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ABSTRACT. Let G be a finite group, and « a nontrivial character of G. The McKay graph M(G, a)
has the irreducible characters of G as vertices, with an edge from x1 to x2 if x2 is a constituent
of axi. We study the diameters of McKay graphs for finite simple groups G. For alternating
groups G = A,, we prove a conjecture made in [20]: there is an absolute constant C' such that

diam M(G, a) < Cl!fgg;f;l‘) for all nontrivial irreducible characters o of G. Also for classical groups

of symplectic or orthogonal type of rank r, we establish a linear upper bound Cr on the diameters of
all nontrivial McKay graphs. Finally, we provide some sufficient conditions for a product x1x2--- X
of irreducible characters of some finite simple groups G to contain all irreducible characters of G as
constituents.

1. INTRODUCTION

For a finite group G, and a (complex) character « of G, the McKay graph M(G, «) is defined to
be the directed graph with vertex set Irr(G), there being an edge from x1 to xo if and only if s is a
constituent of ay;. A classical result of Burnside and Brauer [3] shows that M(G, «) is connected if
and only if « is faithful.

The study of McKay graphs for finite simple groups G was initiated in [20], with a particular
focus on the diameters of these graphs. Theorem 2 of [20] establishes a quadratic upper bound
diam M(G, o) < Cr? for any simple group G of Lie type of rank 7 and any nontrivial a € Irr(G).
Notice that the smallest (resp. largest) nontrivial irreducible character degrees of G are at most ¢°"
(resp. at least qc,’“z)7 where ¢, ¢ are constants, and hence the maximal diameter of a McKay graph
M(G, ) is at least a linear function of r. Theorem 3 of [20] implies a linear upper bound on these
diameters for the classical groups G = PSL;, (¢), provided ¢ is large compared to n. Our first main result
establishes a linear upper bound for the remaining classical groups. As mentioned above, diam M (G, «)
is finite if and only if « is faithful, hence it makes sense to bound only diam M(G/Ker(«), ) for any
nontrivial irreducible character « of a finite group G.

Theorem 1. Let q be any prime power. Then the following statements hold.
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(i) Let G be a simple classical group PSp,,(q) with n > 2, or PQS(q) with n > 5, and let o be a
nontrivial irreducible character of G. Then

diam M(G, a) < Chn,

where C' = 16 or 32, respectively.
(ii) Let 21 q and let G be a quasisimple classical group Sp,,(q) with n > 2, or Spin;,(q) with n > 5.
If a is a nontrivial irreducible character of G, then

diam M(G /Ker(a), a) < Chn,
where C' = 33 or 129, respectively.

An obvious lower bound for diam M(G, ) (when (1) > 1) is given by llziz(g)), where b(G) is the
largest degree of an irreducible character of G. In [20, Conjecture 1] we conjectured that for simple
groups G, this bound is tight up to a multiplicative constant. This conjecture was proved in [20,
Theorem 3] for the simple groups PSL;, (¢q), provided g is large compared to n. Recently it has also
been established for the symmetric groups by Mark Sellke in [25]. Deducing it for the alternating

groups is not entirely trivial, and this is the content of our next result.

Theorem 2. There is an effective absolute constant C' such that, for all n > 5 and for all nontrivial
irreducible characters a of G := A,

diam M (G, o) < 0710g|G\

log a(1)

In our final result, we consider covering Irr(G) by products of arbitrary irreducible characters,

instead of powers of a fixed character. This idea was suggested by Gill [10], inspired by an analogous

result of Rodgers and Saxl [24] for conjugacy classes in G = SL,(q): this states that if a collection of

conjugacy classes of G satisfies the condition that the product of the class sizes is at least |G|*2, then
the product of the classes is equal to G.

As a piece of notation, for characters xi,...,x; of G, we write x1x2---Xx; 2 Irr(G) to mean that
every irreducible character of G appears as a constituent of yjx2---x;. Also, let g : N — N be the
function appearing in [20, Theorem 3].

Theorem 3. (i) Let G be a simple group of Lie type of rank r, let | > 489r2, and let x1,...,x1 €
Irr(G) N 1g. Then x1x2 - xi 2 Irr(G).

(ii) Let G = PSL;,(q) with g > g(n), letl € N, and let x1,...x; € Irr(G) satisfy Hizl xi(1) > |G|°.
Then x1x2 -+ x1 2 Irr(G).

Gill [10] has conjectured that part (ii) of the theorem holds for all simple groups (with the constant
10 possibly replaced by a different constant). As a stepping stone in the spirit of the linear bound
given by Theorem 1, let us pose the following more modest conjecture.

Conjecture 4. There is an absolute constant C > 0 such that the following holds. Let G = Cl,(q), a
classical simple group of dimension n, or A,, an alternating group of degree n > 5. Let 1 > Cn, and
let x1,-..,x1 € rr(G) N\ 1g. Then x1x2- - xi 2 Irr(G).

See Proposition 5.4 for some partial results on Conjecture 4 in the case of A,,.

For particular characters there are stronger results and conjectures. It is shown by Heide, Saxl,
Tiep and Zalesski [15] that, if G is a finite simple group of Lie type and St is its Steinberg character,
then St*> D Irr(G), unless G is a unitary group in odd dimension, in which case St* D Irr(G) (this
result plays a role in this paper).

As for symmetric groups, it is conjectured that for n > 10 there is a character y € Irr(S,,) such that
x% 2 Irr(S,,). Moreover, Saxl conjectured that, if n = k(k+1)/2, then the so-called staircase character
(corresponding to the partition (k,k — 1,...,1) of n) will do. These challenging conjectures are still
very much open. See Pak, Panova and Vallejo [23] for background and various partial results.
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The layout of the paper is as follows. Section 2 contains a substantial amount of character theory
for symplectic and orthogonal groups that is required for the proof of Theorem 1, which is completed
in Section 3. The remaining sections 4 and 5 contain the proofs of Theorems 2 and 3, respectively.

2. SOME CHARACTER THEORY FOR SYMPLECTIC AND ORTHOGONAL GROUPS

Let p be a prime, ¢ = pf, V = [ be endowed with a non-degenerate form, alternating when 2|n
or quadratic of type e = &+, and let G denote the derived subgroup of the full isometry group of the
form. Assume that G is quasisimple, so that G = Sp(V') = Sp,,(q) or Q(V) = Q¢ (q).

This section contains a detailed study of some specific irreducible characters x of G — namely, the
constituents of the permutation character Ind[% Pl (1ip,p)), where P is the maximal parabolic subgroup
of G stabilizing a singular 1-space. Two of the main results of the section are Propositions 2.12 and
2.13, which give upper bounds for the character ratios |x(g)/x(1)| for g € G. These will be used in
Section 3 to prove Theorem 1.

2.1. Reduction lemmas. It is well known that the permutation action of G on the set of singular
1-spaces of V' is primitive of rank 3, and thus its character is p = 1lg + a + 3, with «, 8 € Irr(G).
Let (the parabolic subgroup) P = QL denote a point stabilizer in this action, with @ the unipotent
radical and L a Levi subgroup. Aside from «, 3, we also need to consider the remaining non-principal
irreducible constituents v; of Ind[%’ p|(1p,p))- Let St denote the Steinberg character of G.

Lemma 2.1. The following statements hold.

(i) Suppose that every semisimple element s € G is real. Then for any x € Irr(G) and k € N, x2*
contains St if and only if (xX)* contains St.

(ii) All semisimple elements in G are real, if G = Spy,.(q) or Qary1(q) for any r > 1, or G = 05,.(q)
with 2|r.

Proof. (i) Recall, see e.g. [4, Theorem 6.4.7], that St(g) = 0 if g € G is not semisimple. Furthermore,
x(g9) =x(g) if g € G is semisimple, by hypothesis. Hence

[XZk St |G| ZX kat

geG

- LY xw*St)

|G| g€G, g semisimple

-2 Y X)) SHa)

|G| g€G, g semisimple
|G| > xlg St(g9) = [(x0)*, Stla,
9eG
and the claim follows.
(ii) This is well known, see e.g. [28, Proposition 3.1]. O

Lemma 2.2. Let G = Sp(V) = Sp,,.(q) with r > 3. Suppose C € N is such that both o€ and €
contain St. Then for any 1g # x € Irr(G), x*¢ contains St.

