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Abstract. We use hypergeometric sheaves on Gm/Fq, which are particular sorts of rigid local
systems, to construct explicit local systems whose arithmetic and geometric monodromy groups are
the finite general linear groups GLn(q) for any n ≥ 2 and and any prime power q, so long as q > 3
when n = 2. This paper continues a program of finding simple (in the sense of simple to remember)
families of exponential sums whose monodromy groups are certain finite groups of Lie type, cf. [Gr],
[KT1], [KT2], [KT3], [KT4] for (certain) finite symplectic and unitary groups, or certain sporadic
groups, cf. [KRL], [KRLT1], [KRLT2], [KRLT3]. The novelty of this paper is obtaining GLn(q)
in this hypergeometric way. A pullback construction then yields local systems on A1/Fq whose
geometric monodromy groups are SLn(q). These turn out to recover a construction of Abhyankar.
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Introduction

For any integer n ≥ 2 and any prime power q, the finite general linear group GLn(q) has a
(reducible) total Weil representation, which has a very simple description. It is the action by com-
position of GLn(q) on the space W of C-valued, or for us Q`-valued, functions on the n-dimensional
Fq vector space V := Fnq . This is a representation of dimension qn. We can split off the delta func-
tion δ0 at 0, and we are left with the space W ? of functions on the nonzero vectors V ? := V \ {0}.
On the set V ?, the group F×q of invertible scalars acts by homothety, and so the action of W ? on
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V ? breaks in its q − 1 eigenspaces under the F×q action. Thus we have

W = Cδ0 ⊕
⊕

χ∈Irr(F×
q )

Wχ.

Inside the space W1 of F×q -invariant functions (i.e. the space of radial functions) we have the
one-dimensional space C · 1V ? of constant functions, so we have a decomposition

W ∼= Cδ0 ⊕ C · 1V ? ⊕ (W1/C · 1V ?) ⊕
⊕
χ 6=1

Wχ.

It is easy to see that each Wχ has dimension (qn−1)/(q−1), the number of points in the projective
space Pn−1(Fq). One knows [Ge, Prop. 4.2 (b)] that W1/C · 1V ∗ , and each Wχ with nontrivial
χ, is an irreducible representation of GLn(q), called an irreducible Weil representation of GLn(q).
This numerology leads us to search for hypergeometric sheaves of these ranks, indexed by these
same χ, for which we can prove first, that they each have finite monodromy, cf. Theorem 4.2, and
then that the monodromy of their direct sum, together with two copies of the trivial representation,
is indeed GLn(q) in its total Weil representation, cf. Theorem 8.1. The individual (irreducible)
hypergeometric sheaves have the images of GLn(q) in an irreducible Weil representation as their
geometric and arithmetic monodromy groups. A pullback construction then yields local systems on
A1/Fq whose geometric monodromy groups are SLn(q), and also allows us to recover a construction
of Abhyankar [Abh].

1. The set up

We refer the reader to [Ka-CC, §2] for the definition and basic facts about hypergeometric sheaves
and their local monodromies, and for how to view the multiplicative characters which go into their
definition. We refer the reader to [Ka-ESDE, 7.2.1, 7.2.2] for the notions of Artin-Schrier sheaves
Lψ and Kummer sheaves Lχ. We also use freely the fact (Chebotarev) that if a lisse sheaf F
is arithmetically semisimple, then it its arithmetic isomorphism class is determined by its trace
function. The arithmetic semisimplicity of F is automatic if F is geometrically irreducible, or if
geometrically F is a suitable sum of pairwise distinct irreducbles, cf [KT4, Lemma 2.2]. [In general,
one can only say that a lisse sheaf F is determined up to arithmetic semisimplification by its trace
function.]

We work in characteristic p > 0. We choose a prime ` 6= p, so as to be able to work with Q`-
cohomology. We fix a nontrivial additive character ψ of Fp, a power q of p, and an integer n ≥ 2.
We then define

A := (qn − 1)/(q − 1), B := (qn−1 − 1)/(q − 1).

Recall that given an integer N ≥ 1 prime to p, and a multiplicative character χ, we define

Char(N,χ) := {characters ρ with ρN = χ}

and

Char(N) := Char(N,1),

the group of characters of order dividing N .
Our interest will be in the (sheaves geometrically isomorphic to the) following hypergeometric

sheaves, indexed by the multiplicative characters χ of order dividing q − 1. We fix a nontrivial
additive character ψ of Fp. For the trivial character, we consider

H1 := Hypψ(Char(A) \ 1;Char(B)), of rank A− 1.
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For each nontrivial character χ of order dividing q − 1, we consider the hypergeometric sheaf

Hχ := Hypψ(Char(A,χ);Char(B,χ),1), of rank A.

Lemma 1.1. If A is odd, then the geometric determinants are given by

det(Hχ) = Lχ.

If A is even (possible only when p is odd), then the geometric determinants are given by

det(Hχ) = Lχχ2 ,

for χ2 the quadratic character.

Proof. One knows that the geometric determinant of a hypergeometric sheaf of type (n,m) with
n −m ≥ 2 is the product of the “upstairs” characters, cf. [Ka-ESDE, 8.11.6]. For H1, one knows
that the product of all (or of all but 1) the elements of Char(A) is 1 if A is odd, and χ2 otherwise. For
the other Hχ, the assertion is that the product of all the elements of Char(A,χ) is χ×

∏
ρ∈Char(A) ρ.

To see this, pick one character Λ ∈ Char(A,χ). Then the elements of Char(A,χ) are precisely the
products Λρ with ρ ∈ Char(A), which makes clear that the product is as asserted. �

2. The trace function of H1

For any N ≥ 2 prime to p, the Kloosterman sheaf Klψ(Char(N) \ 1) is geometrically isomorphic
to the lisse sheaf on Gm/Fp whose trace function is given as follows: for K/Fp a finite extension
and t ∈ K×, it is

t 7→ −
∑
x∈K

ψK(Nx− xN/t),

cf. [KRLT2, Lemma 1.2, which concerns ψ]. We also know that Klψ(Char(N)) is geometrically
isomorphic to the lisse sheaf on Gm/Fp whose trace function is given as follows: for K/Fp a finite
extension and t ∈ K×, it is

t 7→
∑

x∈K,xN=t

ψk(Nx),

cf. [Ka-GKM, 5.6.2].

Lemma 2.1. The lisse sheaf on Gm/Fp whose trace function is given at u ∈ K× for K/Fp a finite
extension, by

u 7→
∑

x∈K, y∈K×

ψK
(
(−1/u)xA/yB + x− y)

is geometrically isomorphic to H1.

Proof. By defintion, H1 is the multiplicative ! convolution of Klψ(Char(A)\1) with the multiplicative
inverse of the complex conjugate of Klψ(Char(B)). Thus for u ∈ K×, K/Fp a finite extension, we
are looking at

u 7→
∑

s,t∈K×, st=u

∑
x∈K

ψK
(
Ax− xA/t)

∑
y∈K×,yB=1/s

ψK(−By).

Now use t = u/s = uyB to write this as∑
x∈K, y∈K×

ψK
(
Ax− xA/(uyB)−By),

and note that both A,B are 1 mod q, so 1 in Fp. �
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3. The trace function of Hχ for χ 6= 1

Lemma 3.1. For χ a nontrivial character of order dividing q − 1, the lisse sheaf on Gm/Fq whose
trace function at u ∈ K× for K/Fq a finite extension is

u 7→
∑

x∈K, y∈K×

ψK((−1/u)xA/yB + x− y
)
χ(x/y)

is geometrically isomorphic to Hχ.

Proof. Again by [Ka-GKM, 5.6.2], we know that for N ≥ 1 prime to p, Klψ(Char(N,χ)) is geomet-
rically isomorphic to the lisse sheaf on Gm/Fq whose trace function is given as follows: for K/Fq a
finite extension, and t ∈ K×,

t 7→
∑

x∈K,xN=t

ψK(Nx)χK(x).

Applying this with N = A and with N = B, we see that Hypψ(Char(A,χ);Char(B,χ)) is geomet-
rically isomorphic to the lisse sheaf on Gm/Fq whose trace function is given as follows: for K/Fq a
finite extension, and v ∈ K×,

v 7→
∑

s,t∈K, st=v

∑
x∈K,xA=t

ψK(Ax)χK(x)
∑

y∈K, yB=1/s

ψK(−By)χK(1/y)

=
∑

x,y∈K×, xA/yB=v

ψK(Ax−By)χK(x/y)

=
∑

x,y∈K×, xA/yB=v

ψK(x− y)χK(x/y),

the last equality because both A,B are 1 mod q. To compute a sheaf geometrically isomorphic to
Hχ, we must further convolve with Hyp(∅;1) = Lψ(−1/x). So our trace function is given as follows:

for K/Fq a finite extension, and u ∈ K×,

u 7→
∑

v,w∈K, vw=u
ψK(−1/w)

∑
x∈K×, y∈K×, xA/yB=v

ψK(x− y)χK(x/y) =

=
∑

x,y∈K×

ψK
(
−(xA/yB)/u+ x− y

)
χK(x/y),

the last equality by using vw = u to solve for −1/w = −v/u. Because χ is nontrivial, the sum does
not change if we also allow x = 0 in the summation. �

4. Putting it all together

In the previous sections, we found that for each χ of order dividing q − 1, trivial or not, Hχ is
geometrically isomorphic to the lisse sheaf on Gm/Fq whose trace function is given as follows: for
K/Fq a finite extension, and u ∈ K×,

u 7→
∑

x∈K, y∈K×

ψK
(
(−1/u)xA/yB + x− y

)
χK(x/y).

We now make the substitution (x, y) 7→ (xy, y). Then the above sum becomes

u 7→
∑

x∈K, y∈K×

ψK
(
(−1/u)xAyA−B + xy − y

)
χK(x).
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To move to weight zero, we do a Tate twist (1). Concretely, we consider the lisse sheaves on
Gm/Fq, denoted Fχ, whose trace functions are given at t ∈ K× for K/Fq a finite extension, by

Fχ : u 7→ (1/#K)
∑

x∈K, y∈K×

ψK
(
(−1/u)xAyA−B + xy − y

)
χK(x).

Lemma 4.1. For each χ ∈ Char(q − 1), the lisse sheaf Fχ on Gm/Fq is geometrically isomorphic
to Hχ.

Proof. Immediate from Lemmas 2.1 and 3.1. �

Theorem 4.2. Each of the sheaves Fχ has finite Garith and (hence) finite Ggeom.

