
ON THE DIAMETERS OF MCKAY GRAPHS FOR FINITE SIMPLE

GROUPS

MARTIN W. LIEBECK, ANER SHALEV, AND PHAM HUU TIEP

Abstract. Let G be a finite group, and α a nontrivial character of G. The McKay
graph M(G,α) has the irreducible characters of G as vertices, with an edge from χ1 to
χ2 if χ2 is a constituent of αχ1. We study the diameters of McKay graphs for simple
groups G of Lie type. We show that for any α, the diameter is bounded by a quadratic
function of the rank, and obtain much stronger bounds for G = PSLn(q) or PSUn(q).

1. Introduction

For a finite group G, and a (complex) character α of G, the McKay graph M(G,α) is
defined to be the directed graph with vertex set Irr(G), there being an edge from χ1 to χ2

if and only if χ2 is a constituent of αχ1. The famous McKay correspondence [11] shows
that if G is a finite subgroup of SU2(C) and α is the corresponding 2-dimensional character
of G, then M(G,α) is an affine Dynkin diagram of type A, D or E. The purpose of this
paper is to initiate the study of McKay graphs for simple groups, focussing particularly
on their diameters.

By a classical result of Burnside and Brauer [3],M(G,α) is connected if and only if α is
faithful, and moreover in this case an upper bound for the diameter diamM(G,α) is given

by N − 1, where N is the number of distinct values of α. (Indeed, in this case
∑N−1

j=0 αj

contains every irreducible character of G. Taking β to be an irreducible constituent of
χ̄1χ2, we can find 0 ≤ j ≤ N − 1 such that

0 < [αj , β]G ≤ [αj , χ̄1χ2]G = [αjχ1, χ2]G,

i.e. a directed path of length j connects χ1 to χ2.)

An obvious lower bound for diamM(G,α) (when α(1) > 1) is given by log b(G)
logα(1) , where

b(G) is the largest degree of an irreducible character of G. One can do slightly better, by
observing that if d := diam(M,α), then

2α(1)d >

d∑
i=0

α(1)i ≥
∑

χ∈Irr(G)

χ(1) >

( ∑
χ∈Irr(G)

χ(1)2
)1/2

= |G|1/2.

It follows that

diamM(G,α) ≥ 1
2

log(|G|/4)

logα(1)
.

This bound is far from tight for many groups G. However, for finite simple groups we
make the following conjecture.
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Conjecture 1. There is an absolute constant C such that for any finite non-abelian simple
group G of Lie type, and any nontrivial irreducible character α of G,

diamM(G,α) ≤ C log |G|
logα(1)

.

Note that [9] gives the analogous bound for conjugacy classes: namely, for a nontrivial

conjugacy class S of a finite (non-abelian) simple group G, we have diamΓ(G,S) ≤ C log |G|
log |S| ,

where Γ(G,S) is the Cayley graph of G with respect to S.

In general, Conjecture 1 cannot hold for arbitrary faithful character of G. However, once
it holds for faithful irreducible characters, then it also holds for all faithful multiplicity-free
characters, albeit with a different constant C. To see this, note that Theorem 1.1 of [10]
implies that the number rm(G) of irreducible characters of degree m of a non-abelian finite
simple group G satisfies rm(G) = o(m1+ε) for any fixed ε > 0. This implies that G has at
most mc irreducible characters of degree at most m, where c is an absolute constant. Now
let β be a faithful multiplicity-free character of G, and let α be an irreducible constituent
of β of maximal degree. Then β(1) ≤ α(1)c+1, so assuming Conjecture 1 we obtain

diamM(G, β) ≤ diamM(G,α) ≤ C log |G|
logα(1)

≤ C(c+ 1)
log |G|

log β(1)
.

In this paper we prove Conjecture 1 for many families of simple groups of Lie type.

Theorem 2. There is an absolute constant C such that diamM(G,α) ≤ Cr2 for any
finite simple group G of Lie type of rank r and any nontrivial irreducible character α of
G. Hence Conjecture 1 holds for simple groups of Lie type of bounded rank.

Our proof of Theorem 2 shows that in fact one can take C = 489.

