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Abstract Compactness of the wavefunction representation is one of the central
practical question in quantum dynamics of high-dimensional molecular systems,
because, for general inter-particle interactions, the complexity of a wavefunction
grows exponentially with the system size. While expanding the wavefunctions in
terms of standard pre-defined basis sets is well established in the electronic struc-
ture theory and computations, it is not so in the quantum dynamics of the nuclei.
One ’family’ of approaches is based on Gaussian functions whose parameters are
tailored in some way to the shape of a wavefunction evolving in time, or to the
energy and spatial range relevant to the system of interest; the choice of the basis
parameters often comes from classical dynamics, semiclassical arguments or from
coupled variational equations, all with their pros and cons. In this chapter we re-
view in detail several approaches to constructing compact Gaussian bases, scalable
to multidimensional systems and, in principle, yielding exact quantum dynamics:
thawed Gaussian wavepacket dynamics, time-independent quasirandom distributed
Gaussian bases and time-dependent Gaussian bases guided by quantum trajecto-
ries. The non-variational character of these methods and their adaptability to target
wavefunctions, combined with recent advances in the on-the-fly electronic structure
calculation, make them practical for applications to large molecular systems.

1 Introduction

Classical mechanics often gives adequate representation of the nuclei in molecular
dynamics simulations. Yet, the nuclear quantum-mechanical effects (NQEs) may
play a significant role in chemical and physical processes a wide range of molecular
environments from the hydrogen storage within the metal-organic frameworks [1],
to photovoltaic or spin-responsive materials [2, 3, 4], to enzyme activity [5]. The
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NQEs are typically the largest for light nuclei at low temperatures and energies, or
more specifically when the characteristic energy of a process is comparable to the
separation between the vibrational energy levels of chemical bonds.

The most general description of NQE comes from a solution to the time-
dependent Schrödinger equation (TDSE), possibly, with the time-dependent poten-
tial,

Ĥψ(x, t) = ıh̄
∂

∂ t
ψ(x, t). (1)

The Hamiltonian operator is a sum of the kinetic and potential energy operators, K̂
and V̂ , the latter is a function of coordinates and time,

Ĥ = K̂ +V (x, t), K̂ =− h̄2

2
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TMMM−1
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∑
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mn

∂ 2

∂x2
n
. (2)

Throughout this chapter we consider SE only for the nuclei, evolving on a single
electronic potential energy surface (PES). For simplicity, we will describe the nu-
clei in Cartesian coordinates (unless indicated otherwise) with the diagonal kinetic
energy operator. In other words, MMM is the diagonal matrix of the particle masses,
Mnn = mn, where index n enumerates the degrees of freedom (DOFs). Each particle
is described by three coordinates in Cartesian space listed in a single vector x. The
total number of DOFs (and the size of the vectors and matrices) is d = 3× (number
of particles). The atomic unit of the Planck’s constant, h̄ = 1, is used henceforth. We
will drop time as the argument in the external potential, V ≡V (x) with understand-
ing that all methodologies described below, except those based on diagonalization
of the Hamiltonian matrix of Section 3, are applicable to time-dependent potentials.

Computational efforts of describing a general quantum system, fully coupled
by anharmonic interactions, scale exponentially with the system size. Therefore,
efficient basis representation of wavefunctions is essential for the studies of high-
dimensional molecular systems. While representation of wavefunctions in terms of
standard bases is well established in the electronic structure theory, it remains an
outstanding challenge in quantum mechanics of nuclei. This situation may be at-
tributed to several factors.
(i) The classical description of nuclei is adequate in many situations (molecular dy-
namics is very useful). Therefore, quantum molecular dynamics has not received as
much attention from theorists as the electronic structure.
(ii) The NQE are very sensitive to the quality of the electronic PES on which the
dynamics unfolds. Thus, the development of practical methods (including theory,
hardware and software) of computing globally accurate PES was necessary before
the NQE could be rigorously included.
(iii) Finally, the forces acting between the quantum nuclei are complicated many-
body interactions and the systems undergo large-amplitude motion (reaction dynam-
ics, isomerization, diffuse vibrational states, highly excited vibrational states). Con-
sequently, most multidimensional quantum dynamics approaches are fairly system-
specific.
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While there is a number of standard approaches to solve the time-dependent
Schrodinger equation for the nuclei through explicit time-evolution of wavefunc-
tions, such as the split-operator/Fast Fourier Transform and Chebyshev expan-
sion of the Hamiltonian, or the Hamiltonian diagonalization (iterative schemes)
[6, 7, 8, 9, 10], there is no standard approach of generating a wavefunction rep-
resentation (beyond a few dimensions), which would remain accurate and practical
in the course of dynamics.

The term quantum dynamics is often used to indicate that one is dealing with the
Schrödinger equation for the nuclei as opposed to electrons, regardless of whether
time-dependent or time-independent wavefunction is required to answer the ques-
tion at hand. Formally, for time-independent interactions, the time-dependent and
time-independent solutions to the SE contain equivalent information, and are re-
lated through the Fourier Transform. In other words, if a time-dependent solution
ψ(x, t) to the TDSE (1) is available at all times, one can extract all energy eigen-
states χ(x,E) as the Fourier transform of ψ(x, t) into the energy domain,

χ(x,E) = NE

∫
∞

−∞

ψ(x, t)eıEtdt, (3)

where NE is the normalization constant. Vice versa, knowing all the eigenstates,

Ĥχ(x,E) = Eχ(x,E), (4)

one can reconstruct the time-evolution of any initial wavefunction ψ(x,0):

ψ(x, t) =
∫

∞

0
dE 〈χ(x,E)|ψ(x,0)〉e−ıEt . (5)

’All eigenstates’ above means the ones that overlap with ψ(x,0); we omit discussion
of degenerate eigenstates for simplicity. The integral in Eq. (5) implies integration
over the states of the continuum spectrum and summation over the discrete eigen-
states as appropriate for the problem.

The standard ways to represent a wavefunction (as a linear combination of fixed
in time and space functions) are the finite basis representation (FBR) and the dis-
crete variable representation (DVR). The eigenvalues of the Hamiltonian operator
evaluated in FBR, traced to the variational minimization of the energy functional,
give the upper bound on energy levels, a useful feature. The downside to FBR is
the high cost of computing the matrix elements of the potential energy operator,
especially if the basis functions are delocalized, and the dense character of the re-
sulting Hamiltonian matrices. The DVR approach, introduced by Light in the 1980s
[11, 12, 13] and reviewed in Ref. [14], is an elegant way of addressing both deficien-
cies of FBR. In DVR, which is equivalent to evaluation of integrals by quadrature
over the related to it finite basis, the potential energy matrix is diagonal and the
high energy regions of the coordinate space can be excluded. Thus the number of
the PES evaluations is minimized, while the kinetic energy matrix remains fairly
sparse. These two advantages in conjunction with the development of iterative diag-
onalization techniques, such as short iterative Lanczos [15, 16, 17] made the DVR
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a method of choice when doing exact quantum dynamics for both vibrational and
scattering calculations. Even to date the state-of-the-art vibrational calculations of
spectroscopic accuracy (of a few wavenumbers) use DVR, sometimes in combina-
tion with FBR for selected coordinates. One of the most sophisticated calculations,
performed by Viel and Leforestier [18] for HFCO, employed six-dimensional DVR
of over 107 points, truncated by potential energy to about half a million points, to
obtain about 150 accurate eigenstates. Even with all the advantages of DVR and a
modest 10-point DVR per dimension in average, the sheer size of the basis, which
scales exponentially with the number of dimensions d, makes exact full-dimensional
description of systems of more than five atoms (d ≥ 9) impractical.

The unfavorable scaling of the basis size with d motivates the development of
the quantum dynamics approaches based on the correlated, in other words not on
the direct-product type, bases. While in general the scaling of the wavefunction
complexity is at least exponential with d, the hope is that practical methods of gen-
erating efficient bases might be developed if the questions addressed by calcula-
tions are narrowed in some sense. For example, instead of accurate calculation of
a full wavefunction, one may target convergence of certain expectation values, of
the energy levels within the limited range of energy, or of the correlation functions
yielding spectra of medium resolution.

For high-dimensional problems, the central idea behind a manageable-size ba-
sis is to make it adaptable to the time-evolution of the target quantities. The most
accomplished exact quantum method, used in many high-dimensional applications
[19], is the multiconfiguration time-dependent Hartree method (MCTDH) [20, 21,
22, 23], where multidimensional wavefunctions are built as products of single-
particle functions, contracted from a general basis. The MCTDH-like method,
closely related to the scope of this chapter, is the variational multiconfiguration
Gaussian (vMCG) approach [24, 25, 26], based on Gaussian basis functions, whose
parameters are formally defined by the evolving wavefunction through the time-
dependent variational principle.

As in electronic structure theory, one reason to use Gaussian bases in quantum
dynamics is their mathematical properties, such as ’the product of two Gaussians is
a Gaussian’, localized functions, analytic integrals, Gaussian quadrature and Her-
mite polynomials. Another reason is that, unlike in the electronic structure (ES)
theory, a Gaussian wavefunction (also a polynomial× a Gaussian) solve the TDSE
for parabolic, possibly time-dependent, potentials. The harmonic oscillator model is
the foundation for the analysis of molecular vibrations (the normal mode analysis of
ES codes), while a Gaussian function is a standard description of a localized in space
particle, such as a nucleus, moving close to classical regime. Finally, the ever grow-
ing efficiency of the ES calculations, enabling molecular dynamics with on-the-fly
or on-the-grid ab initio ES evaluations and advances in the PES construction (such
as the product representation [27, 28] and fitting/interpolation methods [29, 30])
made evaluation of the potential matrix elements over a localized coordinate-space
basis practical.

