = q,

or

(17.2.3) ϕ(j) = 1,
∑
2-i

bi +
1 + ε

2
c =

q + 1

2
,
∑
2|i

bi +
1− ε

2
c =

q − 1

2
.

As above, we fix an element y ∈ L of order q + 1, and for 1 ≤ l ≤ (q − 1)/2 we then have

ϕ(yl) = −1−
(q−1)/2∑
i=1

bi
(
%il + %−il

)
− 2c(−1)l.

It follows that

(q−1)/2∑
l=1

ϕ(yl) = −(q − 1)/2−
(q−1)/2∑
i=1

bi

((q−1)/2∑
l=1

(
%il + %−il

))
− 2c

(q−1)/2∑
l=1

(−1)l

= −(q − 1)/2−
(q−1)/2∑
i=1

bi
(
−1− (−1)i

)
+ c(1− ε)

= −(q − 1)/2 + 2
(∑

2|i

bi + c(1− ε)/2
)
.

In the case of (17.2.2),
∑(q−1)/2

l=1 ϕ(yl) = −(q−1)/2+2q > (q−1)/2, a contradiction. Hence (17.2.3)

holds, and we have that
∑(q−1)/2

l=1 ϕ(yl) = −(q − 1)/2 + (q − 1) = (q − 1)/2. As each ϕ(yl) is either
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1 or −q, we must have that ϕ(yl) = 1 for all 1 ≤ l ≤ (q − 1)/2. Thus, the polynomial

g(t) =

(q−1)/2∑
i=1

bi
(
tq+1−i + ti

)
+ 2ct(q+1)/2 + 2 ∈ Q[t]

of degree q has all %l 6= ±1, 0 ≤ l ≤ q, as roots, and so g(t) = (at + b)(tq+1 − 1)/(t2 − 1) for some

a, b ∈ Q. Since b = g(0) = 2 and (a + b)(q + 1)/2 = g(1) = 2
∑(q−1)/2

i=1 bi + 2c + 2 = 2q + 2, we
conclude that a = b = 2, g(t) = 2(tq+1 − 1)/(t − 1), i.e. bi = 2 for all i and c1 = c2 = 1, and so
ϕ = (ζ2,q)|L, as stated. �

A characterization of the total Weil character ζ2,q of GU2(q), cf. (16.4.3), is given in the next
result, which is an analogue of Theorem 16.8:

Theorem 17.3. Let q be any prime power, % = ζq+1, and let Φ : G := GU2(q) → GLq2(C) be a
faithful complex representation that satisfies the following conditions:

(a) Φ = ⊕qj=0Φj with Φj being irreducible of degree q − 1 + δj,0;

(b) There is an element g ∈ G such that Φj(g) has spectrum {%i | 0 ≤ i ≤ q, i 6= 0, j} for 0 ≤ j ≤ q,
and that G = 〈[G,G], g〉.

Then there exists an automorphism γ of G such that Tr(Φ(γ(h)) = ζ2,q(h) for all h ∈ G.

Proof. The spectra of Φj(g) show that g has both order and central order q + 1 in G. Thus, for

a fixed % ∈ F×
q2

of order q + 1, after a suitable conjugation, we may assume that g = diag(%c, %d)

with c, d ∈ Z/(q + 1)Z. Since g generates G modulo [G,G], det(g) has order q + 1. Changing % to
another element of order q+ 1, we may therefore assume that c+ d = 1. Now, the condition that g
has central order q + 1 is equivalent to that gcd(1− 2c, q + 1) = 1. As noted in Remark 16.7, since
1 + 2(c− 1) = 2c− 1 is coprime to q+ 1, the map γc−1 of (16.7.1) is an automorphism of G. Hence
we can replace g by γc−1(g) = diag(%, 1) and thus assume that

(17.3.1) g = diag(%, 1).