Proof. In the aforementioned rank 3 permutation action of G with character p = 1¢ + o + 3, a point
stabilizer P is the normalizer N (Z) of some long-root subgroup Z. Since n > 3, Z has a nonzero
fixed point on any CG-module affording x by [26, Theorem 1.6]. It follows that x|p is reducible, and
S0

(2.1) 2 < [x|p, xlplp = %, IndE(1p)]e = XX, e



4 MARTIN W. LIEBECK, ANER SHALEV, AND P. H. TIEP

As [xX,1g]e = 1, xX contains either o or 3, whence (xx)¢ contains St. Applying Lemma 2.1, we
conclude that y2¢ contains St. g

Lemma 2.3. Let G = Q(V) = Q¢ (q) withn > 5. Suppose C € N is such that both ¢ and B contain
St. Consider any 1g # x € Irr(G), and suppose in addition that either n #Z 2(mod 4), or x = X.
Then x*C contains St.

Proof. Again we consider a point stabilizer P = QL in the aforementioned rank 3 permutation action
of G with character p = 1g + a+ 8. Note that @ is elementary abelian, [L, L] = Q¢ _,(q), and we can
identify Irr(Q) with the natural module ]Fg_2 for [L, L]. In particular, any [L, L]-orbit on Irr(Q) ~{1¢}
has length at least 2. It is also clear that some irreducible constituent of x|¢g is non-principal, since
Ker(x) < Z(G) and Q £ Z(G). It follows that x|¢ is reducible, and so

2 < [xle xlole = [(xXX)le, 1elo-

Since [xX, l¢]e = 1, at least one non-principal irreducible constituent 6 of xX contains 1¢ on restriction
to Q. But P normalizes @, so the latter implies that 6|p is reducible. Thus (2.1) holds for 6 instead
of x. Arguing as in the proof of Lemma 2.1, we obtain that 6 contains either o or 3, whence (x¥)?
contains either o or 3. It follows that (xx)2¢ contains St, and we are done if Y = X. Applying Lemma
2.1, we also have that x*“ contains St in the case n # 2(mod 4). O

Lemma 2.4. Let G = Q(V) = Q¢ (q) with n > 10 and n = 2(mod 4). Suppose C € N is such that 9
contains St for every ¥ € {a, 8,7:}. Then for any x € Irr(G) with x # X, x*¢ contains St.

Proof. (i) As noted in the proof of Lemma 2.3, Q is elementary abelian, [L, L] = Qf_,(¢), and we
can identify Irr(Q) with the natural module F)~2 for [L, L]. Since n — 2 > 8, it is straightforward to
check that any [L, L]-orbit on nonzero vectors of F;'~2 contains a vector v and also —v. Thus, any
[L, L]-orbit on Irr(Q) . {1g} contains a characters A and also its complex conjugate A. As noted in
the proof of Lemma 2.3, Q £ Ker(y). Thus we may assume that x|o contains A and also A. It follows
that 1 < [x?|g, 1glg- Since [x?, 1c]le = [x,X]c = 0, at least one non-principal irreducible constituent
6 of x* contains 1¢ on restriction to Q.

In particular, 0|p is reducible, since P normalizes @, and (2.1) holds for ¢ instead of x, and so the
arguments in the proof of Lemma 2.2 shows that 66 contains o or . If, moreover, # = 6, then we
conclude that 62 contains o or j.

(ii) Now consider the case # # 6, and let § be afforded by a CG-module U. As shown in (i), the
Q-fixed point subspace U? on U is nonzero, and L acts on U?. Recall that 4|(n —2) and n — 2 > 8.
Assume in addition that ¢ # 3(mod 4) if € = +. Then all irreducible characters of [L, L] = Qf_5(q)
are real-valued by [28, Theorem 1.2], and so the [L, L]-module U® contains an irreducible submodule
W =W+

Consider the case where ¢ = + and ¢ = 3(mod 4), and recall that P = Stabg({u)r,) for a singular
vector 0 # u € V. We can consider P inside P := Stabgov)((w)r,) = QL, and find another singular
vector v/ € V such that V = Vi & Vs, with Vi = (u,u/)r,, Vo = V5, and [L, L] = Q(V2). Since
g = 3(mod 4), t := —1y; € SO(V1) ~ Q(V7). Choosing some t' € SO(Va) \ (V2), we see that
tt' e LNQV) = L, and Ly := ([L, L], ') = SO} _,(q). By [13], all irreducible characters of L, are
real-valued, and so the Li-module U? contains an irreducible submodule W = W*.

We have shown that the [L,L]-module U% contains a nonzero submodule W = W*. We can
also inflate W to a nonzero self-dual module over [P, P] = Q[L, L]. It follows that (U ®c U)|(p,p
contains W ®c W*, which certainly contains the trivial submodule. Thus, 6| (p,p] contains the principal
character 1(p pj, and so

(2.2) 1< (0%, Ind{} py(Lp.p))lc-
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Recall we are assuming that 0 = [0, 0] = [0, 1¢]g. Hence (2.2) implies that 6% contains at least one
of a, B, or ;.

(iii) We have shown that, in all cases, #% contains at least one of a, 3, or ;. As x? contains 6, we
see that x? contains at least one of a, /3, or 7;, and so x*¢ contains St. g

2.2. Classical groups in characteristic 2. From now on until the end of the section (with the
exception of Theorem 2.11), we depart from our convention of using n for the dimension of the natural
module for the classical group in question, and use it to denote the rank of the group instead. In this
subsection we study certain characters of G = Sp(V') = Sp,,,(¢) and G = Q(V) = Q5,,(¢), where n > 5
and 2|g. These results will be used subsequently and are also of independent interest.

First we endow V with a non-degenerate alternating form (-,-), and work with its isometry group
G = Sp(V). We will consider the following irreducible characters of G:

o the ¢/2 + 1 linear-Weil characters: py,, of degree (¢" + 1)(¢" — ¢)/2(q¢ — 1), pa,n of degree
(¢" = 1)(¢" +q)/2(q — 1), and 7; 5, of degree (¢*" —1)/(¢—1), 1 <i < (q¢—2)/2, and

e the ¢/2 + 2 unitary- Weil characters: «,, of degree (¢" — 1)(¢" — q)/2(q + 1), B, of degree (¢"™ +

(g™ + q)/2(q + 1), and (; ,, of degree (¢ —1)/(q+1), 1 <i < q/2;
see [14, Table 1]. Then

(2.3) pi=1a+pin+p2n

is the rank 3 permutation character of G acting on the set of 1-spaces of V. The following statement
is well known, see e.g. formula (1) of [8]:

Lemma 2.5. For ¢ = +, the character ¢ of the permutation action of G on quadratic forms of type
€ associated to (-,-) is given as follows:

(g—2)/2 (g—2)/2
t = 1@ + p2.n + Z Timy, ™ = 1@ + P10+ Z Tin-
i=1 =1

Given any g € GL(V), let
d(z,g) = dimg, Ker(g —z-1yq, 7,)

for any x € F:, and define the support of g to be
(2.4) supp(g) := dim(V) — m%)xc d(z, g).
«cF,
Set
d(g) := dim(V') — supp(g).
Proposition 2.6. Let G = Spa,(q) with n > 3 and 2|q, and let g € G have support s = supp(g). If
X € {p1.nsp2.n}, then

Xl o 1
x(1) = ¢/3
Proof. The statement is obvious if s = 0. Suppose s = 1. It is easy to see that in this case g is a
transvection, and so
q2n—1 —q
p1,n(9) = p2,n(g) = m

by [14, Corollary 7.8], and the statement follows.

From now on we may assume s > 2. Observe that d := maxpx d(z,g) <d(g) = 2n — s. Hence,
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and so (2.3) implies
01,0(9) + P2.n(9)] < ¢" = 1.