In this chapter we discuss Gaussian-basis methods of solving the time-independent
and time-dependent SE for the nuclei. The same ideas could be used to solve the SE
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for electrons, or for both nuclei and electrons. Extension to electrons may be de-
sirable, for example, in the presence of the time-dependent electric field of a laser.
We limit ourselves to exact quantum methods, though we note that there are numer-
ous semiclassical methods (thawed [31], frozen [32], cellular [33] dynamics, the
Herman-Kluk propagator [34], linearized semiclassical initial value representation
[35]) based on representation of a wavefunction as superposition of Gaussians. Un-
like exact QM methods, the semiclassical methods do not yield exact solutions of
the SE in the limit of infinite basis. The remainder of this chapter is organized as
follows. First, we review the Gaussian wavepacket (GWP) solution to the TDSE
and describe a recent application to spectroscopy of NH3 (Section 2). Then, we de-
scribe the time-independent Gaussian bases tailored to PES (Section 3) and the time-
dependent Gaussian bases tailored to quantum dynamics of a wavefunction (Section
4). The concepts are illustrated by examples from our research, i.e. the quasirandom
distributed Gaussian bases (QDGB) for the TISE and the quantum trajectory-guided
Gaussian bases (QTGB) for the TDSE. Finally, we survey the ’intermediate’ ap-
proaches employing the time-independent bases and wavefunction reexpansions at
finite time intervals, adapted to the temporal changes of the wavefunction (Section
5). Section 6 concludes.

2 Evolution of a Gaussian wavepacket

To set the stage, first we review an analytic solution to the TDSE with the parabolic
potential, i.e. the Gaussian wavepacket, in d dimensions, as it is a useful model for
molecular vibrations, and an inspiration for a multitude of Gaussian-based exact
and semiclassical methods of quantum dynamics. The solution (see for example
Ref. [36]) is given in a compact matrix form for a d-dimensional system described
in Cartesian coordinates,

ψ(x, t) = N exp
(
−(x−qt)

TAAAt(x−qt)+ ıpT
t (x−qt)+ ıst + γt

)
, (6)

where N is the initial normalization constant, so that γ0 = 0,

N =

(
2N detAAAℜ|t=0

πN

)1/4

. (7)

The wavefunction evolves according to the Hamiltonian,

Ĥ =−1
2

∇
TMMM−1

∇+V, V =
1
2

xT VVV 2 x, (8)

The matrix MMM is a diagonal matrix of particle masses, while VVV 2 is a real symmet-
ric matrix defining a quadratic potential, whose minimum is at the origin of the
coordinate system and is equal to zero. In Eq. (6) the parameters qt , pt are real
d-dimensional vectors, st and γt are real scalar functions of time, indicated as the
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subscript. The wavefunction is defined in terms of a complex symmetric matrix AAAt ,

AAAt =AAAℜ + ıAAAℑ.

The subscript t is omitted for clarity when unambiguous. The vector ∇ is the gradi-
ent with respect to the particle coordinates, x.

Substituting Eq. (6) into the TDSE with the Hamiltonian (8), dividing the result
by ψ(x, t) and setting imaginary and real coefficients, multiplying powers of x, to
zeroes, one obtains the following equations determining the time-evolution of the
parameters:

dq
dt

=MMM−1 p,
d p
dt

=−∇V (q), (9)

ds
dt

=
pT MMM−1 p

2
−V (q)−Tr(AAAℜMMM−1), (10)

ı
dAAA
dt

= 2AAAMMM−1AAA− 1
2

VVV 2,
dγ

dt
= Tr(AAAℑMMM−1). (11)

Note, that Eqs (9) are simply the Newton’s equations of motion for the center
of the Gaussian wavepacket, qt = 〈ψ|x|ψ〉t . Thus, (qt , pt ) are the coordinates and
momenta of a classical trajectory. Eq. (10) defines evolution of the classical action
function st for the trajectory (qt , pt), except for the last term on the RHS,

U0 ≡ Tr(AAAℜMMM−1).

This term does not affect the expectation values, but it does affect time-correlation
functions and extracted from them spectra. U0 can be interpreted as the zeroth order
quantum effect, a time-dependent versions of the ZPE. In a special case of ψ(x, t)
being the ground state of the harmonic oscillator, U0 is equal to the ground state
energy E0, defining the trivial time-dependent phase of the ground state solution,
ψ(x, t) = χ(x,E0)exp(−ıE0t).

Finally, the time-dependence of AAA defines what is referred to as the breathing
mode of the Gaussian, i.e. the change in localization of |ψ(x, t)|, with accompa-
nying it quadratic phase. The changes in the real ’width’ of a Gaussian define the
time-dependence of the function γt , which ensures the constant in time wavefunction
norm,. 〈|ψ(x, t)|2〉= 1. Because of the ’breathing’ motion of the wavepacket, super-
imposed on the classical motion of the Gaussian center, this solution to the TDSE
is also known as the thawed Gaussian wavepacket (TGWP). The breathing mode is
the next order quantum effect, specific to non-coherent Gaussian wavepackets. For
a special choice of the initial wavefunction the width parameter AAA remains constant
in time, while the wavepacket center executes classical motion within the parabolic
well. (This is the so-called coherent wavepacket: in the normal modes coordinates
AAA is diagonal, Ann = mnωn/2, where ωn and mn are the frequency and mass of the
nth normal mode.) An analytic solution to AAA is known for the harmonic oscillator
[36], but in general, for the time-dependent V solutions of Eq. (11), determining the
complex Gaussian width AAA, are solved numerically using sophisticated propagators,
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such as the Poisson propagator [37], to ensure stability. For the wavefunction to be
normalizable, the eigenvalues of AAAℜ have to be positive.

The total energy of ψ ,

E = 〈ψ| Ĥ |ψ〉= 1
2

pT MMM−1 p+V (q)+
1

2d+1 Tr(AAA−1
ℜ

VVV 2)+U , (12)

consists of the classical energy of the wavepacket center (first two RHS terms) and,
in addition, of the potential energy term due to the wavepacket delocalization (the
third term in RHS of Eq. (12)). The last term, U , is the kinetic energy associated
with the derivatives of the wavefunction amplitude and phase, respectively,

U =
1
2
(
Tr(AAAℜMMM−1)+Tr(AAAℑAAA−1

ℜ
AAAℑMMM−1)

)
. (13)

The wavefunction ansatz of Eq. (6), approximating a time-dependent solution
to SE for anharmonic potentials, i.e. TGWP [38, 39], found applications in spec-
troscopy. TGWP evolves on the potential, expanded up to the second order in x
around the wavepacket center, which simply means dynamics in a quadratic poten-
tial with time-dependent parameters. Obvious limitations of this approach are the
inability to describe the wavefunction bifurcation and interference effects within
a single Gaussian ansatz, and inaccuracy of the quadratic expansion of V , when
TGWP spreads in coordinate space. A more rigorous version of TGWP is the varia-
tional GWP [40]: the evolution equations for the wavepacket parameters are derived
from the McLachlan variational principle [41]. The resulting equations for the GWP
parameters involve the potential and its first and second derivatives averaged over
the wavefunction, rather than their values at the center of the GWP of the TGWP.
Both the variational and thawed GWP dynamics are valid either at short times or for
nearly harmonic potentials, while the Gaussian function is accurate over the space
relevant to the computed quantity.

The variational GWP has conceptual appeal, but beyond model applications, the
thawed GWP (the local harmonic approximation to V ) has a big advantage that the
PES information is needed only along a single trajectory. The PES can be rather
straightforwardly computed on-the-fly, as demonstrated in recent applications to
spectroscopy of floppy molecules from the Vanicek group [42, 43]. The authors
have used the TGWP dynamics, while computing the PES, its gradient and the Hes-
sian on-the-fly (needed to solve Eqs (9), (10) and (11)) to analyze the emission
spectroscopy of oligothiophenes and absorption and photoelectron spectra of am-
monia. What is remarkable in these applications is that the ES has to be solved for
along a single trajectory, which enabled efficient modeling of the oligothiophenes
consisting of 2,3,4 and 5 rings. The latter system involves dynamics of 105 DOFs,
carried out up to 0.2 ps. The TGWP emission spectra agree the experimental ones
quite well as shown in Fig. 1: the peak structure is reproduced, although there is
an overall shift in peak positions. This shift may be attributed to the theory – local
harmonic approximation of the PES, quality of the electronically excited PES com-
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puted using the Density Functional Theory, specifically CAM-B3LYP/6-31+G(d,p),
or to the experimental conditions, i.e. interaction with the solvent.

For ammonia, the TGWP dynamics on the ground electronic PES, yielded
medium resolution photoelectron and absorption spectra in good agreement with
experiments, despite the limitations of a Gaussian wavefunction form. This is sur-
prising because the inversion of NH3 (the ’umbrella’ mode) is characterized by the
double-well potential, typical for floppy molecules, and the local harmonic repre-
sentation of the PES is a big approximation in this case. The TGWP description was
reasonably accurate for up to 0.2 ps, yielding the medium resolution spectra, though
the accuracy of dynamics was insufficient for longer times, when the wavepacket
bifurcates, to obtain the higher spectral resolution. The ab into on-the-fly TGWP
setup also enabled useful mode decomposition analysis. For example, for the two
thiophene ring system (system T2 in Fig. 1) 8 effective modes, comprised of 42
DOFs in full dimension, were identified as contributing to the emission spectrum.
This type of analysis gives insight into the mode coupling and also paves the way
for more accurate quantum dynamics studies in reduced dimensionality.

