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MCKAY GRAPHS FOR ALTERNATING AND CLASSICAL GROUPS
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Dedicated to the memory of Jan Saxl

Abstract. Let G be a finite group, and α a nontrivial character of G. The McKay graph M(G,α)

has the irreducible characters of G as vertices, with an edge from χ1 to χ2 if χ2 is a constituent
of αχ1. We study the diameters of McKay graphs for finite simple groups G. For alternating

groups G = An, we prove a conjecture made in [20]: there is an absolute constant C such that

diamM(G,α) ≤ C
log |G|
logα(1)

for all nontrivial irreducible characters α of G. Also for classical groups

of symplectic or orthogonal type of rank r, we establish a linear upper bound Cr on the diameters of
all nontrivial McKay graphs. Finally, we provide some sufficient conditions for a product χ1χ2 · · ·χl
of irreducible characters of some finite simple groups G to contain all irreducible characters of G as

constituents.

1. Introduction

For a finite group G, and a (complex) character α of G, the McKay graph M(G,α) is defined to
be the directed graph with vertex set Irr(G), there being an edge from χ1 to χ2 if and only if χ2 is a
constituent of αχ1. A classical result of Burnside and Brauer [3] shows that M(G,α) is connected if
and only if α is faithful.

The study of McKay graphs for finite simple groups G was initiated in [20], with a particular
focus on the diameters of these graphs. Theorem 2 of [20] establishes a quadratic upper bound
diamM(G,α) ≤ Cr2 for any simple group G of Lie type of rank r and any nontrivial α ∈ Irr(G).
Notice that the smallest (resp. largest) nontrivial irreducible character degrees of G are at most qcr

(resp. at least qc
′r2), where c, c′ are constants, and hence the maximal diameter of a McKay graph

M(G,α) is at least a linear function of r. Theorem 3 of [20] implies a linear upper bound on these
diameters for the classical groups G = PSLεn(q), provided q is large compared to n. Our first main result
establishes a linear upper bound for the remaining classical groups. As mentioned above, diamM(G,α)
is finite if and only if α is faithful, hence it makes sense to bound only diamM(G/Ker(α), α) for any
nontrivial irreducible character α of a finite group G.

Theorem 1. Let q be any prime power. Then the following statements hold.
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(i) Let G be a simple classical group PSpn(q) with n ≥ 2, or PΩεn(q) with n ≥ 5, and let α be a
nontrivial irreducible character of G. Then

diamM(G,α) ≤ Cn,
where C = 16 or 32, respectively.

(ii) Let 2 - q and let G be a quasisimple classical group Spn(q) with n ≥ 2, or Spinεn(q) with n ≥ 5.
If α is a nontrivial irreducible character of G, then

diamM(G/Ker(α), α) ≤ Cn,
where C = 33 or 129, respectively.

An obvious lower bound for diamM(G,α) (when α(1) > 1) is given by log b(G)
logα(1) , where b(G) is the

largest degree of an irreducible character of G. In [20, Conjecture 1] we conjectured that for simple
groups G, this bound is tight up to a multiplicative constant. This conjecture was proved in [20,
Theorem 3] for the simple groups PSLεn(q), provided q is large compared to n. Recently it has also
been established for the symmetric groups by Mark Sellke in [25]. Deducing it for the alternating
groups is not entirely trivial, and this is the content of our next result.

Theorem 2. There is an effective absolute constant C such that, for all n ≥ 5 and for all nontrivial
irreducible characters α of G := An,

diamM(G,α) ≤ C log |G|
logα(1)

.

In our final result, we consider covering Irr(G) by products of arbitrary irreducible characters,
instead of powers of a fixed character. This idea was suggested by Gill [10], inspired by an analogous
result of Rodgers and Saxl [24] for conjugacy classes in G = SLn(q): this states that if a collection of
conjugacy classes of G satisfies the condition that the product of the class sizes is at least |G|12, then
the product of the classes is equal to G.

As a piece of notation, for characters χ1, . . . , χl of G, we write χ1χ2 · · ·χl ⊇ Irr(G) to mean that
every irreducible character of G appears as a constituent of χ1χ2 · · ·χl. Also, let g : N → N be the
function appearing in [20, Theorem 3].

Theorem 3. (i) Let G be a simple group of Lie type of rank r, let l ≥ 489r2, and let χ1, . . . , χl ∈
Irr(G) r 1G. Then χ1χ2 · · ·χl ⊇ Irr(G).

(ii) Let G = PSLεn(q) with q > g(n), let l ∈ N, and let χ1, . . . χl ∈ Irr(G) satisfy
∏l
i=1 χi(1) > |G|10.

Then χ1χ2 · · ·χl ⊇ Irr(G).

Gill [10] has conjectured that part (ii) of the theorem holds for all simple groups (with the constant
10 possibly replaced by a different constant). As a stepping stone in the spirit of the linear bound
given by Theorem 1, let us pose the following more modest conjecture.

Conjecture 4. There is an absolute constant C > 0 such that the following holds. Let G = Cln(q), a
classical simple group of dimension n, or An, an alternating group of degree n ≥ 5. Let l ≥ Cn, and
let χ1, . . . , χl ∈ Irr(G) r 1G. Then χ1χ2 · · ·χl ⊇ Irr(G).

See Proposition 5.4 for some partial results on Conjecture 4 in the case of An.

For particular characters there are stronger results and conjectures. It is shown by Heide, Saxl,
Tiep and Zalesski [15] that, if G is a finite simple group of Lie type and St is its Steinberg character,
then St2 ⊇ Irr(G), unless G is a unitary group in odd dimension, in which case St3 ⊇ Irr(G) (this
result plays a role in this paper).

As for symmetric groups, it is conjectured that for n ≥ 10 there is a character χ ∈ Irr(Sn) such that
χ2 ⊇ Irr(Sn). Moreover, Saxl conjectured that, if n = k(k+1)/2, then the so-called staircase character
(corresponding to the partition (k, k − 1, . . . , 1) of n) will do. These challenging conjectures are still
very much open. See Pak, Panova and Vallejo [23] for background and various partial results.
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The layout of the paper is as follows. Section 2 contains a substantial amount of character theory
for symplectic and orthogonal groups that is required for the proof of Theorem 1, which is completed
in Section 3. The remaining sections 4 and 5 contain the proofs of Theorems 2 and 3, respectively.

2. Some character theory for symplectic and orthogonal groups

Let p be a prime, q = pf , V = Fnq be endowed with a non-degenerate form, alternating when 2|n
or quadratic of type ε = ±, and let G denote the derived subgroup of the full isometry group of the
form. Assume that G is quasisimple, so that G = Sp(V ) = Spn(q) or Ω(V ) = Ωεn(q).

This section contains a detailed study of some specific irreducible characters χ of G – namely, the
constituents of the permutation character IndG[P,P ](1[P,P ]), where P is the maximal parabolic subgroup
of G stabilizing a singular 1-space. Two of the main results of the section are Propositions 2.12 and
2.13, which give upper bounds for the character ratios |χ(g)/χ(1)| for g ∈ G. These will be used in
Section 3 to prove Theorem 1.

2.1. Reduction lemmas. It is well known that the permutation action of G on the set of singular
1-spaces of V is primitive of rank 3, and thus its character is ρ = 1G + α + β, with α, β ∈ Irr(G).
Let (the parabolic subgroup) P = QL denote a point stabilizer in this action, with Q the unipotent
radical and L a Levi subgroup. Aside from α, β, we also need to consider the remaining non-principal
irreducible constituents γi of IndG[P,P ](1[P,P ]). Let St denote the Steinberg character of G.

Lemma 2.1. The following statements hold.

(i) Suppose that every semisimple element s ∈ G is real. Then for any χ ∈ Irr(G) and k ∈ N, χ2k

contains St if and only if (χχ)k contains St.
(ii) All semisimple elements in G are real, if G = Sp2r(q) or Ω2r+1(q) for any r ≥ 1, or G = Ωε2r(q)

with 2|r.

Proof. (i) Recall, see e.g. [4, Theorem 6.4.7], that St(g) = 0 if g ∈ G is not semisimple. Furthermore,
χ(g) = χ(g) if g ∈ G is semisimple, by hypothesis. Hence

[χ2k, St]G =
1

|G|
∑
g∈G

χ(g)2kSt(g)

=
1

|G|
∑

g∈G, g semisimple

χ(g)2kSt(g)

=
1

|G|
∑

g∈G, g semisimple

χ(g)kχ(g)kSt(g)

=
1

|G|
∑
g∈G

χ(g)kχ(g)kSt(g) = [(χχ)k, St]G,

and the claim follows.

(ii) This is well known, see e.g. [28, Proposition 3.1]. �

Lemma 2.2. Let G = Sp(V ) = Sp2r(q) with r ≥ 3. Suppose C ∈ N is such that both αC and βC

contain St. Then for any 1G 6= χ ∈ Irr(G), χ2C contains St.

Proof. In the aforementioned rank 3 permutation action of G with character ρ = 1G + α+ β, a point
stabilizer P is the normalizer NG(Z) of some long-root subgroup Z. Since n ≥ 3, Z has a nonzero
fixed point on any CG-module affording χ by [26, Theorem 1.6]. It follows that χ|P is reducible, and
so

(2.1) 2 ≤ [χ|P , χ|P ]P = [χχ, IndGP (1P )]G = [χχ, ρ]G.
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As [χχ, 1G]G = 1, χχ contains either α or β, whence (χχ)C contains St. Applying Lemma 2.1, we
conclude that χ2C contains St. �

Lemma 2.3. Let G = Ω(V ) = Ωεn(q) with n ≥ 5. Suppose C ∈ N is such that both αC and βC contain
St. Consider any 1G 6= χ ∈ Irr(G), and suppose in addition that either n 6≡ 2(mod 4), or χ = χ.
Then χ4C contains St.