Note that the character covering number ccn(G) of a finite simple group G was defined
by Arad, Chillag and Herzog [1] as the minimal positive integer m such that, for any
non-trivial irreducible character α of G, αm contains all irreducible characters of G as
constituents. It is proved in [1] that ccn(G) is bounded above by an explicit quadratic
function of k(G), the number of conjugacy classes of G. For G of Lie type of rank r over
the field with q elements, k(G) is roughly qr [5], yielding ccn(G) = O(q2r).

Note that for any finite non-abelian simple group G we have

D(G) := max
1G 6=α∈Irr(G)

diamM(G,α) ≤ ccn(G) ≤ 2D(G)(k(G)− 1).

Indeed, if ccn(G) = N , then, for any nontrivial α ∈ Irr(G), αN contains all χ ∈ Irr(G),
and so, as explained above, diamM(G,α) ≤ N . Conversely, suppose diamM(G,α) = D.
By Burnside’s lemma, the number of real-valued irreducible characters of G is equal to
the number of real conjugacy classes of G, which is at least 2 since |G| is even. Hence
we can find a nontrivial real-valued character β ∈ Irr(G). Now, from 1G we can get to
β by a path of length 1 ≤ l ≤ D in M(G,α), i.e. αl contains β, whence α2l contains

1G. By [1, Corollary 1.4(b)], α2l(k(G)−1) contains every irreducible character of G. Hence,

α2D(G)(k(G)−1) contains every irreducible character of G by [1, Lemma 1.3(a)].

Moreover, if G is of Lie type, then, choosing β to be the Steinberg character St of G,
we then have that β3 contains every irreducible character of G by Proposition 2.1 (below),
whence the same holds for α3l. This shows that

D(G) ≤ ccn(G) ≤ 3D(G)

in this case. As a consequence, our bound in Theorem 2 on the diameters of all McKay
graphs M(G,α) yields a much stronger bound ccn(G) ≤ 1467r2 for any simple group of
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Lie type of rank r. We will return to the problem of bounding ccn(G) in a forthcoming
paper.

For classical groups of unbounded rank, we are able to handle the projective special
linear and unitary groups PSLεn(q) (with PSL+ = PSL and PSL− = PSU), where q is
large compared to n. The proof uses major new advances in the theory of character
ratios, taken from [2, 12].

Theorem 3. There exist an absolute constant C and a function g : N→ N such that the
following holds. If G = PSLεn(q) with n ≥ 2, ε = ±, and q > g(n), then

diamM(G,α) < C
log |G|

logα(1)
,

for all nontrivial irreducible characters α of G.

As one can see from our proof, C can be taken to be 15, and g can also be made explicit.

Theorem 3 gives rise to the following extension.

Corollary 4. With the function g(n) and C as in Theorem 3, we have

diamM(G,α) < 2.5C
log |G|

logα(1)
,

for any simple group G = PSLεn(q) with n ≥ 2, ε = ±, q > max{g(n), 11}, and for any
faithful multiplicity-free character α of G.

For other types of classical groups of unbounded ranks, we have not yet been able to
prove the conjecture, but we do have results bounding the diameter by a linear function of
the rank. These results, which require much more work, as well as new character bounds,
will be discussed in a forthcoming paper.

As for alternating groups G = An, a theorem of Zisser [15] shows that ccn(An) =
n − d

√
ne for every integer n ≥ 6. This obviously implies diamM(An, α) ≤ n − d

√
ne.

Nevertheless, we offer (in §4) a short proof of Theorem 5 giving a weaker upper bound
4n− 4, which is still of the right magnitude; moreover, various ideas of the proof can and
will be applied in a forthcoming paper to bound diamM(G,α) for several further families
of simple groups.

This paper is organized as follows. In Section 2 we prove Theorem 2. Section 3 is
devoted to the proof of Theorem 3 and Corollary 4, using new developments in character
bounds (see [2, 12]). In Section 5 we briefly discuss the diameter of McKay graphs for
quasi-simple groups.

2. Preliminaries and groups of bounded rank

Our proof uses the following results, taken from [7] and [6].