(a) (c)

Energy [eV] Energy [eV]

Fig. 1 Emission spectra of the oligothiophene chains Tn for n= {2,3,4,5} shown in panels (a-
d), respectively. The experimental emission spectra (exp., dashed green line) is compared with
the full-dimensional TGWP calculations, which includes all normal modes (solid black line). The
excited electronic energy, its gradient and Hessian are computed on-the-fly ab initio (OTI-AI) using
CAM-B3LYP density theory functional. Adapted with permission from Ref. [42]. Copyright 2014
American Institute of Physics.

All-in-all, a single complex TGWP gives a very efficient description of ’mild’
quantum effects (before the wavefunction bifurcates and quantum interference be-
comes important) and is useful in certain spectroscopic applications. In more chal-
lenging applications, the TGWPs have been used to represent passive (spectator or
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bath) modes characterized by the mild quantum effects in combination with more
accurate basis representations for the active (reactive or subsystem) modes, such
as in the multilayer Gaussian-MCTHD method [44, 45]. The simplicity and ele-
gance of TGWP inspired numerous approximate and semiclassical dynamics meth-
ods, based on expansion of a wavefunction or a propagator in terms of Gaussian
functions. The common feature of these methods is that they are based on classi-
cal trajectory motion with the quantum effects incorporated from additional infor-
mation, such as the trajectory action function and monodromy or stability matrix
elements related to the width matrix AAA of TGWP. Some of the most popular semi-
classical methods are based on representation of a wavefunction or a propagator in
terms of integrals (over the initial trajectory positions, momenta or both) of Gaus-
sians [46, 33, 34, 47, 48, 35, 49, 50]. An interesting recent methodology aims to
reduce the semiclassical propagation error by ’slicing’ the total propagation into
short segments over which the Gaussians are evolved analytically, and reexpand-
ing the wavefunction in a new set of Gaussians [51]. Another impact of the TGWP
approach on quantum dynamics as a field, is in the use of classical mechanics ar-
guments, i.e. energy and phase space analysis, to construct compact efficient basis
representations for exact QM dynamics approaches, including time-independent,
time-dependent and ’intermediate’ methodologies, discussed and and illustrated be-
low.

3 Time-independent Gaussian bases adapted to PES

In this section we review construction of efficient basis representation of the vibra-
tional states employing Gaussian functions whose parameters are tuned to the fea-
tures of the PES. Most of Section 3 is adapted with permission from [ S. Garashchuk
and J. C. Light, Quasirandom distributed Gaussian bases for bound problems, J.
Chem. Phys., 114:3929–3939, 2001] Copyright 2001 American Institute of Physics.

Construction of a compact (in a sense of the number of functions) correlated basis
for solving the time-independent SE, is especially important for studies of highly ex-
cited vibrational states of polyatomic molecules or molecular clusters, correspond-
ing to the large amplitude intermolecular motion. To construct a basis for such prob-
lems, Davis and Heller [52] considered complex Gaussian basis sets distributed in
phase space through the Wigner distribution, though later it has been demonstrated
that real distributed Gaussian basis sets (DGBs) [53] performed as well or better.
In the latter approach the distance between neighboring Gaussians was made pro-
portional to the local de Broglie wavelength, and the exponents adjusted to give a
desired average overlap of the (non-orthogonal) basis functions. The DGB repre-
sentation, usually for the radial DOFs in conjunction with the DVRs in angles, was
found efficient for a number of triatomic systems [54, 55, 56, 57, 58, 59]. A later
one-dimensional (1D) study of the fully optimized variational Gaussian bases [60]
has shown that higher accuracy of the Hamiltonian eigenvalues was observed for
very small reciprocal condition number (RCN) η . Small η , defined as the ratio of
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the smallest to largest eigenvalues of the overlap matrix SSS, typically signals the lin-
ear dependence in the basis, but the strongly overlapping functions (responsible for
small values of η) give better description of the wavefunction derivatives. The full
basis optimization of Ref. [60] is a nonlinear problem, which scales as the number
of basis functions Nb to the fifth power, making it impractical for multidimensional
systems. In this section we review the subsequent development of the quasirandom
distributed Gaussian bases (QTGB) [61], which are not optimized, but incorporate
features of the optimal bases known from the 1D studies, including the small RCN.
The QTGB performance is illustrated on calculations of the rovibrational energy
levels of H2O.

3.1 Optimized Distributed Gaussian Bases

Our goal here is to construct an efficient basis comprised of real normalized Gaus-
sians, {gi}, i ∈ [1,Nb],

gi =

(
2αi

π

)1/4

exp
(
−αi(x−qi)

2) , (14)

which can accurately represent the vibrational states whose energies are below a
certain cutoff value, Ecut . For clarity of presentation, we will consider a Cartesian-
space Hamiltonian with separable kinetic energy given by Eq. (2), and outline the
procedure in one dimension, x. The Gaussian basis is not orthogonal, thus, to find
the eigenstates of Ĥ we need to compute the overlap matrix SSS with the elements

Si j = 〈gi|g j〉, (15)

the Hamiltonian matrix HHH with the elements,

Hi j = 〈gi| Ĥ |g j〉 , (16)

and to solve the generalized eigenvalue problem for the matrix pair (HHH,SSS):

HHHBBB = SBESBESBE. (17)

The diagonal matrix EEE contains the energy eigenvalues, while the columns of the
matrix BBB are the respective eigenvectors. The basis function overlaps and the ma-
trix elements of the kinetic energy operator are evaluated analytically. The potential
matrix elements,

Vi j = 〈gi|V |g j〉 , (18)

can be efficiently computed using low-order Gauss-Hermite quadrature or local
quadratic approximation to V (x), taking advantage of the product property of Gaus-
sians and provided that the Gaussian basis functions are sufficiently localized.
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The kinetic energy associated with each gi is proportional to its width parameter,
Kii = αi/(2m). Thus, given the energy cutoff Ecut , a reasonable expectation is that
the optimal value of αi is related to the ’residual’ kinetic energy at the basis function
center,

αi ∼ m(Ecut −V (qi)) . (19)

As shown in Ref. [53], according to the semiclassical arguments, the density of the
Gaussian centers should be proportional to the particle momentum, while according
to numerical tests, use of the kinetic energy instead,

ρ(qi) =
1

2(qi+1−qi−1)
∼ (Ecut −V (qi)) . (20)

gives more accurate results. Both options generate the basis functions that are nar-
rower in the regions of low V (or higher kinetic energy), thus distribution of {qi}
can be made denser in those regions; in the regions of high V (low kinetic energy)
the basis functions can be broader and placed further apart.

To develop cheap procedure of specifying the positions {qi} and width {αi}, as
an alternative to the full variational optimization [60], we have analyzed optimal
solutions to the following functional, F̃ ,

F̃ = Tr(HHH)−λ ∑
i j,i6= j

Si j

1−Si j
. (21)

The functional is minimized with respect to all qi and αi (without assumptions on
their functional forms). The functional includes the energy term as the trace of HHH
and the basis function ’repulsion’ term controlled by the parameter λ . If the basis is
orthogonal, the second term is equal to zero and F̃ reduces to the trace of the Hamil-
tonian matrix. For a non-orthogonal basis, minimization of the Tr(HHH) term alone
would yield Nb copies of the ground state, Tr(HHH) = NbE0. The role of the repulsion
term is to prevent large off-diagonal overlaps Si j leading to the linear dependence
in a basis, i.e. the degeneracy of SSS. During minimization of F̃ the parameter λ was
set to a fixed value, but we found that accuracy of the eigenstates could be fur-
ther improved by uniform scaling of αi, which lowers the Hamiltonian eigenvalues.
Thus, the procedure may be viewed as a two-step minimization of F̃ : (i) optimize
the Gaussian parameters for fixed λ ; (ii) ’tune’ the basis by uniform rescaling of
{αi} to lower the energy term, Tr(HHH); the rescaling factor effectively controls the
Gaussian repulsion strength, which is the role of the parameter λ in Eq. (21).

The results of the simplified basis optimization above have been analyzed for
several 1D models with the goal of identifying any trends usable in realistic mul-
tidimensional problems. In particular, the two-step minimization has been used to
compute all bound energy levels of a 1D Morse oscillator for a particle of mass
m = 1,

V (x) = D (exp(−wx)−1)2 , (22)

which is ’potential B’ from Ref. [53]. The parameter values are D = 12.0 Eh and
w= 0.2041241 a−1

0 ; there are 24 energy levels below D. On the far right the potential
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is set to V (x) = 25.0 Eh,x> 70 a0. The nonlinear minimization procedure converged
for the range of repulsion strength λ = [0.5,1.5], yielding the expected behavior of
the optimal Gaussian density and width, shown in Fig. 2. For λ = 1, the obtained
RCN of the overlap matrix was η ≈ 10−5. Thus, we could fully explore the effect
of the basis wavefunction broadening the basis functions. Scaling of all αi by a
constant, towards η = [10−9,10−12], increased the accuracy of the energy levels
by about three orders of magnitude. For yet smaller values of η the eigenvalues
of HHH increased. Similar relation of the accuracy on RCN has been seen in other
model systems (see Ref. [61] for more details), leading to a conclusion that there
is a sizable optimal range of η spanning 2− 4 orders of magnitude yielding low
eigenenergies.

Figure 3 compares the highest bound eigenfunction computed in a basis to the
analytic eigenfunction. The agreement is excellent and, given the diffuse nature of
this eigenstate, the basis is highly efficient: all energy levels were obtained within
the relative accuracy of 10−5, using only two basis functions per eigenstate, Nb =
48. The best accuracy has been achieved by scaling the optimized widths {αi} by
0.13, yielding RCN of η = 1.47×10−13. Another important observation is that the
optimized widths and density could be accurately represented as linear functions of
V (x), as seen in Fig. 2.