Proof. Again we consider a point stabilizer P = QL in the aforementioned rank 3 permutation action
of G with character ρ = 1G +α+ β. Note that Q is elementary abelian, [L,L] ∼= Ωεn−2(q), and we can
identify Irr(Q) with the natural module Fn−2

q for [L,L]. In particular, any [L,L]-orbit on Irr(Q)r{1Q}
has length at least 2. It is also clear that some irreducible constituent of χ|Q is non-principal, since
Ker(χ) ≤ Z(G) and Q 6≤ Z(G). It follows that χ|Q is reducible, and so

2 ≤ [χ|Q, χ|Q]Q = [(χχ)|Q, 1Q]Q.

Since [χχ, 1G]G = 1, at least one non-principal irreducible constituent θ of χχ contains 1Q on restriction
to Q. But P normalizes Q, so the latter implies that θ|P is reducible. Thus (2.1) holds for θ instead
of χ. Arguing as in the proof of Lemma 2.1, we obtain that θθ contains either α or β, whence (χχ)2

contains either α or β. It follows that (χχ)2C contains St, and we are done if χ = χ. Applying Lemma
2.1, we also have that χ4C contains St in the case n 6≡ 2(mod 4). �

Lemma 2.4. Let G = Ω(V ) = Ωεn(q) with n ≥ 10 and n ≡ 2(mod 4). Suppose C ∈ N is such that ϑC

contains St for every ϑ ∈ {α, β, γi}. Then for any χ ∈ Irr(G) with χ 6= χ, χ4C contains St.

Proof. (i) As noted in the proof of Lemma 2.3, Q is elementary abelian, [L,L] ∼= Ωεn−2(q), and we
can identify Irr(Q) with the natural module Fn−2

q for [L,L]. Since n − 2 ≥ 8, it is straightforward to

check that any [L,L]-orbit on nonzero vectors of Fn−2
q contains a vector v and also −v. Thus, any

[L,L]-orbit on Irr(Q) r {1Q} contains a characters λ and also its complex conjugate λ. As noted in

the proof of Lemma 2.3, Q 6≤ Ker(χ). Thus we may assume that χ|Q contains λ and also λ. It follows
that 1 ≤ [χ2|Q, 1Q]Q. Since [χ2, 1G]G = [χ, χ]G = 0, at least one non-principal irreducible constituent
θ of χ2 contains 1Q on restriction to Q.

In particular, θ|P is reducible, since P normalizes Q, and (2.1) holds for θ instead of χ, and so the
arguments in the proof of Lemma 2.2 shows that θθ contains α or β. If, moreover, θ = θ, then we
conclude that θ2 contains α or β.

(ii) Now consider the case θ 6= θ, and let θ be afforded by a CG-module U . As shown in (i), the
Q-fixed point subspace UQ on U is nonzero, and L acts on UQ. Recall that 4|(n− 2) and n− 2 ≥ 8.
Assume in addition that q 6≡ 3(mod 4) if ε = +. Then all irreducible characters of [L,L] ∼= Ωεn−2(q)

are real-valued by [28, Theorem 1.2], and so the [L,L]-module UQ contains an irreducible submodule
W ∼= W ∗.

Consider the case where ε = + and q ≡ 3(mod 4), and recall that P = StabG(〈u〉Fq ) for a singular

vector 0 6= u ∈ V . We can consider P inside P̃ := StabSO(V )(〈u〉Fq ) = QL̃, and find another singular

vector u′ ∈ V such that V = V1 ⊕ V2, with V1 = 〈u, u′〉Fq , V2 = V ⊥1 , and [L,L] = Ω(V2). Since
q ≡ 3(mod 4), t := −1V1

∈ SO(V1) r Ω(V1). Choosing some t′ ∈ SO(V2) r Ω(V2), we see that

tt′ ∈ L̃ ∩ Ω(V ) = L, and L1 := 〈[L,L], tt′〉 ∼= SO+
n−2(q). By [13], all irreducible characters of L1 are

real-valued, and so the L1-module UQ contains an irreducible submodule W ∼= W ∗.

We have shown that the [L,L]-module UQ contains a nonzero submodule W ∼= W ∗. We can
also inflate W to a nonzero self-dual module over [P, P ] = Q[L,L]. It follows that (U ⊗C U)|[P,P ]

contains W⊗CW
∗, which certainly contains the trivial submodule. Thus, θ2|[P,P ] contains the principal

character 1[P,P ], and so

(2.2) 1 ≤ [θ2, IndG[P,P ](1[P,P ])]G.
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Recall we are assuming that 0 = [θ, θ]G = [θ2, 1G]G. Hence (2.2) implies that θ2 contains at least one
of α, β, or γi.

(iii) We have shown that, in all cases, θ2 contains at least one of α, β, or γi. As χ2 contains θ, we
see that χ4 contains at least one of α, β, or γi, and so χ4C contains St. �

2.2. Classical groups in characteristic 2. From now on until the end of the section (with the
exception of Theorem 2.11), we depart from our convention of using n for the dimension of the natural
module for the classical group in question, and use it to denote the rank of the group instead. In this
subsection we study certain characters of G̃ = Sp(V ) = Sp2n(q) and G = Ω(V ) = Ωε2n(q), where n ≥ 5
and 2|q. These results will be used subsequently and are also of independent interest.

First we endow V with a non-degenerate alternating form (·, ·), and work with its isometry group

G̃ = Sp(V ). We will consider the following irreducible characters of G̃:

• the q/2 + 1 linear-Weil characters: ρ1,n of degree (qn + 1)(qn − q)/2(q − 1), ρ2,n of degree
(qn − 1)(qn + q)/2(q − 1), and τi,n of degree (q2n − 1)/(q − 1), 1 ≤ i ≤ (q − 2)/2, and

• the q/2 + 2 unitary-Weil characters: αn of degree (qn − 1)(qn − q)/2(q + 1), βn of degree (qn +
1)(qn + q)/2(q + 1), and ζi,n of degree (q2n − 1)/(q + 1), 1 ≤ i ≤ q/2;
see [14, Table 1]. Then

(2.3) ρ := 1G̃ + ρ1,n + ρ2,n

is the rank 3 permutation character of G̃ acting on the set of 1-spaces of V . The following statement
is well known, see e.g. formula (1) of [8]:

Lemma 2.5. For ε = ±, the character πε of the permutation action of G̃ on quadratic forms of type
ε associated to (·, ·) is given as follows:

π+ = 1G̃ + ρ2,n +

(q−2)/2∑
i=1

τi,n, π
− = 1G̃ + ρ1,n +

(q−2)/2∑
i=1

τi,n.

Given any g ∈ GL(V ), let

d(x, g) := dimFq Ker(g − x · 1V⊗FqFq
)

for any x ∈ F×q , and define the support of g to be

(2.4) supp(g) := dim(V )− max
x∈F×q

d(x, g).

Set
d(g) := dim(V )− supp(g).

Proposition 2.6. Let G̃ = Sp2n(q) with n ≥ 3 and 2|q, and let g ∈ G̃ have support s = supp(g). If
χ ∈ {ρ1,n, ρ2,n}, then

|χ(g)|
χ(1)

≤ 1

qs/3
.

Proof. The statement is obvious if s = 0. Suppose s = 1. It is easy to see that in this case g is a
transvection, and so

ρ1,n(g) = ρ2,n(g) =
q2n−1 − q
2(q − 1)

by [14, Corollary 7.8], and the statement follows.

From now on we may assume s ≥ 2. Observe that d := maxx∈F×q d(x, g) ≤ d(g) = 2n− s. Hence,

0 ≤ ρ(g) =
∑
x∈F×q

qd(x) − 1

q − 1
≤ qd − 1,
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and so (2.3) implies

|ρ1,n(g) + ρ2,n(g)| ≤ qd − 1.

On the other hand, since π±(g) ≥ 0 and π+ + π− is just the permutation character of G̃ acting on V ,
Lemma 2.5 implies that

|ρ1,n(g)− ρ2,n(g)| = |π+(g)− π−(g)| ≤ π+(g) + π−(g) = qd(1,g) ≤ qd.

It follows for any i ∈ {1, 2} that

|ρi,n(g)| ≤
(
|ρ1,n(g) + ρ2,n(g)|+ |ρ1,n(g)− ρ2,n(g)|

)
/2 < qd ≤ q2n−s.

Since n ≥ 3, we can also check that

ρi,n(1) ≥ (qn + 1)(qn − q)
2(q − 1)

> q2n−4/3.

Thus |χ(g)|/χ(1)| < q4/3−s ≤ q−s/3, as stated. �

Next we endow V = F2n
q with a non-degenerate quadratic form Q of type ε = ± associated to the

alternating form (·, ·). Choose a Witt basis (e1, . . . , en, f1, . . . , fn) for (·, ·), such that Q(e1) = Q(f1) =
0. We may assume that P = StabG(〈e1〉Fq ) = QL, where Q is elementary abelian of order q2n−2,
L ∼= Ωε2n−2(q)× Cq−1, and

[P, P ] = StabG(e1) = Qo [L,L]

has index (qn − ε)(qn−1 + ε) in G. Also consider H := StabG(e1 + f1).