Proposition 2.1. Let G be a finite simple group of Lie type, and let St denote the Steinberg
character of G. Then provided G is not a unitary group in odd dimension, St2 contains
every irreducible character of G as a constituent. In all cases, St3 contains every irreducible
character.

Proof. The first statement is [7, Theorem 1.2]. Consider the exceptional case G =
PSUn(q) with 2 - n ≥ 3. Then, again by [7, Theorem 1.2], St2 contains all χ ∈ Irr(G) but
the unique unipotent character α of degree (qn − q)/(q + 1). Let χ ∈ Irr(G) and suppose
that St · χ̄ is a multiple of α:

St · χ̄ = kα



4 MARTIN W. LIEBECK, ANER SHALEV, AND P. H. TIEP

for some k ∈ Z. Then k = St(1)χ(1)/α(1) 6= 0, and so α(t) = St(t) · χ̄(t)/k = 0 for any
transvection t ∈ G. However, α(t) = −(qn − q(−1)n)/(q + 1) 6= 0 by [14, Lemma 4.1], a
contradiction. Hence St · χ̄ contains some character β ∈ Irr(G) r {α}. It follows that

0 < [St · χ̄, β]G ≤ [St · χ̄, St2]G = [St3, χ]G,

i.e. χ is an irreducible constituent of St3.

A similar argument as above shows that St3 contains all irreducible characters of G, for
any simple group G of Lie type.

Proposition 2.2. [6] Let G be a finite simple group of Lie type over Fq, and let 1 6= g ∈ G.
Then for any χ ∈ Irr(G),

|χ(g)|
χ(1)

≤ min

(
3
√
q
,

19

20

)
.

We can now prove Theorem 2. Let G be a simple group of Lie type over a field Fq (of
characteristic p) of rank r, and let Gss denote the set of semisimple elements of G. Recall
(see [4, 6.4.7]) that the values of the Steinberg character St are

St(g) =

{
εg|CG(g)|p, if g ∈ Gss,
0, if g 6∈ Gss,

(2.1)

where εg = ±1.

Lemma 2.3. There is an absolute constant D such that for any l ≥ Dr2 and any χ ∈
Irr(G), we have [χl, St]G 6= 0. Indeed, D = 163 suffices.

Proof. By (2.1),

[χl, St]G =
1

|G|
∑

g∈Gss
εgχ

l(g)|CG(g)|p

=
χl(1)

|G|

(
|G|p +

∑
16=g∈Gss

εg

(
χ(g)
χ(1)

)l
|CG(g)|p

)
.

(2.2)

Hence [χl, St]G 6= 0 provided Σl < |G|p, where

Σl :=
∑

16=g∈Gss

∣∣∣∣χ(g)

χ(1)

∣∣∣∣l |CG(g)|p.

Note that |G| < q4r
2
. Assume first that q > 9. Then Proposition 2.2 implies that Σl < |G|p

provided q4r
2 · (3/q1/2)l < 1, which holds if l ≥ 96r2. For q ≤ 9 we need q4r

2 · (19/20)l < 1,
and this holds when l ≥ 163r2. �

Now let 1 6= α ∈ Irr(G). It follows from Lemma 2.3 and Proposition 2.1 that α3Dr2

contains all irreducible characters of G. Hence, given any two χ1, χ2 ∈ Irr(G),

0 6=
[
α3Dr2 , χ̄1χ2

]
G

=
[
α3Dr2χ1, χ2

]
G
,

i.e. a directed path of length ≤ 3Dr2 connects χ1 to χ2 in M(G,α). We conclude that
diamM(G,α) ≤ 3Dr2, completing the proof of Theorem 2.

3. Projective special linear and unitary groups

Throughout this section, which is devoted to prove Theorem 3, let G = PSLεn(q) with
ε = ±. For a semisimple element g ∈ Gss, let ĝ be a preimage of g in SLεn(q), and define
ν(g) = supp(ĝ), the codimension of the largest eigenspace of ĝ over F̄q.

