
ON IRREDUCIBLE PRODUCTS OF CHARACTERS

GABRIEL NAVARRO AND PHAM HUU TIEP

Abstract. We study the problem when the product of two non-linear Galois conju-
gate characters of a finite group is irreducible. We also prove new results on irreducible
tensor products of cross-characteristic Brauer characters of quasisimple groups of Lie
type.

1. Introduction

In character theory we soon learn that the product of complex non-linear characters
is rarely irreducible. If G is a finite group and χ ∈ Irr(G) is non-linear, we know that χ2

is not irreducible (because the tensor product V ⊗V of any G-module has the symmetric
submodule). And, if χ̄ is the complex-conjugate of χ, then χχ̄ is also not irreducible,
simply because it contains the trivial character. What might be perhaps a surprise is
that there are examples of non-linear characters χ such that χχσ is irreducible, where
σ ∈ Gal(Q̄/Q) is a Galois automorphism. In our first result in this paper, we show that
essentially there are only five examples illustrating this phenomenon.

Theorem A. Let G be a finite group, and let χ ∈ Irr(G) be faithful. If χχσ ∈ Irr(G),
then F(G) = Z(G). If G is quasi-simple and χ(1) > 1, then G = 2 · A5, 3 · A6, 2 · J2,
3 · J3, or 41 · PSL3(4).

Notice that the first part of Theorem A implies that there are no solvable examples
of irreducible products of faithful non-linear Galois conjugate characters, using that
CG(F(G)) ≤ F(G) in a solvable group G. (This consequence can also be deduced from
the main results on irreducible product of characters in solvable groups in [Is2].) Once
these five examples among quasi-simple groups are discovered, we can easily construct
many groups having non-linear faithful Galois conjugate characters whose product is
irreducible, by using central products of those, extensions, wreath products, etc. It
might well be that the semisimple layer E(G) in Theorem A is a central product of a
number of copies of these five groups, but this seems difficult to prove, and perhaps,
the result is not totally worth the effort.
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In the case of quasisimple groups, Theorem A follows from the following stronger
result:

Theorem B. Let G be a finite quasisimple group, and let α, β be irreducible characters
of G of the same degree α(1) = β(1) > 1. Suppose that αβ is irreducible. Then
(G/(Ker(α) ∩ Ker(β)), α(1)) is (2 · A5, 2), (3 · A6, 3), (6 · A7, 6), (2 · J2, 6), (3 · J3, 18),
((22 × 3) · PSL3(4), 6), (41 · PSL3(4), 8), (42 · PSL3(4), 8), ((32 × 2) · PSU4(3), 6), or
(3 ·G2(3), 27).

The study of irreducible products of ordinary (and `-Brauer) characters of quasisimple
groups was initiated by I. Zisser in [Zi], Bessenrodt and Kleshchev and collaborators for
alternating groups and their covers [B], [BK1], [BK2], [BK3], [KT1], and continued by
K. Magaard and the second author in [MT] for groups of Lie type. This problem is an
important part of the Aschbacher–Scott program [A] on classifying maximal subgroups
of finite classical groups. The main result of [MT] solved the problem for all finite groups
of Lie type over fields Fq with q > 5, except for the symplectic groups and groups of
type F4 and 2F4 in characteristic 2. In the second result in this paper, we complete the
classification for the symplectic series, still leaving open the case of Sp2n(2).

Theorem C. Let n ≥ 2 and let q be a power of 2. Let F be an algebraically closed field
of characteristic ` = 0 or ` 6= 2. Suppose that G = Sp2n(q) admits nontrivial irreducible
FG-modules V and W such that V ⊗W is irreducible. Then q = 2.

Together with the main results of [MT] and [KT2, Theorem 8.7], Theorem C implies
the following result on irreducible tensor products of cross characteristic representations
of finite quasisimple groups of Lie type.

Theorem D. Let G be a finite quasisimple group of Lie type, of simply connected type,
defined over a field Fq of characteristic p. Suppose that, for some ` = 0 or not equal to
p, G admits `-Brauer characters α and β, both of degree > 1, such that αβ is irreducible.
Then one of the following holds:

(i) q ≤ 3, but G 6∼= SLn(q).
(ii) G = Sp2n(5), at least one of α, β is a Weil character, but α(1) 6= β(1).