We will use the character table of G as given in [E]. In particular, the character ϕ0 of Φ0 is

denoted χ
(t0)
q therein, and by (b) we have

−1 = ϕ0(g) = χ(t0)
q (g) = −%t0 ,

whence t0 = 0. Furthermore, the character ϕj of Φj , 1 ≤ j ≤ q, is denoted χ
(tj ,uj)
q−1 therein for some

tj , uj ∈ Z/(q + 1)Z with tj 6= uj (and χ
(tj ,uj)
q−1 = χ

(uj ,tj)
q−1 ). Using (b) and (17.3.1), we then have

−1− %ij = ϕj(g
i) = χ

(tj ,uj)
q−1 (gi) = −%tji − %uji

for 1 ≤ i ≤ q. Viewing 0 ≤ tj , uj ≤ q and setting fj(x) := xtj + xuj − xj − 1 ∈ Q[x], we see that fj
has degree at most q and vanishes at all %i, 1 ≤ i ≤ q. It follows that fj(x) is identically zero, i.e.
{tj , uj} = {0, j}.

We have shown that the character of Φ is χ
(0)
q +

∑q
j=1 χ

(j,0)
q−1 . Direct check shows that the latter

character is ζ2,q, and so we are done. For later use, we also note that, for the central element

z := diag(%, %), χ
(j,0)
q−1 (z) = (q − 1)%j , i.e.

(17.3.2) Φj(z) = %j · Id.

�
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Lemma 17.4. Denote by H the hypergeometric component ofW(1, 1), with the choice (α, β) = (1, 0)
of (α, β) with αA − βB = α − β = 1. Denote by H0,0 the lisse sheaf of weight 0 on Gm/Fp which
is the weight 0 quotient of the lisse sheaf on Gm/Fp which is mixed of weight ≤ 0 and whose trace
function is given at v ∈ E× for E/Fp a finite extension by

v 7→ (1/#E)
∑

(x,w)∈E××E×
ψE(x− v−1xq+1/w − w).

Denote by F1,0 the lisse sheaf on Gm/Fp whose trace function is given at v ∈ E× for E/Fp a finite
extension by

v 7→ (1/#E)
∑

(x∈E,w∈E×
ψE(x− v−1xq+1/w − w).

Then we have the following results.

(i) H0,0 is geometrically isomorphic to H.
(ii) F1,0 is pure of weight zero, and its pullback to Gm/Fq is arithmetically isomorphic to the

lisse sheaf F1 of [KT7, Section 4] with n = 2 there.
(ii) H0,0 is arithmetically isomorphic to F1,0.

Proof. For the first assertion, H is geometrically the Cancel ofHyp(Char(q+1);1,1), cf. Corollary
9.3 (ii), whose trace function is that of H0,0 (up to a constant field twist), cf. Corollary 8.2. For
the second assertion, the trace function of F1,0, restricted to extensions E/Fq, is identical to that
of F1, cf. [KT7, Section 4] in the case n = 2. For the third assertion, we know by (ii) that

v 7→ (1/#E)
∑

(x∈E,w∈E×
ψE(x− v−1xq+1/w − w)

is pure of weight zero. We must show that it is the weight zero quotient of

v 7→ (1/#E)
∑

(x,w)∈E××E×
ψE(x− v−1xq+1/w − w).

Equivalently, we must show that their difference is mixed of weight ≤ −1. But their difference is

v 7→ (1/#E)
∑

x=0,w∈E×
ψE(x− v−1xq+1/w − w) = (1/#E)

∑
w∈E×

ψE(−w) = −1/#E.

�

The main result of this section is the following theorem, which complements Theorem 16.11:

Theorem 17.5. Let q = pf ≥ 4 be a power of a prime p. Then the following statements hold for
the geometric and arithmetic monodromy groups Ggeom and Garith,k of the local system W(1, 1) over
any finite extension k of Fq2.

(a) Garith,k = Ggeom
∼= GU2(q). Furthermore, we can identify Ggeom with GU2(q) in such a way

that the action of GU2(q) on W(1, 1) affords the total Weil character ζ2,q.
(b) Let Hi be any of the q+ 1 hypergeometric constituents of W(1, 1). Then Hi has arithmetic and

geometric monodromy groups Giarith,k = Gigeom, Gigeom/Z(Gigeom) ∼= PGU2(q), and Z(Gigeom) is
cyclic of order dividing q + 1.