We shall need the following bound for character ratios of semisimple elements, which
follows from the deep results in [2, 12].
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Theorem 3.1. There is a function f : N → N such that for any g ∈ Gss with s = ν(g),
and any χ ∈ Irr(G), we have

|χ(g)| < f(n)χ(1)1−
s
n .

Proof. Let G = SLn(K), K = F̄q be the ambient algebraic group with G = GF /Z(GF ),

where F is a Frobenius endomorphism. Then CG(ĝ) = L := L̃∩G, where L̃ =
∏m
i=1 GLni(K),

1 ≤ n1 ≤ · · · ≤ nm, and
∑m

i=1 ni = n. Note that ν(g) = s = n−nm; and that L is F -stable
(but not necessarily split).

We now apply [12, Cor. 1.11(c)] (which is an extension of [2, Thm. 1.1]). That gives a
function f : N→ N such that for any χ ∈ Irr(G),

|χ(g)| < f(n)χ(1)α(L),

where α(L) is the maximum value of dimuL

dimuG
over nontrivial unipotent elements u ∈ L (and

α(L) = 0 if L is a torus). Note that the function f(n) can be chosen to be explicit; an

explicit choice for f(n) is given in [12, 1.28] with the main term of (n!)5/2. Although this
choice may seem to be inflated, it is noted in [2, Remark 1.2(iii)] that any choice of f(n)

should be at least b(Sn) > e−1.3
√
n
√
n!.

Let G̃ = GLn(K) and let α(L̃) be the maximum value of dimuL̃

dimuG̃
over nontrivial unipotent

elements u ∈ L̃ (and α(L̃) = 0 if L̃ is a torus). It is easy to see that α(L) = α(L̃).

Furthermore, α(L̃) ≤ nm
n by [2, Thm. 1.10]. (Note that this bound is only stated for

GLn(q) in [2, Theorem 1.10], but its proof applies to bound α(L̃) for any proper Levi

subgroup L̃ of the algebraic group G̃.) Hence α(L) ≤ n−s
n , and the conclusion follows. �

The next lemma gives some properties of elements of G of support s.

Lemma 3.2. For 1 ≤ s < n, define Ns(G) = {g ∈ Gss : ν(g) = s} and let ns(G) :=
|Ns(G)|.

(i) If g ∈ Ns(g) and s < n
2 then |CG(g)|p < q

1
2
n2+s2−ns.

(ii) If g ∈ Ns(g) and s ≥ n
2 then |CG(g)|p < q

1
2
(n2−ns).

(iii)
∑

n−1≥s≥n/2 ns(G) < |G| < qn
2−1.

(iv) If s < n/2, then ns(G) < cqs(2n−s)+n−1, where c is an absolute constant that can
be taken to be 44.1.

Proof. (i) Let g ∈ Ns(G) with s < n
2 . Then ĝ = diag(λIn−s, X) for some λ ∈ F∗qu (where

u = 1 if ε = + and u = 2 if ε = −) and a suitable s× s-matrix X, and one can see that

GLεn−s(q) ≤ CGLn(q)(ĝ) ≤ GLεn−s(q)×GLεs(q). (3.1)

Now the statement follows, since |CG(g)|p ≤ |CGLεn(q)
(ĝ)|p.

(ii) Let g ∈ Ns(G) with s ≥ n
2 . Then

CGLεn(q)
(ĝ) =

t∏
i=1

GLεidi(q
ki),

where n − s = d1 ≥ d2 ≥ . . . ≥ dt ≥ 1 and
∑t

i=1 diki = n. Hence, |CGLεn(q)
(ĝ)|p = qD,

where

D :=

t∑
i=1

kidi(di − 1)/2 =
( t∑
i=1

kid
2
i − n

)
/2.

Using the obvious inequality x2 + y2 < (x + 1)2 + (y − 1)2 when x ≥ y, we observe that,
over all m-tuples (x1 ≥ x2 ≥ . . . ≥ xm) of integers 0 ≤ xi ≤ d1 and with fixed

∑m
i=1 xi,
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i=1 x

2
i is maximized when (x1, x2, . . . , xm) is (d1, d1, . . . , d1, e, 0, . . . , 0) with 0 ≤ e < d1.