On the other hand, since 7¥(g) > 0 and n+ + 7~ is just the permutation character of G acting on V,
Lemma 2.5 implies that

1p1,0(9) — p2.n(9)| = |7 (g) — 77 (9)| < 7T (g) + 7 (9) = "9 < ¢
It follows for any i € {1,2} that
1pin(9)] < (Ip1,0(9) + P2, (9)] + 1P1.1(9) — P2.n(9)])/2 < ¢ < ¢*" %

Since n > 3, we can also check that

(" +1)G" =49 _ ona
21 4 .

Thus |x(g)|/x(1)] < q4/3*S < q75/3, as stated. 0

Next we endow V = Fi" with a non-degenerate quadratic form Q of type e = + associated to the
alternating form (-,-). Choose a Witt basis (e1, ..., en, f1,..., fn) for (-,-), such that Q(e1) = Q(f1) =
0. We may assume that P = Stabg({e1)r,) = QL, where Q is elementary abelian of order ¢*"~2,
L=Qs5,_5(q) x Cy—q, and

[P, P] = Stabg(e1) = Q x [L, L]
has index (¢" — €)(¢" ! +¢) in G. Also consider H := Stabg(e1 + f1).

According to [22, Theorem 1.3], G has g+ 1 non-principal complex irreducible characters of degree at
most (¢" —e€)(¢g" 1 +¢), namely, o of degree (¢" — e)(q” +eq)/(¢?—1), B of degree (¢*" —q°)/(¢*> - 1),
v; of degree (¢" — €)(¢" " +€)/(q—1), 1 <i < (q—2)/2, and 9; of degree (¢" —€)(¢" ' —€)/(q+ 1),
1<j<q/2.

Proposition 2.7. Let G = Q5, (q) with n > 5 and 2|q, and consider P = Stabg(e1) and H =
Stabg(er + f1) as above. Then the following statements hold.

(i) nd$(1p) =1g + a+ B.
(i) ind[C;;P]( p)=la+a+B+23 2>/2%.
(i) Ind$ (1) = 1o + B+ X072 v + X2 5,

Proof. (i) is well known. Next, P/[P, P] = C,_; has ¢—1 irreducible characters: 1p and (¢—2)/2 pairs
of {v;,7:},1<i< (qg—2)/2. An application of Mackey’s formula shows that Ind%(v;) = Ind%(7;) is
irreducible for all i. Now using (i) we can write

(4-2)/2
(2.5) df pj(Lipp) = Ind3 (Ind{p pj(Lipp) =l +a+B+2 Y IndE(w).

i=1

On the other hand, note that [P, P] has exactly 2¢ — 1 orbits on the set of nonzero singular vectors
in V: ¢ — 1 orbits {ze1} with 2 € F), one orbit {v € ef \ (e1)r, | Q(v) = 0}, and (¢ — 1) orbits
{yfi+v|ve€et,Qlyfi+v) =0} w1th y € F¢. Together with (2.5), this implies that all summands in
the last decomposition in (2.5) are pairwise distinct. Since v; = (¢" —€)(¢" " +€)/(qg—1) = Ind% (vy),
renumbering the v; if necessary, we may assume that Ind%(v;) = ~;, and (i) follows.

For (iii) first note that P has two orbits on the set X := {v € V | Q(v) = 1}, namely, X Nei and
X~ ei. Since Ind$ (1p) is the character of the permutation action of G on X, we get

(2.6) md%(1p), nd$ (15)]q = 2.
Next, [P, P] has q orbits on X, namely, X Nei, and {yfi + w € X | w € ef } with y € F. Thus

(2.7) [Indﬁ;yP](l[RP]), md%(1g)le = q.
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Combining the results of (i), (ii), with (2.6), (2.7), and again using [22, Theorem 1.3], we can write

(g—2)/2 q/2
(2.8) md%(1g) = 1g + (ac + b3) + Z chFZd 55,

where a,b,¢;,d; € Z>o, a+b=1,%.¢;=(¢—2)/2.
Let 7 denote the character of the permutation action of G on V'~ {0}, so that
T= Ind[CfD,P](1[P,P]) + (g — 1)Ind§ (1n).

Note that G has ¢3 + ¢> — ¢ orbits on (V ~ {0}) x (V ~ {0}), namely, q(q — 1) orbits of (u,zu),
where » € F and Q(u) = y € F;, and q® orbits of (u,v), where u,v are linearly independent and
(Q(u), (u,v),Qv)) = (x,y,2) € F. In other words, [7,7]¢ = ¢° + ¢°> — ¢. Using (ii) and (2.7), we
deduce that

(2.9) [Ind% (15), Ind (1g)]e = g + 1.

In particular, if ¢ = 2 then Indg(l p) is the sum of 3 pairwise distinct irreducible characters. By
checking the degrees of «, 8 and 41, (iii) immediately follows from (2.8).

Now we may assume g = 2¢ > 4. Let £, = ¢(2"¢ — 1) denote a primitive prime divisor of 2"¢ — 1,
which exists by [29]. Likewise, let £/_ = £(22"¢ — 1) denote a primitive prime divisor of 227¢ — 1. Then
note that /. divides the degree of each of «, v;, d;, but neither [G : H] — 1 nor 3(1). Hence (2.8)
implies that (a,b) = (0,1). Comparing the degrees in (2.8), we also see that }, d; = ¢/2. Now

(¢—2)/2 q/2 (¢—2)/2 q/2 -2 q
q+1=[Mmdg(1p),ndG(1lm)le=2+ > G+Y d>2+ Y ca+Y di=2+ Sty
i=1 j=1 i=1 j=1
yielding ¢? = ¢, d? =d,, ¢;,d; € {0,1}, and so ¢; = d; = 1, as desired. O

In the next statement, we embed G' = Q(V) in G := Sp(V') (the isometry group of the form (-,-) on
V).

Proposition 2.8. Let n > 5, 2|q, and € = £. Then the characters p1,, and p2, of Sp(V) = Sps,(¢)
restrict to G = Q(V) = Q5. (¢) as follows:

prallaz, o =B+ X500, 2.0)l0f, () = 1+a+5+2(q D2,
(pl,n)‘Q;n( ) —1+Oé+ﬂ+z(q 2)/2 ( )|Q* (q)—B"'Z

Proof. Note by (2.3) that 1g + (p1,n + p2,n)|c is just the character of the permutation action on the
set of 1-spaces of V. Hence, by Proposition 2.7 we have

(q—2)/2 q/2
(2.10) (prn + P2n)lc =IndE(1p) + Indf (1) —le =le+a+28+ > v+ > 6
i=1 j
Furthermore, Lemma 2.5 implies by Frobenius reciprocity that
(2.11) (p2,n)|c contains 1 when € = +, and (p1,,)|¢ contains 1¢ when e = —.

(i) First we consider the case € = +. If (n,q) # (6,2), one can find a primitive prime divisor
£ =1/(2" — 1), where ¢ = 2¢. If (n,q) = (6,2), then set £ = 7. By its choice, ¢ divides the degrees of
P2.ns @, Vi, and 05, but B(1) = p1,(1) = —1(mod ¢). Hence, (2.10) and (2.11) imply that

(a—2)/2 qa/2
(p2m)le =1g + B+ xa + Z Yivi + sz‘sj’

i=1 j=1
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where z,y;,z; € {0,1}. Setting y := 221_12)/2 y; and 2z := Zj.fl z; and comparing the degrees, we get

A=2) (" + )+ (" + D@+ D((g=2)/2—y) = 2(¢" " = (g - 1),
and so ¢" "1 +1 divides (1—2+22)(¢—1). Note that ged(q—1,¢" '+1) = land 0 < (1-z2+22)(¢—1) <
? —1<q" '+ 1. It follows that z =1, 2 = 0, y = (¢ — 2)/2, whence y; = 1 and z; = 1, as stated.
(ii) Now let € = —, and choose ¢ to be a primitive prime divisor £(22"¢ —1). By its choice, ¢ divides
the degrees of p1 ,, a, 7;, and 6;, but 5(1) = p2,(1) = —1(mod ¢). Hence, (2.10) and (2.11) imply
that

(a=2)/2 a/2
(p1n)le =la+B+mat D v+ %6,
i=1 i=1

where z,y;,z; € {0,1}. Setting y := 2522)/2 y; and z := Z?/:Ql z; and comparing the degrees, we get

Q-2)(@" " =)+ (" =D+ (g -2)/2—y) = 2(¢"" +1)(g— 1),
and so (¢" ' —1)/(¢—1) divides 1 —2 +22. Since 0 <1—-2+22<qg+1<(¢"'-1)/(g—1), it
follows that x =1, 2 =0, y = (¢ — 2)/2, whence y; = 1 and z; = 1, as stated. O

For the subsequent discussion, we recall the quasi-determinant ke : O, — {—1,1}, where O, :=
GO(V) = GO4,,(q), defined via
Ke(g) = (_1)dimyp‘q Ker(g—lv).