Proof. The key observation is that
A−B = qn−1

is a power of q. Therefore the trace sum of Fχ does not change if we raise some of the terms in the

argument of ψK to the (A − B)th power, since this does not alter TraceK/Fq
. Thus the trace sum

for Fχ at time u ∈ K× is equal to

(1/#K)
∑

x∈K, y∈K×

ψK
(
(−1/u)xAyA−B + xA−ByA−B − yA−B

)
χK(x).

Factoring out the yA−B term, we rewrite this as

(1/#K)
∑
x∈K

∑
y∈K×

ψK
(
yA−B((−1/u)xA + xA−B − 1)

)
χK(x).

Because y 7→ yA−B is an automorphism of K, so a bijection on K×, this sum is equal to

(1/#K)
∑
x∈K

∑
y∈K×

ψK
(
y((−1/u)xA + xA−B − 1)

)
χK(x).

Interpreting ψK
(
y((−1/u)xA + xA−B − 1)

)
as 1 when y = 0, the above sum can be written as

−δ1,χ + (1/#K)
∑
x∈K

∑
y∈K

ψK
(
y((−1/u)xA + xA−B − 1)

)
χK(x).

The sum over y is

0, unless (−1/u)xA + xA−B − 1 = 0, in which case it is χK(x).

Thus the trace of Fχ at time u ∈ K× is

(4.2.1)
−1 + number of solutions x ∈ K of (−1/u)xA + xA−B − 1 = 0, if χ = 1,∑

x∈K, (−1/u)xA+xA−B−1=0 χK(x), if χ 6= 1.

So in all cases, Fχ has algebraic integer traces, and we are done by [Ka-ESDE, 8.14.4, (1) ⇐⇒ (2)
⇐⇒ (6)]. �

Corollary 4.3. Denote by f(t) the polynomial

f(t) := tB(1− t)A−B,
and denote by inv the multiplicative inversion u 7→ 1/u on Gm. Then on Gm/Fq we have arithmetic
isomorphisms

f?Q`/Q`
∼= inv?F1,

and, for each nontrivial χ of order dividing q − 1,

f?Lχ ∼= inv?Fχ.
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Proof. According to (4.2.1), the trace function of inv?Hχ at u ∈ K×, K/Fq a finite extension, is

−δ1,χ +
∑

x∈K, (−u)xA+xA−B−1=0

χK(x).

The polynomial (−u)xA + xA−B − 1 has all its roots nonzero. Dividing through by xA, we may
write it as a polynomial in 1/x := t. It becomes (remembering that A−B = qn−1 is a power of p)(

(−u)xA + xA−B − 1
)
/xA = −u+ x−B − x−A = −u+ tB − tA = tB(1− t)A−B − u.

Thus the trace becomes
−δ1,χ +

∑
t∈K, tB(1−t)A−B=u

χK(t),

which is precisely the trace function of f?Q`/Q` for χ = 1, and of f?Lχ when χ 6= 1. Because
the sheaves Fχ are each (geometrically, and hence) arithmetically irreducible, this equality of trace
functions implies arithmetic isomorphisms of sheaves. �

Corollary 4.4. The trace function of ⊕χ∈Char(q−1)inv?Fχ at u ∈ K×, K/Fq a finite extension, is

−1 + number of solutions T ∈ K of T (q−1)B(1− T q−1)A−B = u.

Proof. The trace at u ∈ K×, K/Fq a finite extension, is −1 plus∑
t∈K, tB(1−t)A−B=u

∑
χ∈Char(q−1)

χK(t).

The sum over χ vanishes unless t is a (q− 1)th power in K×, in which case there exist exactly q− 1
elements T ∈ K× with the property that t = T q−1. So the trace is −1 plus the number of solutions
T ∈ K of

T (q−1)B(1− T q−1)A−B = u.

�

From Corollary 4.3, we get

Corollary 4.5. For f the polynomial f(t) := tB(1− t)A−B, we have an arithmetic isomorphism on
Gm/Fq

f?
(
⊕χ∈Char(q−1)Lχ

) ∼= Q` ⊕
(
⊕χ∈Char(q−1)inv?Fχ

)
In what follows, we will let W(n, q) denote the local system ⊕χ∈Char(q−1)Fχ.

Corollary 4.6. For F the polynomial

F (T ) := T q
n−1−1 − T qn−1,

we have an arithmetic isomorphism on Gm/Fq,

F?Q`/Q`
∼= inv?(W(n, q)).

The local system F?Q`/Q` lives on Gm/Fp, and thus provides a descent of W(n, q) to Gm/Fp.

Lemma 4.7. Let q0 > 1 be a power of a prime p, K0 := Fq30 . For each u ∈ K0, let N(u) denote

the number of solutions in K0 of the equation T q
2
0 −T q0 = uT . Then the following statements hold.

(i) Suppose p = 2. Then N(1) = q20. Furthermore, N(u) = q0 for exactly q20 values of u ∈ K0r{1},
and N(u) = 1 for all the remaining q30 − q20 − 1 values of u ∈ K0 r {1}.

(ii) Suppose p > 2. Then N(u) = q0 for exactly q20 + q0 + 1 values in u ∈ K0, and N(u) = 1 for
all the remaining q30 − q20 − q0 − 1 values of u ∈ K0.
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Proof. Note that N(u) = #(Xu) + 1, where Xu is the set of solutions in K×0 of the equation

T q
2
0 − T q0 = uT , equivalently, of the equation T q

2
0−1 − T q0−1 = u. In particular, K×0 partitions into

the disjoint union of all Xu when u varies over K0, whence

(4.7.1)
∑
u∈K0

(N(u)− 1) = q30 − 1.

Suppose that T ∈ Xu. As T q
2
0 = T q0 + uT and T ∈ K×0 , we have

T = T q
3
0 = T q

2
0 + uq0T q0 = T q0 + uT + uq0T q0 = T q0(1 + u)q0 + uT.

Now if u = −1 then 2T = 0, which is impossible if p 6= 2. On the other hand, if u 6= −1, then
T q0−1 = (1 − u)(1 + u)−q0 . This last equation has at most q0 − 1 solutions in K×0 . Conversely, if
T0 ∈ Xu, then αT0 ∈ Xu for all α ∈ F×q0 . Thus we have shown that

(4.7.2) If u 6= −1, then N(u) = 1 or q0,

and that N(−1) = 1 if p 6= 2. In particular, (4.7.1) implies (ii) if p > 2.
Assume now that u = 1 and p = 2. Then

T q
2
0 − T q0 − uT = TrK0/Fq0

(T ),

and so N(1) = q20. Together with (4.7.1), this also implies that∑
16=u∈K0

(N(u)− 1) = q30 − q20,

and (i) now follows from (4.7.2). �

Theorem 4.8. Let K be a finite extension of Fp. Then the following statements holds for the trace

at time u ∈ K× on F?Q`/Q`.

(i) This trace plus 2 is a always a p-power.
(ii) If K ⊇ Fq, then this trace is of the form qa − 2 for some integer 0 ≤ a ≤ n.

(iii) Suppose that q = pf with f ≥ 2. For any prime divisor r of f , there exist an extension K0 of

Fp and an element u0 ∈ K×0 such that the trace at time u0 is pf/r
c − 2, where rc is the r-part

of f .

In particular, (i) and (ii) hold for the trace at time u ∈ K× on W(n, q), now viewed as a local
system on Gm/Fp via Corollary 4.6.

Proof. (a) It is equivalent to prove this for inv? of the direct sum sheaf in question. The trace is −1
plus the number of solutions T ∈ K of

T (q−1)B(1− T q−1)A−B = u.

Write out the polynomial T (q−1)B(1− T q−1)A−B. It is

T (q−1)B − T (q−1)B+(q−1)(A−B) = T q
n−1−1 − T qn−1.

So the trace is -1 + the number of solutions T ∈ K of

T q
n−1−1 − T qn−1 = u.

T = 0 is visibly not a solution, so the trace is

−2 + number of solutions T ∈ K of T q
n−1 − T qn = uT.

The solution set of this last equation,

(4.8.1) T q
n−1 − T qn = uT,



8 NICHOLAS M. KATZ AND PHAM HUU TIEP

over any field K ⊇ Fp forms a vector space over Fp of finite dimension, hence (i) holds. If K ⊇ Fq,
then the solution set of (4.8.1) over K forms an Fq vector space of dimension ≤ n, so the number
of its solutions is indeed qa for some integer 0 ≤ a ≤ n, yielding (ii).

(b) The rest of the proof is to establish (iii). Write f = f0r
c and q0 = pf0 . The idea is to show

that for a well chosen prime s 6= r, we can take

K0 := Fpsf0 = Fqs0 .

If n ≥ 3, then, since gcd(n, n−1) = 1, n(n−1) is divisible by at least two distinct primes, so we can
find a prime s 6= r that divides exactly one of the two integers n and n− 1. If n = 2 and r > 2, we
choose s = 2. If (n, r) = (2, 2), choose s = 3. With s chosen this way, we choose K0 := Fpsf0 = Fqs0 ,

and solve the equation (4.8.1) over K0, for certain u ∈ K×0 .
First we consider the case n = r = 2, whence s = 3. Then {nrc, (n − 1)rc} = {2c+1, 2c} is

congruent to {1, 2} modulo 3 (as a set), and for integers a, b ≥ 0 we have

qa+3b
0 − 1 ≡ qa0 − 1(mod (q30 − 1)).

If 2|c then

T q
n−1 − T qn = T q

(n−1)rc

0 − T qnrc

0 = T q0 − T q20 ,
and if 2 - c then

T q
n−1 − T qn = T q

(n−1)rc

0 − T qnrc

0 = T q
2
0 − T q0

for all T ∈ K0. Hence we are done by Lemma 4.7.

(c) From now on we may assume that (n, r) 6= (2, 2). The idea now is to view K0 := Fqs0 as vector

space over Fq0 . The (q0 − 1)th power map

[q0 − 1] : x 7→ xq0−1

maps K×0 onto µ(qs0−1)/(q0−1) := {t ∈ K0 | t(q
s
0−1)/(q0−1) = 1}, with fibres the nonzero elements in

the Fq0-lines defined by the (qs0 − 1)/(q0 − 1) equations

T q0 = vT,

one for each v ∈ µ(qs0−1)/(q0−1). Conversely, for any v ∈ Fp
×

, the equation T q0 = vT has q0 solutions

in Fp, and for such a T we have

T q
i
0 = v(q

i
0−1)/(q0−1)T

for any i ∈ Z≥0. In particular, T ∈ K×0 if and only if v belongs to µ(qs0−1)/(q0−1).
For v ∈ µ(qs0−1)/(q0−1) and T satisfying T q0 = vT , using this last identity and remembering that

q is qr
c

0 , we find that T q
n−1 − T qn = H(v)T , where

H : µ(qs0−1)/(q0−1) → K0, v 7→ v(q
(n−1)rc

0 −1)/(q0−1) − v(qnrc

0 −1)/(q0−1).