Applying this observation to

(x1, x2, . . . , xm) =
(
d1, . . . , d1︸ ︷︷ ︸
k1 times

, d2, . . . , d2︸ ︷︷ ︸
k2 times

, . . . , dt, . . . , dt︸ ︷︷ ︸
kt times

)
(and m =

∑t
i=1 ki), we see that

t∑
i=1

kid
2
i ≤ ad21 + b,

where n = ad1 + b with 0 ≤ b < d− 1. It follows that

2D ≤ ad1(d1 − 1) < ad21 ≤ nd1 = n(n− s),

and we are done as in (i).

(iii) This is obvious, since |G| ≤ |SLεn(q)| < qn
2−1.

(iv) By [8, Lemma 4.1],

9

32
qn

2
< |GLn(q)| < |GUn(q)| ≤ 3

2
qn

2
.

It now follows from (3.1) that

|gG| ≤ |ĝGLεn(q)| = [GLεn(q) : CGLεn(q)
(ĝ)]

≤ [GLεn(q) : GL±n−s(q)] <
(3/2)qn

2

(9/32)q(n−s)2
= 16

3 q
s(2n−s)

for any g ∈ Ns(G). Since the total number of conjugacy classes in G is at most 8.26qn−1

by Propositions 3.6 and 3.10 of [5], the statement follows. �

Lemma 3.3. Let 1 6= χ ∈ Irr(G), and for 1 ≤ s < n, let gs ∈ Ns(G) be such that |χ(gs)|
is maximal. For l ≥ 1, define

∆l :=
∑

1≤s<n/2

cqns+
3n
2
−1
∣∣∣∣χ(gs)

χ(1)

∣∣∣∣l +

n−1∑
n/2≤s<n

qn
2− 1

2
n(s−1)−1

∣∣∣∣χ(gs)

χ(1)

∣∣∣∣l ,
with c as in Lemma 3.2. If ∆l < 1, then [χl, St]G 6= 0.

Proof. As in the proof of Lemma 2.3, we have [χl, St]G 6= 0 as long as Σl < |G|p, where

Σl :=
∑

16=g∈Gss

∣∣∣∣χ(g)

χ(1)

∣∣∣∣l |CG(g)|p.

Using Lemma 3.2, we have

Σl ≤
n−1∑
s=1

ns(G)

∣∣∣∣χ(gs)

χ(1)

∣∣∣∣l |CG(g)|p

≤
∑

1≤s<n
2

cqs(2n−s)+n−1
∣∣∣∣χ(gs)

χ(1)

∣∣∣∣l q 1
2
n2+s2−ns +

∑
n/2≤s<n

qn
2−1

∣∣∣∣χ(gs)

χ(1)

∣∣∣∣l q 1
2
(n2−ns)

= |G|p∆l,

where ∆l is as in the statement of the lemma. The conclusion follows. �
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Proof of Theorem 3

Adopt the notation of Lemma 3.3. By Theorem 3.1, for any χ ∈ Irr(G),

|χ(gs)| < f(n)χ(1)1−
s
n .

Hence for l ≥ 1,

∆l < f(n)l

 ∑
1≤s<n/2

cqns+
3n
2
−1χ(1)−sl/n +

∑
n/2≤s<n

qn
2− 1

2
n(s−1)−1χ(1)−sl/n

 . (3.2)

Now we choose

l = 5
log |G|

logχ(1)
= 5

logq |G|
logq χ(1)

.

We claim that

8(n+ 2) ≥ l > 3n2

logq χ(1)
. (3.3)

This is obvious if G = PSL2(q) is simple. If G = PSLn(q) with n ≥ 3, then by [13,
Theorem 1.1],

χ(1) > qn−1, on the other hand, qn
2−1 > |G| > qn

2−2

(where the last inequality follows from [8, Lemma 4.1(ii)]), and so (3.3) holds. If G =
PSUn(q) with n ≥ 3, then again by [13, Theorem 1.1],

χ(1) > qn−2, on the other hand, qn
2−1 > |G| > qn

2−3,

(where the last two inequalities can be checked using the proof of [8, Lemma 4.1(iv)]), and
so (3.3) holds.