(c) Over any subfield Fq2/d of Fq2, the arithmetic monodromy group Garith,F
q2/d

ofW(1, 1) is GU2(q)·
Cd, and induces a subgroup of outer field automorphisms of SU2(q) of order d/ gcd(2, d). Fur-
thermore, CGarith,F

q2/d
(SU2(q)) has order (q + 1) · gcd(2, d), and

Garith,F
q2/d

/CGarith,F
q2/d

(SU2(q)) ∼= PGU2(q) o Gal(Fq2/Fq2 gcd(2,d)/d).
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(d) The local system W?(1, 1) has its geometric monodromy group and arithmetic monodromy group

G?arith,k = G?geom = (Ggeom)(∞) ∼= SU2(q), with SU2(q) acting via its total Weil representation.

Furthermore, over any subfield Fq2/d of Fq2, the arithmetic monodromy group of W?(1, 1) is

SU2(q) · Cd, and induces a subgroup of outer automorphisms of SU2(q) of order d/ gcd(2, d),
modulo the inner-diagonal automorphisms of SU2(q).

Proof. (i) Let Φ : G := Garith,k → GLqn(C) denote the corresponding representation of Garith,k on
W :=W(1, 1). By Theorem 11.1, Φ ∼= ⊕qi=0Φi, where deg(Φi) = q− 1 + δi,0. Now, by Theorem 11.9
we have

(17.5.1) Tr(Φ(u)) = 1,−q, or q2, for all u ∈ Garith,k.

It follows from Lemma 17.1 that |Ggeom| = |GU2(q)| = |Garith,k|, and so

(17.5.2) G := Ggeom = Garith,k has order equal to |GU2(q)|.
Next, note that the hypergeometric summand H0 of rank q is precisely the sheaf H1 considered in
[KT7, §1], hence

(17.5.3) Φ0(G) = G0
geom

∼= PGL2(q) ∼= PGU2(q)

by [KT7, Corollary 8.2].

(iii) Next we take L := G(∞). Then L has S := PSU2(q) as a composition factor, and so we
can write |L| = e · |PSU2(q)| = eq(q2 − 1)/ gcd(2, q − 1) for some e ∈ Z≥1. On the other hand, by
Corollary 13.4, some hypergeometric summand of W(1, 1) has geometric determinant Lν with ν of
order exactly M = q + 1, whence q + 1 divides |G/[G,G]|. It now follows from (17.5.2) that q + 1
divides |G/L| = (q + 1) · gcd(2, q − 1)/e, i.e.

(17.5.4) e| gcd(2, q − 1).

Since |G/L| divides the p′-integer (q + 1) · gcd(2, q − 1), we have that L ≥ Op′(G). On the other

hand, G/Op′(G) is cyclic for G = Ggeom by [Abh, Proposition 6(III)], therefore Op′(G) ≥ L. Thus

L = Op′(G), and so the integer n(G) defined prior to Theorem 14.6 is (q + 1) · gcd(2, q − 1)/e, a
multiple of q + 1 by (17.5.4). Now applying Theorem 14.6 to W?(1, 1) = [q + 1]?W, we see that
G?arith,k = G?geom; moreover, G?geom has index q + 1 in G and contains L as a normal subgroup of

index gcd(2, q− 1)/e. But W?(1, 1) is a local system on A1, so G?geom has no nontrivial p′-quotient.
Thus we conclude that e = gcd(2, q − 1), and |L| = |SU2(q)|. Recall that L is perfect and has
S = PSU2(q) as a composition factor. If 2|q, we must have that L ∼= SU2(q). If 2 - q, then L admits
a normal subgroup L1 of order 2 such that L/L1

∼= S. In this case, L1 ≤ Z(L), and so L ∼= SU2(q)
as well. Thus we have shown that

(17.5.5) G?arith,k = G?geom = L ∼= SU2(q).

Moreover, the geometric determinant Lν mentioned above now implies that

(17.5.6) G/L ∼= Cq+1, G = 〈L, g〉.

(iii) More generally, let us consider the kernel K of Φ0. By (17.5.2) and (17.5.3),

(17.5.7) |K| = |G|/|PGU2(q)| = q + 1.