(iii) 2|q, G = F4(q) or 2F4(q), and ` divides |G|.

As discussed in Remark 2.3 below, G = SUn(2) with n ≥ 4, and Sp2n(q) with q = 2
and n ≥ 3, and with q = 3, 5 with n ≥ 2, indeed occur in Theorem D, at least when
` = 0.

We end this note with a question. When studying irreducible product of characters
and normal constituents, a problem naturally shows up: if G is a quasi-simple group and
α, β ∈ Irr(G) are faithful, when is αβ = mγ for some γ ∈ Irr(G)? (Or more generally,
when is αβ a sum of Aut(G)-conjugates of some γ?) Although there are (very few)
quasi-simple examples of this, we conjecture that this never happens in simple groups.

Conjecture E. Suppose that G is a simple group, and let α, β, γ ∈ Irr(G). If αβ = mγ
for certain integer m, then m = 1.
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2. Proofs of Theorems C and D

Proposition 2.1. Let q = 2f ≥ 4 be a power of 2, n ≥ 3, G := Sp2n(q), and let N1 be
any of the integers

(qn + 1)(qn − q)
2(q − 1)

or
(qn − 1)(qn + q)

2(q − 1)
.

(i) Let N2 be any of the integers

(qn − 1)(qn − q)
2(q + 1)

or
(qn + 1)(qn + q)

2(q + 1)
or

(qn + 1)(qn + q)

2(q + 1)
− 1 or

q2n − 1

q + 1
.

Then G has no irreducible complex character of degree (N1 − 1)N2.
(ii) Let N3 := (qn+1)(qn+q)/2(q+1). Then G has no irreducible complex character

of degree N1(N3 − 1).

Proof. (a) Note that when (n, q) = (3, 4), N1− 1 is divisible by 31 or 59, which is not a
divisor of |Sp6(4)|, and N3−1 is divisible by 72, which is again not a divisor of |Sp6(4)|.
Likewise, when (n, q) = (4, 4), N1 − 1 is divisible by 251 or 127, and N3 − 1 is divisible
by 131, and none of these primes is a divisor of |Sp8(4)|. Similarly, when (n, q) = (3, 8),
N1 − 1 is divisible by 313 or 18979, and N3 − 1 is divisible by 29, and none of these
primes is a divisor of |Sp6(8)|. Hence the statements follow in these cases.

From now on we will assume that n ≥ 5 when q = 4 and n ≥ 4 when q = 8. These
conditions ensure by [Zs] that 2k − 1 has a primitive prime divisor `(2, k), i.e. a prime

that divides 2k − 1 but not
∏k−1

i=1 (2i − 1) for k ∈ {(2n− 2)f, (n− 1)f}.
(b) To prove (i), assume by way of contradiction that there is χ ∈ Irr(G) such that χ

has degree D = (N1−1)N2. We choose n0 ∈ {n, n−1} to be odd. A direct computation
shows that, for each N2, there is a prime

(2.1) ` ∈ {`(2, 2nf), `(2, (2n− 2)f), `(2, n0f)}

that does not divide χ(1). Thus

(2.2) ` - χ(1), χ(1)2 ≤ q/2.

We will use (2.2) to derive a contradiction, using Lusztig’s classification of irreducible
characters of G [C, DM]. Since the dual group of G can be identified with G, we can
find a semisimple element s ∈ G and a unipotent character ψ of CG(s) such that

χ(1) = ψ(1) · [G : CG(s)]2′ .

If s = 1, i.e. χ(1) is unipotent, then since χ(1)2 ≤ q/2 by (2.2), by [MMT, Lemma 7.2]
we have that

χ(1) ∈
{

1,
(qn + γ)(qn + γq)

2(q + 1)
,

(qn − δ)(qn + δq)

2(q − 1)
| γ, δ = ±1

}
,

and so χ(1) < D, a contradiction. Hence s 6= 1, and

(2.3) CG(s) ∼= Sp2a(q)×GLb1(q
r1)× . . .×GLbk(q

rk)×GUc1(q
s1)× . . .×GUbm(qsm),
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where a, k,m ∈ Z≥0, bi, ri, cj, sj ∈ Z≥1, and

n = a+
k∑
i=1

biri +
m∑
j=1

cjsj, a ≤ n− 1.