Now (3.3) implies that χ(1)−sl/n < q−3ns. Hence the first summand inside the paren-
thesized part of (3.2) is at most

c
∑

1≤s<n/2

q3n/2−1−2ns < cq−n/2−1
∞∑
j=0

1

q2nj
<

16c

15
q−n/2−1.

The second summand inside the parenthesized part of (3.2) is at most∑
n/2≤s<n

qn
2−7ns/2+n/2−1 <

n

2
q−3n

2/4+n/2−1 ≤ n

2
q−n−1 < q−n/2−1.

Since c ≤ 44.1, it follows that

∆l < f(n)l
(

16c

15
+ 1

)
q−n/2−1 < f(n)l

(
49

q

)n/2+1

.

Taking

q ≥ (49f(n))16,

we obtain by (3.3) that ∆l < 1. Hence [χl, St]G 6= 0 by Lemma 3.3.

Now Theorem 3 follows, using exactly the same argument as in the last paragraph of
Section 2.

Proof of Corollary 4

Write α = α1 + . . . + αk, with αi ∈ Irr(G) and α1(1) ≤ α2(1) . . . ≤ αk(1). Since α
is faithful, αk(1) ≥ d(G) > 1, where d(G) is the smallest degree of nontrivial irreducible
characters of G; furthermore, k ≤ k(G) := |Irr(G)| as α is multiplicity-free. It is easy to
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check that d(G)1.5 > k(G) for G = PSL2(q) with q ≥ 11. For n ≥ 3 and G = PSLεn(q), it
follows from [13, Theorem 1.1] and [5, Propositions 3.6, 3.10] that

d(G)3/2 ≥
(
qn − q
q + 1

)3/2

≥
(

5

6
qn−1

)3/2

> 8.3qn−1 > k(G).

It follows that αk(1)5/2 > k(G)αk(1) ≥ kαk(1) ≥ α(1). By Theorem 3, for some

N ≤ C log |G|
logαk(1)

< 2.5C
log |G|

logα(1)
,

we have
∑N

i=0 α
i
k contains all irreducible characters of G, whence

∑N
i=0 α

i also contains
all irreducible characters of G, i.e. diamM(G, a) ≤ N .

4. Symmetric and alternating groups

Theorem 5. Let n ≥ 5 and let G = An or Sn. Then for any faithful irreducible character
α of G, we have diamM(G,α) ≤ 4n− 4.

Proof of Theorem 5 As explained in the Introduction, diamM(G,α) is at most N =

N(α), if N is the smallest positive integer such that
∑N

i=0 α
i contains Irr(G). Let G := Sn,

S := An, and let H := Sn−1, K := Sn−2 × S2, K
′ = Sn−2 < K, and L := Sn−3 × S3 be

Young subgroups of G. If λ ` n is a partition of n, let χλ denote the irreducible character
of Sn labeled by λ.

Given a faithful irreducible character α of G or H, we will now bound N(α) in a sequence
of steps.

Step 1. If α ∈ Irr(G) and α = χ(n−1,1), then N(α) ≤ n− 1.

Indeed, α takes n distinct values −1, 0, 1, . . . , n− 3, n− 1, hence N(α) ≤ n− 1 by [3].

Step 2. If α ∈ Irr(G) and α|H is reducible, then N(α) ≤ 2n − 2. In particular,

N(χ(n−2,2)) ≤ 2n − 2. Likewise, if n ≥ 7 and µ = (µ1 ≥ µ2 ≥ . . . ≥ µs ≥ 1) ` n and
n− 1 ≥ µ1 ≥ n− 3, then N(χµ) ≤ 2n− 2.

Indeed, by assumption we have that

2 ≤ [α|H , α|H ]H = [α2|H , 1H ]H = [α2, IndGH(1H)]G.

Recall that IndGH(1H) = 1G + χ(n−1,1) and [α2, 1G]G = 1. It follows that α2 contains

χ(n−1,1), and so N(α) ≤ 2n− 2 by Step 1.