It is known, see e.g. [14, Lemma 5.8(i)], that  is a group homomorphism, with
(2.12) Ker(ke) = Qe :=Q(V) =2 Q5,,(q).
Now we prove the “unitary” analogue of Lemma 2.5:

Lemma 2.9. Forn > 3 and 2|q, the following decompositions hold:

~ q/2 - q/2
Indg+ (kt) = Bn + Z Cimy, Id§ (k) = o + Z Cim-
i=1 i=1
Proof. According to formulae (10) and (4)—(6) of [14],
- . q/2
(2.13) Ind§, (k4) +Ind§ (5-) = n + B +2) _ Cim-
i=1
Hence we can write
. q/2
(2'14) Indg+ (’%+) = xay + yﬁn + Z ZiCi,nv
i=1

where ,y, z; € Z>o, ,y <1 and z; < 2. Note that, since 7+ = Indg+(1o+), Lemma 2.5 implies that
A q
[04\G/O4| =5 +1.
Next, by Mackey’s formula we have

el G
(Indg, (r+), Indg, (k4)la = E (K)o, nto, 15 (K)om0, e-1]o,nto, -1
01t04€04\G/04

where £, (z) = k(z") := k(t"'at) for any x € OL NtO4 ¢t~ 1. For such an z, note that

(2.15) ki (z) =1 < 2|dimp, Ker(z — 1y) < 2|dimp, Ker(z'™' —1y) & (k) (2) = 1,
Le. ky(x) =k (). It follows that

a/2 s -
(2.16) 2 497+ Y 22 = d§, (ry),Ind§, (k4)]a = [0:\G/O4| = g +1.

i=1
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On the other hand, equating the character degrees in (2.14) we obtain

"(¢"+1) _ (" -1)(¢"—q) (@ +1)("+q) fﬁq”’l

(2.17) 2 7 2+ Yo+ g+l

i=1

We claim that « = 0. Indeed, if (n,q) = (3,2), then (2.17) implies that 3|z, and sox =0as0 <z < 1.
Assume (n,q) # (3,2). Then we can find a primitive prime divisor £ = £(22"¢ — 1) for ¢ = 2¢, and note
from (2.17) that ¢|x. Since £ > 2 and z € {0, 1}, we again have z = 0.

Now if y = 0, then (2.17) implies that ¢"(¢™ + 1)/2 is divisible by (¢** —1)/(¢+1), a contradiction
Hence y = 1, and from (2.17) we obtain that ZZ 1% = ¢/2. On the other hand, El 122 =q/2 by

(2.16). Thus Zq/Q (2i—1)?2 =0, and so z; = 1 for all i. Together with (2.13), this yields the two stated
decompositions. O

Proposition 2.10. Let n > 5, 2|q, and € = +. Then the characters a,, and B, of Sp(V) = Sp,,,(q)
restrict to G = Q(V) = Q5 (q) as follows:

2 —2)/2
(@n)log = X350 (Bl (q)—1+a+z<q 2,
<an>|95n(>—1+a+z<q D2 B)laz g = 2465

In particular, the following formula holds for the irreducible character 8 of G of degree (¢*" —q?)/(q* —
1):

((prn + p2.0) = (an + Bn)) g, (a) = 26-

Proof. By Mackey’s formula,

(Indg+ (’i+))|G = Z IndgmtoJrrl ((Hﬁr)lGﬁtOth*l)z
GtO4€G\G/O
and similarly for 7+ = Indg+(lo+). The argument in (2.15) shows that s’ (z) = 1 for all z €

GNtO,t~!, and so 7+ and Inngr (k4 ) agree on G. Similarly, 7~ and Indg: (k—) agree on G. It then
follows from Lemmas 2.5 and 2.9 that

(2.18) (P20 — prn)lc = (7% = 77| = (Ind§, (k1) — Ind§_(5-))le = (B — an) e
First assume that € = +. Then using Proposition 2.8 we get
(g—2)/2 qa/2

(Bn—an)le =1l +a+ Z Vi — 2577

i.e.
q/2 (g—2)/2

Zé +Bu)le=1c+a+ > i+ ().

i=1

Aside from (a,)|¢ and (8,) |G7 all the other characters in the above equality are irreducible and pairwise
distinct. It follows that (ap,)|e contains Zj/: 21 d;. Comparing the degrees, we see that

q/2

(an)la :Zéﬁ

which then implies that
(q—2)/2
Bule=la+a+ > %

i=1
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Now assume that e = —. Then again using Proposition 2.8 and (2.18) we get

(g—2)/2 q/2

( 57L)|G—1G+05+ Z Vi — 25]’

i.e.
q/2 (¢—2)/2

Zé+an|G—1G+a+ 271 n

Aside from (o, )|¢ and (8,) |G, all the other characters in the above equality are irreducible and pairwise
distinct. It follows that (8,)|¢ contains Z‘JZ/: 21 d;. Comparing the degrees, we see that

q/2

(Bu)la = Zéj,

which then implies that

(q—2)/2
(e =lc+at+ >
i=1
For both € = +, the last statement now follows from (2.10). O

Proposition 2.10 leads to the following explicit formula for 8, which we will show to hold for all
special orthogonal groups in all characteristics and all dimensions, and which is of independent interest.
In this result, we let V =Ty be a quadratic space, L := SO(V) if 2 { ¢, L := Q(V) if 2|g, and extend

the action of Lon V to V=V ®r, Fg2, and we assume 2 { ¢ if 2 {n. Also, set
pg—1 =T, pgp:={r € F:z | x4 =1},

If 21 ¢, let X; be the unique linear character of order 2 of uy,—1, and let x5 be the unique linear
character of order 2 of pgy1.

Theorem 2.11. Let n > 10, e = £, and let g be any prime power. If 2|n, let 1 = [ be the irreducible
constituent (3 of degree (¢™ — q®)/(q®> — 1) of the rank 3 permutation character of L = Q(V) when 2|q,
and of L = SO(V') when 21 q, on the set of singular 1-spaces of its natural module V =Ty . If 21 qn,
let 9 be the irreducible character of L = SO(V) of degree (¢™ — q)/(¢*> — 1) denoted by Ds; in [19,
Proposition 5.7]. Then for any g € L we have

D gt Kerlg=Adv) L > (—q) M Ko v)

a 2((] - 1) AEpig_1 2(q + 1) A€pg+1

when 2|n, and
1 img, Ker(g—A- 1 . dimg , Ker(g—A-1g
U9) = gy Do XN IO s BT g () () e BT
2(¢-1) A€pg—1 20q+1) AEfigi1
when 2 1 qn.
Proof. In the case 2|g, the statement follows from the last formula in Proposition 2.10, together with

formulae (3) and (6) of [14]. Assume now that 2 { ¢, and set x := 1 if 2|n and & := 0 if 24 n. By [19,
Proposition 5.7] (and in the notation of [19, §5.1]),

1
Y(g) = 1Spa(@)] we%;(q) wn(rg)St(z) — K,

where ws,, denotes a reducible Weil character of Sp,,(¢) and St denotes the Steinberg character of
S = Spy(q)-
If x € S is not semisimple, then St(z) = 0.
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Suppose z = diag(A\, A1) € T} < S, where T} = C,_; is a split torus and A € y,—1. In this case,
we can view 17 as GL1(q), embed L in GL,(¢), and view g as an element h = Ag in a Levi subgroup
GL,(q) of Spy,(q), with det(h) = A™. Tt follows from [9, Theorem 2.4(c)] that

wa(g) = X3 (A7)gdimea Kerh=1) — y o () gdime, Ker(g=2"1)
If A # +1, then |25 = ¢(¢ + 1) and St(z) = 1. If A = £1, then |2°| = 1 and St(z) = ¢. Note that
since g € GO(V),
dimg, Ker(g — A™") = dimg, Ker('g — A7') = dimp, Ker(¢g~! — A7!) = dimp, Ker(g — ).
We also note that since g € SO(V),
(2.19) dimp, Ker(g — 1) = n(mod 2), dimg, Ker(g + 1y) = 0(mod 2).