Overall, according to the model analysis of the nonlinear minimization of F̃ , we
conclude that while the full optimization of the basis parameters is impractical in
high dimensionality, efficient correlated basis can be simply constructed by intro-
ducing the linear dependence of the basis function widths on the kinetic energy,
αi = c(Ecut −V (qi)), followed by the uniform scaling of αi to shift the RCN of the
overlap matrix towards the range η ∼ 10−8−10−10. Then, the only two features of
the basis, left to be tested directly, are the width scaling factor c and the basis size.

Fig. 2 The widths, {αi}, and
the density {ρi} of Gaussians
as a function of their centers,
{qi}, for the Morse oscillator:
circles mark αi found from the
minimization of the functional
F̃ , Eq. (21); solid line is the fit
of αi with the linear function
of the potential; squares mark
the optimized density and
the dashed line is its linear
fit. Adapted with permission
from Ref. [61]. Copyright
2001 American Institute of
Physics.
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Fig. 3 The eigenfunction of
the highest, n = 23, energy
level for the Morse potential
in coordinate space: dashed
line shows the analytic result
and the solid line shows the
numerical eigenfunction. The
centers of basis functions
(circles) are also shown.
Adapted with permission
from Ref. [61]. Copyright
2001 American Institute of
Physics.

3.2 Quasirandom distributed Gaussians

For high-dimensional problems, the full nonlinear optimization of Section 3.1 be-
comes expensive, if feasible at all. Thus, to generate a PES-adapted basis, we simply
use the linear in V functional form of the basis function parameters to accomplish
two tasks.

The first task is to place the Gaussian centers achieving the desired distribution
of their centers. We use a quasirandom sequence to generate the Gaussian basis
functions with potential-dependent density and widths within the energy contour
V (xi)< Ecut . A general real Gaussian in d-dimensional coordinate space is

gi(x) = Ni exp
(
−(x−qi)

TAAAi(x−qi)
)
, (23)

where the normalization constant Ni is given by Eq. (7) for AAA = AAAi. The width
parameters are arranged as a real symmetric matrix AAAi, in general, with nonzero off-
diagonal elements and positive eigenvalues. Here we take AAAi as a diagonal matrix
Ainn = αin, where n enumerates dimensions and i enumerates the basis functions.

The second task is to choose the Gaussian width parameters according to Eq.
(19),

αin = cmn (Ecut −V (qin)+∆) , n = 1 . . .d (24)

with the same value of c for all basis functions and all dimensions. Guided by the
results of full optimization in 1D of Section 3.1, the scaling parameter c is adjusted
to have the reciprocal condition number in the range η = [10−6,10−14]. The density
of centers is also a linear function of the potential

ρ(qi)∼ Ecut −V (qi)+∆ . (25)

In Eqs (19) and (25) we have introduced a parameter ∆ , affecting the ratio of
the largest to smallest width parameter. Thus, ∆ controls the sensitivity of the basis
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function to the PES. In the limit of large ∆ , ∆ � Ecut the Gaussians will have nearly
equal width. Small values of ∆ , ∆ < Ecut , will generate a basis whose center density
and width are sensitive to the potential and mimic the optimal basis of Section 3.1.
The scaling parameter c is chosen to minimize the sum of the energy eigenvalues.
The value of c can be estimated from the lowest eigenvalue as

c∼ 2E0

Ecut ∑n mn
,

or better yet, from the normal modes vibrational analysis at the minimum of V (x).
Another option is to adjust both parameters, c and ∆ , by computing a few eigen-
states for a low Ecut in a small-sized QDGB, and then use those values for the target
energy range (large Ecut ). Overall, for a predetermined energy cutoff Ecut , the pro-
cedure has two adjustable parameters, c and ∆ , and generates an efficient, correlated
multidimensional basis in the coordinate space.

Placing Gaussian basis functions according to the desired density of their centers
ρ(x) is accomplished by accepting randomly generated positions with the proba-
bility proportional to ρ(x). In addition, to avoid excessive linear dependence in the
basis, the new function is rejected if its maximal overlap with previously accepted
functions exceeds certain threshold. In fact, quasirandom or sub-random sequences
of numbers are more efficient for our purposes. The quasi-random sequence has the
advantage that the points qi are generated as far apart as possible given the previous
points in the sequence. For a relatively sparse distribution of points, this feature sig-
nificantly reduces the probability that two points are so close to each other that one
of them is rejected according to the Gaussian overlap criterion. The convergence
of the energy eigenvalues with respect to the number of basis functions Nb can be
monitored while the sequence of Gaussian centers qi is being generated.

We use the Sobol sequence to generate the quasirandom points, and their density
is modified according to Eq. (25) with the rejection method [62]. The point qi is
accepted if [

Ecut −V (qi)+∆

Ecut +∆

]
> bi, (26)

where numbers bi = [0,1] belong to an independent sequence of random (not quasi-
random) numbers. This basis is referred to as the non-uniform, i.e. width and density
are adapted to PES, quasirandom distributed Gaussian basis or QDGB. For illustra-
tion, the positions of Gaussian centers adapted to a 2D Morse oscillator potential
are plotted in Fig. 4. The 122 energy eigenstates, with the eigenvalues below 95%
of the dissociation energy, were computed using 482 functions, within the relative
error of less than 10−4.
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Fig. 4 The centers of the non-
uniform QDGB 482 functions
for the 2D Morse oscillator.
The two sets, motivated by
the 1D optimization, ρ ∼
Ecut −V (q)+∆ , and by the
1D semiclassical de Broglie
wavelength, ρ ∼ (Ecut −
V (q) + ∆)1/2, are shown
with open and filled circles,
respectively. Adapted with
permission from Ref. [61]
Copyright 2001 American
Institute of Physics.

3.3 Calculation of the energy levels for triatomic molecules

3.3.1 Water molecule

As a chemically-relevant demonstration of the QDGB generation scheme and per-
formance we have calculated the vibrational energy levels of water for the total
angular momentum J = 0 using the potential energy surface of Ref. [63]. The tar-
get convergence of the energy levels below 25118 cm−1 (252 states in all) was the
’spectroscopic’ accuracy of 0.1 cm−1.

We have used the triatomic vibrational Hamiltonian in Radau coordinates, which
allows analytic evaluation of the kinetic energy operator,

Ĥ = K2D +Kθ +V (R1,R2,θ). (27)

The two-dimensional kinetic energy for the distance variables is

K2D =− h̄2

2m1R2
1

∂

∂R1

(
R2

1
∂

∂R

)
− h̄2

2m2R2
2

∂

∂R2

(
R2

2
∂

∂R2

)
. (28)

The angular part of the Hamiltonian is

Kθ =− h̄2

2

(
1

m1R2
1
+

1
m2R2

2

)
jjj2, (29)

where

jjj2 =
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
. (30)

The volume element is R2
1R2

2 sinθdR1dR2dθ [56, 64]. The QDGB is used to de-
scribe the distance variables, R1 and R2; the Legendre DVR is used to represent the
angle θ . In the DVR the potential matrix is diagonal with respect to the discretized
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angle variable θ . Thus we construct angle-specific two-dimensional Gaussian bases
{g(µ)} for the two-dimensional Hamiltonians for each value, θµ [54, 64],

H2D
µ = K2D +V (R1,R2,θµ). (31)

The 2D Hamiltonians for different θµ are coupled via Kθ terms with the DVR ex-
pression for the jjj2 operator [65, 66]. The kinetic energy matrix elements are inte-
grated on the range of the distance variables, i.e. R1(2) ∈ [0,∞]. The Gauss-Hermite
quadrature of low order (4-7 points) is employed to compute the potential matrix
elements. The 2D bases consist of Gaussians of variable width distributed quasi-
randomly within the energy contour Ecut as described in Section 3.2. The width
parameter of i-th Gaussian centered at (Ri1,Ri2) is scaled by the masses m1 and m2,

αi1(2) = cm1(2) (Ecut −V (Ri1,Ri2)+∆) . (32)

The optimal value of c is found from a one-dimensional scan of the trace of H2D

over the values of c. The convergence of the energy levels below Ecut is monitored
during the construction of the basis. For each angle θµ , the size of the 2D Hamil-
tonian matrix is reduced by the number of eigenvalues above the truncation energy,
Etr. Then, the appropriately transformed angular kinetic energy Kθ is added to the
diagonalized H2D

µ ; the resulting matrix, truncated according to the energy cutoff Etr

forms the µ th block of the full Hamiltonian matrix.
The numerical parameters for ten different QDGB/DVR calculations, performed

to test the convergence and relative importance of various details of the setup, are
listed in Table 1. The parameter ∆ of Eq. (32) equals to 0.01 Eh (≈ 1800 cm−1)
for all calculations. The 2D QDGB sets were constructed by adding 20 functions
at-a-time and their widths scaled. The smallest tolerated RCN was η = 10−13. The
basis size was fixed once either the target accuracy of the eigenvalues was met (in
2D) or until the number of functions exceeded 300. The number of Gaussian basis
functions and the matrix size after the truncation are shown in Fig. 5 for the basis
IV. On average, the truncation procedure reduces the basis size by 60%. For several
angles the target convergence of the 2D eigenvalues (better than 1 cm−1), is not
met. However, all levels below 32000 cm−1 are converged within 1.3 cm−1, and
those below 30000 cm−1 are converged within < 0.55 cm−1. Since there are few 2D
eigenvalues below Etr at small angles, Ecut was increased for θ < 39o, so that at least
40 QDGB functions are generated. The total matrix size of the full 3D calculations
varied from 1574 to 3551. The symmetry of the molecule was not taken into account.