We claim that

(4.8.2) H is injective when (n, r) 6= (2, 2).

Admit this for a moment. Then for each v ∈ µ(qs0−1)/(q0−1), the points in the line T q0 = vT are
among the K0-solutions of the equation

Eqn(v) : T q
n−1 − T qn = H(v)T.

As the H(v) are pairwise distinct, the nonzero K0-solutions of these (qs0 − 1)/(q0 − 1) equations
partition K×0 into (qs0 − 1)/(q0 − 1) disjoint subsets, each of which consists of the q0 − 1 nonzero
points in the line T q0 = vT . Therefore each Eqn(v) has precisely q0 solutions in K0. Furthermore,
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since H(1) = 0, we see that for v 6= 1, v ∈ µ(qs0−1)/(q0−1), H(v) 6= 0. At any such point u = H(v),

we then have that the trace at time u ∈ K×0 is q0, as asserted.
We now prove (4.8.2). Suppose then that H(v) = H(w), with v, w ∈ µ(qs0−1)/(q0−1), i.e. that we

have

(4.8.3) v(q
(n−1)rc

0 −1)/(q0−1) − v(qnrc

0 −1)/(q0−1) = w(q
(n−1)rc

0 −1)/(q0−1) − w(qnrc

0 −1)/(q0−1).

As (n, r) 6= (2, 2), s divides exactly one of n and n − 1. For definiteness, say s|n and s - (n − 1).
Then (qs0 − 1)/(q0 − 1) divides (qn0 − 1)/(q0 − 1), which divides (qnr

c

0 − 1)/(q0 − 1), and hence

w(qnrc

0 −1)/(q0−1) = v(q
nrc

0 −1)/(q0−1) = 1.

Thus we have

w(q
(n−1)rc

0 −1)/(q0−1) = v(q
(n−1)rc

0 −1)/(q0−1).

It follows that the order of w/v divides

gcd

(
qs0 − 1

q0 − 1
,
q
(n−1)rc
0 − 1

q0 − 1

)
= 1

since1 gcd(s, (n− 1)rc) = 1. Thus w = v, as asserted. �

5. Galois groups in this context

Let k be a field, and f(t) ∈ k[t] a polynomial whose derivative f ′(t) is not identically zero. Recall
that the critical values of f are its values at the zeroes of f ′. On the dense open set

U := A1 \ {critical values of f},

the sheaf f?Q` is lisse, of rank the degree of f .
Let us recall the well known identification of Garith with a Galois group.

Lemma 5.1. The Garith of f?Q` is the Galois group of the equation

f(t) = u

over the rational function field k(u). In particular we have

Garith ⊆ Sdeg(f),

and the quotient f?Q`/Q` has the same Garith, now acting through the deleted permutation repre-
sentation of Sdeg(f).

Proof. Indeed, Garith is the “monodromy group” of the finite étale covering of U defined by

f : A1 \ f−1{critical values of f}

in the sense of [Ka-LGER, 1.2.2], which is the usual étale cohomological incarnation of the Galois
group. �

1Recall that for an integer a 6= 0,±1, and positive integers n,m with gcd(n,m) = 1, one has gcd(an− 1, am− 1) =
a− 1. as one sees by working in the multiplicative group of Z/dZ for any d dividing gcd(an − 1, am − 1).
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6. Weil-type representations of special linear groups

Let q be a power of a prime p, W = Fnq , and consider the general linear group GL(W ) ∼= GLn(q)
and the special linear group SL(W ) ∼= SLn(q). These groups act naturally on the set of qn vectors
of W , and the corresponding permutation character is denoted

(6.0.1) τn = τn,q : g 7→ qdimFq Ker(g−1W ).

We will also refer to τn as the total Weil character of SLn(q). When n ≥ 3, τn,q decomposes over
SLn(q) as

τn = 2 · 1SLn(q) +

q−2∑
i=0

τ in,

where τ in ∈ Irr(SLn(q)) has degree (qn − 1)/(q − 1) − δi,0. We will refer to τ in = τ in,q as irreducible
Weil characters of SLn(q).

Theorem 6.1. Let p be any prime and q be any power of p. Let L = SLn(q) with n ≥ 3. Suppose
ψ is a reducible complex character of L such that

(a) ψ(1) = qn;
(b) ψ(g) ∈ {qi | 0 ≤ i ≤ n} for all g ∈ L;
(c) [ψ, 1L]L = 2; and
(d) every irreducible constituent of ψ − 2 · 1L is among the q − 1 irreducible Weil characters τun ,

0 ≤ u ≤ q − 2, of L.

Then ψ is the total Weil character τn of L, that is, ψ = 2 · 1L +
∑q−2

u=0 τ
u
n .

Proof. (i) By assumption (d),

ψ = 2 · 1L +

q−2∑
u=0

auτ
u
n ,

where au ∈ Z≥0. Comparing the degrees, we obtain

1− a0 =
qn − 1

q − 1

(
q − 1−

q−2∑
u=0

au

)
;

in particular, a0 − 1 is divisible by (qn − 1)/(q − 1). On the other hand,

−1 ≤ a0 − 1 ≤ ψ(1)− 2

τ0n(1)
− 1 =

qn − 2

(qn − q)/(q − 1)
− 1 ≤ qn − 2

q2 + q
− 1 <

qn − 1

q − 1
,

since n ≥ 3. It follows that

(6.1.1) a0 = 1,

q−2∑
u=1

au = q − 2.

In particular, if 2 ≤ q ≤ 3, then ψ = 2 · 1L +
∑q−2

u=0 τ
u
n = τn. Hence we may assume q ≥ 4.

(ii) Now, view L as SL(W ) where W = Fnq , and consider the subgroup H ∼= SL3(q) of L that

fixes a 3-dimensional subspace of W and acts trivially on its complement in W . The values of τ in
are well known, see e.g. [T, (1.1)]. An easy application of this character formula shows that

(6.1.2) ψH =

q−2∑
u=0

buτ
u
3 , where bu := au + (qn−3 − 1),
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in particular,

b0 = qn−3,

q−2∑
u=1

bu = qn−3(q − 2).

Also, let σ be a primitive (q2 − 1)th root of unity in Fq, δ = σq+1, δ̃ be a primitive (q − 1)th root of
unity in C, and set

Σk :=

q−2∑
u=1

buδ̃
uk, ∆k :=

q−2∑
u=0

auδ̃
uk

for any k ∈ Z. Note that both Σk and ∆k depend only on k(mod (q− 1)). Then (6.1.1) and (6.1.2)
imply that

(6.1.3) ∆0 = q − 1, |∆k| ≤ q − 1.

(iii) The character table of H is well known, see e.g. [SF]. Consider any k ∈ Z with (q− 1)/2 - k.
Evaluating ψ at a semisimple element in L with eigenvalues δk, δ−k, 1, we have by (b) that

Σ′k := 2qn−3 + 2b0 + Σ0 + Σk + Σ−k = qn−2 + ∆k + ∆k belongs to V := {qi | 0 ≤ i ≤ n}.
Next, by adding q− 1 to k if necessary, which does not change Σk, we may assume that (q+ 1) - k.
Evaluating ψ at a semisimple element in L with eigenvalues δ−k, σk, σqk (over Fq) and using (b)
again, we have that

V 3 2qn−3 + Σk = qn−3 + ∆k.

Thus, for a fixed k(mod (q − 1)) with (q − 1)/2 - k, we can find a, b ∈ Z≥0 such that

qn−3 + ∆k = qa, qn−2 + ∆k + ∆k = qb.

It follows that ∆k = qa − qn−3 = ∆k, and

qb = (q − 2)qn−3 + 2qa > qn−3.

Hence b ≥ n− 2, which in turn implies that a ≥ n− 3. Assume in addition that a ≥ n− 2. Then

∆k ≥ qn−2 − qn−3.
In this case, using n ≥ 3 and (6.1.3), we obtain that n = 3 and a = 1, and so qb = 3q − 2, which is
impossible since q > 2. We have shown that a = n− 3, i.e. ∆k = 0.

Thus the polynomial

f(t) :=

q−2∑
u=0

aut
u ∈ Z[t]

has δ̃k with 1 ≤ k ≤ q − 2, k 6= (q − 1)/2, as roots. Also, f(1) =
∑q−2

u=0 au = q − 1 by (6.1.1). If

2|q, it follows that f(t) is divisible by (tq−1 − 1)/(t − 1), and so f(t) =
∑q−2

u=0 t
u. If 2 - q, we have

that f(t) is divisible by (tq−1 − 1)/(t2 − 1), whence f(t) = (at+ b)(tq−3 + tq−5 + . . .+ t2 + 1) with
a, b ∈ Q. Evaluating at t = 1 we obtain a+ b = 2. Next, b = f(0) = a0 = 1, and so a = 1, whence

f(t) =
∑q−2

u=0 t
u again. In other words, au = 1 for all u, as stated. �

Theorem 6.1 will be used in tandem with the following result, which allows us to recognize the
size of the ground field s for the special linear group SLm(s) from the values of a sum of its Weil
characters:

Proposition 6.2. Let n ≥ 3 and let q be a power of a prime p. Let s be a power of a prime r,
possibly different from p, and L = SLm(s) with m ≥ 2. Suppose L possesses a reducible complex
character of ψ such that

(a) ψ(1) = qn;
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(b) ψ(g) is a q-power for any transvection g ∈ L;
(c) (qn − 1)/(q − 1) = (sm − 1)/(s− 1), and

(d) ψ = 2 · 1L +
∑s−2

u=0 auτ
u
m is a sum of trivial and irreducible Weil characters τum = τum,s of L,

au ∈ Z≥0, and a0 = 1.

Then (m, s) = (n, q).

Proof. First we note that m ≥ 3. Indeed, if m = 2, then (c) implies that s = q · (qn−1 − 1)/(q − 1)
is a product of two coprime integers larger than 1, which is impossible since s is a prime power.

By hypothesis,

qn = ψ(1) = 1 +
sm − 1

s− 1
·
s−2∑
u=0

au = 1 +
qn − 1

q − 1
·
s−2∑
u=0

au,

whence
∑s−2

u=0 au = q− 1. Next we evaluate τum at a transvection g ∈ L using the character formula
[T, (1.1)]:

τum =
sm−1 − 1

s− 1
− δu,0.