According to [22, Theorem 1.3], G has q+1 non-principal complex irreducible characters of degree at
most (qn−ε)(qn−1 +ε), namely, α of degree (qn−ε)(qn−1 +εq)/(q2−1), β of degree (q2n−q2)/(q2−1),
γi of degree (qn − ε)(qn−1 + ε)/(q − 1), 1 ≤ i ≤ (q − 2)/2, and δj of degree (qn − ε)(qn−1 − ε)/(q + 1),
1 ≤ j ≤ q/2.

Proposition 2.7. Let G = Ωε2n(q) with n ≥ 5 and 2|q, and consider P = StabG(e1) and H =
StabG(e1 + f1) as above. Then the following statements hold.

(i) IndGP (1P ) = 1G + α+ β.

(ii) IndG[P,P ](1[P,P ]) = 1G + α+ β + 2
∑(q−2)/2
i=1 γi.

(iii) IndGH(1H) = 1G + β +
∑(q−2)/2
i=1 γi +

∑q/2
j=1 δj.

Proof. (i) is well known. Next, P/[P, P ] ∼= Cq−1 has q−1 irreducible characters: 1P and (q−2)/2 pairs

of {νi, νi}, 1 ≤ i ≤ (q − 2)/2. An application of Mackey’s formula shows that IndGP (νi) = IndGP (νi) is
irreducible for all i. Now using (i) we can write

(2.5) IndG[P,P ](1[P,P ]) = IndGP
(
IndP[P,P ](1[P,P ])

)
= 1G + α+ β + 2

(q−2)/2∑
i=1

IndGP (νi).

On the other hand, note that [P, P ] has exactly 2q − 1 orbits on the set of nonzero singular vectors
in V : q − 1 orbits {xe1} with x ∈ F×q , one orbit {v ∈ e⊥1 r 〈e1〉Fq | Q(v) = 0}, and (q − 1) orbits

{yf1 +v | v ∈ e⊥1 ,Q(yf1 +v) = 0} with y ∈ F×q . Together with (2.5), this implies that all summands in

the last decomposition in (2.5) are pairwise distinct. Since γi = (qn− ε)(qn−1 + ε)/(q−1) = IndGP (νi′),

renumbering the νi if necessary, we may assume that IndGP (νi) = γi, and (ii) follows.

For (iii), first note that P has two orbits on the set X := {v ∈ V | Q(v) = 1}, namely, X ∩ e⊥1 and

X r e⊥1 . Since IndGH(1H) is the character of the permutation action of G on X , we get

(2.6) [IndGP (1P ), IndGH(1H)]G = 2.

Next, [P, P ] has q orbits on X , namely, X ∩ e⊥1 , and {yf1 + w ∈ X | w ∈ e⊥1 } with y ∈ F×q . Thus

(2.7) [IndG[P,P ](1[P,P ]), IndGH(1H)]G = q.
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Combining the results of (i), (ii), with (2.6), (2.7), and again using [22, Theorem 1.3], we can write

(2.8) IndGH(1H) = 1G + (aα+ bβ) +

(q−2)/2∑
i=1

ciγi +

q/2∑
j=1

djδj ,

where a, b, ci, dj ∈ Z≥0, a+ b = 1,
∑
i ci = (q − 2)/2.

Let τ denote the character of the permutation action of G on V r {0}, so that

τ = IndG[P,P ](1[P,P ]) + (q − 1)IndGH(1H).

Note that G has q3 + q2 − q orbits on (V r {0}) × (V r {0}), namely, q(q − 1) orbits of (u, xu),
where x ∈ F×q and Q(u) = y ∈ Fq, and q3 orbits of (u, v), where u, v are linearly independent and

(Q(u), (u, v),Q(v)) = (x, y, z) ∈ F3
q. In other words, [τ, τ ]G = q3 + q2 − q. Using (ii) and (2.7), we

deduce that

(2.9) [IndGH(1H), IndGH(1H)]G = q + 1.

In particular, if q = 2 then IndGH(1H) is the sum of 3 pairwise distinct irreducible characters. By
checking the degrees of α, β and δ1, (iii) immediately follows from (2.8).

Now we may assume q = 2e ≥ 4. Let `+ = `(2ne − 1) denote a primitive prime divisor of 2ne − 1,
which exists by [29]. Likewise, let `− = `(22ne − 1) denote a primitive prime divisor of 22ne − 1. Then
note that `ε divides the degree of each of α, γi, dj , but neither [G : H] − 1 nor β(1). Hence (2.8)
implies that (a, b) = (0, 1). Comparing the degrees in (2.8), we also see that

∑
j dj = q/2. Now

q + 1 = [IndGH(1H), IndGH(1H)]G = 2 +

(q−2)/2∑
i=1

c2i +

q/2∑
j=1

d2
j ≥ 2 +

(q−2)/2∑
i=1

ci +

q/2∑
j=1

dj = 2 +
q − 2

2
+
q

2
,

yielding c2i = ci, d
2
j = dj , ci, dj ∈ {0, 1}, and so ci = dj = 1, as desired. �

In the next statement, we embed G = Ω(V ) in G̃ := Sp(V ) (the isometry group of the form (·, ·) on
V ).

Proposition 2.8. Let n ≥ 5, 2|q, and ε = ±. Then the characters ρ1,n and ρ2,n of Sp(V ) ∼= Sp2n(q)
restrict to G = Ω(V ) ∼= Ωε2n(q) as follows:

(ρ1,n)|Ω+
2n(q) = β +

∑q/2
j=1 δj , (ρ2,n)|Ω+

2n(q) = 1 + α+ β +
∑(q−2)/2
i=1 γi,

(ρ1,n)|Ω−2n(q) = 1 + α+ β +
∑(q−2)/2
i=1 γi, (ρ2,n)|Ω−2n(q) = β +

∑q/2
j=1 δj .

Proof. Note by (2.3) that 1G + (ρ1,n + ρ2,n)|G is just the character of the permutation action on the
set of 1-spaces of V . Hence, by Proposition 2.7 we have

(2.10)
(
ρ1,n + ρ2,n

)
|G = IndGP (1P ) + IndGH(1H)− 1G = 1G + α+ 2β +

(q−2)/2∑
i=1

γi +

q/2∑
j=1

δj .

Furthermore, Lemma 2.5 implies by Frobenius reciprocity that

(2.11)
(
ρ2,n

)
|G contains 1G when ε = +, and

(
ρ1,n

)
|G contains 1G when ε = −.

(i) First we consider the case ε = +. If (n, q) 6= (6, 2), one can find a primitive prime divisor
` = `(2ne − 1), where q = 2e. If (n, q) = (6, 2), then set ` = 7. By its choice, ` divides the degrees of
ρ2,n, α, γi, and δj , but β(1) ≡ ρ1,n(1) ≡ −1(mod `). Hence, (2.10) and (2.11) imply that

(
ρ2,n

)
|G = 1G + β + xα+

(q−2)/2∑
i=1

yiγi +

q/2∑
j=1

zjδj ,
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where x, yi, zj ∈ {0, 1}. Setting y :=
∑(q−2)/2
i=1 yi and z :=

∑q/2
j=1 zj and comparing the degrees, we get

(1− x)(qn−1 + q) + (qn−1 + 1)(q + 1)((q − 2)/2− y) = z(qn−1 − 1)(q − 1),

and so qn−1+1 divides (1−x+2z)(q−1). Note that gcd(q−1, qn−1+1) = 1 and 0 ≤ (1−x+2z)(q−1) ≤
q2 − 1 < qn−1 + 1. It follows that x = 1, z = 0, y = (q − 2)/2, whence yi = 1 and zj = 1, as stated.

(ii) Now let ε = −, and choose ` to be a primitive prime divisor `(22ne− 1). By its choice, ` divides
the degrees of ρ1,n, α, γi, and δj , but β(1) ≡ ρ2,n(1) ≡ −1(mod `). Hence, (2.10) and (2.11) imply
that (

ρ1,n

)
|G = 1G + β + xα+

(q−2)/2∑
i=1

yiγi +

q/2∑
j=1

zjδj ,

where x, yi, zj ∈ {0, 1}. Setting y :=
∑(q−2)/2
i=1 yi and z :=

∑q/2
j=1 zj and comparing the degrees, we get

(1− x)(qn−1 − q) + (qn−1 − 1)(q + 1)((q − 2)/2− y) = z(qn−1 + 1)(q − 1),

and so (qn−1 − 1)/(q − 1) divides 1 − x + 2z. Since 0 ≤ 1 − x + 2z ≤ q + 1 < (qn−1 − 1)/(q − 1), it
follows that x = 1, z = 0, y = (q − 2)/2, whence yi = 1 and zj = 1, as stated. �

For the subsequent discussion, we recall the quasi-determinant κε : Oε → {−1, 1}, where Oε :=
GO(V ) ∼= GOε

2n(q), defined via

κε(g) := (−1)dimFq Ker(g−1V ).

It is known, see e.g. [14, Lemma 5.8(i)], that κ is a group homomorphism, with

(2.12) Ker(κε) = Ωε := Ω(V ) ∼= Ωε2n(q).

Now we prove the “unitary” analogue of Lemma 2.5:

Lemma 2.9. For n ≥ 3 and 2|q, the following decompositions hold:

IndG̃O+
(κ+) = βn +

q/2∑
i=1

ζi,n, IndG̃O−(κ−) = αn +

q/2∑
i=1

ζi,n.