(Indeed, since det(g) = 1, each of Ker(gs; — 1y/) and Ker(gs + 1y) is a non-degenerate subspace of
V' if nonzero, where g = g5g, is the Jordan decomposition; furthermore, 2|dimp, Ker(g, + 1v/) and
dim Kerg, Ker(gs — 1) = n(mod2). Hence the claim reduces to the unipotent case g = g,. In the
latter case, the number of Jordan blocks of g, of each even size is even, see [4, §13.1], and the claim
follows.)

Suppose © € Tp < S, where Ty = C,41 is a non-split torus and z has eigenvalues p,p~t, with
f € pgr1 and p # £1. Then St(z) = —1 and |[2°] = g(¢ — 1). In this case, we can view Ty as
GU4(q), embed L in GU,(q), and view xg as an element h = ug in a subgroup GU,(q) of Sp,,(q),
with det(h) = p™. It follows from [9, Theorem 3.3] that

wn(zg) = (=1)"x5 (") (=q)
Altogether, we have shown that

dimp , Ker(h—1 n. . —¢.n dimp ., Ker(g—p ™!
KT — () () (=gt T,

1 i — n imy er
Vo) = mg (gt Kerlo=1) -\ 3 ((—1)™)gHimea KerlotD))
1 .
+ Z X;-()\n)qdlm]pq Ker(g—2\)
(2.20) 200-1 57w
1" —/ n dimp , Ker(g—
_2((q+)1) D Y (7 (G ) s = _y,
HEUq+1~{£1}
and the statement now follows if we use (2.19). O

2.3. Some character estimates.

Proposition 2.12. Let q be any prime power, G = Q5,(q) with n > 5, e = +, and let g € G have
support s = supp(g). Assume that x € {a, 8} if 21 ¢, and x € {a, 8,7} if 2|q. Then

bl 1
x(1) ~ g3
Proof. (i) First we consider the case s > n > 5. Then
(2.21) d(z,g) <2n-—s
for any x € qu . In particular,
(2.22) 0<plg) < Y qﬂf)l_l <@ - L
z€F

Now, (when 2|q) part (i) of the proof of Proposition 2.7 shows that ~; = Ind%(v;) for some linear
character v; of P, and recall that p = Ind%(1p). It follows that

i(9)] < lp(g)] < "% =1,
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and so |vi(g9)/7:(1)] < 1/¢°2 < ¢73%/5 as (1) = [G : P] > ¢ 2. Next, using Theorem 2.11 and
(2.21) we also see that
1 1
2.93 B g)+1| < qd(;v,g) + qd(w,g) < an—s.
Q) RS g 2 TESTRPY

z€FS z€F, watli=1
In particular, |3(g)| < ¢ *+1. Since B(1) = (¢** —¢*)/(¢*>— 1), we deduce that |5(g)/B(1)| < ¢~ 3%/°.
Furthermore, as a(g) = p(g) — (8(g) + 1), we obtain from (2.22)—(2.23) that
a(g)] < 2¢*"7° 1.

If s > 6, then it follows that |a(g)/a(1)] < ¢*~° < ¢=*/3, since a(1) > ¢**~3. Suppose that s = n = 5.
Then we can strengthen (2.23) to

—2¢° = (¢ = )¢’

2(q+1)

Together with (2.22), this implies that

la(g)l = [p(g) — (B(g) + )| < ¢ +¢* < a(1)/q*?
since a(1) > (¢° +1)(¢* — a)/(¢* — 1).

(ii) From now on we may assume that s <n—1. As g € G = Q5,,(q), it follows that d(z,9) = 2n—s
for a unique z € {1, —1}. Furthermore, 2|s. (Indeed, this has been recorded in (2.12) when 2|q, and in
(2.19) when 2t ¢.) We also have that

(2.24) d(z,g) <2n—d(z,9) =s
for all x € qu ~{z},
Assume in addition that s > 4. Using (2.24) we obtain
=14 (q—-2)(¢° - 1)
q—1 '

As p(1) = (¢" — €)(¢" " +¢€)/(qg — 1), it follows that |p(g)/p(1)| < ¢~3*/5. As above, the same bound
also applies to x = 7; when 2|q.

<Blg)+1<4".

(2.25) 0<p(g) <

Next, since 2|s, using Theorem 2.11 and applying (2.24) to 29%! = 1 and 2 # z, we have (for any
2|s <n—1) that

2n—s 2n—s

q q q q—2 q
2.26 —q¢°- < ri1< +q°- + ,
(2.26) g1 gy SPOTL s gyt @m—n ﬂm&ﬂ

in particular,
2n—s S( 2
"+t —g—1)
B(9)] < S

Since B(1) = (¢"—q¢?)/(g*>—1), we obtain that |3(g)/B(1)| < ¢~**/°. Furthermore, using (2.25)(2.26),
we can bound

P (3¢ — 3¢ —4)/2 (1)
q2 -1 q25/5

a(g)] = lp(g) = (B(g) + 1) <

since a(1) > (¢" +1)(¢" " = q)/(¢* = 1).

(iii) Since the statement is obvious for s = 0, it remains to consider the case s = 2, i.e. d(1,zg9) =
2n — 2. Using [27, Lemma 4.9], one can readily show that g fixes an orthogonal decomposition V' =
U@ U+, with U C Ker(g — z - 1y) being non-degenerate of dimension 2n — 4, and

(2.27) dimg, (U+)* = 2.

First we estimate p(g). Suppose g(v) = tv for some singular 0 # v € V and t € F). If t # 2,
then v € U+, and (2.27) implies that g can fix at most ¢ + 1 such singular 1-spaces (v)F,. Likewise,
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g fixes at most ¢ + 1 singular 1-spaces (v)p, C U+ with g(v) = zv. Assume now that g(v) = zv with
v=u+u',0#u€U and v’ € Ut. As 0 = Q(v) = Q(u) + Q(u'), the total number of such v is

Ni= S {0+ weU|Quw) =1} [{u' € Ut | g(w') = zu', Q') = —a}].
z€F,
Note that, since U is a non-degenerate quadratic space of dimension 2n — 4,
@2+ 1)@ P -1 <0#weU|Qw)=a}| < (¢" = 1)(¢" > +1)
for any « € F,. On the other hand, (2.27) implies that
3w’ € US| g(w) = 2w/, Q') = —a}| = [(UH)*7] = ¢*.
z€F,

It follows that

and so

2 n72_1 nf?)_’_l
Sp(g)§2q+2+q(q q_)(lq ).

PP+ 1)@ -1

(2.28) P

In particular, when 2|q we have |v;(g)| < |p(g)| < p(1)/q**/°.
Next, applying (2.26) to s = 2 we have

24P —q—1) _ 8
q2 -1 q4s/5'

16(g)] <

Finally, using (2.26) with s = 2 and (2.28), we obtain

q2n73 + qn+1 _ qnfl
¢> -1

a(1)

q35/5 ’

la(g) = Ip(g) = (Blg) + D] < +(g+1)<

O

Proposition 2.13. Let q be any odd prime power, n > 5, and e = £. Assume that x € Irr(G), where
either G € {Sps, (@), Qan+1(q)} and x € {a, B8}, or G = Q5,,(¢) and x € {a, 8,7} If g € G has
support s = supp(g), then

RO
—qs/S

(g
x(1)

Proof. (i) As usual, we may assume s > 1. First we consider the case G = Q5,,(¢). Then [21, Corollary
5.14] and [19, Proposition 5.7] show (in their notation) that « = Dy — 1¢, 8 = Ds; — 1. Furthermore
if v # 1p is a linear character of P, then Ind%(v) = D, if v has order > 2, and nd%(v) = D¢, + D,
if v has order 2.