By (b), there exists some a ∈ Z≥0 that

qa = ψ(g) = 1 +
sm−1 − 1

s− 1
·
s−2∑
u=0

au = 1 + (q − 1)
sm−1 − 1

s− 1
.

In particular, a ≥ 2 since m ≥ 3. It follows that

sm−1 =
sm − 1

s− 1
− sm−1 − 1

s− 1
=
qn − 1

q − 1
− qa − 1

q − 1
= qa · q

n−a − 1

q − 1
,

and so sm−1 is divisible by qa, whence r = p. In this case, the p-part of (sm − 1)/(s − 1) − 1 is s,
and the p-part of (qn − 1)/(q − 1)− 1 is q, and we conclude using (c) that s = q and m = n. �

We will also need to work with permutation representations of SLn(q) of degree qn − 1. Let us
recall some of the group-theoretic notations used in the sequel. If G is a finite group with a subgroup
L, then CG(L) denotes the centralizer of L in G, soc(G) denotes the socle of G, i.e. the product of

all minimal normal subgroups of G, and G(∞) denotes the last term of the derived series of G.

Lemma 6.3. Let n ≥ 2 and let L = SL(W ) ∼= SLn(q) embed in SN via its natural permutation
action on the set Ω of N := qn − 1 nonzero vectors of W = Fnq . Then CSN (L) coincides with
Z(GL(W )) ∼= Cq−1 acting on Ω.

Proof. Clearly, Z(GL(W )) commutes with L as subgroups of Sym(Ω) = SN . Conversely, let h ∈
CSN (L) and consider a nonzero v ∈ W . Then StabL(v) has exactly q − 1 fixed points λv, λ ∈ F×q ,

on Ω. As h centralizes L, it permutes these q − 1 fixed points, whence h(v) = αv for some α ∈ F×q .
Now, given any 0 6= u ∈W , we can find g ∈ L such that u = g(v). It follows that

h(u) = h(g(v)) = g(h(v)) = g(αv) = αg(v) = αu,

i.e. h = α · 1W ∈ Z(GL(W )). �

Lemma 6.4. Let n ≥ 2 and let L = SL(W ) ∼= SLn(q). Then the following statements hold.

(i) Let P be a subgroup of L of index (qn − 1)/(q − 1). Then P is either the stabilizer in L of a
line or the stabilizer of a hyperplane of W .

(ii) Let Q be a subgroup of L of index qn−1, and let τ denote the transpose-inverse automorphism
of L if n ≥ 3. If n = 2, respectively if n ≥ 3, then Q, respectively Q or τ(Q), is the stabilizer
in L of some nonzero vector v ∈W .
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Proof. Our proof uses the following result, which is known in the literature as Borel-Tits theorem,
or Tits’ lemma, cf. [Se, (1.6)]: If G is a finite group of Lie type of simply connected type in
characteristic p and if M is a maximal subgroup of G containing a Sylow p-subgroup of G, then M
is a parabolic subgroup of G.

(i) Let M be a maximal subgroup of L containing P . By the above statement, M is a maximal
parabolic subgroup of L, that is, there is some 1 ≤ i ≤ n − 1 such that M is the stabilizer in
L of some i-dimensional subspace of W . Note that [L : M ] is greater than q(qn − 1)/(q − 1) if
2 ≤ i ≤ n − 2, and equal to (qn − 1)/(q − 1) if i ∈ {1, n − 1}. Since [L : P ] = (qn − 1)/(q − 1), it
follows that i ∈ {1, n− 1}, and P = M .

(ii) Again, let M be a maximal subgroup of L containing Q. The arguments in (i) show that M
is the stabilizer in L of a line or a hyperplane of W . Applying τ to both Q and M when n ≥ 3 if
necessary, we may assume that M = StabL(〈v〉Fq) for some 0 6= v ∈W .

Note that M = U o K, where U is a normal p-subgroup (with p the prime dividing q) and
K ∼= GLn−1(q), and [M : Q] = q − 1. Hence U CQ, Q = U(Q ∩K), and

(6.4.1) [K : Q ∩K] = [M : Q] = q − 1.

If n = 2, then |U | = q = |Q|, whence Q = U = StabL(v), and so we are done in this case. We
will now assume that n ≥ 3. Now, StabL(v) = U [K,K], where [K,K] ∼= SLn−1(q). By (6.4.1),
[[K,K] : Q∩ [K,K]] divides [K : Q∩K] = q− 1. On the other hand, the index of proper subgroups
of SLn−1(q) is larger than q−1, see e.g. [KlL, Table 5.2.A], unless (n, q) = (3, 9). In the exceptional
case, any subgroup of [K,K] ∼= SL2(9) ∼= 2A6 of index dividing 8 must coincide with [K,K]. Thus
in all cases Q ≥ [K,K], whence Q = U [K,K] by order comparison. �

Lemma 6.5. Let r be a prime, m ∈ Z≥2, and (m, r) 6= (2, 2). Then the affine general linear group
AGLm(r) does not possess any element of order rm.

Proof. We can embed AGLm(r) in SLm+1(r) (as the stabilizer of a nonzero vector in Fm+1
r ). For

any r-element x ∈ SLm+1(r), we have (x− Id)m+1 = 0. As m ≥ 2 and (m, r) 6= (2, 2), we have that

rm−1 ≥ m+ 1. Hence xr
m−1 − Id = (x− Id)r

m−1
= 0, and so the order of x is at most rm−1. �

We will say that a linear transformation of GL(V ) has simple spectrum, if it is diagonalizable
and has pairwise distinct eigenvalues. We will need the following classification of certain doubly
transitive permutation groups:

Theorem 6.6. Let q be a prime power, n ∈ Z≥3, N0 := (qn−1)/(q−1), and let Ψ : SN0 → GL(V0)
denote the representation of SN0 on the deleted permutation module V0 = CN0−1. Suppose that
G ≤ SN0 is such that Ψ|G is irreducible and contains an element with simple spectrum. Also let S
denote the socle soc(G) of G. Then one of the following statements holds.

(i) S = AN0 and AN0 CG ≤ SN0, with G acting naturally on N0 points.
(ii) S CG ≤ Aut(S), and S = PSLm(s) for some prime power s and m ≥ 2 such that

(sm − 1)/(s− 1) = (qn − 1)/(q − 1).

Furthermore, there is a bijection from {1, 2, . . . , N0} to the set of lines or hyperplanes of Fms ,
that identifies the action of S on {1, 2, . . . , N0} with its natural action on the set of lines,
respectively hyperplanes, of Fms .

(iii) (qn − 1)/(q − 1) = rm for some prime r and m ≥ 1, S ∼= Cmr , and S C G ≤ AGLm(r).
Furthermore, there is a bijection from {1, 2, . . . , N0} to the set of points of Fmr , that identifies
the action of G on {1, 2, . . . , N0} with its natural action, as a subgroup of the group AGLm(r)
of all affine transformations of Fmr , on the set of points of Fmr .
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Proof. The irreducibility of Ψ|G is equivalent to that G be a doubly transitive permutation subgroup
of SN0 . We will apply the classification of finite doubly transitive permutation groups [Cam, Theo-
rem 5.3], which is a consequence of the classification of finite simple groups. Now, if S = soc(G) is
abelian then (iii) holds. So we will assume that S is non-abelian, whence it is a simple group. As
(i) holds if S ∼= AN0 , we will also assume that S 6∼= AN0 . Furthermore, as in the proof of Proposition
6.2, the assumption n ≥ 3 implies that N0− 1 cannot be a prime power. Direct computation shows
that N0 6= 11, 22, 23, 36, 176, 276. Finally, assume we are in the case where S ∼= Sp2m(2) and
N0 = 2m−1(2m ± 1) for some m ≥ 4. In this case, if g ∈ G has simple spectrum, then the order of
gZ(G), as an element of G/Z(G) ≤ Aut(S), is at most 2m+1 by [GMPS, Theorem 2.16], which is
smaller than deg(Ψ) = N0 − 1, a contradiction. It now follows from [Cam, Theorem 5.3] that (ii)
holds. �

Remark 6.7. One may wonder if case (ii) of Theorem 6.6 may occur for some s coprime to q. One
such occurrence is 25 − 1 = (53 − 1)/4, and a computation on Mathematica reveals that this is the
only occurence when (pa − 1)/(p − 1) = (rb − 1)/(r − 1) for some distinct primes p, r ≤ 1223 and
2 ≤ a, b ≤ 200. If one relaxes the primeness condition, then this equation is known in literature as
the Goormaghtigh equation, and the only other known solution is 213 − 1 = (903 − 1)/89.

On the other hand, for any given n ≥ 2, (qn−1)/(q−1) can be a prime power, or even a prime; in
fact, the Bateman–Horn conjecture [BH] implies in particular that this can happen infinitely often.

The main result of this section is the following theorem:

Theorem 6.8. Let q = pf be a power of a prime p, n ≥ 3, and N := qn − 1. Let G ≤ SN be a
subgroup with the following properties:

(a) If Φ denotes the representation of SN on its natural permutation module CN , then

Φ|G = ⊕q−2i=0Φi ⊕ 1G,

where Φi ∈ Irr(G) has degree (qn − 1)/(q − 1)− δi,0;
(b) G0 := Φ0(G) embeds in SN0, where N0 := (qn−1)/(q−1), in such a way that Φ0 is the restriction

to G0 of the representation of SN0 on its deleted permutation module CN0−1. Furthermore,
Φ0(G) contains an element of order N0 with simple spectrum and a p-subgroup of order qn−1.

(c) For every g ∈ G, Tr(Φ(g)) + 1 is a q-power.

Then SL(W ) ∼= L := G(∞) C G ≤ GL(W ) for W = Fnq . Moreover, Φ|G is equivalent to the
permutation action of G on the set Ω of nonzero vectors of W .

Proof. (i) Let ϕ, respectively ϕi, denote the character of Φ, respectively Φi. Also, let K denote the
kernel of Φ0, so that G/K ∼= G0. Note by (a) and faithfulness of Φ that K = 1 if q = 2. Since
the trivial representation of G occurs with multiplicity exactly one in Φ|G by (a), G is a transitive
subgroup of SN . Hence K acts semi-transitively on Ω, that is, all K-orbits have the same length,
say k. As K = Ker(Φ0), we have

k = [ϕ|K , 1K ]K ≥ 1 + dim(Φ0) = N0.