Proof. According to formulae (10) and (4)–(6) of [14],

(2.13) IndG̃Ω+
(κ+) + IndG̃Ω−(κ−) = αn + βn + 2

q/2∑
i=1

ζi,n.

Hence we can write

(2.14) IndG̃Ω+
(κ+) = xαn + yβn +

q/2∑
i=1

ziζi,n,

where x, y, zi ∈ Z≥0, x, y ≤ 1 and zi ≤ 2. Note that, since π+ = IndG̃O+
(1O+

), Lemma 2.5 implies that

|O+\G̃/O+| =
q

2
+ 1.

Next, by Mackey’s formula we have

[IndG̃Ω+
(κ+), IndG̃Ω+

(κ+)]G =
∑

O+tO+∈O+\G̃/O+

[(κ+)|O+∩tO+t−1 , (κt+)|O+∩tO+t−1 ]O+∩tO+t−1 ,

where κt+(x) = κ(xt) := κ(t−1xt) for any x ∈ O+ ∩ tO+t
−1. For such an x, note that

(2.15) κ+(x) = 1⇔ 2| dimFq Ker(x− 1V )⇔ 2| dimFq Ker(xt−1 − 1V )⇔ (κ+)t(x) = 1,

i.e. κ+(x) = κt+(x). It follows that

(2.16) x2 + y2 +

q/2∑
i=1

z2
i = [IndG̃Ω+

(κ+), IndG̃Ω+
(κ+)]G = |O+\G̃/O+| =

q

2
+ 1.
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On the other hand, equating the character degrees in (2.14) we obtain

(2.17)
qn(qn + 1)

2
= x

(qn − 1)(qn − q)
2(q + 1)

+ y
(qn + 1)(qn + q)

2(q + 1)
+

q/2∑
i=1

zi ·
q2n − 1

q + 1
.

We claim that x = 0. Indeed, if (n, q) = (3, 2), then (2.17) implies that 3|x, and so x = 0 as 0 ≤ x ≤ 1.
Assume (n, q) 6= (3, 2). Then we can find a primitive prime divisor ` = `(22ne− 1) for q = 2e, and note
from (2.17) that `|x. Since ` > 2 and x ∈ {0, 1}, we again have x = 0.

Now if y = 0, then (2.17) implies that qn(qn + 1)/2 is divisible by (q2n− 1)/(q+ 1), a contradiction.

Hence y = 1, and from (2.17) we obtain that
∑q/2
i=1 zi = q/2. On the other hand,

∑q/2
i=1 z

2
i = q/2 by

(2.16). Thus
∑q/2
i=1(zi−1)2 = 0, and so zi = 1 for all i. Together with (2.13), this yields the two stated

decompositions. �

Proposition 2.10. Let n ≥ 5, 2|q, and ε = ±. Then the characters αn and βn of Sp(V ) ∼= Sp2n(q)
restrict to G = Ω(V ) ∼= Ωε2n(q) as follows:

(αn)|Ω+
2n(q) =

∑q/2
j=1 δj , (βn)|Ω+

2n(q) = 1 + α+
∑(q−2)/2
i=1 γi,

(αn)|Ω−2n(q) = 1 + α+
∑(q−2)/2
i=1 γi, (βn)|Ω−2n(q) =

∑q/2
j=1 δj .

In particular, the following formula holds for the irreducible character β of G of degree (q2n−q2)/(q2−
1): (

(ρ1,n + ρ2,n)− (αn + βn)
)
|Ωε2n(q) = 2β.

Proof. By Mackey’s formula,(
IndG̃Ω+

(κ+)
)
|G =

∑
GtO+∈G\G̃/O+

IndGG∩tO+t−1

(
(κt+)|G∩tO+t−1

)
,

and similarly for π+ = IndG̃Ω+
(1O+

). The argument in (2.15) shows that κt+(x) = 1 for all x ∈
G∩ tO+t

−1, and so π+ and IndG̃Ω+
(κ+) agree on G. Similarly, π− and IndG̃Ω−(κ−) agree on G. It then

follows from Lemmas 2.5 and 2.9 that

(2.18)
(
ρ2,n − ρ1,n

)
|G =

(
π+ − π−

)
|G =

(
IndG̃Ω+

(κ+)− IndG̃Ω−(κ−)
)
|G =

(
βn − αn

)
|G.

First assume that ε = +. Then using Proposition 2.8 we get

(
βn − αn

)
|G = 1G + α+

(q−2)/2∑
i=1

γi −
q/2∑
j=1

δj ,

i.e.
q/2∑
j=1

δj + (βn)|G = 1G + α+

(q−2)/2∑
i=1

γi + (αn)|G.

Aside from (αn)|G and (βn)|G, all the other characters in the above equality are irreducible and pairwise

distinct. It follows that (αn)|G contains
∑q/2
j=1 δj . Comparing the degrees, we see that

(αn)|G =

q/2∑
j=1

δj ,

which then implies that

(βn)|G = 1G + α+

(q−2)/2∑
i=1

γi.
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Now assume that ε = −. Then again using Proposition 2.8 and (2.18) we get

(
αn − βn

)
|G = 1G + α+

(q−2)/2∑
i=1

γi −
q/2∑
j=1

δj ,

i.e.
q/2∑
j=1

δj + (αn)|G = 1G + α+

(q−2)/2∑
i=1

γi + (βn)|G.

Aside from (αn)|G and (βn)|G, all the other characters in the above equality are irreducible and pairwise

distinct. It follows that (βn)|G contains
∑q/2
j=1 δj . Comparing the degrees, we see that

(βn)|G =

q/2∑
j=1

δj ,

which then implies that

(αn)|G = 1G + α+

(q−2)/2∑
i=1

γi.

For both ε = ±, the last statement now follows from (2.10). �

Proposition 2.10 leads to the following explicit formula for β, which we will show to hold for all
special orthogonal groups in all characteristics and all dimensions, and which is of independent interest.
In this result, we let V = Fnq be a quadratic space, L := SO(V ) if 2 - q, L := Ω(V ) if 2|q, and extend

the action of L on V to Ṽ := V ⊗Fq Fq2 , and we assume 2 - q if 2 - n. Also, set

µq−1 := F×q , µq+1 := {x ∈ F×q2 | x
q+1 = 1}.

If 2 - q, let χ+
2 be the unique linear character of order 2 of µq−1, and let χ−2 be the unique linear

character of order 2 of µq+1.

Theorem 2.11. Let n ≥ 10, ε = ±, and let q be any prime power. If 2|n, let ψ = β be the irreducible
constituent β of degree (qn − q2)/(q2 − 1) of the rank 3 permutation character of L = Ω(V ) when 2|q,
and of L = SO(V ) when 2 - q, on the set of singular 1-spaces of its natural module V = Fnq . If 2 - qn,

let ψ be the irreducible character of L = SO(V ) of degree (qn − q)/(q2 − 1) denoted by DSt in [19,
Proposition 5.7]. Then for any g ∈ L we have

ψ(g) =
1

2(q − 1)

∑
λ∈µq−1

qdimFq Ker(g−λ·1V ) − 1

2(q + 1)

∑
λ∈µq+1

(−q)dimF
q2

Ker(g−λ·1Ṽ ) − 1

when 2|n, and

ψ(g) =
1

2(q − 1)

∑
λ∈µq−1

χ+
2 (λ)qdimFq Ker(g−λ·1V ) +

1

2(q + 1)

∑
λ∈µq+1

χ−2 (λ)(−q)dimF
q2

Ker(g−λ·1Ṽ )

when 2 - qn.

Proof. In the case 2|q, the statement follows from the last formula in Proposition 2.10, together with
formulae (3) and (6) of [14]. Assume now that 2 - q, and set κ := 1 if 2|n and κ := 0 if 2 - n. By [19,
Proposition 5.7] (and in the notation of [19, §5.1]),

ψ(g) =
1

|Sp2(q)|
∑

x∈Sp2(q)

ωn(xg)St(x)− κ,

where ω2n denotes a reducible Weil character of Sp2n(q) and St denotes the Steinberg character of
S := Sp2(q).

If x ∈ S is not semisimple, then St(x) = 0.
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Suppose x = diag(λ, λ−1) ∈ T1 < S, where T1
∼= Cq−1 is a split torus and λ ∈ µq−1. In this case,

we can view T1 as GL1(q), embed L in GLn(q), and view xg as an element h = λg in a Levi subgroup
GLn(q) of Sp2n(q), with det(h) = λn. It follows from [9, Theorem 2.4(c)] that

ωn(xg) = χ+
2 (λn)qdimFq Ker(h−1) = χ+

2 (λn)qdimFq Ker(g−λ−1).

If λ 6= ±1, then |xS | = q(q + 1) and St(x) = 1. If λ = ±1, then |xS | = 1 and St(x) = q. Note that
since g ∈ GO(V ),

dimFq Ker(g − λ−1) = dimFq Ker(tg − λ−1) = dimFq Ker(g−1 − λ−1) = dimFq Ker(g − λ).

We also note that since g ∈ SO(V ),

(2.19) dimFq Ker(g − 1V ) ≡ n(mod 2), dimFq Ker(g + 1V ) ≡ 0(mod 2).

(Indeed, since det(g) = 1, each of Ker(gs − 1V ) and Ker(gs + 1V ) is a non-degenerate subspace of
V if nonzero, where g = gsgu is the Jordan decomposition; furthermore, 2| dimFq Ker(gs + 1V ) and
dim KerFqKer(gs − 1V ) ≡ n(mod 2). Hence the claim reduces to the unipotent case g = gu. In the
latter case, the number of Jordan blocks of gu of each even size is even, see [4, §13.1], and the claim
follows.)