Next, K ∩L is the kernel of the representation (Φ0)|L of degree q. First we note that any represen-
tation (Φi)|L cannot be trivial, as otherwise Φi(G) would have order dividing

|G/L| = q + 1 < (q − 1)2 ≤ rank(Hi)2,

contradicting the irreducibility of G on Hi. In particular, this holds for (Φ0)|L. Now if 2|q, then
L ∼= S is simple, and so K ∩ L = 1 = Z(L). It follows that |KL| = |G|, and so G ∼= K × L and
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K ∼= G/L ∼= Cq+1 by (17.5.6), whence there exists ι : G ∼= GU2(q). We also note that, since the
smallest degree of nontrivial irreducible representations of SU2(q) is q−1, all (Φi)|L are irreducible,
and afford characters St or θi, whence Φ|L is the total Weil representation by (17.5.1) and Theorem
17.2.

(iv) In this and the next parts of the proof we will assume 2 - q. If (Φ0)|L is reducible, then
each irreducible constituent of it has degree ≤ q/3 < (q − 1)/2, contrary to the fact that every
nontrivial irreducible representation of L ∼= SL2(q) has degree ≥ (q − 1)/2. Hence (Φ0)|L is an
irreducible representation of degree q, i.e. its Steinberg representation, and so K ∩ L = Z(L). As
[K,L] ≤ K ∩ L, in both cases we now have [[K,L], L] = 1, and so by the Three Subgroups Lemma
and by the perfectness of L we have that [K,L] = [K, [L,L]] is contained in [[K,L], L] = 1, i.e.

(17.5.8) K ≤ CG(L).

We have also shown that each irreducible constituent of (Φi)|L is of degree q (hence it is the Steinberg
representation) if i = 0, or of degree q− 1 or (q− 1)/2 if 1 ≤ i ≤ q and thus affords the character θi
or ηj , in the notation of Theorem 17.2. Together with (17.5.1), Theorem 17.2 applied to L implies
that Φ|L is the total Weil representation of L = SU2(q), as stated in (a). In particular, the character
of Φ|L contains exactly two irreducible constituents of degree (q − 1)/2, namely η1 and η2.

By Corollary 4.12, for any 1 ≤ i ≤ q, Hi satisfies the condition (S+), except for the sheaf
Kl(M,A,B, σ−β , σ−α) with σα−β = χ2, equivalently, σ = χ2 (recall that α−β = 1). We will choose
our labeling so that this sheaf is H(q+1)/2. Hence, if i 6= (q + 1)/2 then the normal subgroup L of
G acts irreducibly on Hi by [GT, Lemma 2.5].

Suppose for a moment that K 6= CG(L). By (17.5.7) and (17.5.8), we then have |CG(L)| ≥
2(q + 1). On the other hand, CG(L) ∩ L = Z(L) has order 2. Hence |CG(L)L| ≥ (q + 1)|L| = G,
and so G = CG(L) ◦ L, a central product with CG(L) ∩ L = Z(L) = K ∩ L. It follows that
|CG(L)| = 2(q + 1), and

G/(K ∩ L) ∼= CG(L)/Z(L)× L/Z(L),

a direct product of a group of order q + 1 and the simple group S ∼= PSU2(q). Thus G/(K ∩ L)
cannot map onto G/K = Φ0(G) ∼= PGU2(q), contrary to (17.5.3). Thus we have shown that

(17.5.9) K = CG(L).

(v) We can view L as the commutator subgroup of GU2(q). Recalling G/CG(L) ∼= PGU2(q) from
(17.5.3) and (17.5.9), we now see that G induces the full group of inner-diagonal automorphisms of
L, which is the one induced by elements by GU2(q) acting on L via conjugation. It follows that we
can find an element h ∈ GU2(q) such that

(17.5.10) g and h induce the same automorphism of L = SU2(q);

furthermore, changing g to another representative in its coset gG if necessary, we can ensure that

(17.5.11) h = diag(%, 1)

for some % ∈ F×
q2

of order q + 1, and so

(17.5.12) ord(h) = q + 1, L ∩ 〈h〉 = 1.