On the other hand, ϕ(x) ≤ qn−1 − 1 for all 1 6= x ∈ K by (c). It follows that

qn − 1

q − 1
≤ [ϕ|K , 1K ]K ≤

(qn − 1) + (qn−1 − 1)(|K| − 1)

|K|
,

and so

(6.8.1) |K| ≤ qn−1(q − 1)2

(qn − 1)− (qn−1 − 1)(q − 1)
< (q − 1)2.
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(ii) Now we use (b) and Theorem 6.6 (applied to Ψ = Φ0) to determine G0. Suppose we are in
the affine case 6.8(iii), that is N0 = rm for some prime r and Cmr

∼= soc(G0) C G0 ≤ AGLm(r). If
m ≥ 2 and (m, r) 6= (2, 2), then G0 does not contain any element of order rm by Lemma 6.5, and
this contradicts (b). The case (qn − 1)/(q − 1) = 22 is ruled out since n ≥ 3.

Finally, assume that m = 1, so that r = (qn − 1)/(q − 1). Since G0 ≤ AGL1(r) is a doubly
transitive subgroup of Sr, we actually have

(6.8.2) G0 = AGL1(r) ∼= Cr o Cr−1.

As n ≥ 3, we have by (6.8.1) that |K| < r, whence

(6.8.3) |G|r = |G0|r = r.

If q = 2, then we have r = 2n − 1 ≥ 7 and r − 1 = 2n − 2 ≡ 2(mod 4). As K = 1 in this case, we
have that |G|2 = |G0|2 = 2, and so the Sylow 2-subgroups of G have order 2. On the other hand,
G contains a subgroup P of order 2n−1 ≥ 4 by (b), a contradiction. Hence we may assume q ≥ 3 in
the affine case.

Let ḡ be a generator of Or(G0) ∼= Cr and let g ∈ G be an inverse image of order r of ḡ. Recall
by (6.8.2) that any power gi 6= g is conjugate to g in G/K = G0. But K is a normal r′-subgroup
of G, hence any such gi 6= g is also conjugate to g in G by [TZ2, Lemma 4.11]. Thus NG(〈g〉)
acts transitively on 〈g〉 r {1} and so also on the r − 1 nontrivial irreducible characters of 〈g〉. It
follows that any transitive permutation representation of NG(〈g〉) that is nontrivial on g has degree
at least r > |K|. Applying this remark to the conjugation action of NG(〈g〉) on K, we conclude
that g centralizes K.

Recall also that ϕj(1) = N0 = r for any j > 0, hence ϕj has r-defect 0 by (6.8.3). It follows

that ϕj(g) = 0 and Φj(g) is conjugate to diag(1, ε, ε2, . . . , εr−1) (over C) for a primitive rth root of
unity ε ∈ C. As K centralizes g, K fixes each of r one-dimensional eigenspaces of g in Φj , and so
(Φj)|K is a sum of one-dimensional representations. This holds for every j > 0, and also for j = 0
as K = Ker(Φ0). It follows by faithfulness of Φ that K is abelian. Now

K〈g〉/K = 〈ḡ〉 = Or(G0)CG0,

whence K〈g〉 is a normal subgroup of index r − 1 of G by (6.8.2). Also, K〈g〉 is abelian, as K is
abelian and [g,K] = 1. It follows by Ito’s theorem [Is, (6.15)] that the degree of any irreducible
character of G divides r − 1, and this contradicts the equality ϕ1(1) = r.

(iii) We have ruled out the affine case, and hence have that S := soc(G0) is a non-abelian simple
group. By Theorem 6.6, we know that S = AN0 acting on N0 points, or (up to an automorphism)
S = PSLm(s) acting on

(6.8.4) N0 =
sm − 1

s− 1
=
qn − 1

q − 1

lines of Fms . As in the proof of Proposition 6.2, (6.8.4) and n ≥ 3 imply that m ≥ 3.
Here we handle the case q = 2; in particular, K = 1 and G = G0. If S = AN0 , then we can take

x ∈ S to be a (N0−2)-cycles, for which we have ϕ(x)+1 = 3, contradicting (c). Hence S = PSLm(s)
and (6.8.4) holds. Applying Proposition 6.2 to ψ := ϕ|S + 1S , we see that (m, s) = (n, q), that is,
soc(G) = SLn(2), and the statement follows.

(iv) From now on we may assume q ≥ 3; in particular, N0 ≥ 13 and N0 6= 15, whence m ≥ 3 and
(m, s) 6= (3, 2), (4, 2) in (6.8.4). Let P (S) denote the smallest integer among the indices of proper
subgroups of S. By [KlL, Table 5.2.A],

(6.8.5) P (S) = N0 > (q − 1)2 > |K|.
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Furthermore, using [GT, Lemma 6.1], [TZ1, Theorem 3.1], and also [Atlas] when S = PSL3(4) and
PSL4(3), we see that

(6.8.6)
Any nontrivial projective irreducible complex representation of S

of degree dividing N0 is a linear representation of Ŝ of degree N0,

moreover, such a representation exists only when S = PSLm(s), in which case Ŝ = SLm(s).

(v) Recalling S = soc(G0), we let M > K be the normal subgroup of G such that M/K = S.
Certainly, K fixes every irreducible character of K. Now, (6.8.5) implies that the permutation
action of M on Irr(K) is trivial, that is, every α ∈ Irr(K) is M -invariant.

Let i > 0 and let α be any irreducible constituent of (ϕi)|M . By the previous result and by
Clifford’s theorem, α|K = cγ for some c ∈ Z≥1 and γ ∈ Irr(K). Again by Clifford’s theorem, there
is some projective irreducible complex representation Θ of S of degree c, and note that c divides
ϕi(1) = N0. Hence, by (6.8.6), c = 1 or c = N0.

Suppose we are in the former case: c = 1. Then α(1) = γ(1) ≤
√
|K|, whence α(1) < q − 1 by

(6.8.1). On the other hand,
ϕ1(1)/α(1) ≤ [G : M ] = |G0/S|.

If S = AN0 , then we get (qn − 1)/(q − 1) = ϕi(1) < 2(q − 1), a contradiction since n ≥ 3. Thus
S = PSLm(s) with m ≥ 3. Since G0 is acting doubly transitively on N0 lines and has socle S, we
have that |G0/S| ≤ gcd(m, s− 1)e, if s = re. It follows that

(6.8.7) N0 =
sm − 1

s− 1
< (q − 1) · gcd(m, s− 1)e.

The assumption n ≥ 3 implies that q − 1 <
√
N0. If m ≥ 5, then

gcd(m, s− 1)e ≤ s(s− 1)/2 <
√

(sm − 1)/(s− 1) =
√
N0,

contradicting (6.8.7). If m = 4, then as s ≥ 3 we have

gcd(m, s− 1)e ≤ 4(s/2) = 2s <
√

(s4 − 1)/(s− 1) =
√
N0,

again a contradiction. Suppose m = 3. If s 6= 4, 8, then s = re ≥ 3e and so

gcd(m, s− 1)e ≤ 3(s/3) = s <
√

(s3 − 1)/(s− 1) =
√
N0,

again a contradiction. We also reach a contradiction with (6.8.7) when s = 2, 8. In the remaining
case (m, s) = (3, 4), whence N0 = 21, implying that (n, q) = (3, 4) and (6.8.7) is violated again.

We have shown that c = N0, and so γ(1) = α(1)/c ≤ 1. Thus every irreducible constituent of
each (ϕi)|K has degree 1 when i > 0. The same holds for i = 0 as K = Ker(Φ0). Thus every
irreducible constituent of Φ|K has degree 1, whence K is abelian since Φ is faithful. Now M acts
on K via conjugation, with K acting trivially. Using (6.8.5), we conclude that M acts trivially on
K, i.e. K ≤ Z(M). Also, we have shown that α(1) = N0, i.e. (Φi)|M is irreducible.

(vi) Now we consider L := G(∞). Certainly, LCM (as SCG0 ≤ Aut(S)), and so K ∩L ≤ Z(L).
Also, since S is simple, we must have that S is a composition factor of L, whence KL = M and
L/(K ∩ L) = KL/K = M/K ∼= S. Thus L is a cover of S.

As KL = M and K = Ker(Φ0), (Φ0)|L is irreducible of degree N0−1. Next, recall that for i > 0,
(Φi)|M is irreducible of degree N0, and K ≤ Z(M) acts via scalars in Φi. Let di denote the common
degree of irreducible constituents Φij of (Φi)|L. If di = 1, then Φij = 1L as L is perfect. Thus
(Φi)|L is trivial, and so Φi cannot be irreducible over M = KL. So di > 1 and Φij is a nontrivial
irreducible projective representation of S. By (6.8.6), di = N0, S = PSLm(s), and (Φi)|L comes

from a linear irreducible representation of Ŝ = SLm(s). The same is true for i = 0. Ignoring the

faithfulness of Φ (only in this paragraph of the proof), we may therefore replace L by Ŝ = SLm(s).
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Applying [TZ1, Theorem 3.1], we see that each (Φi)|L is a Weil representation. Now we can apply
Proposition 6.2 to ψ = ϕ|L + 1L to obtain that (m, s) = (n, q), that is L = SLn(q). We then apply
Theorem 6.1 to the same ψ to conclude that ψ = τn, the total Weil character of L. As τn is faithful,
we also see that G(∞) = SLn(q).

Recall that K = Ker(Φ0) centralizes L and that Φ0 embeds G/K in SN0 . As n ≥ 3, we see
that no element of G can induce a graph automorphism of L (modulo the inner, diagonal, and
field automorphisms). Next, the diagonal automorphisms of L fix each of τ in, but no nontrivial
field automorphism can fix τ1n (the one corresponding to a faithful character of Z(GLn(q)) when we
extend τn to GLn(q)). Thus G can induce only inner and diagonal automorphisms of L, that is,

(6.8.8) G/CG(L) ≤ PGLn(q).

We now return to the assumption that G ≤ SN with N = qn − 1. Since ϕ|L = τn − 1L, we
see that L = SLn(q) acts transitively in the natural permutation action of SN . Applying Lemma
6.4(ii), we see that (after twisting with the inverse-transpose automorphism, equivalently, replacing
W by the dual module, if necessary), this is the permutation action of L on the set Ω of nonzero
vectors of W = Fnq . Consider any h ∈ G. By (6.8.8), the conjugation by h induces an inner-diagonal
automorphism of L = SL(W ). On the other hand, the action of L on Ω extends to the natural
action of GL(W ) on Ω. Hence we can find h′ ∈ GL(W ) < SN such that h and h′ induce the same
automorphism of L. Thus (h′)−1h ∈ SN centralizes L, whence it belongs to GL(W ) by Lemma 6.3.
We conclude that h ∈ GL(W ), i.e. G ≤ GL(W ). �

7. Weil representations of SL2(q)

As before, let q = pf be a power of a prime p, and let L := SL(W ) ∼= SL2(q) for W = F2
q . To deal

with the case n = 2, we will need some more technical results, which are also interesting in their
own right.