If x = a or 3, then the statement is already proved in Proposition 2.12, whose proof also applies
to the case x = v; = Dy, (using the estimate Ind%(v)(g)| < p(g)). It remains to consider the case
X =i = D¢, for j =1,2. Again the previous argument applied to v of order 2 shows that

G:P]_ 2x(1)
|D51(g)+D§2(g)| < 7%/5 = PN

On the other hand, the formula for D, in [19, Lemma 5.5], the character table of SL2(q) [5, Theorem
38.1], and part 1) of the proof of [19, Proposition 5.11] imply that

A =14 VT _ g1y

(2.29) ‘DEI (g) - sz(g)‘ < q(q2 —1)
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If 4 < s < 2n — 2, then since x(1) > (¢" + 1)(¢" ! = 1)/2(¢ — 1) > ¢*"3(¢ + 1) it follows that

1X(9)] < (ID¢, (9) + De, (9)| + | De, (g9) + De, (9)]) /2

X(1) i x(@) 2x(1) x(1)
S FETE +4q < @5 T @ l31/6(g 1 1) < PR

If 1 < s <4, then s < n, and so 2|s as shown in part (ii) of the proof of Proposition 2.12. Hence s = 2,
and we again have

x(1) —12 o x(1) 2x(1) x(1)
‘X(9)| < q35/5 +4q" q35/5 qs/3+17/6 < qs/S'

Finally, if s = 2n— 1, then d(z,g) < 1forall z € qu by (2.21); moreover, d(£1, g) = 0. Hence, instead
of (2.29) we now have the stronger bound

20> - 1)- /4

=2¢71/2,
q(¢* - 1)

whence |x(g)| < x(1)g=2*/° + ¢71/2 < x(1)g=*/3.

(ii) Next we consider the case G = Qg,41(q). Then [21, Corollary 5.15] and [19, Proposition 5.7
show (in their notation) that o = D¢, — 1¢, B = D¢, — 1. Again using the formula for D, in [19,
Lemma 5.5], the character table of SLa(q) [5, Theorem 38.1], and part 1) of the proof of [19, Proposition
5.11], we obtain that

2((]2 _ 1)qn+1/2 3 \/a
q(¢* — 1)

Suppose in addition that 3 < s < 2n — 2. Since d(x,g) < 2n+ 1 — s by (2.21), we have that

(2.30) |(9) = B(9)] = |De, (9) = De, (9)] < =2q".

0<plg)=1+alg)+8g) < Y T—=

As x(1) > (¢ +1)(¢" — q)/2(g — 1), it follows that

2(1—1/q)g*>*x(1) _ 20— 1/g)x(1)

la(g) + Bl <"1 -1 < A+ 1/q")(1—1/q" 1) ~ ¢/3(1— 1/qgn1)

On the other hand, (2.30) implies that

4(1—1/q)x(1)
|Oé(g) - 5(g)| = q(s+4)/3(1 — 1/qn_1)7

and so

(gl _ _ (A-1/q) 2(1-1/q) 1

X(l) qs/3(1 _ 1/qn—1) q(s+4)/3(1 _ l/q"_l) qs/g .
If s=2n—1 or 2n, then d(z,g) < 2 for all z € F: by (2.21). Hence, instead of (2.29) we now have
the stronger bound

2(¢* —1)g* - \/q

= 2¢%%,
q(¢*> — 1)

la(g) — B(9)| = |De, (9) — De, (9)] <

whence
(1—-1/q)¢* *x(1)
Ix(9)| < =1/ )

It remains to consider the case s = 1,2, i.e. d(1,zg) = 2n or 2n — 1 for some z € {1,—1}. Using
[27, Lemma 4.9], one can readily show that g fixes an orthogonal decomposition V = U @ U=, with
U C Ker(g — z - 1y) being non-degenerate of dimension 2n — 3, and

(2.31) dimy, (U4)* =4 —s.

+¢*? < x(1)g/3.
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First we estimate p(g). Suppose g(v) = tv for some singular 0 # v € V and t € Fy. If t # z, then
v € UL, and (2.31) implies that g can fix at most (¢° —1)/(q¢ — 1) < ¢+ 1 such singular 1-spaces (v)r
Likewise, g fixes at most (¢ 4+ 1)? singular 1-spaces (v)r, C U+ with g(v) = zv, since dimU+ = 4.
Assume now that g(v) = zv withv =u+u/, 0 #u € U and v’ € U*. As 0 = Q(v) = Q(u) + Q(u'),
the total number of such v is

N:=Y {0#weU|Quw)=a}| {u' eU"|g(w)=zwQu) = —z}|.

z€F,

q*

Note that, since U is a non-degenerate quadratic space of dimension 2n — 3,
""" -1 < {0AweU | Q) =a}| <¢" (" +1)
for any = € F,;. On the other hand, (2.31) implies that
> Hw' €Ut [g(w') = 2/, Q(w') = —a}| = |(U)*] = ¢**.
z€F,
It follows that
TP =) SN <P 4 1),

and so
qn+2—s(qn—2 _ 1)

q—1

Together with (2.30), this implies that
@l _ (=D +2)+¢" "+ D+2¢"(g-1 _ 1
x(1) (¢" +1)(¢" —q) ¢*/?

n+2—s(,n—2
+1
<plg)=1+alg)+8l9) <@ +3q+2+ 2 q(fl 3

(iii) Finally, we consider the case G = Sp,,,(q). In this case, arguing similarly to the proof of [19,
Proposition 5.7], one can show that {a, 8} = {D5 , DS }, where S = 03 (q) = Dyg—1y, with Ao, A
being the two linear characters trivial at SOJ (¢), and we consider the dual pair G x S — Spy,,(q). In
particular, x(1) > (¢ + 1)(¢" — q)/2(q — 1) > ¢*"~*/3. Now, the formula for D, in [19, Lemma 5.5],
the character table of S, and part 1) of the proof of [19, Proposition 5.11] imply that

(2.32) |a(g) — Blg)] < ¢ HIHILONZ < g2rs,

On the other hand, using (2.21) we have 0 < p(g) = a(g) + B(g) + 1 < ¢*"~* — 1. In particular, when
s > 2 we have

x(9)] < (lalg) + Bg)| +lalg) = Blg)l) /2 < ¢®** < x(1)g*/*.
Assume now that s = 1. Then g = zu for some z = 1 and unipotent v € G; furthermore, p(g) =
(¢>=* —1)/(q — 1). Applying also (2.32), we obtain

2n—1 _
X0 < (la(o) + )]+ lato) ~ 8@ ) 2 = (T L a2 2 < x(a)a

1
and the proof is complete. O

3. CLASSICAL GROUPS: PROOF OF THEOREM 1

Let p be a prime, and let G = Sp(V) or Q(V), where V = Fy and ¢ = pf. Write G = Cl,(q) to
cover both cases. As before, for a semisimple element g € G, denote v(g) = supp(g), the codimension
of the largest eigenspace of g over F, (see also (2.4)).

For n < 10, Theorem 1 can be easily proved by exactly the same method of proof of [20, Theorem
2] (improving the constant D in Lemma 2.3 of [20] by using better bounds for |G| and |C¢(g)|p, where
p is as above). So assume from now on that n > 10, so that the character ratio bounds in Propositions
2.12 and 2.13 apply.

We begin with a lemma analogous to [20, Lemma 3.2].
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Lemma 3.1. For 1 < s <mn, define

Ns(G) :=={g € Gss : v(g) = s}
and let ns(G) = |Ns(GQ)|.

(i) If g € Ns(g) and s < 5 then |Cg(g)|p, < qi =9+ =025 here v = 0 or 1 according as G
is symplectic or orthogonal.
(ii) If g € Nulg) and s > § then |Cg(g)l, < g1 ).
(i) D2, 1555n/21s(G) < |G| < g2t =vn where v is as in (id).
(iv) Ifs < n/2, then ny(G) < cqz*Cn=stD+% where ¢ is an absolute constant that can be taken to
be 15.2.

hen the largest eigenspace of g has dimension n —s > 3, so has eigenvalue

Proof. (1) If v(g) = % t
_s(q) x Cls(q). Part (i) follows.