Next, as shown in (iv), if j 6= 0, (q + 1)/2 then (Φj)|L is irreducible, of degree q − 1. Each such

representation extends to a representation Φ̃j of GU2(q). Moreover, as one can check using the
character table of GU2(q) [E, §6],

(17.5.13) 0 6= Tr(Φ̃j(h)) ∈ Q(%) = Q(ζq+1)
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(indeed, any irreducible representation of degree q − 1 of GU2(q) is reducible over SU2(q) if and
only its trace at h is zero). Furthermore, the choice (17.5.10) of h, and again the irreducibility of

(Φj)|L established in (iv) ensure that Φj(g)Φ̃j(h)−1 centralizes Φj(L), whence

(17.5.14) Φj(g) = αjΦ̃j(h)

for some αj ∈ C×. In fact, αj is a root of unity because both g and h have finite order. Also, since
σ in Definition 16.1 is chosen to have order dividing q + 1, Tr(Φj(g)) ∈ Q(ζq+1) by Theorem 11.1.
Hence the root of unity αj belongs to Q(ζq+1) by (17.5.14). As 2|(q + 1), it follows that

αq+1
j = 1

for all j 6= 0, (q + 1)/2. Together with (17.5.12) and (17.5.14), this implies that Φj(g)q+1 = Id for
all j 6= 0, (q + 1)/2. In particular, gq+1 ∈ G has trace q − 1 on all Hj with j 6= 0, (q + 1)/2. Hence∣∣Tr(Φ(gq+1))

∣∣ =
∣∣ q∑
j=0

Tr(Φj(g
q+1))

∣∣
≥
∣∣ ∑
j 6=0,(q+1)/2

Tr(Φj(g
q+1))

∣∣− ∣∣Tr(Φ0(gq+1))
∣∣− ∣∣Tr(Φ(q+1)/2(gq+1))

∣∣
≥ (q − 1)2 − q − (q − 1) = q2 − 4q + 2 ≥ q + 2

(as q ≥ 5). It follows from (17.5.1) that Tr(Φ(gq+1)) = q2 and so gq+1 = 1 by faithfulness of Φ.
Recalling (17.5.6), we must then have that

(17.5.15) ord(g) = q + 1, L ∩ 〈g〉 = 1.

Thus G = L o 〈g〉 and GU2(q) = L o 〈h〉 are two split extensions of L ∼= SU2(q) by Cq+1. Now
using (17.5.10), (17.5.12), and (17.5.15), one can readily check that the map sgi 7→ shi, s ∈ L and
0 ≤ i ≤ q, yields a group isomorphism ι : G ∼= GU2(q).

(vi) Now we return to the general case of any prime p. Statement (b), both for 2|q and 2 - q,
follows by applying Φi to G = Ggeom = Garith,k.

To complete the proof of (a), let 〈g0〉 denote the image of I(0) in G = Ggeom. First we consider
the case α = 1. Then we can relabel Φj so that the spectrum of Φj(g0) equals {%i | i 6= 0, j}. Note
that, since G/L is cyclic, 〈L, g0〉 is normal in G and so contains the normal closure of 〈g0〉 in G.
But the normal closure of 〈g0〉 in G equals G by [KT5, Theorem 4.1], hence 〈L, g0〉 = G. Now we
can apply Theorem 17.3 (and its proof) to obtain γ ∈ Aut(G) such that Tr

(
Φ(γ(x))

)
= ζ2,q(x) for

all x ∈ G, γ(g) = diag(%, 1), cf. (17.3.1), and γ(z) = diag(%, %) acts in Φj via the scalar %j for
a generator z of Z(G), cf. (17.3.2). In particular, adjusting the identification ι by σ, we see that
G ∼= GU2(q) acts on W1(1, 1) with the total Weil character ζ2,q. We also note that the local system
W1(1, 1) gives rise to a surjection

φ : π1(Gm/Fp)� G,

and composing with Φj , it realizes the hypergeometric sheaf Hj .
Next, we consider the general case of any (α, β) satisfying (17.0.2). As noted in Remark 16.7, the

map γβ defined in (16.7.1) is an automorphism of G = GU2(q). Since γβ(g0) = g0z
β , the spectrum

of γβ(g0) in Φj is {%i - i 6= αj, βj}. Now we twist the representation Φ of GU2(q) on W1(1, 1) by
γβ to obtain

Ψ(x) = Φ(γβ(x)) and Ψj(x) = Φj(γβ(x))

for all x ∈ G. Note that γβ does not change any unipotent element in G, hence

Tr(Ψj(y)) = Tr(Φj(y))
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for all p-elements y ∈ G. It follows from [KT5, Theorem 5.1] that composing ψ with Ψj realizes a

hypergeometric sheaf H̃0 of type (q, 1) when j = 0 and a Kloosterman sheaf H̃j of rank q− 1 when
1 ≤ j ≤ q. The spectrum of Ψj(g0) when j > 0 shows that