Lemma 7.1. Let V = Cq2 and let Φ : G→ GL(V ) be a faithful representation such that

(a) Tr(Φ(g)) ∈ {1, q, q2} for all g ∈ G.

(b) Φ ∼= ⊕q−2i=0Φi ⊕ 2 · 1G, where the Φi ∈ Irr(G) are pairwise inequivalent and nontrivial.

Then |G| = |GL2(q)|.

Proof. Let a := #{g ∈ G | Tr(Φ(g)) = q} and let b := #{g ∈ G | Tr(Φ(g)) = 1}, so that
|G| = a+ b+ 1 by (a). The assumption (b) implies that

2 = [ϕ, 1G]G =
q2 + aq + b

a+ b+ 1
, q + 3 = [ϕ,ϕ]G =

q4 + aq2 + b

a+ b+ 1
,

if ϕ = Tr(Φ). Solving for a and b, we obtain a = q3 − 2q − 1, b = q4 − 2q3 − q2 + 3q, and so
|G| = (q2 − 1)(q2 − q) = |GL2(q)|. �

The total Weil character τ2 = τ2,q of GL2(q), cf. (6.0.1), decomposes as 2 ·1GL2(q) +
∑q−2

i=0 τ
i
2, with

τ i2 ∈ Irr(GL2(q)) of degree q+1−δi,0 and pairwise distinct. The smaller-degree character τ02 restricts

to the Steinberg character St of L. Furthermore, if 1 ≤ i ≤ (q − 2)/2 then τ i2 and τ q−1−i2 restrict
to the same irreducible character (denoted χi in [Do, §38]) of L = SL2(q), and those b(q − 2)/2c
characters are pairwise distinct. If 2 - q, then (τ

(q−1)/2
2 )|L is the sum of two distinct irreducible

characters (denoted ξ1, ξ2 in [Do, §38]) of degree (q+ 1)/2. We will refer to these characters St, χi,
and also ξ1, ξ2 when 2 - q, as irreducible Weil characters of SL2(q), and τ2 (or rather (τ2)|L) as the
total Weil character of SL2(q).

Now we prove an analogue of Theorem 6.1 for SL2(q).
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Theorem 7.2. Let p be any prime, q be any power of p, q ≥ 4, and let L = SL2(q). Suppose ψ is
a reducible complex character of L such that

(a) ψ(1) = q2;
(b) ψ(g) ∈ {qi | 0 ≤ i ≤ 2} for all g ∈ L;
(c) [ψ, 1L]L = 2; and
(d) every irreducible constituent of ψ − 2 · 1L is among the irreducible Weil characters St, χi,

0 ≤ i ≤ (q − 2)/2, and also ξ1, ξ2 when 2 - q, of L.

Then ψ is the total Weil character τ2 of L.

Proof. (i) We will use the character tables of SL2(q), Theorem 38.1 of [Do] for 2 - q and Theorem
38.2 of [Do] for 2|q. Write

(7.2.1) ψ =

{
2 · 1L + a · St +

∑(q−3)/2
i=1 biχi + c1ξ1 + c2ξ2, 2 - q,

2 · 1L + a · St +
∑(q−2)/2

i=1 biχi, 2|q,

with all coefficients a, bi, ci ∈ Z≥0. Evaluating ψ at an element x of order q + 1, we see by (b) that

ψ(y) = 2 − a ≤ 2 is a q-power, which is possible only when a = 1, since q ≥ 3. As before, let δ̃
denote a primitive (q − 1)th root of unity in C.

First suppose that 2|q. Then
∑

i bi = (q2− q−2)/(q+1) = q−2 by degree comparison in (7.2.1).
Next, we fix an element y ∈ L of order q − 1, and for 1 ≤ l ≤ (q − 3)/2 we have

ψ(yl) = 3 +

(q−2)/2∑
i=1

bi
(
δ̃il + δ̃−il

)
.

It follows that

(q−2)/2∑
l=1

ψ(yl) = 3(q − 2)/2 +

(q−2)/2∑
i=1

bi

((q−2)/2∑
l=1

(
δ̃il + δ̃−il

))
= 3(q − 2)/2−

(q−2)/2∑
i=1

bi = (q − 2)/2.

As each ψ(yl) is a q-power, we must have that ψ(yl) = 1 for all 1 ≤ l ≤ (q − 2)/2. Thus, the
polynomial

f(t) =

(q−2)/2∑
i=1

bi
(
tq−1−i + ti

)
+ 2 ∈ Q[t]

of degree q−2 has all δ̃l, 1 ≤ l ≤ q−2 as roots. Since f(1) = 2
∑(q−2)/2

i=1 bi+2 = 2q−2, we conclude
that f(t) = 2(tq−1 − 1)/(t− 1), i.e. bi = 2 for all i, and so ψ = τ2, as stated.

(ii) Assume now that 2 - q. Then
∑

i bi + (c1 + c2)/2 = (q2 − q − 2)/(q + 1) = q − 2 by degree
comparison in (7.2.1). Evaluating ψ at an element u ∈ L of order p and another element v ∈ L of
order p that is not conjugate to u, we obtain

ψ(u) = 2 +
∑
i

bi +
c1 + c2

2
+
√
εq
c1 − c2

2
, ψ(v) = 2 +

∑
i

bi +
c1 + c2

2
−√εq c1 − c2

2
,

where ε := (−1)(q−1)/2. Thus ψ(u) + ψ(v) = 2q. As each of ψ(u), ψ(v) is a q-power, we must have
that ψ(u) = q, whence c1 = c2 =: c, and so

(q−3)/2∑
i=1

bi + c = q − 2.
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Next we evaluate ψ at the central involution j of L:

ψ(j) = 2 + q + (q + 1)
∑
i

bi(−1)i + cε(q + 1).

In particular,

q2 − ψ(j) = ψ(1)− ψ(j) = 2(q + 1)
(∑

2-i

bi +
1− ε

2
c
)

is divisible by 2(q + 1). On the other hand, ψ(j) ∈ {1, q, q2}, so ψ(j) 6= q, and either

(7.2.2) ψ(j) = q2,
∑
2-i

bi +
1− ε

2
c = 0,

∑
2|i

bi +
1 + ε

2
c = q − 2,

or

(7.2.3) ψ(j) = 1,
∑
2-i

bi +
1− ε

2
c =

q − 1

2
,
∑
2|i

bi +
1 + ε

2
c =

q − 3

2
.

As above, we fix an element y ∈ L of order q − 1, and for 1 ≤ l ≤ (q − 3)/2 we then have

ψ(yl) = 3 +

(q−3)/2∑
i=1

bi
(
δ̃il + δ̃−il

)
+ 2c(−1)l.

It follows that
(q−3)/2∑
l=1

ψ(yl) = 3(q − 3)/2 +

(q−3)/2∑
i=1

bi

((q−3)/2∑
l=1

(
δ̃il + δ̃−il

))
+ 2c

(q−3)/2∑
l=1

(−1)l

= 3(q − 3)/2 +

(q−2)/2∑
i=1

bi
(
−1− (−1)i

)
− c(1 + ε)

= 3(q − 3)/2− 2
(∑

2|i

bi + c(1 + ε)/2
)
.

In the case of (7.2.2), 1 ≤
∑

l ψ(yl) = 3(q− 3)/2− 2(q− 2) = (5− q)/2 ≤ 0, a contradiction. Hence

(7.2.3) holds, and we have that
∑(q−3)/2

l=1 ψ(yl) = 3(q − 3)/2− (q − 3) = (q − 3)/2. As each ψ(yl) is

a q-power, we must have that ψ(yl) = 1 for all 1 ≤ l ≤ (q − 3)/2. Thus, the polynomial

g(t) =

(q−3)/2∑
i=1

bi
(
tq−1−i + ti

)
+ 2ct(q−1)/2 + 2 ∈ Q[t]

of degree q − 2 has all δ̃l 6= ±1, 0 ≤ l ≤ q − 2, as roots, and so g(t) = (at+ b)(tq−1 − 1)/(t2 − 1) for

some a, b ∈ Q. Since b = g(0) = 2 and (a + b)(q − 1)/2 = g(1) = 2
∑(q−3)/2

i=1 bi + 2c + 2 = 2q − 2,
we conclude that a = b = 2, g(t) = 2(tq−1 − 1)/(t− 1), i.e. bi = 2 for all i and c1 = c2 = 1, and so
ψ = τ2, as stated. �

Recall that a subgroup Y of a group X is a characteristic subgroup of X, Y charX, if φ(Y ) ≤ Y
for all φ ∈ Aut(X).

Proposition 7.3. Let q ≥ 4 be a prime power and let X be a finite group with a normal subgroup
K of order dividing q − 1 such that X/K ∼= S := PSL2(q). Then the following statements hold.

(i) K charX.
(ii) X contains a characteristic subgroup D such that D is quasisimple and D/Z(D) ∼= S.
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Proof. First we prove (i). Consider any φ ∈ Aut(X). Then φ(K)CX and so φ(K)K/K is a normal
subgroup of S of order dividing q−1. As S is simple of order > q−1, φ(K) = K, and so K charX.

To prove (ii), we proceed by induction on |K|, with the induction base being trivial. For the
induction base, as usual let P (S) denote the smallest index of proper subgroups of S = PSL2(q).
By [KlL, Table 5.2.A],

(7.3.1) P (S) ≥ q > |K|,

unless q = 9, for which we have P (S) = 6.

(a) First we consider the case where K is abelian. We claim that

(7.3.2) K ≤ Z(X).

Indeed, K centralizes K, and so the conjugation induces a permutation action of S = X/K on
K r {1}, of size q − 2. If q 6= 9, then (7.3.1) implies that any transitive permutation of S of degree
less than q is trivial, and thus any S-orbit on K has length 1, and so K ≤ Z(X) as stated. Consider
the case q = 9 and suppose that K 6≤ CX(K). Then K ∈ {C3

2 , C4 × C2, C8}, CX(K) = K (as
X/K = S is simple), and S = X/K embeds in Aut(K), which is either SL3(2) or solvable. This is
a contradiction, since S = PSL2(9) is simple of order 360 and |SL3(2)| = 168.