+1, and so Cg(g )

(ii) Now suppose v(g) = s > %2, and let E) (X € F,) be an eigenspace of maximal dimension n — s.

Assume first that A # 1. Then letting a and b denote the dimensions of the +1- and —1-eigenspaces,
we have

(3.1) H ) x Cla(g) x Cly(q),

wheren—s =d; > dy > --- > d; and also d; > a > b and 2Zt1 kid;+a+b=mn. Hence |Cq(g)|p < q°,
where

(3.2) Zk di( 4(a +b%).

If n > 4d,, this expression is maximised when a = b = dy and (di,...,d;) = (di,...,d1,r) with
r <dy and k; = 1 for all i.. Hence in this case,
1 1 1 1 1 1
D < S(t=1)di(di = 1)+ 5r(r—1) + idf = 5td% — St =1Ddi+ 5r(r—1),

and this is easily seen to be less than Indy, as required for part (ii).

Similarly, if 4d; > n > 3d;, the expression (3.2) is maximised when ¢t = 1, ky = 1, a = d; and
b = r < dy; and when 3d; > n > 2d; (note that n > 2d; = 2(n — s) by our assumption that
v(g9) = s > ), the expression (3.2) is maximised when ¢t = 1 and @ = r < d;. In each case, we see
that D < %ndl as above.

Assume finally that the eigenvalue A = +1. In this case the centralizer C(g) is as in (3.1), with
n—s=a>d; >--->d; and also @ > b and QZi kid; + a+ b =n. Again we have |Cg(g)|p, < q°,
1

with D as in (3.2), and we argue as above that D < fna = In(n—s). This completes the proof of (i).

(iii) This is clear.
(iv) If v(g) = s < % then as in (i), the largest eigenspace of g has eigenvalue +1, so we have
Ccl(g) > Cl,_4(q) x T,, where Ty is a maximal torus of Cly(q). Hence [g¢| < |G : Cl,_4(q)Ts| <

q%s@"—s*‘l). Also the number of conjugacy classes in G is at most 15.2¢™/2 by [7, Corollary 1.2], and
(iv) follows. O

Lemma 3.2. Let x € {a, 8,7}, where a, 3,v; are the irreducible characters of G defined in Section
2.1. Then St C x*™.
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Proof. As in the proof of [20, Lemma 2.3], there are signs ¢, = £1 such that

1
[le Stle = @ decss EgXl(g)|CG(g)‘p

(3.3)
" N Xlléll) <|G|p + 2 i4geGe €0 (%)l |CG(g)p> '

Hence [x!, St]¢ # 0 provided ¥; < |G|,, where
x|
Y= Z ﬁ 1Cc(9)lp-
1#9€Gss

By Propositions 2.12 and 2.13, if s = v(g) we have

Ix(9)| 1
x(1) = g3

Hence applying Lemma 3.1, we have ¥; < 37 + 35, where

1 _ n 1 )2 2y_, n—1
3 =Z1gs<g cqz*(n 5+1)+2.q13/3-q4((" ) HsT) v

10,2 _ 1 12
Yo = Z%§s<nq2(n +n) vn_qls/s.q4(n ns)

)

For a term in 31, the exponent of g is

4" TV Ty 2" 73

—1

As |G|, < ¢i"° "7 taking | = 4n this gives

ot < 21<5<z Cq%s(n+1)+g,%
- 2
< Zl<5<ﬁ Cq%n(l—%)_;,_%.
- 2
e oo i bty v o IETI < 1 (except for ¢ = 2,n < 20, in which case we obtain the
P

same conclusion using slightly more refined estimates instead of Lemma 3.1(iv)).

For a term in X5, the exponent of ¢ is

1 1 l
5(712 +n) —vn+ Zn(n —5) — 35,
and leads similarly to the inequality E—""p < % when [ = 4n.
We conclude that ¥; < |G|, for | = 4n, proving the lemma. O

Proof of Theorem 1. (i) View G = G/Z(@), where G = Sp,,(q), respectively G = Q,(q). Let 1 £ €
Irr(G). By Lemma 3.2 together with Lemmas 2.2 and 2.3, we have St C " for G = Sp,,(q), and
St C 4% for G = QF (q). Since Ker(St) = Z(G) and St* contains all irreducible characters of G' by

[15], the conclusion (i) of Theorem 1 follows.

(ii) Note that G/Ker(«) is an e-fold cover of the simple group S := PSp, (¢) or PQ (q), where
e €{1,2,4} (and e = 4 only when S = PQ§, (q) with 2t and 4|(¢" — €)). By [20, Theorem 5.1], there
exists some 1g # € Irr(S) such that

diam M(G/Ker(a), o) < ediam M(S, 3) + e — 1.

Hence the conclusion (ii) of Theorem 1 follows from (i). O
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4. ALTERNATING GROUPS: PROOF OF THEOREM 2

In this section we prove Theorem 2.

Lemma 4.1. Let n := m(m + 1)/2 with m € Zsg, and let xm = x"™™ L1 be the staircase
character of S,,. Then
Xm(1) 2 |Sn‘5/11-

Proof. We will proceed by induction on m > 6. The induction base m = 6,7 can be checked directly.
For the induction step going from m to m + 2, note by the hook length formula that x,,(1) = n!/H,,,
where H,, is the product of all the hook lengths in the Young diagram of the staircase partition
(m,m —1,...,1). Hence it is equivalent to to prove that

(m(m+1)/2)! > HLY/S,

Since the statement holds for m and Hy,42/Hy = (2m+3)!11(2m+1)!! (where (2k4+1)!! = Hf=0(2i+1)
for any k € Z>y), it suffices to prove that

2m—+3
(4.1) I (mm+1)/2+ i) > ((2m + 3)!1(2m + 1)11)

i=1
for any m > 6. Direct computation shows that (4.1) holds when 3 < m < 40. When m > 40, note
that

11/6

[ mm +1)/2+14) > (m(m+1)/2+1)*"
> ((m+ 3)m 1 (m + 2)m) "/
> ((2m+3)N@m + 1",
proving (4.1) and completing the induction step. O

Proof of Theorem 2. We will make use of [25, Theorem 1.4] which states that there exists an effective
absolute constant C; > 2 such that

(4.2) X" contains Irr(S,,) whenever ¢t > Cynlog(n)/log(x(1))

for every non-linear y € Irr(S,). With this, we will prove that when n is sufficiently large we have
(4.3) ¢ contains Trr(A,,) whenever k& > Cnlog(n)/log(x(1))

for every nontrivial ¢ € Irr(A,,), with C' = 5C%.

(i) Consider any n > 5 and any nontrivial ¢ € Irr(A,). If ¢ extends to S,, then we are done by
(4.2). Hence we may assume that ¢ lies under some x* € Irr(S,,), where A - n is self-associate, and
that n is sufficiently large. By [16, Proposition 4.3], the latter implies that

(4.4) ©(1) > 2(n=5)/4,
Consider the Young diagram Y (A) of A, and let A denote the removable node in the last row of Y'()).
Also let p := x4 € TIrr(S,_1). Since A \ A is not self-associate, p is also irreducible over A, _.

Furthermore, by Frobenius’ reciprocity,
1< [0, 1sPls,y = XN Ind2_ (p)]s,,,
whence 2¢(1) = x* (1) < Indé:il(p)(l) =np(1), and so

(4.5) p(1) = (2/n)e(1).
It follows from (4.4) and (4.5) that when n is large enough,

log(p(1)) = log((1)) —log(n/2) = (9/10)log(p(1)).
Now we consider any integer

10C1  nlog(n)
(4.6) 270 Toglp(l);
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This ensures that s > Ci(n — 1)log(n — 1)/log(p(1)), and so, by (4.2) applied to p, p° contains
Irr(S,—1).

(ii) Next, we can find a unique m € Zx3 such that
(4.7) ng:=m(m+1)/2<n-3<(m+1)(m+2)/2,
and consider the following partition
(4.8) pi=mn—-1—-mm-1)/2,m—-1,m-—2,...,2,1)
of n — 1. Note that p has m rows, with the first (longest) row
m=n—1—-mm-1/2>m+2

by (4.7). Hence, if B is any addable node for the Young diagram Y (u) of p, Y (U B) has at most
m + 1 rows and at least m + 2 columns, and so is not self-associate. It follows that, for any such B,
the character y*"'B of S,, is irreducible over A,,.