The dependence of the energy levels on (i) the initial seed of the random se-
quence {bi} of Eq. (25), (ii) on the number of the quadrature points for R1 and
R2 and (iii) on the eigenvalue truncation energy parameter is illustrated in Table
1. The table shows the maximal deviation among Nl lowest levels from the en-
ergy levels obtained from our largest, most accurate calculation employing basis
I. The number of levels, Nl = {400,350,300,250,200} correspond to the energies
of {29520,28183,26714,25069,23153} cm−1, respectively. The number of levels
obtained with the bases II, III and IV that differ from the levels of the largest calcu-
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Table 1 Convergence of the energy levels for the H2O molecule for various QDGBs. The listed
basis parameters are: Nθ is the number of angular DVR points; Nq is the number of quadrature
points per dimension for radial integrals; Etr (Eh) is the truncation energy for the 2D eigenvalues;
Ecut (Eh) is the cutoff energy for the placement of Gaussians; ε (cm−1) is the convergence criterion
for energy levels, used to construct 2D QDGB; Nmax is the total size of the truncated matrix.
The largest deviation for energy levels of water in cm−1 (taking those of the largest QDGB I
as a reference), is listed for the lowest Nl eigenvalues.Adapted with permission from Ref. [61]
Copyright 2001 American Institute of Physics.

Basis parameters Maximal deviation [cm−1]
basis Nθ Nq Etr Ecut ε2D Nmax Nl 400 350 300 250 200

I 43 5 .23 .165 1.0 3551 – – – – –
II 39 5 .23 .165 1.0 3232 0.43 0.35 0.17 0.08 0.03
III 43 5 .22 .16 1.0 3129 1.02 0.33 0.18 0.07 0.02
IV 39 5 .22 .16 1.0 2834 0.62 0.42 0.09 0.05 0.03
V 39 5 .23 .16 1.0 3198 0.60 0.41 0.09 0.05 0.03
VI 39 7 .22 .16 1.0 2838 0.64 0.43 0.11 0.07 0.03

VIIa 39 5 .22 .16 1.0 2777 8.38 3.76 1.90 0.50 0.09
VIIIb 39 5 .22 .16 1.0 2838 0.73 0.34 0.10 0.06 0.03

IX 39 5 .20 .15 2.0 2138 6.02 3.80 1.26 0.31 0.12
X 39 4 .18 .145 2.0 1574 12.29 4.70 2.50 0.87 0.24

a small angles are excluded; b different seed for the random sequence {bi} in Eq. (26) is used

Fig. 5 Water molecule eigen-
state calculation: the size of
the 2D basis before and af-
ter truncation procedure as
a function of the DVR an-
gle. Adapted with permission
from Ref. [61]. Copyright
2001 American Institute of
Physics.

lation by less than 1.0, 0.5, 0.2, 0.1 and 0.05 cm−1 is shown in Table 2: for the most
efficient basis 7 basis per energy level were required to achieve convergence below
one wavenumber.

To briefly summarize this section, the non-uniform QDGB are found to be ac-
curate and efficient, with good convergence properties. The obtained energy levels
agree with those of Ref. [63] to sub-wavenumber accuracy; the highest energy re-
ported in Ref. [63] (n = 252) is higher than its counterpart in the QDGB calculation
by 0.6 cm−1. The non-uniform QDGB, being fully adaptable to the PES, including
the functions’ density and width, is more efficient than the equal-width Gaussian
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Table 2 The number of levels converged to a specified accuracy in calculations with bases II,
III and IV. The bases are described in Table 1. The convergence is defined with respect to the
basis I calculation. Adapted with permission from Ref. [61] Copyright 2001 American Institute of
Physics.

Accuracy [cm−1] 1.02 0.50 0.20 0.10 0.05
Number of levels 413 378 321 292 211
Highest energy level [cm−1] 29785 28908 27357 26489 23552

bases used in Ref. [56]. More challenging applications of the QDGB to the neon
and argon trimers [61] support the overall conclusion on the QDGB performance.

4 Time-dependent Gaussian bases adapted to the wavefunction
dynamics

We start this section with a review of the basic features of solving the TDSE within
a time-dependent basis representation of a wavefunction, as well as some of the
established dynamics approaches. Then, the concept of the quantum trajectory dy-
namics is outlined and combined with the semiclassical idea of frozen Gaussians
[32], to yield a formally exact dynamics employing the quantum-trajectory guided
Gaussian bases (QTGB). Model applications and discussion conclude the section.
Most of Section 4 is adapted with permission from [B. Gu and S. Garashchuk, Quan-
tum Dynamics with Gaussian Bases Defined by the Quantum Trajectories, J. Phys.
Chem. A, 19:3023–3031, 2016]. Copyright 2016 American Chemical Society.

4.1 The formalism

A general approach to solving the TDSE (1), is to represent a wavefunction in a,
possibly, non-orthogonal basis of Nb functions, {gi(x, t)}, i ∈ [1,Nb]. At time t, a
wavefunction is expressed in terms of these basis function,

ψ(x, t) =
Nb

∑
i=1

ci(t)gi(x, t), (33)

where {ci(t)} are the expansion coefficients. The positions of all particles are speci-
fied by the vector x of length d (the number of DOFs). Let us assume that the ith basis
function depends on time only through the time-dependent parameters enumerated
by the index µ = 1 . . .Np,

zi =
(

zi1(t), . . . ,ziNp(t)
)
, (34)
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where Np is the number of the parameters specifying each basis function,

gi(x, t) := gi(x,zi1(t), . . . ,ziNp(t)). (35)

For simplicity, we assume here that Nb does not change in time, and that Np is the
same for all basis functions. The time-derivative of such a basis function is

dgi

dt
=

Np

∑
µ=1

ziµ
∂gi

∂ ziµ
, ż :=

dz
dt

. (36)

Substitution of Eqs (33) and (36) into the TDSE (1) and integration of the re-
sulting expression multiplied by g j over the coordinates space gives the following
matrix equation:

ıh̄SSS
dc
dt

= (HHH− ıDDD)c. (37)

As in Section 3, SSS is the overlap matrix, Si j = 〈gi|g j〉; HHH denotes the Hamiltonian
matrix, Hi j = Ki j +Vi j,

Ki j =−
1
2

〈
gi

∣∣∣∣∣ f

∑
n=1

1
mn

∂ 2

∂x2
n

∣∣∣∣∣g j

〉
, Vi j =

〈
gi
∣∣V (x)

∣∣g j
〉
. (38)

The new matrix DDD is the non-hermitian matrix, accounting for the time-dependence
of the basis functions,

Di j =

〈
gi

∣∣∣∣∣ Np

∑
µ=1

d
dt

z jµ

∣∣∣∣∣ ∂g j

∂ z jµ

〉
. (39)

Eq. (37) determines evolution of the expansion coefficients c, defining ψ(x, t) in a
basis influenced by an external, possibly time-dependent potential, V .

The choice of the time-dependence of the basis functions, i.e. of the parameters
zi(t) (Eq. (34)), determines the accuracy and conservation properties of the dynam-
ics. As shown, for example, in Ref. [67], the normalization of the wavefunction
determined by Eq. (37) is conserved regardless of the quality of the basis represen-
tation or of the basis time-dependence. The total energy of a system,

E = 〈ψ(x, t)| Ĥ |ψ(x, t)〉 , (40)

is conserved in three cases: (i) for any time-independent basis; (ii) for a time-
dependent basis whose parameters are determined variationally, e.g. by applying
the Dirac-Frenkel variational principle [68]; (iii) for a time-dependent basis which
is complete in a sense of being sufficient to represent the wavefunction for a specific
problem.

We have discussed the time-independent Gaussian bases, i.e. case (i), in Sec-
tion 3. Out of the variational time-dependent basis methods, i.e. case (ii), the most
relevant representative is the Gaussian-based vMCG method [69, 70, 71, 72]. It
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has been noted, however, that the variational equations on the Gaussian parameters
are ill-conditioned, and for general problems, the solutions become physically non-
intuitive with time and are challenging to converge numerically [24, 73]. Limiting
the Gaussian basis to the bath DOFs while using more conventional description for
the active ’system’ DOFs, has been shown a much more practical approach enabling
challenging high-dimensional applications [25, 26, 74].

All-in-all, time-dependent bases whose parameters are not variational (case (iii)),
but instead come from classical or semiclassical theories of motion, have been ac-
tively explored. As mentioned above, with this type of bases, the energy is not for-
mally conserved, but this feature maybe used as in indicator of the basis complete-
ness during the dynamics. The parameters of the non-variational Gaussian basis
methods, many of which are developed for non-adiabatic dynamics on multiple cou-
pled PESs, are defined by the positions and momenta of classical or Ehrenfest-type
trajectories, often sampling the phase space of an initial wavefunction. One of such
methods is the ab initio multiple spawning method, involving a GWP basis ’driven’
by classical molecular dynamics, while additional GWPs are spawned during nona-
diabatic events [75, 76, 77, 78]. This method is incorporated into MOLPRO [78]
and large applications include chromophores in complex molecular environments
[79]. The multiconfigurational Ehrenfest method developed by Shalashilin and co-
workers on the basis of coupled coherent states expansions [80, 81, 82] utilizes bases
simultaneously evolving on multiple electronic states according to the Ehrenfest dy-
namics.

The advantage of the methods with predefined time-dependence of the Gaus-
sian basis functions, is that the remaining dynamics equations (37) for the expan-
sion coefficients are much easier to implement numerically than the complete set of
equations for the fully variational basis. The usual concern is that defining the ba-
sis functions through classical dynamics may miss regions of space, inaccessible to
classical trajectories, but involved in exact quantum dynamics. Therefore, the quan-
tum trajectories (QTs) representing a time-dependent wavefunction as a correlated
ensemble provide have been considered as ’guides’ for the Gaussian basis functions.