Suppose x ∈ T2 < S, where T2
∼= Cq+1 is a non-split torus and x has eigenvalues µ, µ−1, with

µ ∈ µq+1 and µ 6= ±1. Then St(x) = −1 and |xS | = q(q − 1). In this case, we can view T2 as
GU1(q), embed L in GUn(q), and view xg as an element h = µg in a subgroup GUn(q) of Sp2n(q),
with det(h) = µn. It follows from [9, Theorem 3.3] that

ωn(xg) = (−1)nχ−2 (µn)(−q)dimF
q2

Ker(h−1)
= (−1)nχ−2 (µn)(−q)dimF

q2
Ker(g−µ−1)

.

Altogether, we have shown that

(2.20)

ψ(g) =
1

q2 − 1

(
qdimFq Ker(g−1) + χ+

2 ((−1)n)qdimFq Ker(g+1)
)

+
1

2(q − 1)

∑
λ∈µq−1r{±1}

χ+
2 (λn)qdimFq Ker(g−λ)

− (−1)n

2(q + 1)

∑
µ∈µq+1r{±1}

χ−2 (µn)(−q)dimF
q2

Ker(g−µ) − κ,

and the statement now follows if we use (2.19). �

2.3. Some character estimates.

Proposition 2.12. Let q be any prime power, G = Ωε2n(q) with n ≥ 5, ε = ±, and let g ∈ G have
support s = supp(g). Assume that χ ∈ {α, β} if 2 - q, and χ ∈ {α, β, γi} if 2|q. Then

|χ(g)|
χ(1)

≤ 1

qs/3
.

Proof. (i) First we consider the case s ≥ n ≥ 5. Then

(2.21) d(x, g) ≤ 2n− s

for any x ∈ F×q . In particular,

(2.22) 0 ≤ ρ(g) ≤
∑
x∈F×q

qd(x,g) − 1

q − 1
≤ q2n−s − 1.

Now, (when 2|q) part (i) of the proof of Proposition 2.7 shows that γi = IndGP (νj) for some linear

character νj of P , and recall that ρ = IndGP (1P ). It follows that

|γi(g)| ≤ |ρ(g)| ≤ q2n−s − 1,
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and so |γi(g)/γi(1)| < 1/qs−2 ≤ q−3s/5 as γi(1) = [G : P ] > q2n−2. Next, using Theorem 2.11 and
(2.21) we also see that

(2.23) |β(g) + 1| ≤ 1

2(q − 1)

∑
x∈F×q

qd(x,g) +
1

2(q + 1)

∑
x∈F×q ,xq+1=1

qd(x,g) ≤ q2n−s.

In particular, |β(g)| ≤ q2n−s+1. Since β(1) = (q2n−q2)/(q2−1), we deduce that |β(g)/β(1)| < q−3s/5.
Furthermore, as α(g) = ρ(g)− (β(g) + 1), we obtain from (2.22)–(2.23) that

|α(g)| ≤ 2q2n−s − 1.

If s ≥ 6, then it follows that |α(g)/α(1)| < q4−s ≤ q−s/3, since α(1) > q2n−3. Suppose that s = n = 5.
Then we can strengthen (2.23) to

−2q5 − (q − 1)q3

2(q + 1)
≤ β(g) + 1 ≤ q5.

Together with (2.22), this implies that

|α(g)| = |ρ(g)− (β(g) + 1)| < q5 + q4 < α(1)/qs/3

since α(1) ≥ (q5 + 1)(q4 − q)/(q2 − 1).

(ii) From now on we may assume that s ≤ n−1. As g ∈ G = Ωε2n(q), it follows that d(z, g) = 2n−s
for a unique z ∈ {1,−1}. Furthermore, 2|s. (Indeed, this has been recorded in (2.12) when 2|q, and in
(2.19) when 2 - q.) We also have that

(2.24) d(x, g) ≤ 2n− d(z, g) = s

for all x ∈ F×q r {z},
Assume in addition that s ≥ 4. Using (2.24) we obtain

(2.25) 0 ≤ ρ(g) ≤ q2n−s − 1 + (q − 2)(qs − 1)

q − 1
.

As ρ(1) = (qn − ε)(qn−1 + ε)/(q − 1), it follows that |ρ(g)/ρ(1)| < q−3s/5. As above, the same bound
also applies to χ = γi when 2|q.

Next, since 2|s, using Theorem 2.11 and applying (2.24) to xq±1 = 1 and x 6= z, we have (for any
2|s ≤ n− 1) that

(2.26)
q2n−s

q2 − 1
− qs · q

2(q + 1)
≤ β(g) + 1 ≤ q2n−s

q2 − 1
+ qs ·

(
q − 2

2(q − 1)
+

q

2(q + 1)

)
;

in particular,

|β(g)| < q2n−s + qs(q2 − q − 1)

q2 − 1
.

Since β(1) = (q2n−q2)/(q2−1), we obtain that |β(g)/β(1)| < q−4s/5. Furthermore, using (2.25)–(2.26),
we can bound

|α(g)| = |ρ(g)− (β(g) + 1)| < q2n−s+1 + qs(3q2 − 3q − 4)/2

q2 − 1
<
α(1)

q2s/5

since α(1) ≥ (qn + 1)(qn−1 − q)/(q2 − 1).

(iii) Since the statement is obvious for s = 0, it remains to consider the case s = 2, i.e. d(1, zg) =
2n − 2. Using [27, Lemma 4.9], one can readily show that g fixes an orthogonal decomposition V =
U ⊕ U⊥, with U ⊂ Ker(g − z · 1V ) being non-degenerate of dimension 2n− 4, and

(2.27) dimFq (U
⊥)zg = 2.

First we estimate ρ(g). Suppose g(v) = tv for some singular 0 6= v ∈ V and t ∈ F×q . If t 6= z,

then v ∈ U⊥, and (2.27) implies that g can fix at most q + 1 such singular 1-spaces 〈v〉Fq . Likewise,
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g fixes at most q + 1 singular 1-spaces 〈v〉Fq ⊂ U⊥ with g(v) = zv. Assume now that g(v) = zv with

v = u+ u′, 0 6= u ∈ U and u′ ∈ U⊥. As 0 = Q(v) = Q(u) + Q(u′), the total number of such v is

N :=
∑
x∈Fq

|{0 6= w ∈ U | Q(w) = x}| · |{w′ ∈ U⊥ | g(w′) = zw′,Q(w′) = −x}|.

Note that, since U is a non-degenerate quadratic space of dimension 2n− 4,

(qn−2 + 1)(qn−3 − 1) ≤ |{0 6= w ∈ U | Q(w) = x}| ≤ (qn−2 − 1)(qn−3 + 1)

for any x ∈ Fq. On the other hand, (2.27) implies that∑
x∈Fq

|{w′ ∈ U⊥ | g(w′) = zw′,Q(w′) = −x}| = |(U⊥)zg| = q2.

It follows that

q2(qn−2 + 1)(qn−3 − 1) ≤ N ≤ q2(qn−2 − 1)(qn−3 + 1),

and so

(2.28)
q2(qn−2 + 1)(qn−3 − 1)

q − 1
≤ ρ(g) ≤ 2q + 2 +

q2(qn−2 − 1)(qn−3 + 1)

q − 1
.

In particular, when 2|q we have |γi(g)| ≤ |ρ(g)| < ρ(1)/q4s/5.

Next, applying (2.26) to s = 2 we have

|β(g)| ≤ q2n−2 + q2(q2 − q − 1)

q2 − 1
<
β(1)

q4s/5
.

Finally, using (2.26) with s = 2 and (2.28), we obtain

|α(g)| = |ρ(g)− (β(g) + 1)| < q2n−3 + qn+1 − qn−1

q2 − 1
+ (q + 1) <

α(1)

q3s/5
.

�

Proposition 2.13. Let q be any odd prime power, n ≥ 5, and ε = ±. Assume that χ ∈ Irr(G), where
either G ∈ {Sp2n(q),Ω2n+1(q)} and χ ∈ {α, β}, or G = Ωε2n(q) and χ ∈ {α, β, γi}. If g ∈ G has
support s = supp(g), then

|χ(g)|
χ(1)

≤ 1

qs/3
.

Proof. (i) As usual, we may assume s ≥ 1. First we consider the case G = Ωε2n(q). Then [21, Corollary
5.14] and [19, Proposition 5.7] show (in their notation) that α = D1− 1G, β = DSt− 1G. Furthermore

if ν 6= 1P is a linear character of P , then IndGP (ν) = Dχj if ν has order > 2, and IndGP (ν) = Dξ1 +Dξ2

if ν has order 2.

If χ = α or β, then the statement is already proved in Proposition 2.12, whose proof also applies
to the case χ = γi = Dχj (using the estimate |IndGP (ν)(g)| ≤ ρ(g)). It remains to consider the case
χ = γi = Dξj for j = 1, 2. Again the previous argument applied to ν of order 2 shows that

|Dξ1(g) +Dξ2(g)| ≤ [G : P ]

q3s/5
=

2χ(1)

q3s/5
.