The branching rule for complex representations of Sn implies that

χ(n−2,2)|H = χ(n−2,1) + χ(n−3,2),

i.e. χ(n−2,2) is reducible over H. Similarly, χµ|H is reducible for the µ listed above when
n ≥ 7, whence we are done.

Step 3. If α ∈ Irr(G), then N(α) ≤ 4n− 4.

Consider K = Sn−2 × S2, where S2 = 〈s〉 is generated by a transposition s. If α|K is
irreducible, then by Schur’s Lemma s acts as a scalar, and so α = 1G or the sign character,
contradicting the faithfulness of α. Thus α|K is reducible, and so

2 ≤ [α|K , α|K ]K = [α2|K , 1K ]K = [α2, IndGK(1K)]G.

Recall that IndGK(1K) = 1G+χ(n−1,1) +χ(n−2,2) and [α2, 1G]G = 1. If α2 contains χ(n−1,1),

then N(α) ≤ 2n− 2 by Step 1. Otherwise we must have that α2 contains χ(n−2,2), and so
N(α) ≤ 4n− 4 by Step 2.

From now on we will assume that α ∈ Irr(S) and that α is an irreducible constituent
of the restriction of χ = χλ ∈ Irr(G) to S.
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Step 4. If α extends to G, then N(α) ≤ 4n− 4.

Indeed, in this case α = χ|S . By Step 3,
∑4n−4

i=0 χi contains χµ for all µ ` n. It follows

that
∑4n−4

i=0 αi = (
∑4n−4

i=0 χi)|S contains χµ|S for all µ ` n, whence it contains all Irr(S).

From now on, we will assume that α does not extend to G; equivalently, λ is self-
associated: λ = λ∗. For n = 5, 6, the character α takes at most 5 different values on S,
and so N(α) ≤ 4 by [3]. We will therefore assume n ≥ 7.

Step 5. If α is real-valued then N(α) ≤ 4n− 4.

The assumption implies that [α2|S , 1S ] = 1. Next, by inspecting the character table
of A5, we see that any nontrivial complex irreducible representation Φ of A5 affords all
three distinct eigenvalues 1, ω, ω2 for the 3-cycle t = (1, 2, 3) (ω 6= 1 being a cubic root of
unity in C). We prove by induction that the same statement holds for any n ≥ 5. For the
induction step n ≥ 6, suppose Φ(t) affords at most two distinct eigenvalues. By induction
hypothesis, all composition factors of Φ|An−1 are trivial. By Frobenius’ reciprocity, the
character ϕ of Φ is a constituent of

IndSS∩H(1S∩H) = (IndGH(1H))|S = (χn + χ(n−1,1))|H ,

and so ϕ = χ(n−1,1)|S . But clearly in this case Φ(t) affords all three eigenvalues 1, ω, ω2,
a contradiction.

Applying the established assertion to a complex representation Φ affording α, we see that
Φ(t) affords all three eigenvalues 1, ω, ω2. We can choose the Young subgroup L = Sn−3×S3
such that t ∈ S3 ∩ L, in which case 〈t〉� L ∩ S. It follows that α|L∩S is reducible, and so

2 ≤ [α|S∩L, α|S∩L]S∩L = [α2|S∩L, 1S∩L]S∩L = [α2, IndSS∩L(1S∩L)]S .

Observe that

IndSS∩L(1S∩L) = (IndGL (1L))|S = 1S +
3∑
i=1

χ(n−i,i)|S ,

and χ(n−i,i)|S is irreducible for i ≤ 3. It follows that α2 contains χ(n−j,j)|S for some

1 ≤ j ≤ 3. As N(χ(n−j,j)) ≤ 2n− 2 by Step 2, we have that N(α) ≤ 4n− 4.

Step 6. If α 6= ᾱ and λ 6= (aa) with a ∈ Z≥1, then N(α) ≤ 2n− 2.