4.1.1 The quantum trajectory dynamics

The Madelung-de Broglie-Bohm, also referred to as the hydrodynamic or the QT,
formulation of the TDSE [83, 84, 85] is based on the polar representation of a com-
plex wavefunction, expressed in terms of real amplitude A (x, t) and phase S (x, t),

ψ(x, t) = A (x, t)exp
( ı

h̄
S (x, t)

)
. (41)

Substitution of the ansatz (41) into TDSE (1) leads to the following time-dependence
of the wavefunction phase S and probability density ρ ,

ρ(x, t) = |ψ(x, t)|2 = A 2, (42)
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∂S

∂ t
=−1

2
∇

T S MMM−1
∇S −V −U, (43)

∂ρ

dt
=−∇

T S MMM−1
∇ρ−ρ∇

TMMM−1
∇S . (44)

The time-dependent function U ≡U(x, t) denotes the quantum potential, as opposed
to the classical potential V ,

U =− h̄2

2A
∇MMM−1

∇A . (45)

To clarify the meaning of Eqs (43) and (44) let us switch to the language of the
trajectory dynamics. The gradient of the wavefunction phase,

p(x, t) = ∇S (x, t), (46)

at the position of the quantum trajectory xt defines its momentum,

pt = ∇S |x=xt
,

dxt

dt
=MMM−1 pt . (47)

Then, in the Lagrangian frame-of-reference,

d
dt

=
∂

∂ t
+MMM−1 pT

t ∇, (48)

one obtains the quantum Hamilton-Jacobi equation for the wavefunction phase St ,
and the continuity equation for the probability density ρt ,

dSt

dt
=

1
2

pT
t MMM−1 pt − (V +U)|x=xt

, (49)

dρt

dt
= −ρt ∇

TMMM−1 p(x, t)
∣∣
x=xt

. (50)

The equation of motion for pt is obtained by transforming the gradient of Eq. (43)
into the moving frame-of-reference defined by Eq. (48),

d p(xt)

dt
=− ∇(V +U)|x=xt

.

Comparison of the quantum Hamilton-Jacobi equation (49) to its classical coun-
terpart shows that all ’quantumness’ in the time-evolution of ψ(x, t) is expressed
through the potential-like function U = U(x, t) in Eq. (45), known as the quantum
potential [86]. The exponential scaling of quantum mechanics is traced to this non-
local time-dependent function which, being added to the external classical potential
V , generates the quantum features in dynamics. Certain simplifications, however,
might be expected for heavy particles, such as nuclei: being inversely proportional
to the particle mass, the quantum potential becomes negligible in the classical limit.
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Therefore, nuclear motion may be treated as classical dynamics with quantum cor-
rections due to the quantum potential [87, 88].

The efficiency of the QT description of a wavefunction follows from Eq. (50),
according to which ρ within the volume element δx of each trajectory is conserved
[87],

ρ(x, t)δxt = ρ(x,0)δx0. (51)

Thus, a single QT ensemble, accurately representing ψ(x,0), will remain ade-
quate to represent ψ(x, t) at all times. The exact QTs may be interpreted as a
time-dependent grid optimized for a specific ψ(x, t). The catch is that the numer-
ical implementation of Eq. (49) is, in general, impractical: U becomes singular as
ψ(x, t)→ 0. However, the QT dynamics may be used to define a nearly optimal
time-dependent Gaussian basis, without solving the dynamics equations for QTs,
which would require computation of the quantum potential. Instead, we define the
QT momentum, p from the wavefunction represented in a basis via Eq. (33), and
use it to update the trajectory positions, which serve as the centers of the Gaussian
basis functions.

4.1.2 Quantum trajectory-guided basis of real frozen Gaussians

To implement the QT-guided Gaussian bases, we construct an adaptive basis out of
time-dependent multidimensional Gaussians (d is the number of DOFs),

gi =
4

√
detAAA
πd exp

(
−1

2

d

∑
n,n′=1

(xn−qin(t))Ann′(xn′ −qin′(t))

)
. (52)

The basis function gi is centered at the position of the ith quantum trajectory qi,
their number defining the size of the basis Nb. For simplicity, let us assume that
the matrices AAA and MMM are diagonal, and their non-zero elements are Ann = αn are
Mnn = mn, respectively.

Note, that the Gaussian function of Eq. (52) above is different from the Gaussians
of the Frozen Gaussian or Herman-Kluk semiclassical propagators [32, 34], which
include linear in x phases, dependent on the momentum of a classical trajectory of
the Gaussian center,

S lin = pi(t)(x−qi(t))+ γi(t).

In the real basis formulation the time-dependence of the expansions coefficients ci(t)
incorporates the effect of γi(t) associated with the classical action function at qi.
Restriction for the basis functions in Eq. (52) to be real simplifies the formalism and
makes implementation more robust: there is no term d p/dt in Eq. (36), thus unstable
computation of ∇U is not needed. Omitting time t in the argument of functions for
clarity, the matrix elements of Eqs (39) and (38) are:

Si j =
d

∏
n=1

exp
(
−αn

4
(qin−q jn)

2
)
, (53)
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Di j =

〈
gi

∣∣∣∣−ı
∂

∂ t

∣∣∣∣g j

〉
=

ı
2

d

∑
n=1

αn

mn
p jn(qin−q jn)Si j. (54)

The matrix elements for the kinetic energy operator are:

Ki j =
d

∑
n=1

αn

4mn

(
1− αn

2
(qin−q jn)

2
)

Si j. (55)

The potential energy matrix elements in the examples below are evaluated within
the local harmonic approximation to V at the midpoint q̄ of the Gaussian center qi
or q j:

Vi j =

(
V (q̄)+

d

∑
n=1

1
4αn

∂ 2V (q̄)
∂x2

n

)
Si j, (56)

where q̄ = (qi + q j)/2. Some other PES approximations for evaluation of Vi j, bal-
ancing the accuracy and numerical cost are: a symmetric combination of the local
harmonic approximations, a cheaper alternative for the ab initio PES evaluated on-
the-fly; the linear local expansion of V (q̄) (no second derivative of V ) as in the cou-
pled coherent Gaussians method [80]; the product-basis fit of the PES developed
by the MCTDH community [27, 28, 89]; evaluation by quadrature. The QT posi-
tion, i.e. the Gaussian center of the ith function, is incremented at each time-step
according to the momentum determined from ψ(x, t):

d
dt

qin =
d

∑
n=1

pin

mn
, pi = ℑ

(
∇ψ

ψ

)∣∣∣∣
x=qi

. (57)

In the frozen Gaussian implementation, outlined here, a QTGB simulation is
started with the expansion of the initial wavefunction in terms of the Gaussian func-
tions of fixed width α . Their centers are the initial positions of the QTs. The number
of Gaussians, Nb, depends on the target accuracy. For high-dimensional systems the
sampling of the initial QT positions is random or quasi-random. The initial momenta
of QTs are defined by the initial wavefunction according to Eq. (57). The choice of
α will affect the basis size and the accuracy of Vi j of Eq. (56) through the validity of
the local harmonic (or other) approximation. Analogous to the QTGB approach of
Section 3, the value of α and the density of the Gaussian centers should be such as
to yield a reasonable condition number of the overlap matrix. Thus, it is necessary
to try several values of α and basis size to assess convergence and the accuracy of
the desired output quantities. The dynamics itself is accomplished by solving Eq.
(37).
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4.2 Implementation and model problems

In this subsection, we discuss certain aspects of implementation of the QTGB dy-
namics, which is then applied to several models: the Morse oscillator representing
the vibration of H2, scattering on the Eckart barrier, the 1D and 2D double-well po-
tentials. The exact quantum-mechanical results come from the split-operator propa-
gation implemented on a grid [90, 91].

4.2.1 Implementation

As discussed in Section 3, Gaussian bases of strongly overlapping functions may
lead to ill-conditioned overlap matrix SSS, which in case of QTGB has to be inverted
to solve Eq. (37). In dynamics this situation may emerge in the course of time-
evolution [52]. Formally, the non-crossing property of the QTs mitigates this prob-
lem for QTGBs: exact QTs never cross due to the strongly repulsive quantum po-
tential developing as the trajectories approach each other. In practice, however, this
property makes the QT dynamics inherently unstable and, moreover, for the Gaus-
sians of fixed width may become so close as to generate an ill-conditioned overlap
matrix SSS, indicating redundancy in a basis.

To deal with this problem, following Refs [92, 93, 94], we occasionally ’restart’
the basis, by reexpanding ψ(x, t) in a new set of Gaussian basis functions, i.e. ψ(x, t)
is re-sampled in terms of the new QT ensemble. The reexpansion procedure pre-
vents Gaussians from colliding, removes basis functions in the regions of negligible
probability density and adds more functions in the regions of increasing probability
density. The exact QTs would track such changes in the probability density through
the continuity equation (51). However, real frozen Gaussians do not have the flexi-
bility to account for such changes, captured in QTGB by the expansion coefficients.
Therefore, instantaneous adjustments of the basis increase accuracy and stability of
the dynamics.