On the other hand, the formula for Dα in [19, Lemma 5.5], the character table of SL2(q) [5, Theorem
38.1], and part 1) of the proof of [19, Proposition 5.11] imply that

(2.29) |Dξ1(g)−Dξ2(g)| ≤
2(q2 − 1)qn · √q

q(q2 − 1)
= 2qn−1/2.
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If 4 ≤ s ≤ 2n− 2, then since χ(1) ≥ (qn + 1)(qn−1 − 1)/2(q − 1) > q2n−3(q + 1) it follows that

|χ(g)| ≤
(
|Dξ1(g) +Dξ2(g)|+ |Dξ1(g) +Dξ2(g)|

)
/2

≤ χ(1)

q3s/5
+ qn−1/2 <

χ(1)

q3s/5
+

2χ(1)

qs/3−1/6(q + 1)
<
χ(1)

qs/3
.

If 1 ≤ s < 4, then s < n, and so 2|s as shown in part (ii) of the proof of Proposition 2.12. Hence s = 2,
and we again have

|χ(g)| ≤ χ(1)

q3s/5
+ qn−1/2 <

χ(1)

q3s/5
+

2χ(1)

qs/3+17/6
<
χ(1)

qs/3
.

Finally, if s = 2n−1, then d(x, g) ≤ 1 for all x ∈ F×q by (2.21); moreover, d(±1, g) = 0. Hence, instead
of (2.29) we now have the stronger bound

|Dξ1(g)−Dξ2(g)| ≤
2(q2 − 1) · √q
q(q2 − 1)

= 2q−1/2,

whence |χ(g)| ≤ χ(1)q−3s/5 + q−1/2 < χ(1)q−s/3.

(ii) Next we consider the case G = Ω2n+1(q). Then [21, Corollary 5.15] and [19, Proposition 5.7]
show (in their notation) that α = Dξ1 − 1G, β = Dξ2 − 1G. Again using the formula for Dα in [19,
Lemma 5.5], the character table of SL2(q) [5, Theorem 38.1], and part 1) of the proof of [19, Proposition
5.11], we obtain that

(2.30) |α(g)− β(g)| = |Dξ1(g)−Dξ2(g)| ≤
2(q2 − 1)qn+1/2 · √q

q(q2 − 1)
= 2qn.

Suppose in addition that 3 ≤ s ≤ 2n− 2. Since d(x, g) ≤ 2n+ 1− s by (2.21), we have that

0 ≤ ρ(g) = 1 + α(g) + β(g) ≤
∑

x∈µq−1

qd(x,g) − 1

q − 1
≤ q2n+1−s.

As χ(1) ≥ (qn + 1)(qn − q)/2(q − 1), it follows that

|α(g) + β(g)| ≤ q2n+1−s − 1 <
2(1− 1/q)q2−sχ(1)

(1 + 1/qn)(1− 1/qn−1)
<

2(1− 1/q)χ(1)

qs/3(1− 1/qn−1)
.

On the other hand, (2.30) implies that

|α(g)− β(g)| ≤ 4(1− 1/q)χ(1)

q(s+4)/3(1− 1/qn−1)
,

and so
|χ(g)|
χ(1)

<
(1− 1/q)

qs/3(1− 1/qn−1)
+

2(1− 1/q)

q(s+4)/3(1− 1/qn−1)
<

1

qs/3
.

If s = 2n − 1 or 2n, then d(x, g) ≤ 2 for all x ∈ F×q by (2.21). Hence, instead of (2.29) we now have
the stronger bound

|α(g)− β(g)| = |Dξ1(g)−Dξ2(g)| ≤
2(q2 − 1)q2 · √q

q(q2 − 1)
= 2q3/2,

whence

|χ(g)| < (1− 1/q)q2−sχ(1)

(1− 1/qn−1)
+ q3/2 < χ(1)q−s/3.

It remains to consider the case s = 1, 2, i.e. d(1, zg) = 2n or 2n − 1 for some z ∈ {1,−1}. Using
[27, Lemma 4.9], one can readily show that g fixes an orthogonal decomposition V = U ⊕ U⊥, with
U ⊂ Ker(g − z · 1V ) being non-degenerate of dimension 2n− 3, and

(2.31) dimFq (U
⊥)zg = 4− s.
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First we estimate ρ(g). Suppose g(v) = tv for some singular 0 6= v ∈ V and t ∈ F×q . If t 6= z, then

v ∈ U⊥, and (2.31) implies that g can fix at most (qs− 1)/(q− 1) ≤ q+ 1 such singular 1-spaces 〈v〉Fq .
Likewise, g fixes at most (q + 1)2 singular 1-spaces 〈v〉Fq ⊂ U⊥ with g(v) = zv, since dimU⊥ = 4.

Assume now that g(v) = zv with v = u + u′, 0 6= u ∈ U and u′ ∈ U⊥. As 0 = Q(v) = Q(u) + Q(u′),
the total number of such v is

N :=
∑
x∈Fq

|{0 6= w ∈ U | Q(w) = x}| · |{w′ ∈ U⊥ | g(w′) = zw′,Q(w′) = −x}|.

Note that, since U is a non-degenerate quadratic space of dimension 2n− 3,

qn−2(qn−2 − 1) ≤ |{0 6= w ∈ U | Q(w) = x}| ≤ qn−2(qn−2 + 1)

for any x ∈ Fq. On the other hand, (2.31) implies that∑
x∈Fq

|{w′ ∈ U⊥ | g(w′) = zw′,Q(w′) = −x}| = |(U⊥)zg| = q4−s.

It follows that

qn+2−s(qn−2 − 1) ≤ N ≤ qn+2−s(qn−2 + 1),

and so
qn+2−s(qn−2 − 1)

q − 1
≤ ρ(g) = 1 + α(g) + β(g) ≤ q2 + 3q + 2 +

qn+2−s(qn−2 + 1)

q − 1
.

Together with (2.30), this implies that

|χ(g)|
χ(1)

≤ (q2 − 1)(q + 2) + qn+2−s(qn−2 + 1) + 2qn(q − 1)

(qn + 1)(qn − q)
<

1

qs/2
.

(iii) Finally, we consider the case G = Sp2n(q). In this case, arguing similarly to the proof of [19,
Proposition 5.7], one can show that {α, β} = {D◦λ0

, D◦λ1
}, where S = O+

2 (q) ∼= D2(q−1), with λ0, λ1

being the two linear characters trivial at SO+
2 (q), and we consider the dual pair G× S → Sp4n(q). In

particular, χ(1) ≥ (qn + 1)(qn − q)/2(q − 1) > q2n−4/3. Now, the formula for Dα in [19, Lemma 5.5],
the character table of S, and part 1) of the proof of [19, Proposition 5.11] imply that

(2.32) |α(g)− β(g)| ≤ q(d(1,g)+d(−1,g))/2 ≤ q2n−s.

On the other hand, using (2.21) we have 0 ≤ ρ(g) = α(g) + β(g) + 1 ≤ q2n−s − 1. In particular, when
s ≥ 2 we have

|χ(g)| ≤
(
|α(g) + β(g)|+ |α(g)− β(g)|

)
/2 ≤ q2n−s < χ(1)q−s/3.

Assume now that s = 1. Then g = zu for some z = ±1 and unipotent u ∈ G; furthermore, ρ(g) =
(q2n−1 − 1)/(q − 1). Applying also (2.32), we obtain

|χ(g)| ≤
(
|α(g) + β(g)|+ |α(g)− β(g)|

)
/2 ≤

(
q2n−1 − q
q − 1

+ qn−1/2

)
/2 < χ(1)q−4s/5,

and the proof is complete. �

3. Classical groups: Proof of Theorem 1

Let p be a prime, and let G = Sp(V ) or Ω(V ), where V = Fnq and q = pf . Write G = Cln(q) to
cover both cases. As before, for a semisimple element g ∈ G, denote ν(g) = supp(g), the codimension
of the largest eigenspace of g over F̄q (see also (2.4)).

For n < 10, Theorem 1 can be easily proved by exactly the same method of proof of [20, Theorem
2] (improving the constant D in Lemma 2.3 of [20] by using better bounds for |G| and |CG(g)|p, where
p is as above). So assume from now on that n ≥ 10, so that the character ratio bounds in Propositions
2.12 and 2.13 apply.

We begin with a lemma analogous to [20, Lemma 3.2].



16 MARTIN W. LIEBECK, ANER SHALEV, AND P. H. TIEP

Lemma 3.1. For 1 ≤ s < n, define

Ns(G) := {g ∈ Gss : ν(g) = s}

and let ns(G) := |Ns(G)|.

(i) If g ∈ Ns(g) and s < n
2 then |CG(g)|p < q

1
4 ((n−s)2+s2)−v n−1

2 , where v = 0 or 1 according as G
is symplectic or orthogonal.

(ii) If g ∈ Ns(g) and s ≥ n
2 then |CG(g)|p < q

1
4 (n2−ns).

(iii)
∑
n−1≥s≥n/2 ns(G) < |G| < q

1
2 (n2+n)−vn, where v is as in (ii).

(iv) If s < n/2, then ns(G) < cq
1
2 s(2n−s+1)+n

2 , where c is an absolute constant that can be taken to
be 15.2.

Proof. (i) If ν(g) = s < n
2 , then the largest eigenspace of g has dimension n− s > n

2 , so has eigenvalue
±1, and so CG(g) ≤ Cln−s(q)× Cls(q). Part (i) follows.

(ii) Now suppose ν(g) = s ≥ n
2 , and let Eλ (λ ∈ F̄q) be an eigenspace of maximal dimension n− s.