Now we take D := X(∞) charX. Then D has S as a composition factor, and so does KD, which
contains K. Since |K| < |S|, S must be a composition factor of KD/K. It follows that KD = X,
D/(K ∩D) ∼= KD/K = X/K = S. Since K ∩D ≤ Z(D) by (7.3.2), we see that D is a cover of S,
as desired.

(b) Now we may assume K is non-abelian, in particular, C := CX(K) is a proper characteristic
subgroup of X, and q ≥ 7. We aim to show that KC = X.

Consider the case q = 9. As K has order dividing 8 and K is non-abelian, K is D8 (dihedral) or
Q8 (quaternion). In both cases, X/C embeds in Aut(K), which is solvable. As S is a quotient of
X, it follows that S is a composition factor of C, and so the same holds for KC. As in (i), we infer
from this that KC = X, as stated.

Suppose now that q 6= 9. As C < K, there exists some 1 6= x ∈ K such that Y := CX(x) < X.
Then [X : Y ] ≤ |K| − 1 ≤ q − 2, and so [S : KY/K] = [X : KY ] ≤ q − 2. Hence (7.3.1)
implies that KY = X. Now K ∩ Y is a normal subgroup of Y of order dividing q − 1, and
Y/(K ∩Y ) ∼= KY/K = X/K = S. Note that |K ∩Y | < |K|, as otherwise Y = X, contradicting the
choice of x. Hence we may apply the induction hypothesis to Y and find a characteristic subgroup
R of Y that is a cover of S. As q 6= 4, 9, R = S, or 2 - q and R ∼= L := SL2(q). Now, (7.3.1) shows
that proper subgroups of S have index ≥ q. The same also holds for L. (Assume the contrary:
M < L and [L : M ] < q. Then q > [L : MZ] = [S : MZ/Z] for Z := Z(L), and so MZ = L by
(7.3.1). As M < L and |Z| = 2, we then have M ∩ Z = 1, and L = M × Z, a contradiction.) Thus
in either case proper subgroups of R have index ≥ q. As |K| < q, this implies that all R-orbits on
K have length 1, i.e. R ≤ C. Now R, and so KR, admits S as a composition factor. Arguing as
above, we see that X = KR = KC.

(c) We have shown that KC = X for a proper characteristic subgroup C that does not contain
K. It follows that |K ∩ C| < |K|, C/(K ∩ C) ∼= KC/K = X/K = S. By the induction hypothesis
applied to C, C contains a subgroup D charC that is a cover of S. As C charX, we conclude that
D charX, as desired. �

Now we can prove the main result of this section:

Theorem 7.4. Let q = pf ≥ 4 be a power of a prime p, and N := q2−1. Let G ≤ SN be a subgroup
with the following properties:
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(a) If Φ denotes the representation of SN on its natural permutation module CN , then

Φ|G = ⊕q−2i=0Φi ⊕ 1G,

where Φi ∈ Irr(G) have degree q + 1− δi,0 and all pairwise inequivalent.
(b) G0 := Φ0(G) embeds in Sq+1 as the subgroup PGL2(q) acting on N0 := q+1 lines of F2

q, in such
a way that Φ0 is the restriction to G0 of the representation of Sq+1 on its deleted permutation
module Cq.

(c) For every g ∈ G, Tr(Φ(g)) + 1 is a q-power.

Then G ∼= GL(W ) = GL2(q) for W = F2
q. Moreover, Φ|G is equivalent to the permutation action of

G on the set Ω of nonzero vectors of W .

Proof. (i) Let ϕ, respectively ϕi, denote the character of Φ, respectively Φi. Also, let K denote the
kernel of Φ0, so that G/K ∼= G0. By Lemma 7.1, |G| = |GL2(q)|, and by (b), G0

∼= PGL2(q). It
follows that

(7.4.1) |K| = q − 1.

Let S = soc(G0) ∼= PSL2(q). Using [TZ1, Theorem 3.1], and also [Atlas] when S = PSL2(9), we
can check that

(7.4.2)
Any nontrivial projective irreducible complex representation of S

of degree dividing N0 is a linear representation of L := SL2(q)
of degree N0, or N0/2 when 2 - q, or N0/3 when q = 5.

Let M > K be the normal subgroup of G such that M/K = S; note that

(7.4.3) |G/M | = gcd(2, q − 1)

as G/K = G0
∼= PGL2(q). By Proposition 7.3, M contains a subgroup D charM that is a cover of

S. As M CG, D is normal in G.

(ii) We also note that KD = M (as M/K ∼= S and S = D/Z(D)). Now, as K = Ker(Φ0), (Φ0)|D
is irreducible of degree N0 − 1.

Recall that, for any i > 0, Φi is irreducible of degree N0. Let di denote the common degree of
irreducible constituents Φij of (Φi)|D. If di = 1, then Φij = 1D as D is perfect. Thus (Φi)|D is
trivial. So every irreducible constituent Ψij of (Φi)|M is now irreducible over K, and so has degree at
most

√
q − 1 by (7.4.1). Together with (7.4.3), this implies that N0 ≤

√
q − 1 · gcd(2, q− 1) < q+ 1,

a contradiction. Thus di > 1.
In the case q = 5, |K| = 4, hence K is abelian, and part (a) of the proof of Proposition 7.3 shows

that we can take D = M (∞) = G(∞) (with the second equality following from (7.4.3)) and that
K ≤ Z(M). Thus K acts via scalars on Φi. Now, (7.4.3) shows that every Ψij has degree N0 or
N0/2 and it is irreducible over D, as M = KD. Thus di = N0 or N0/2 in this case.

Using (7.4.2) for q 6= 5, we now see that di = N0/2 or N0, and that every irreducible constituent
of (Φi)|D comes from a linear irreducible representation of L = SL2(q). The same is true for i = 0.
Ignoring the faithfulness of Φ (only in this paragraph of the proof), we may therefore replace D
by L = SL2(q). Applying [TZ1, Theorem 3.1], we see that each (Φi)|L is a sum of irreducible Weil
representations. Now we can apply Theorem 7.2 to ψ = ϕ|L + 1L to conclude that ψ = τ2, the total
Weil character of L. As τ2 is faithful, we also see that D = SL2(q).

(iii) As q ≥ 4, at least one irreducible constituent of degree N0 of τ2 (χi in the notation of
Theorem 7.2, and which corresponds to a faithful character of Z(GL2(q)) when we extend χi to
GL2(q)), is fixed by diagonal automorphisms but not by any nontrivial field automorphism of D.
Thus G can induce only inner and diagonal automorphisms of D, that is,

(7.4.4) G/CG(D) ≤ PGL2(q).
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We now return to the assumption that G ≤ SN with N = q2 − 1. Since ϕ|D = τ2 − 1D, we
see that D = SL2(q) acts transitively in the natural permutation action of SN . Applying Lemma
6.4(ii), we see that this is the permutation action of D on the set Ω of nonzero vectors of W = F2

q .
Consider any h ∈ G. By (7.4.4), the conjugation by h induces an inner-diagonal automorphism of
L = SL(W ). On the other hand, the action of L on Ω extends to the natural action of GL(W )
on Ω. Hence we can find h′ ∈ GL(W ) < SN such that h and h′ induce the same automorphism
of L. Thus (h′)−1h ∈ SN centralizes L, whence it belongs to GL(W ) by Lemma 6.3. We conclude
that h ∈ GL(W ), i.e. G ≤ GL(W ) ∼= GL2(q). Since |G| = |GL2(q)|, we have that G = GL(W ), as
stated. �

8. The structure of monodromy groups

Theorem 8.1. Let q be a power of a prime p, n ≥ 2, q ≥ 4 when n = 2, and let K be an extension
of Fq. Then for the geometric and arithmetic monodromy groups Ggeom and Garith of the local
system W(n, q) over Gm/K we have

Ggeom = Garith
∼= GLn(q),

with the groups acting on W(n, q)⊕Q`
∼= F?Q` as in its natural permutation action on the set Ω of

nonzero vectors of the natural module Fnq .

Proof. (i) Let G denote either of Ggeom and Garith when n ≥ 3, and G = Ggeom when n = 2, and

let Φ denote the representation of G on W(n, q)⊕Q`. By Corollary 4.6 and Lemma 5.1, G embeds
in SN for N := qn − 1 in such a way that Φ extends to the representation of SN on its natural
permutation module CN which we also denote by Φ.

Fix a character θ ∈ Char(q − 1) of order q − 1 and let Φi denote the representation of G on
Fθi . By Corollary 4.3 and Lemma 5.1, Φ0(G) embeds in SN0 for N0 := (qn − 1)/(q − 1) = A in
such a way that Φ0 extends to the representation of SN0 on its deleted natural permutation module
CN0−1. By Lemma 4.1, F1 is geometrically isomorphic to the hypergeometric sheaf H1, whence
G ≥ Ggeom is irreducible in Φ0, and Φ0(G) contains an element of order N0 with simple spectrum
(namely, the image of a generator of I(0)). Furthermore, Φ0(G) contains a p-subgroup of order
A − B = qn−1 (namely, the image of P (∞)). If in addition n = 2, then H1 is the Gross PGL2(q)
local system considered in [KT1, §13], and so G0 = PGL2(q) (acting on q+ 1 lines of F2

q). Next, for
any 1 ≤ i ≤ q− 2, by Lemma 4.1, Fθi is geometrically isomorphic to the hypergeometric sheaf Hθi ,
whence G ≥ Ggeom is irreducible in Φi (which has degree N0). Together with Theorem 4.8, this
ensures that (G,Φ) fulfills all the conditions (a)–(c) of Theorem 6.8 if n ≥ 3. Applying Theorem
6.8 when n ≥ 3, we obtain

SLn(q)CGgeom CGarith ≤ GLn(q),

with the groups acting on W(n, q)⊕Q` as in its natural permutation action on the set Ω of nonzero
vectors of the natural module W = Fnq .

When n = 2, we also apply Lemma 1.1 to see that the representations Φi of G have distinct
determinants and so are pairwise inequivalent for 0 ≤ i ≤ q − 2, and thus we have fulfilled all
the conditions (a)–(c) of Theorem 7.4. Applying Theorem 7.4, we obtain Ggeom = GL2(q), again

with the group acting on W(2, q)⊕Q` as in its natural permutation action on the set Ω of nonzero
vectors of the natural module W = F2

q . Now applying Lemma 7.1 to G = Garith we see that
|Garith| = |GL2(q)| = |Ggeom|, and so Garith = Ggeom.