In the examples below we have used a simple reexpansion algorithm to generate
equidistant distribution of Gaussian centers of the new basis. We identify the left-
most outlying point q1. If the probability density at q1 exceeds a predefined thresh-
old ε ,

|ψ(q1, t)|2 = |∑
i

cigi(q1)|2 > ε,

then q1 is taken as a center of a Gaussian included in the new basis (or the next
point q2 is tested and so on). Moving to the right in position in increments of ∆q,
until the region of negligible density on the right is reached, generates additional
basis functions. In high dimensionality a new set {q′i} can be generated through the
random importance sampling, similar to the construction of QDGBs of Section 3.
The size of the resulting new basis, N′b, is generally different from the old Nb, which
adapts the basis to the wavefunction localization. The new expansions coefficients,
{c′i}, are determined by minimization of the expansion error in the two bases,
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I = ||∑
i

c′ig
′
i−ψ(x, t)||2. (58)

The resulting matrix equation on {c′i} is,

SSS′c′ = b′, (59)

where
S′i j = 〈g′i|g′j〉 , b′i = 〈g′i|ψ〉 , (60)

and ψ(x, t) is expanded in the old basis, Eq. (33). The expansion coefficients are
updated according to the second-order time differencing scheme [90],

c(t +∆ t) = c(t−∆ t)+2∆ t
dc
dt

, (61)

with dc/dt defined by Eq. (37).
To start the dynamics in the new basis at time T , we have to assign momenta to

the QTs of a new basis. According to Eq. (57), the QT momentum is the gradient of
the phase of ψ(x,T ) evaluated at x = q′i. To ensure smoothness of the momentum
as a function of position for a sparse set of QTs, we use a convoluted wavefunction
ψ̃β (x, t) as given below in one dimension:

ψ̃β (x, t) =
(

β

2π

)1/2 ∫ ∞

−∞

e−
β

2 (x−y)2
ψ(y, t)dy. (62)

Using ψ̃β of Eq. (62) in Eq. (57), the momentum of the Gaussian center is:

p =−
(

β

π

)1/4

ℑ

(
β

ψ(x, t)

∫
∞

−∞

(x− y)e−
β

2 (x−y)2
ψ(y, t)dy

)
, (63)

The integrals above are analytic. As β →∞, ψ̃β →ψ , and the convolution has no ef-
fect on p. If β → 0, then the momenta of all trajectories approach the average value
of p and deviate significantly from the QT momenta. To generate smooth p(qi), we
select such values of β , so that several Gaussians make significant contribution to
ψ̃β at each qi. Note, that since the trajectory momenta pi are not part of the basis
function definition, the convolution procedure or other choices of the momenta do
not affect the accuracy of the reexpansion. They will affect, however, the quality, i.e.
completeness, of the basis at later times: having momenta closer to the QT values
yields accurate basis representation of the wavefunction for longer times, while as-
signing all momenta equal values will, generally, necessitate frequent reexpansions
to attain the desired accuracy.
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4.2.2 Numerical examples

The QTGB method is illustrated here for the double-well potentials in one and two
dimensions. Additional model systems are described in Ref. [95].

The double-well potential is a prototypical model of reactions in condensed
phase. It is an important test for any dynamics methods, as it presents a major chal-
lenge for the trajectory-based semiclassical dynamics of light particles due to the
population transfer between the wells via tunneling at low energies: the classical
trajectories with energies below the barrier top can not overcome the barrier. Some
of the quantum trajectories, however, gain energy from the QT ensemble and cross
the barrier even if their initial energies are below the barrier top. The total energy
of the QT ensemble, which fully describes ψ(x, t), is conserved, but the energy of
individual QTs is not and can be exchanged through the time-dependent quantum
potential. Thus, ideally, in a double-well potential, the QT-guided Gaussian basis
can be initially localized in the reactant well, yet describe the wavefunction den-
sity in the product well at a later time as the guiding QTs migrate to the product
well. First we consider a 1D symmetric double-well potential modeling an electron
transfer [92]:

V (x) =
1

16ζ
x4− 1

2
x2, (64)

where ζ = 1.3544 a4
0/Eh. The barrier height is V † = 1.3544 Eh. The initial wave-

function is a Gaussian wavepacket,

ψ(x,0) = 4

√
2α0

π
exp
(
−α0(x−q0)

2 + ıp0(x−q0)
)
, (65)

whose parameters are {α0 = 0.5, q0 = −2.5, p0 = 0} in atomic units. The par-
ticle mass is m = 1, and the time-step is 0.001 atomic units. The Gaussian width
parameters are {α = 8, β = 2} a−2

0 . The wavefunction is localized in the left well.
The wavefunction energy is about 2/3 of the barrier height. The barrier is wide:
the distance between the two minima is around 4.7 a0. Thus, tunneling is essen-
tial for population transfer, which presents a challenge for semiclassical methods
[92]. The QTGB dynamics begins with Nb = 16 basis functions. The reexpansion
is performed every 1500 timesteps resulting in increase the basis size with time to
Nb = 23. Figure 6 shows the wavefunction amplitude at t = {0,1.5,3.0,4.5,6.0} a.u.
in the process of population transfer with tunneling. The Gaussian centers {qi}, i.e.
the QT positions, are plotted in the figure along the x-axis as functions of time up to
t = 6.0 a.u. Thanks to the continuity equation (51), their behavior along illustrates
the adaptation of the basis and the effect of reexpansions. Around t = 5.4 a.u. one
of the QTs goes around a node, i.e. ψ(x, t) = 0, associated with interference effect.
At the node near x = 1.5 a0 the wavefunction changes sign, leading to singularities
in the quantum potential and a breakdown of the QT dynamics. In QTGB dynamics,
however, the interference pattern is reproduced through superposition of the basis
functions. To assess the accuracy once again the autocorrelation function, a phase-
sensitive quantity, is calculated for t = [0,24] a.u. C(t) is computed using Eq. (67),
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thus, ψ(x, t) was propagated up to t = 12 a.u. |C(t)| is shown in Fig. 7. The reex-
pansion procedure specified by Eq. (58) has been carried out until the error dropped
below 5× 10−5. The time-dependence of the total energy is given in Fig. 7(inset).
As discussed at the beginning of this section, in dynamics with the time-dependent
bases, the energy conservation correlates not only the the accuracy of numerical
solution to Eq. (37) but, importantly, with the basis completeness. In this example,
with the energy minimum of V (x) shifted to zero, the wavefunction energy remains
constant within 1−2% of its initial value.

Fig. 6 QTGB dynamics in the one-dimensional double well. The blue lines mark the positions of
the basis function centers {q}t . The vertical axis represents the wavefunction amplitude, whose
profiles are shown in red. The wavefunction has been reexpanded at t = {1.5, 3.0, 4.5} a.u. The
nodal pattern of the quantum trajectories going around the node at x ≈ 1.5 a0 is seen for t ≈ 5.4
a.u. Adapted with permission from Ref. [95]. Copyright 2016 American Chemical Society.

Fig. 7 QTGB dynamics in
the one-dimensional dou-
ble well: the absolute value
of the autocorrelation func-
tion, C(t) = 〈ψ2(x, t/2)〉, is
compared to the exact QM
result. Inset: the total energy
is conserved within 2% in the
course of the QTGB dynam-
ics. Adapted with permission
from Ref. [95]. Copyright
2016 American Chemical So-
ciety.
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Next, we examine the QTGB performance for a two-dimensional potential con-
sisting of the double well linearly coupled to the harmonic oscillator of Ref. [96],
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V (x1,x2) = x2
2(ξ1x2

2−ξ2)+
1
2

ξ3(x1− x2)
2 +

ξ 2
2

4ξ1
. (66)

The contour plot in Fig. 8 corresponds to the parameter values of ξ1 = 1, ξ2 = 4 and
ξ3 = 4. The minima of V are located at (−

√
2,−
√

2) and (
√

2,
√

2) a.u. The barrier
top is V † = 4 a.u.

The wavefunction is initialized as the direct product of two Gaussians specified
by Eq. (65), centered at the left-hand-side potential minimum. The parameters are
listed in Table 3. In this model, we focus on the two lowest energy eigenvalues,
extracted from the exact QM and QDGB dynamics from the spectrum of autocorre-
lation functions generated on the interval t = [0,6.0] a.u. Since the initial wavefunc-
tion is real, the correlation function is computed as

C(t) = 〈ψ0|e−ıĤt |ψ0〉=
∫

∞

−∞

ψ
2(x, t/2)dx, (67)

and transformed into the energy domain using harmonic inversion to enhance the
resolution of the spectral features [97, 98]. The eigenvalues presented in Table 3
have been obtained from dynamics performed with 10× 10, 12× 12 and 16× 16
basis functions. The positions of the Gaussian centers at t = 3.0 a.u. (see Fig. 8)
illustrate the adaptation of the basis functions, initially centered on a square grid of
positions {qi}. The frequencies of the symmetric ground and first excited states are
listed in Table 3,

ν0(1) ≡
E0(1)

2π
,

and compared to the results from the conventional time-evolution on the spatial grid
of 512× 512 equidistant points. Calculations are performed with several sets of
parameters listed in Table 3. The frequencies, which are very sensitive to the quality
of the correlation function, agree with the QM results quite well.

In the 2D double well example the wavefunction reexpansion was not necessary,
since the eigen-frequencies were obtained from short-time dynamics. In general,
however, this procedure gives a practical way of reducing the basis size and of con-
trolling accuracy of dynamics. The wavefunction reexpansions enable adaptation of
the stationary Gaussian bases, which can be viewed as ’intermediate’ between the
time-dependent and time-independent representations. Several promising methods
of this type are outlined in Section 5.

5 Time-sliced dynamics with stationary Gaussian bases

In quantum dynamics, the algorithms for expansion and reexpansion of wavefunc-
tions in terms of Gaussian basis functions, are essential for practical treatment of
delocalized wavefunctions, as it balances the basis size, accuracy and stability of
the time-evolution. For several Gaussian basis methods discussed in this Section,
the wavefunction reexpansion procedure is central to performing the dynamics. Two
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Fig. 8 QTGB dynamics in the
two-dimensional double-well
potential: positions {q1,q2}
of the basis function centers,
shown as circles at t = 3.0
a.u., are superimposed on the
contour plot of V (x1,x2) given
by Eq. (66). The horizontal
and vertical axes are the x1
and x2 coordinates/center
positions in atomic units,
respectively. Adapted with
permission from Ref. [95].
Copyright 2016 American
Chemical Society.