Assume first that λ 6= ±1. Then letting a and b denote the dimensions of the +1- and −1-eigenspaces,
we have

(3.1) CG(g) ≤
t∏
i=1

GLdi(q
ki)× Cla(q)× Clb(q),

where n−s = d1 ≥ d2 ≥ · · · ≥ dt and also d1 ≥ a ≥ b and 2
∑t

1 kidi+a+b = n. Hence |CG(g)|p ≤ qD,
where

(3.2) D =
1

2

t∑
i=1

kidi(di − 1) +
1

4
(a2 + b2).

If n ≥ 4d1, this expression is maximised when a = b = d1 and (d1, . . . , dt) = (d1, . . . , d1, r) with
r ≤ d1 and ki = 1 for all i.. Hence in this case,

D ≤ 1

2
(t− 1)d1(d1 − 1) +

1

2
r(r − 1) +

1

2
d2

1 =
1

2
td2

1 −
1

2
(t− 1)d1 +

1

2
r(r − 1),

and this is easily seen to be less than 1
4nd1, as required for part (ii).

Similarly, if 4d1 > n ≥ 3d1, the expression (3.2) is maximised when t = 1, k1 = 1, a = d1 and
b = r < d1; and when 3d1 > n ≥ 2d1 (note that n ≥ 2d1 = 2(n − s) by our assumption that
ν(g) = s ≥ n

2 ), the expression (3.2) is maximised when t = 1 and a = r < d1. In each case, we see

that D < 1
4nd1 as above.

Assume finally that the eigenvalue λ = ±1. In this case the centralizer C(g) is as in (3.1), with

n − s = a ≥ d1 ≥ · · · ≥ dt and also a ≥ b and 2
∑t

1 kidi + a + b = n. Again we have |CG(g)|p ≤ qD,
with D as in (3.2), and we argue as above that D < 1

4na = 1
4n(n−s). This completes the proof of (ii).

(iii) This is clear.

(iv) If ν(g) = s < n
2 then as in (i), the largest eigenspace of g has eigenvalue ±1, so we have

CG(g) ≥ Cln−s(q) × Ts, where Ts is a maximal torus of Cls(q). Hence |gG| ≤ |G : Cln−s(q)Ts| ≤
q

1
2 s(2n−s+1). Also the number of conjugacy classes in G is at most 15.2qn/2 by [7, Corollary 1.2], and

(iv) follows. �

Lemma 3.2. Let χ ∈ {α, β, γi}, where α, β, γi are the irreducible characters of G defined in Section
2.1. Then St ⊆ χ4n.
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Proof. As in the proof of [20, Lemma 2.3], there are signs εg = ±1 such that

(3.3)

[χl, St]G =
1

|G|
∑
g∈Gss

εgχ
l(g)|CG(g)|p

=
χl(1)

|G|

(
|G|p +

∑
16=g∈Gss

εg

(
χ(g)
χ(1)

)l
|CG(g)|p

)
.

Hence [χl, St]G 6= 0 provided Σl < |G|p, where

Σl :=
∑

1 6=g∈Gss

∣∣∣∣χ(g)

χ(1)

∣∣∣∣l |CG(g)|p.

By Propositions 2.12 and 2.13, if s = ν(g) we have

|χ(g)|
χ(1)

≤ 1

qs/3
.

Hence applying Lemma 3.1, we have Σl ≤ Σ1 + Σ2, where

Σ1 =
∑

1≤s<n
2
cq

1
2 s(2n−s+1)+n

2 . 1
qls/3

.q
1
4 ((n−s)2+s2)−v n−1

2 ,

Σ2 =
∑

n
2≤s<n

q
1
2 (n2+n)−vn. 1

qls/3
.q

1
4 (n2−ns).

For a term in Σ1, the exponent of q is

1

4
n2 − vn− 1

2
+

1

2
s(n+ 1) +

1

2
n− ls

3
.

As |G|p ≤ q
1
4n

2−v n−1
2 , taking l = 4n this gives

Σ1

|G|p ≤
∑

1≤s<n
2
cq

1
2 s(n+1)+n

2−
ls
3

≤
∑

1≤s<n
2
cq

1
2n(1− 5s

3 )+ s
2 .

Recalling that c = 15.2, it follows that Σ1

|G|p <
1
2 (except for q = 2, n ≤ 20, in which case we obtain the

same conclusion using slightly more refined estimates instead of Lemma 3.1(iv)).

For a term in Σ2, the exponent of q is

1

2
(n2 + n)− vn+

1

4
n(n− s)− ls

3
,

and leads similarly to the inequality Σ2

|G|p <
1
2 when l = 4n.

We conclude that Σl < |G|p for l = 4n, proving the lemma. �

Proof of Theorem 1. (i) View G = G̃/Z(G̃), where G̃ = Spn(q), respectively G̃ = Ωεn(q). Let 1 6= ψ ∈
Irr(G̃). By Lemma 3.2 together with Lemmas 2.2 and 2.3, we have St ⊆ ψ8n for G̃ = Spn(q), and

St ⊆ ψ16n for G̃ = Ωεn(q). Since Ker(St) = Z(G̃) and St2 contains all irreducible characters of G by
[15], the conclusion (i) of Theorem 1 follows.

(ii) Note that G/Ker(α) is an e-fold cover of the simple group S := PSpn(q) or PΩεn(q), where
e ∈ {1, 2, 4} (and e = 4 only when S = PΩε2r(q) with 2 - r and 4|(qr − ε)). By [20, Theorem 5.1], there
exists some 1S 6= β ∈ Irr(S) such that

diamM(G/Ker(α), α) ≤ ediamM(S, β) + e− 1.

Hence the conclusion (ii) of Theorem 1 follows from (i). �
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4. Alternating groups: Proof of Theorem 2

In this section we prove Theorem 2.

Lemma 4.1. Let n := m(m + 1)/2 with m ∈ Z≥6, and let χm := χ(m,m−1,...,1) be the staircase
character of Sn. Then

χm(1) ≥ |Sn|5/11.

Proof. We will proceed by induction on m ≥ 6. The induction base m = 6, 7 can be checked directly.
For the induction step going from m to m+ 2, note by the hook length formula that χm(1) = n!/Hm,
where Hm is the product of all the hook lengths in the Young diagram of the staircase partition
(m,m− 1, . . . , 1). Hence it is equivalent to to prove that

(m(m+ 1)/2)! > H11/6
m .

Since the statement holds for m and Hm+2/Hm = (2m+3)!!(2m+1)!! (where (2k+1)!! =
∏k
i=0(2i+1)

for any k ∈ Z≥0), it suffices to prove that

(4.1)

2m+3∏
i=1

(m(m+ 1)/2 + i) >
(
(2m+ 3)!!(2m+ 1)!!

)11/6

for any m ≥ 6. Direct computation shows that (4.1) holds when 3 ≤ m ≤ 40. When m ≥ 40, note
that ∏2m+3

i=1 (m(m+ 1)/2 + i) >
(
m(m+ 1)/2 + 1

)2m+3

>
(
(m+ 3)m+1(m+ 2)m

)11/6

>
(
(2m+ 3)!!(2m+ 1)!!

)11/6
,

proving (4.1) and completing the induction step. �

Proof of Theorem 2. We will make use of [25, Theorem 1.4] which states that there exists an effective
absolute constant C1 ≥ 2 such that

(4.2) χt contains Irr(Sn) whenever t ≥ C1n log(n)/ log(χ(1))

for every non-linear χ ∈ Irr(Sn). With this, we will prove that when n is sufficiently large we have

(4.3) ϕk contains Irr(An) whenever k ≥ Cn log(n)/ log(ϕ(1))

for every nontrivial ϕ ∈ Irr(An), with C = 5C2
1 .

(i) Consider any n ≥ 5 and any nontrivial ϕ ∈ Irr(An). If ϕ extends to Sn, then we are done by
(4.2). Hence we may assume that ϕ lies under some χλ ∈ Irr(Sn), where λ ` n is self-associate, and
that n is sufficiently large. By [16, Proposition 4.3], the latter implies that

(4.4) ϕ(1) ≥ 2(n−5)/4.

Consider the Young diagram Y (λ) of λ, and let A denote the removable node in the last row of Y (λ).
Also let ρ := χλrA ∈ Irr(Sn−1). Since λ r A is not self-associate, ρ is also irreducible over An−1.
Furthermore, by Frobenius’ reciprocity,

1 ≤ [(χλ)|Sn−1
, ρ]Sn−1

= [χλ, IndSn
Sn−1

(ρ)]Sn ,

whence 2ϕ(1) = χλ(1) ≤ IndSn
Sn−1

(ρ)(1) = nρ(1), and so

(4.5) ρ(1) ≥ (2/n)ϕ(1).

It follows from (4.4) and (4.5) that when n is large enough,

log(ρ(1)) ≥ log(ϕ(1))− log(n/2) ≥ (9/10) log(ϕ(1)).

Now we consider any integer

(4.6) s ≥ 10C1

9
· n log(n)

log(ϕ(1))
.
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This ensures that s ≥ C1(n − 1) log(n − 1)/ log(ρ(1)), and so, by (4.2) applied to ρ, ρs contains
Irr(Sn−1).

(ii) Next, we can find a unique m ∈ Z≥3 such that

(4.7) n0 := m(m+ 1)/2 ≤ n− 3 < (m+ 1)(m+ 2)/2,

and consider the following partition

(4.8) µ := (n− 1−m(m− 1)/2,m− 1,m− 2, . . . , 2, 1)

of n− 1. Note that µ has m rows, with the first (longest) row

µ1 = n− 1−m(m− 1)/2 ≥ m+ 2

by (4.7). Hence, if B is any addable node for the Young diagram Y (µ) of µ, Y (µ t B) has at most
m + 1 rows and at least m + 2 columns, and so is not self-associate. It follows that, for any such B,
the character χµtB of Sn is irreducible over An.