(iii) Recall that x*|a, = ¢ + * with ¢* being S,-conjugate to . It suffices to prove (4.3) for an
S,-conjugate of ¢. As x*|s,_, contains p = x*>4 which is irreducible over A,,_;, without loss we may
assume that ¢|a, , contains p|a, ,. By the result of (i), p° contains x*, with p defined in (4.8) Thus

n—1

(49) 1< [cpslAn_u (Xﬂ)|An—1]An—1 = [@Salndﬁz,l((XH)|AT,,—1)]A .

n

Also recall that x* is an S, _j-character and S,, = A,,S,,_1. Hence

Indy" ((X*)|a,_,) = (Ind2"_ (")), -

n—1

Next

Sn p—
Idg" ()= >, x7,
B addable
where, as shown in (ii), each such y*“B is irreducible over A,,. Hence, it now follows from (4.9) that
there is an addable node By for Y (1) that ¢® contains 1|a,, with 1 := y#“5o.

(iv) By the choice of By, 9|s,_, contains x*, whence 1(1) > x*(1). Next, by (4.7), we can remove

n—1
n —1—ng > 2 nodes from the first row to arrive at the staircase partition (m,m —1,...,1) F ng. In
particular, w|sn0 contains the character x,, of S,,. By Lemma 4.1, for n sufficiently large we have
(4.10) log(1)(1)) = log(xm(1)) = (5/11)log(ng!) = (2/5)nlog(n),
since

ng=m(m+1)/2>n—(m+2)>n—(3/2+v2n—14)
by the choice (4.7) of m. Now we consider the integer ¢ := [(5/2)C1] < 3C} (since Cy > 2). Then
Cinlog(n)/log(4(1)) < (5/2)C1 <t
by (4.10), and so " contains Irr(S,) by (4.2) applied to ¢. In particular, (¢*)|a, contains Irr(A,,).

Recall from (iii) that ©* contains the irreducible character 9|a, . It follows that ¢t contains (1)%)|a,,,
and so ¢ contains Irr(A,,).

(v) Finally, consider any integer k > Cnlog(n)/(1) with C = 5C%. Then
k/t > k/3C1 = (5/3)Cinlog(n)/log(¢(1)).
As C1 > 1 and nlog(n)/log(yv(1) > 2, we have that
(5/3 — 10/9)Cyn log(n), log(p(1)) > 10/9.
In particular, we can find an integer sy such that
k/t > so > (10/9)Cinlog(n)/log(p(1)).
As s satisfies (4.6), the result of (iv) shows that ¢*°* contains Irr(A,,).
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k—sot=

Now, given any 7 € Irr(A,), we can find an irreducible constituent § of ¢ 7. By the previous

result, ¢t contains 0. It follows that ©* contains p*~*0t5, and

("85, VA, = [©" "7, 8]a, > 1,

i.e. ©* contains v, and the proof of (4.3) is completed. O

5. PRODUCTS OF CHARACTERS

5.1. Products of characters in groups of Lie type. Here we prove Theorem 3(i). This is very
similar to the proof of Theorem 2 of [20]. Let G = G,(q) be a simple group of Lie type of rank r over
F

q-

Lemma 5.1. There is an absolute constant D such that for any m > Dr? and any X1, - - -, Xm € Irr(G),
we have [[[/~, Xi,St]¢ # 0. Indeed, D = 163 suffices.

Proof. This is proved exactly as for [20, Lemma 2.3], replacing the power x™ by the product [T;~; x;.
O

Proof of Theorem 3(i). Take ¢; = 3D with D as in the lemma, and let x1,...,x; € Irr(G) with
I = cir?. Writing m = [/3 = Dr?, Lemma 5.1 shows that each of the products [/~ xi, H%jrl x; and

m

ngﬂ Xi contains St. Hence Hi:l Xi contains St®, and this contains Irr(G) by [20, Prop. 2.1]. This
completes the proof. O

5.2. Products of characters in linear and unitary groups. In this subsection we prove Theorem
3(ii). This is similar to the proof of Theorem 3 of [20]. Let G = PSL; (q).

We shall need [20, Theorem 3.1], which states that there is a function f: N — N such that for any
g € Ggs with s = v(g), and any x € Irr(G), we have

(5-1) x(9)l < flr)x(1)' 7.

Again we begin with a lemma involving the Steinberg character.

Lemma 5.2. Let m € N and let x1,...,xm € Irr(G). Set ¢ = 44.1, and define

Avm = cf ()™ Y1 csan s @™ 5 (T xa(1) 7"
Ao = [(0)™ S jpcsan @ 3D xa(1) ™
If Avyy + Doy < 1, then [H:il Xis St}G 7& 0.

Proof. Arguing as in the proof of [20, Lemma 3.3], we see that [[];", xs, St]¢ # 0 provided A,, < 1,

where
s Xl(gz,s) n2fln(sfl)71 N X(gl,S)
+ q° 2
E x(1) 2 1;[1 x(1)

n/2<s<n
where g; s € Gss is chosen such that v(g; s) = s and |x;(g;,s)| is maximal. Now application of (5.1)
gives the conclusion. O

)

3n
Ay, = E cqmstE !

1<s<n/2

Lemma 5.3. There is a function g : N — N such that the following holds. Suppose that x1,...,Xm €
Irr(G) satisfy [1;~, xi(1) > |G[>. Then provided q > g(n), we have [[]~, xi, Stle # 0.

Proof. We have |G| > %q"2*2, so for s < n,

m —s/n
(H Xi(1)> < 8g7Ime
=1
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Hence
Apy < 8cf(m)™ Y g metEE2
1<s<n/2
and

2 c—1)—1 — .
Ao, < Sf(n)m Zn/2§s<n q" —in(s—1) lq 3ns+6
3n? 1
< Sf(n)m Zn/2§8<n q e,

Now the conclusion follows from Lemma 5.2 (using some slight refinements of the above inequalities
for n < 4). O

Proof of Theorem 3(ii). Assume x1,...,x; € Irr(G) satisfy Hé:l xi(1) > |G|'°. Since x;(1) < |G[*/?
for all i, there are disjoint subsets I1, Iz, I3 of {1,...,m} such that [[;; xi(1) > |G|? for k =1,2,3.
Then [],c 1, Xi contains St for each k, by Lemma 5.3, and so Hizl xi contains St, hence contains

Irr(G), completing the proof. O

5.3. Products of characters in symmetric and alternating groups.
Proposition 5.4. Let G € {S,,, A}, | € Z>1, and let x1,Xx2,---, X1 € Irr(G) with x;(1) > 1 for all i.

i) If 1 > 8n — 11, then l.: Xi * contains Trr(G).
=1
(i) Suppose that, for each 1 <i <1, there exists some j # i such that x; = x;. If | > 24n — 33 then
Hézl Xi contains Irr(G).

Proof. (i) Let x* denote the irreducible character of S,, labeled by the partition A - n. A key result
established in the proof of [20, Theorem 5] is that, for any 4 there exists

a; € {X(n—1,1)7 (1722 ) (n=2.1%) X(n—3,3)}
such that x? contains (o;)|g. Since [ > 8n — 11, there must be some
Be {x("‘l’”, ((1722) (=217 X(n—s,s)}

such that § = a; for at least 2n — 2 distinct values of 7. It follows that (Hizl Xi)Q = ~d, where
v = B?"2|g, and § is a character of G. By [20, Theorem 5], 32"~2 contains Irr(S,), whence v
contains Irr(G). Now the arguments in the last paragraph of the proof of Theorem 2 show that o
contains Irr(G) as well.

ii) Note that the assumptions imply, after a suitable relabeling, that L i contains o\, where
=1
A is a character of G and

8n—11
o= [
i=1
(Indeed, any subproduct x;, ...X;, with ¢t > 1 and x;, = ... = Xy, yields a term (x?)*/?) in 0.) By
(i), o contains Irr(G), and so we are done as above. O
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