Since we are assuming that α does not extend to G and χλ is real-valued, we have that
χλ|S = α+ ᾱ and that λ = λ∗. Let µ be obtained from λ by removing the last node of the
shortest row of (the Young diagram of) λ. As λ 6= (aa), observe that µ 6= µ∗. But λ = λ∗,

so by symmetry we see that χ〈|H contains χµ + χµ
∗
. The condition µ 6= µ∗ also implies

that β := χµ|An−1 = χµ
∗ |An−1 is irreducible. It follows that α|S∩H contains the real-valued

irreducible character β, and so α2|S∩H contains β2, which in turns contains 1S∩H . Thus
we have

1 ≤ [α2|S∩H , 1S∩H ]S∩H = [α2, IndSS∩H(1S∩H)]S .

Now

IndSS∩H(1S∩H) = (IndGH(1H))|S = 1S + χ(n−1,1)|S ,

and [α2, 1S ]S = 0 since α 6= ᾱ. Hence α2 contains χ(n−1,1)|S , and so N(α) ≤ 2n − 2 by
Step 1.

Final Step. If α 6= ᾱ and λ = (aa) with a ∈ Z≥3, then N(α) ≤ 4n− 4.

As in Step 6, since we are assuming that α does not extend to G and χλ is real-valued, we
have that χλ|S = α+ᾱ. Let ν be obtained from λ by removing the last two nodes of the last
row of (the Young diagram of) λ, so that ν 6= ν∗. But λ = λ∗, so by symmetry we see that
χλ|K contains χν + χν

∗
. The condition ν 6= ν∗ also implies that γ := χν |An−2 = χν

∗ |An−2
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is irreducible. It follows that α|S∩K′ contains the real-valued irreducible character γ, and
so α2|S∩K′ contains γ2, which in turns contains 1S∩K′ . Thus we have

1 ≤ [α2|S∩K′ , 1S∩K′ ]S∩K′ = [α2, IndSS∩K′(1S∩K′)]S .

Now

IndSS∩K′(1S∩K′) = (IndGK′(1K′))|S = 1S + χ(n−1,1)|S + χ(n−2,2)|S + χ(n−2,12)|S ,
and [α2, 1S ]S = 0 since α 6= ᾱ. Hence α2 contains at least one of (irreducible characters)

χ(n−1,1)|S , χ(n−2,2)|S , χ(n−2,12)|S , and we conclude that N(α) ≤ 4n− 4 by Step 2.

5. McKay graphs for quasi-simple groups

McKay graphs M(G,α) are usually considered for any finite group G possessing a
faithful character α (to guarantee connectedness). In this section, we show that the
diameters of McKay graphs for faithful irreducible characters of quasi-simple groups (with
cyclic center) can be bounded by the diameters of McKay graphs for simple groups.

Theorem 5.1. Let G be a finite quasi-simple group with cyclic center Z(G), and let χ be
a faithful irreducible character of G. Then there is a nontrivial irreducible character β of
the simple group S := G/Z(G) such that

diamM(G,χ) ≤ |Z(G)| · diamM(S, β) + |Z(G)| − 1.

In particular

max
α∈Irr(G), α faithful

diamM(G,α) ≤ |Z(G)| ·
(

max
1S 6=γ∈Irr(S)

diamM(S, γ) + 1

)
− 1.

Proof. Let e := |Z(G)|. Since Ker(χe) contains Z(G) but not G, we can find a nontrivial
β ∈ Irr(S) such that β inflated to G is an irreducible constituent of χe. Now consider
arbitrary ϕ,ψ ∈ Irr(G). Then there is 0 ≤ i ≤ e − 1 such that the nontrivial character
ϕχiψ is trivial at Z(G) and so contains a nontrivial δ ∈ Irr(S). Thus

[ϕχiδ, ψ]G = [ϕχiψ, δ]G > 0.

Next, we can find some d ≤ diamM(S, β) such that βd contains δ. It follows that

[ϕχi+de, ψ]G ≥ [ϕχiβd, ψ]G ≥ [ϕχiδ, ψ]G > 0,

i.e. a directed path of length i+ de connects ϕ to ψ in M(G,α).

As a final remark, we note that one cannot remove the term |Z(G)| from the upper bound
in Theorem 5.1. Indeed, any directed path connecting 1G to any other 1S 6= ψ ∈ Irr(S) in
M(G,α) must have length divisible by |Z(G)|.
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