(iii) Recall that χλ|An = ϕ + ϕ? with ϕ? being Sn-conjugate to ϕ. It suffices to prove (4.3) for an
Sn-conjugate of ϕ. As χλ|Sn−1

contains ρ = χλrA which is irreducible over An−1, without loss we may
assume that ϕ|An−1 contains ρ|An−1 . By the result of (i), ρs contains χµ, with µ defined in (4.8) Thus

(4.9) 1 ≤ [ϕs|An−1 , (χ
µ)|An−1 ]An−1 =

[
ϕs, IndAn

An−1

(
(χµ)|An−1

)]
An
.

Also recall that χµ is an Sn−1-character and Sn = AnSn−1. Hence

IndAn
An−1

(
(χµ)|An−1

)
=
(
IndSn

Sn−1
(χµ)

)
|An .

Next,

IndSn
Sn−1

(χµ) =
∑

B addable

χµtB ,

where, as shown in (ii), each such χµtB is irreducible over An. Hence, it now follows from (4.9) that
there is an addable node B0 for Y (µ) that ϕs contains ψ|An , with ψ := χµtB0 .

(iv) By the choice of B0, ψ|Sn−1
contains χµ, whence ψ(1) ≥ χµ(1). Next, by (4.7), we can remove

n− 1− n0 ≥ 2 nodes from the first row to arrive at the staircase partition (m,m− 1, . . . , 1) ` n0. In
particular, ψ|Sn0

contains the character χm of Sn0 . By Lemma 4.1, for n sufficiently large we have

(4.10) log(ψ(1)) ≥ log(χm(1)) ≥ (5/11) log(n0!) ≥ (2/5)n log(n),

since

n0 = m(m+ 1)/2 ≥ n− (m+ 2) ≥ n− (3/2 +
√

2n− 4)

by the choice (4.7) of m. Now we consider the integer t := d(5/2)C1e ≤ 3C1 (since C1 ≥ 2). Then

C1n log(n)/ log(ψ(1)) ≤ (5/2)C1 ≤ t

by (4.10), and so ψt contains Irr(Sn) by (4.2) applied to ψ. In particular, (ψt)|An contains Irr(An).

Recall from (iii) that ϕs contains the irreducible character ψ|An . It follows that ϕst contains (ψt)|An ,
and so ϕst contains Irr(An).

(v) Finally, consider any integer k ≥ Cn log(n)/ϕ(1) with C = 5C2
1 . Then

k/t ≥ k/3C1 ≥ (5/3)C1n log(n)/ log(ϕ(1)).

As C1 ≥ 1 and n log(n)/ log(ϕ(1) ≥ 2, we have that

(5/3− 10/9)C1n log(n)/ log(ϕ(1)) ≥ 10/9.

In particular, we can find an integer s0 such that

k/t ≥ s0 ≥ (10/9)C1n log(n)/ log(ϕ(1)).

As s satisfies (4.6), the result of (iv) shows that ϕs0t contains Irr(An).



20 MARTIN W. LIEBECK, ANER SHALEV, AND P. H. TIEP

Now, given any γ ∈ Irr(An), we can find an irreducible constituent δ of ϕk−s0tγ. By the previous
result, ϕs0t contains δ. It follows that ϕk contains ϕk−s0tδ, and

[ϕk−s0tδ, γ]An = [ϕk−s0tγ, δ]An ≥ 1,

i.e. ϕk contains γ, and the proof of (4.3) is completed. �

5. Products of characters

5.1. Products of characters in groups of Lie type. Here we prove Theorem 3(i). This is very
similar to the proof of Theorem 2 of [20]. Let G = Gr(q) be a simple group of Lie type of rank r over
Fq.

Lemma 5.1. There is an absolute constant D such that for any m ≥ Dr2 and any χ1, . . . , χm ∈ Irr(G),
we have [

∏m
i=1 χi, St]G 6= 0. Indeed, D = 163 suffices.

Proof. This is proved exactly as for [20, Lemma 2.3], replacing the power χm by the product
∏m
i=1 χi.

�

Proof of Theorem 3(i). Take c1 = 3D with D as in the lemma, and let χ1, . . . , χl ∈ Irr(G) with

l = c1r
2. Writing m = l/3 = Dr2, Lemma 5.1 shows that each of the products

∏m
i=1 χi,

∏2m
m+1 χi and∏3m

2m+1 χi contains St. Hence
∏l
i=1 χi contains St3, and this contains Irr(G) by [20, Prop. 2.1]. This

completes the proof. �

5.2. Products of characters in linear and unitary groups. In this subsection we prove Theorem
3(ii). This is similar to the proof of Theorem 3 of [20]. Let G = PSLεn(q).

We shall need [20, Theorem 3.1], which states that there is a function f : N→ N such that for any
g ∈ Gss with s = ν(g), and any χ ∈ Irr(G), we have

(5.1) |χ(g)| < f(n)χ(1)1− s
n .

Again we begin with a lemma involving the Steinberg character.

Lemma 5.2. Let m ∈ N and let χ1, . . . , χm ∈ Irr(G). Set c = 44.1, and define

∆1m = cf(n)m
∑

1≤s<n/2 q
ns+ 3n

2 −1 (
∏m
i=1 χi(1))

−s/n
,

∆2m = f(n)m
∑
n/2≤s<n q

n2− 1
2n(s−1)−1 (

∏m
i=1 χi(1))

−s/n
.

If ∆1m + ∆2m < 1, then [
∏m
i=1 χi, St]G 6= 0.

Proof. Arguing as in the proof of [20, Lemma 3.3], we see that [
∏m
i=1 χi, St]G 6= 0 provided ∆m < 1,

where

∆m :=
∑

1≤s<n/2

cqns+
3n
2 −1

∣∣∣∣∣
m∏
i=1

χi(gi,s)

χ(1)

∣∣∣∣∣+
∑

n/2≤s<n

qn
2− 1

2n(s−1)−1

∣∣∣∣∣
m∏
i=1

χ(gi,s)

χ(1)

∣∣∣∣∣ ,
where gi,s ∈ Gss is chosen such that ν(gi,s) = s and |χi(gi,s)| is maximal. Now application of (5.1)
gives the conclusion. �

Lemma 5.3. There is a function g : N→ N such that the following holds. Suppose that χ1, . . . , χm ∈
Irr(G) satisfy

∏m
i=1 χi(1) > |G|3. Then provided q > g(n), we have [

∏m
i=1 χi, St]G 6= 0.

Proof. We have |G| > 1
2q
n2−2, so for s < n,(

m∏
i=1

χi(1)

)−s/n
< 8q−3ns+ 6s

n .
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Hence

∆1m ≤ 8cf(n)m
∑

1≤s<n/2

q−2ns+ 3n
2 +2,

and
∆2m ≤ 8f(n)m

∑
n/2≤s<n q

n2− 1
2n(s−1)−1q−3ns+6

≤ 8f(n)m
∑
n/2≤s<n q

− 3n2

4 + 1
2n+5.

Now the conclusion follows from Lemma 5.2 (using some slight refinements of the above inequalities
for n ≤ 4). �

Proof of Theorem 3(ii). Assume χ1, . . . , χl ∈ Irr(G) satisfy
∏l
i=1 χi(1) > |G|10. Since χi(1) < |G|1/2

for all i, there are disjoint subsets I1, I2, I3 of {1, . . . ,m} such that
∏
i∈Ik χi(1) > |G|3 for k = 1, 2, 3.

Then
∏
i∈Ik χi contains St for each k, by Lemma 5.3, and so

∏l
i=1 χi contains St3, hence contains

Irr(G), completing the proof. �

5.3. Products of characters in symmetric and alternating groups.

Proposition 5.4. Let G ∈ {Sn,An}, l ∈ Z≥1, and let χ1, χ2, . . . , χl ∈ Irr(G) with χi(1) > 1 for all i.

(i) If l ≥ 8n− 11, then
(∏l

i=1 χi
)2

contains Irr(G).
(ii) Suppose that, for each 1 ≤ i ≤ l, there exists some j 6= i such that χj = χi. If l ≥ 24n− 33 then∏l

i=1 χi contains Irr(G).

Proof. (i) Let χλ denote the irreducible character of Sn labeled by the partition λ ` n. A key result
established in the proof of [20, Theorem 5] is that, for any i there exists

αi ∈
{
χ(n−1,1), χ(n−2,2), χ(n−2,12), χ(n−3,3)

}
such that χ2

i contains (αi)|G. Since l ≥ 8n− 11, there must be some

β ∈
{
χ(n−1,1), χ(n−2,2), χ(n−2,12), χ(n−3,3)

}
such that β = αi for at least 2n − 2 distinct values of i. It follows that

(∏l
i=1 χi

)2
= γδ, where

γ := β2n−2|G, and δ is a character of G. By [20, Theorem 5], β2n−2 contains Irr(Sn), whence γ
contains Irr(G). Now the arguments in the last paragraph of the proof of Theorem 2 show that γδ
contains Irr(G) as well.

(ii) Note that the assumptions imply, after a suitable relabeling, that
∏l
i=1 χi contains σλ, where

λ is a character of G and

σ =
8n−11∏
i=1

χ2
i .

(Indeed, any subproduct χi1 . . . χit with t > 1 and χi1 = . . . = χit yields a term (χ2
i1

)bt/2c in σ.) By
(i), σ contains Irr(G), and so we are done as above. �
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