Table 3 The two-dimensional double-well model. The initial wavefunction and propagation pa-
rameters for three QTGB calculations, and the eigen-frequencies of the ground and first excited
states are given in atomic units. The parameters α0, q0 and p0 are defined in Eq. (65). Nb and α is
the number and width of the basis functions given Eq. (52).

Wavefunction and propagation parameters
α0 q0 p0 m ∆ t
0.5 -1.4 0.0 1 0.001

QT-guided Gaussian Bases exact QM
α 16 16 32
Nb 10×10 12×12 16×16 128×128

Frequencies [a.u.]
νg 0.4827 0.4822 0.4830 0.4829
νe 0.7110 0.7180 0.7209 0.7163

earlier methods, i.e. Matching-Pursuit Split-operator Fourier-Transform [92, 99] and
Quantum Wavepacket Ab Initio Molecular Dynamics [100, 101], combine exact
short-time quantum evolution of the Gaussian basis functions with occasional re-
expansions of a wavefunction in a new, presumably more efficient and accurate,
Gaussian basis. The matching pursuit strategy is based on growing a ’new’ basis by
adding one basis function at a time. The functions are chosen, according to a certain
algorithm, to minimize the residual difference between the wavefunction representa-
tions in the ’old’ and the ’new’ basis under construction, until the desired criterion is
fulfilled. Thus, the basis is adjusted according to the time-evolution of a wavefunc-
tion encoded in the time-dependent expansion coefficients and in the parameters of
the Gaussian basis functions.

More recent adaptable Gaussian-based methods, i.e. the basis expansion leap-
ing multi-configurational Gaussians (BEL-MCG) of Frankcombe [93] and and the
trajectory-guided time-independent Gaussian basis of Saller and Habershon [94]
forego the time-dependence of the basis functions altogether. In BEL-MCG just the
basis reexpansion, or ’leaping’, is left. The basis is stationary between the leaps,
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Fig. 9 The trajectory guiding algorithm. (A) An initial wavefunction is expanded in a basis of
Gaussians (blue circles). Additional Gaussians (dashed circles) come from sampling of short-time
classical trajectories (grey lines). (B) Solution of the TDSE within the full basis is followed by (C)
the basis reduction deploying the matching pursuit method. The cycle closes when a time-evolved
wavefunction is expressed in a new, compact basis of Gaussian functions (red circles). Adapted
with permission from Ref. [102]. Copyright 2017 American Chemical Society.

and is adjusted at certain intervals of time by constructing a more compact basis to
express the time-evolved wavefunction. The advantage of the approach is that the
Hamiltonian and overlap matrices are evaluated only once per each time-interval
between the leaps. In the work by Habershon and co-workers, the choice of the
Gaussian parameters comes from the classically evolved trajectories, sampling the
Wigner transform of the initial wavefunction. The classical trajectory dynamics al-
lows one to anticipate where the basis functions will be needed in the course of
quantum dynamics of the wavefunction, and thus to construct an adequate basis of
stationary Gaussians, tuned to the upcoming dynamics, though certainly not a ’min-
imal’ basis for problems undergoing large amplitude motion. The Hamiltonian and
overlap matrices are computed just once, which is a very appealing feature if the
PES evaluations are expensive. The downside is that classical trajectories may not
cover certain regions of space, such as those accessed through the quantum tunnel-
ing. A very recent development of the trajectory-guided time-independent basis is
to apply this idea to short segments of time to generate a compact adaptive basis
[102]. The ’new’ basis is constructed based on short-time classical trajectories, so
the earlier deficiency of classical vs quantum spaces is mitigated. In addition, the
basis functions of the ’old’ basis with small expansions coefficients are removed at
the reexpansion step, accomplished using the matching pursuit algorithm, to reduce
the basis size. Figure 9 illustrates the method.

This time-sliced propagation scheme with basis adjustments allowed to reduce
the basis size by an order of magnitude (compared to the original method of Ref.
[94]) for challenging benchmark applications – for a 4-dimensional model of pho-
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Fig. 10 Population of the
lower diabatic S1 state, P1(t),
as a function of time, cal-
culated using adaptive basis
sets with varying size, for
the 4D pyrazine Hamiltonian.
The basis set sizes given are
approximately the number
of GWPs which form the
wave function during each
short 10 fs propagation pe-
riod. Adapted with permission
from Ref. [102]. Copyright
2017 American Chemical So-
ciety.

toexcited pyrazine (shown in Fig. 10) and for a system tunneling in a double-well
coupled to 2-20 harmonic DOFs representing the environment. In case of pyrazine,
the time-slices are 10 fs, while the total propagation time is 150 fs long. An-
other promising combination of short time-evolution and basis reduction, is Time-
Sliced Thawed Gaussian Propagation Method of Batista and co-workers [51]. In this
method the basis functions evolve as TGWPs, and the segments are combined em-
ploying the Husimi transform in the limit of highly overlapping Gaussians, at which
step functions with negligible contribution to the wavefunction are removed.

The emerging overall conclusion on the Gaussian basis representation of time-
dependent wavefunctions is: the basis reexpansion is a useful tool of improving sta-
bility and accuracy of dynamics with the time-independent or time-dependent Gaus-
sian bases. The basis reexpansion also helps to keep non-variational bases compact.
The dynamics information, either from the time-dependent wavefunction itself, or
from certain relevant exploratory trajectories, is beneficial for constructing physi-
cally meaningful, small yet accurate bases.

6 Summary and outlook

In this chapter we discussed Gaussian basis methods of solving the time-independent
and time-dependent SE for the nuclei. The same ideas could be used to solve the SE
for electrons, or for both nuclei and electrons. Extension to electrons may be de-
sirable, for example, in the presence of the time-dependent electric field of a laser.
We started by reviewing a time-dependent solution to SE for parabolic potentials,
known as the thawed Gaussian wavepacket (TGWP) [31], when used with the lo-
cal harmonic approximation to an arbitrary potential. A single complex TGWP is
capable of describing mild quantum effects, associated with the wavepacket delo-
calization. In this regime the TGWP is sufficiently accurate and highly efficient as
demonstrated by recent applications to spectroscopy of oligothiophenes and ammo-
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nium inversion [42, 43]. It is particularly appealing, when combined with on-the-fly
ab initio electronic structure calculations, as information on the PES and its gra-
dients is need along a single classical trajectory. In more challenging applications,
the TGWPs have been successfully used to represent environmental DOFs, while
more accurate basis representations are employed for the reactive modes [44, 45].
More generally, the idea of using classical trajectory information, such as energy and
phase space analysis, to construct compact efficient basis representations has been
incorporated into many exact QM dynamics methods, including time-independent,
time-dependent and in-between approaches.

Out of time-independent methods, i.e. those based on Hamiltonian matrix diag-
onalization, we have reviewed a quasirandom distributed Gaussian bases (QDGBs).
The advantage of QDGB is that it is correlated and adapted to a given PES. Check-
ing convergence of eigenvalues, while the basis is constructed, is an advantage for
high-dimensional studies whose feasibility is determined by the basis size. Some
other notable developments of the Gaussian basis methodology in time-independent
context, include phase space Gaussians on the von Neumann lattice with periodic
boundary conditions [103, 104], and the wavelets representation obtained through
canonical orthogonalization of the coherent state Gaussians [105]. Subsequent ad-
vances of the wavelets methodology (the truncation scheme and the momentum-
symmetrized Gaussian basis) [106, 107] culminate in applications to acetonitrile
(CH3CN) and benzene, yielding thousands of eigenenergies [108, 109]. In the study
of the benzene molecule, a 30 DOF problem, 500,000 eigenenergies below 6500
cm−1 were converged within 15 cm−1. The approach is implemented in a massively
parallel code SwitchBLADE, which is available for general use.1

Next, we described construction of compact time-dependent Gaussian bases
(GB), guided by the quantum-like trajectories (QT). From the properties of QTs,
it follows that the basis functions track the flow of the probability density, provid-
ing in a sense the optimal in coordinates space time-dependent grid, and adapt to
the dynamics of a specific wavefunction. Therefore, for problems characterized by
large amplitude motion in selected DOFs, the scaling properties of QTGB with the
system size should be superior to those of conventional time-independent bases.
Time-evolution of QTs in the exact limit of strongly quantum dynamics is, gen-
erally, unstable, due to singular features in the quantum potential, responsible for
the formal exponential scaling of complexity with the systems size [86]. Yet the
trajectory framework is useful for quantum dynamics close to the classical regime,
appropriate for the nuclei of polyatomic systems. In the QTGB approach, which is
developed for this regime, the QTs move according to the momentum reconstructed
from the wavefunction expanded in a Gaussian basis. Moreover, for real Gaussian
basis functions, one can use modified QT momenta without making approximations,
to improve the stability of propagation. The ensuing loss of efficiency is compen-
sated by occasional reexpansions, performed to maintain completeness of the basis
in time. The total wavefunction energy, which is rigorously conserved in the limit
of a complete time-dependent basis, serves as a convenient measure of the basis

1 Interested researchers should send their request to Bill Poirier at e-mail: Bill.Poirier@ttu.edu.
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completeness and a criterion for the wavefunction reexpansion. So far, the QTGB
method has been tested on low-dimensional model problems. We plan to extend
QTGB to real Gaussians with adjustable width, and to improve the reexpansion pro-
cedure using ideas of matching pursuit and exploratory trajectory dynamics of Refs
[92, 93, 102]. Though seemingly technical, the wavefunction reexpansion is at the
core of the ’intermediate’ between the time-dependent and time-independent Gaus-
sian bases, i.e. the stationary Gaussian bases adapted to the evolving wavefunction at
the reexpansion stage. All-in-all, non-variational dynamics-guided Gaussian bases,
combined with recent advances in the on-the-fly electronic structure calculation, is
a promising practical approach to perform quantum dynamics of large molecular
systems.
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