(ii) It remains to show that Ggeom = GLn(q) when n ≥ 3. Here, L := SLn(q) is perfect, whence
Φi(L) is trivial. Note that

(8.1.1) GLn(q) = 〈L, g〉,
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for a regular semisimple element g of order qn−1, which acts on Ω cyclically and such that z = gN0 =
δ · 1W is a generator of Z(GLn(q)). Indeed, we can identify Fnq with Fqn to embed GL1(q

n) = F×qn
in GLn(q), and then take for g a generator F×qn . Hence, if ζ = ζN ∈ C× is a primitive N th root of
unity, then Φ(g) has simple spectrum, consisting of all powers of ζ. Now Φ(z) admits all powers

δ̃j of δ̃ = ζN0 , 0 ≤ j ≤ q − 2, as eigenvalues, each with multiplicity N0. Hence the corresponding
z-eigenspaces Vj are invariant under Φ(GLn(q)). By the definition of Weil representations [T, (1.1)],
V0 is the direct sum of the trivial representation and an irreducible representation, whose character
over L is τ0n, whereas each Vi with i > 0 is an irreducible representation, whose character over L

is τ jn. Thus the actions of Ggeom on V0, V1, . . . , Vq−2 are each equivalent to one of Φ0 ⊕ 1, and Φi,
1 ≤ i ≤ q − 2.

We will choose θ so that θ(det(g)) = δ̃ and view θ as a linear character of GLn(q) (trivial

on SLn(q)). Then g has determinant (−1)A+1δ̃j on Vj . It follows that GLn(q) has determinant
λj := θj(χ2)

A+1 on Vj . Now letting t := [GLn(q) : Ggeom], we have by (8.1.1) that Ggeom = 〈L, gt〉
and that t|(q − 1). In particular, the image of the determinantal character of Ggeom has index

divisible by t in µq−1 = 〈δ̃〉 < C×.
On the other hand, choosing χ := θ if 2 - A, and χ := θχ2 if 2|A, we see by Lemma 1.1 that

the determinant of Ggeom on Hχ is exactly Lθ, and so the determinantal image of Ggeom on Hχ
is the (full) image µq−1 of θ. Applying Lemmas 2.1 and 3.1, we see that the same is true for the
determinantal image of Ggeom on Fχ. This can happen only when t = 1. �

Corollary 8.2. Let q be a power of a prime p, n ≥ 2, q ≥ 4 when n = 2, and let K be an extension
of Fq. Then, for any χ ∈ Char(q−1), the geometric monodromy group Ggeom,χ of the hypergeometric
sheaf Hχ over Gm/K is the image of GLn(q) in one of its q − 1 irreducible Weil representations,
of degree (qn − 1)/(q − 1)− δχ,1, which are among the q − 1 nontrivial irreducible constituents Φi,
0 ≤ i ≤ q−2, of the permutation action of GLn(q) on the set of nonzero vectors of Fnq . In particular,
Ggeom,1

∼= PGLn(q).

Proof. By Lemma 4.1, Hχ is geometrically isomorphic to the summand Fχ of W(n, q). Hence the
first statement follows by applying Theorem 8.1, as Ggeom,χ is now some Φi(Ggeom), 0 ≤ i ≤ q − 2.
Among the nontrivial irreducible constituents of the total Weil representation of GLn(q), the deleted
permutation action on the lines of Fnq is the only one that has degree (qn − q)/(q − 1) = rank(H1),
and this representation factors through PGLn(q). Hence this representation must be realized by
H1, and the second statement follows. �

Recall that W(n, q) on Gm/Fq is arithmetically isomorphic to the local system F?Q`/Q`, by

Corollary 4.6. Next we determine the arithmetic monodromy group of F?Q` on Gm/K for K any
subfield of Fq.

Theorem 8.3. Let q = pf be a power of a prime p, n ≥ 2, q ≥ 4 when n = 2, and let K = Fq1/e
be a subfield of Fq for e|f . Then for the arithmetic monodromy group Garith,K of the local system

F?Q` on Gm/K we have

Garith,K
∼= GLn(q) o Ce ≤ GLne(K),

where the cyclic subgroup Ce can be identified with Gal(Fq/K), and with the groups acting on F?Q`

as in their natural permutation action on the set Ω of nonzero vectors of the natural module Fnq .

Proof. In the case e = 1 or f = 1, the statement follows from Theorem 8.1. Next, Garith,K is a
normal subgroup of Garith,Fp with cyclic quotient of order dividing f/e, and Garith,Fq = GLn(q) is a
normal subgroup of Garith,K with cyclic quotient of order dividing e. Hence it suffices to prove the
statement for e = f > 1, that is when K = Fp.



24 NICHOLAS M. KATZ AND PHAM HUU TIEP

By Lemma 5.1, G := Garith,Fp embeds in Sym(Ω) = SN for N := qn − 1 in such a way that the

action of G on F?Q` extends to the representation Φ of SN on its natural permutation module CN .
Furthermore, G contains the geometric monodromy group Ggeom = Garith,Fq = GLn(q) as a normal

subgroup; in particular, L := G(∞) ∼= SLn(q), and

LCG ≤ NSN (L).

Note that we can view Fnq as Fnfp and thus embed L acting on Ω in GLnf (p) acting on the set ΩFp

of N nonzero vectors of Fnfp . This embedding shows that

(8.3.1) NSN (L) ≥ GLn(q) o Gal(Fq/Fp) ∼= GLn(q) o Cf .

We claim that in fact equality holds in (8.3.1). Indeed, by Lemma 6.3, CSN (L) < GLn(q). Hence,
if equality does not hold in (8.3.1), then n ≥ 3 and NSN (L) contains an element h that induces the
transpose-inverse automorphism of L. In particular, h sends a point stabilizer

StabL(v) =

{(
1 x
0 X

)
| X ∈ SLn−1(q),

tx ∈ Fn−1q

}
to another point stabilizer in L, namely StabL(h(v)). However, since n ≥ 3,

h(StabL(v))h−1 =

{(
1 0
y Y

)
| Y ∈ SLn−1(q), y ∈ Fn−1q

}
does not fix any nonzero vector in Fnq , a contradiction.

It remains to show that G = NSN (L). Assume the contrary: G has index j > 1 in NSN (L). By
the above results, we have j|f and that

G = GLn(q) o Gal(Fq/Fpj ) = GLnf/j(p
j) ∩NSN (L).

Restricting Φ down to G via GLnf/j(p
j), we see that

(8.3.2) Tr(Φ(x)) + 1 is a power of pj for all x ∈ G.
Now we can find a prime divisor r of j, and apply Theorem 4.8(iii) to get an element g ∈ G with
Tr(Φ(g)) + 1 = pf0 , where f0 is the r′-part of f . This certainly contradicts (8.3.2). �

Corollary 8.4. Let q be a power of a prime p, n ≥ 2, q ≥ 4 when n = 2, and let K be an
extension of Fq. Then, for any divisor d of q−1, the geometric monodromy group Ggeom,d of the [d]?

Kummer pullback of the local system W(n, q) on Gm/K is the subgroup SLn(q)oC(q−1)/d of GLn(q)
(with C(q−1)/d being the cyclic group of diagonal matrices diag(x, 1, . . . , 1) where x ∈ µ(q−1)/d), or

equivalently, is the subgroup of GLn(q) on which det(q−1)/d = 1.

Proof. In the case d = 1, the statement holds by Theorem 8.1: Ggeom,1 = Ggeom = GLn(q). Next
we prove the statement for d = q − 1. When we do any [N ]? Kummer pullback, with N prime
to p, the new Ggeom,N after the pullback is a normal subgroup of the original Ggeom, such that
Ggeom/Ggeom,N is cyclic of order dividing N . [When N |(q − 1), K ⊇ Fq contains µN , and so the
same statement is also true for Garith.] In particular,

Ggeom,q−1 ≥ [Ggeom, Ggeom] = SLn(q).

Furthermore, in the case of W(n, q), by Lemma 1.1, the geometric determinants of the individual
summands Fχ, which for some summands have full order q − 1, all become trivial after the [q − 1]
Kummer pullback. It follows that Ggeom,q−1 has full index q − 1, and so Ggeom,q−1 = SLn(q).

For any divisor d of q − 1,

[Ggeom,1 : Ggeom,d] ≤ d, [Ggeom,d : Ggeom,q−1] ≤ (q − 1)/d.



RIGID LOCAL SYSTEMS AND FINITE GENERAL LINEAR GROUPS 25

Since [Ggeom,1 : Ggeom,q−1] = q − 1, equality must hold in both of these, and the statement follows
for d. �

9. Relation to work of Abhyankar

After the [qn − 1]? Kummer pullback, each of the q − 1 summands Fχ of W(n, q) becomes lisse
on A1/Fq, and the entire representation L1 ⊕W(n, q) is the local system on A1/Fq whose trace at
time v is the number of solutions of

T q
n − v(q−1)qn−1

T q
n−1

= T.

[This can be seen by taking our original equation T q
n−T qn−1

= T/u, multiplying through by u, then
writing u = vq

n−1 and writing the equation in terms of the new variable vT .] Since this pullback is
itself the pullback by [(qn− 1)/(q− 1)]? of [q− 1]?W(n, q), whose Ggeom is SLn(q) by Corollary 8.4,
we see that this pullback continues to have Ggeom = SLn(q) (since this Ggeom is a normal subgroup
of index dividing (qn − 1)/(q − 1) in SLn(q), a group generated by its p-Sylow subgroups).

The iterated Frobenius pullback [qn−1]? (i.e. the power qn−1 in the exponent of the variable v),
does not alter either Ggeom or Garith, so we can instead look at the new local system on Gm/Fq, call
it A(n), whose trace at time v is the number of solutions of

T q
n − vq−1T qn−1

= T,

and whose Ggeom remains SLn(q).
This new local system A(n) is the [q − 1] Kummer pullback of the local system, call it B(n), on

A1/Fq whose trace at time v is the number of solutions of

T q
n − vT qn−1

= T.

Thus Ggeom,A(n)(= SLn(q)) is a normal subgroup of Ggeom,B(n) of index dividing q− 1. But as B(n)

is lisse on A1/Fq, its Ggeom,B(n) is generated by its p-Sylow subgroups, and hence has no nontrivial
quotients of order dividing q − 1. Thus Ggeom,B(n) = SLn(q) as well. This in turn means that over

the rational function field Fq(v), the Galois group of the equation T q
n−vT qn−1

= T , or equivalently,
of the equation

T q
n−1 − vT qn−1−1 = 1

is SLn(q). Thus we have recovered case (i) of [Abh, Theorem 1.2].
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