H̃j = Kl
(
Char(q + 1) r {σ−jα, σ−jβ}

)
for a fixed character σ of order q+1. Likewise, the “upstairs” characters of H̃0 are Char(q+1)r{1}.
We show that the “downstairs” character is 1. Indeed, the image of I(∞) in G0

geom
∼= PGU2(q)

is an elementary abelian group of order q extended semidirectly by Cq−1. Now, Ψ0 still affords

the same character χ
(0)
q as of Φ0, so a generator of this Cq−1 has trace 1 in Ψ0, showing that the

“downstairs” character is 1. Thus
q⊕
j=0

H̃j ∼=Wα(1, 1),

with its geometric monodromy group acting via Ψ = Φ ◦ γβ .

(vii) Note that Lemma 16.3 also holds when a = b = 1. Hence, the same arguments as in part
(i) of the proof of Theorem 16.12, using the a = b = 1 case of Lemma 16.3, show that

(17.5.16) Garith,Fp/Ggeom
∼= G?arith,Fp/G

?
geom

∼= C2f ,

in fact,

(17.5.17) G?arith,Fp = 〈g?, G?geom〉,

where g? = Frob2,Fp when p > 2 and g? = Frob0,F2 when p = 2.
Next, as shown in Lemma 17.4, the hypergeometric summand H0 of W(1, 1) is arithmetically

isomorphic to the sheafH1 considered in [KT7, §1]. By [KT7, Theorem 8.3], the latter has arithmetic
monodromy group (GL2(q)oCf )/A over Fp, where A is the kernel of the action of GL2(q)oCf on
H1 and Cf induces the full outer automorphism group (of order f) of the simple group PSL2(q);
furthermore |A| = q + 1 by [KT7, Corollary 8.2]. Thus, if B is the kernel of the action of Garith,Fp
on H0, then Garith,Fp/B

∼= (GL2(q) o Cf )/A, and so |B| = 2(q + 1). We note that B centralizes
L = G?geom

∼= SU2(q). Indeed, as L is perfect, [B,L] = [B, [L,L]] is contained in [B ∩ L,L]. Now
B∩LCL, and any normal subgroup of order ≤ 2(q+1) of L is central in L. Hence [B∩L,L] = 1, and
so [B,L] = 1, as claimed. Also, (GL2(q)oCf )/A induces the full automorphism group PGL2(q)oCf
of PSL2(q) ∼= PSU2(q). Hence |CGarith,Fp (SU2(q))| = 2(q+ 1), and the statements in (c) for Garith,Fp
follow.

Furthermore, as shown in Lemma 16.3, when j|2f , Trace(Φ((g?)j)) can be a power of −q only for
j = 2f . Since Trace(Φ(h)) is a power of −q for any h ∈ Ggeom and G?geom ≤ Ggeom, it then follows
from (17.5.17) that

G?arith,Fp ∩Ggeom = G?geom.

Together with (17.5.16), this implies that Garith,Fp = G?arith,FpGgeom. Now, Ggeom induces only

inner-diagonal automorphisms of SU2(q) whereas Garith,Fp induces the full automorphism group of
SU2(q). It follows that G?arith,Fp must induce the full group Cf of outer field automorphisms of

SU2(q), and thus (d) follows for G?arith,Fp .

Note that Ggeom = GU2(q) induces the full subgroup PGU2(q) of inner-diagonal automorphisms
of SU2(q), and the cyclic quotient Garith,Fp/Ggeom

∼= C2f maps onto the group Cf of outer field
automorphisms of SU2(q), hence with kernel C2, the unique subgroup of order 2 in it, which then
must coincide with Garith,Fq/Ggeom. Arguing as in part (i) of the proof of Theorem 16.12, we also
obtain (c) and (d) for Garith,F

q2/d
and G?arith,F

q2/d
. �
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Note that the extra gcd(2, d) factor in Theorem 17.5(c) and (d), compared to Theorem 16.12, is
explained by the fact that the transpose-inverse automorphism of SUn(q) becomes an inner-diagonal
automorphism when n = 2.
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