Now, if 2 ≤ a ≤ n− 2, or 2 ≤ biri ≤ n− 2 for some i, or 2 ≤ cjsj ≤ n− 2 for some j,
then

CG(s) ≤ Sp2d(q)× Sp2n−2d(q),

with 2 ≤ d ≤ n− 2 and d = a, d = biri, or d = cjsj. In such a case, the choice (2.1) of
` implies that ` divides [G : CG(s)]2′ , contradicting (2.2). Thus

a, biri, cjsj ∈ {0, 1, n− 1, n}.
Moreover, the same argument rules out that case where a = 1 and, in addition, some
biri or cjsj equals 1.

(b1) Suppose biri = n for some i or cjsj = n for some j. If n ≥ 7, then

χ(1) ≥ [G : CG(s)]2′ ≥ (q − 1)(q2 − 1) . . . (qn − 1) > q4n−2 > D,

a contradiction. Consider the case 3 ≤ n ≤ 6. Here, if ψ(1) > 1, then q|ψ(1) by [MMT,
Lemma 7.2], contradicting (2.2). Hence ψ(1) = 1, and so 2 - χ(1) and

N2 =
(qn + 1)(qn + q)

2(q + 1)
− 1,

q2n − 1

q + 1
.

In particular, we can choose ` = `(2, (2n − 2)f)} to fulfill (2.2). For brevity, we can
write

CG(s) = GLεb(q
r),

where br = n, and GLε stands for GL when ε = + and for GU when ε = −. Now, if
r ≥ 2, then ` divides [G : CG(s)]2′ , contradicting (2.2). Hence r = 1. In this case, (2.2)
is fulfilled for both two choices `+ := `(2, (n − 1)f) and `− := `(2, (2n − 2)f). On the
other hand, at least one of `+ and `− divides [G : CG(s)]2′ = [Sp2n(q) : GLεn(q)]2′ , again
contradicting (2.2).

(b2) Suppose biri = n− 1 for some i or cjsj = n− 1 for some j. Then

χ(1) ≥ [G : CG(s)]2′ ≥ D′ :=
q2n − 1

q2 − 1
· (q − 1)(q2 − 1) . . . (qn−1 − 1).

Now, if n ≥ 6, then D′ > (q2n − 1)2/(q2 − 1) > D, a contradiction. If n = 5, then
D′ > D since q ≥ 4, again a contradiction.

Suppose n = 4. In this case, D = χ(1) is divisible by [G : CG(s)]2′ , a multiple of
[Sp8(q) : Sp2(q) × GL3(q)]2′ when biri = 3 and of [Sp8(q) : Sp2(q) × GU3(q)]2′ when
cjsj = 3. It follows that D is divisible by (q4 + 1)(q2 + 1)2. On the other hand, N1 is
congruent to 0 or −1 modulo q4 + 1, and N1 is congruent to 0 or −1 modulo q2 + 1.
Hence N1 − 1 is coprime to (q4 + 1)(q2 + 1)2. As D = (N1 − 1)N2, N2 is divisible by
(q4 + 1)(q2 + 1)2, again leading to a contradiction since N2 < q8.

Suppose n = 3, in which case q ≥ 16 by our assumption. Then D is greater than
(q6− 1)(q4− 1)(q2− 1)/(q− 1)3, which is the upper bound for the degree of irreducible
characters of Sp6(q) [Lu], again a contradiction.
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(b3) In the remaining case, we must then have a = n− 1, and so

CG(s) = Sp2n−2(q)×GL1(q) or Sp2n−2(q)×GU1(q).

Since χ(1)2 ≤ q/2 by (2.2), we must have by [MMT, Lemma 7.2] that

ψ(1) ∈
{

1,
(qn−1 + γ)(qn−1 + γq)

2(q + 1)
,

(qn−1 − δ)(qn−1 + δq)

2(q − 1)
| γ, δ = ±1

}
,

whence χ(1) ≤ ψ(1)(q2n − 1)/(q − 1) < D, a contradiction.

(c) To prove (ii), assume by way of contradiction that there is χ ∈ Irr(G) such
that χ has degree D′ = N1(N3 − 1). Note that for each choice of N1, we can find
` ∈ {`(2, 2nf), `(2, (2n− 2)f)} such that

(2.4) ` - χ(1), χ(1)2 = q/2.

As above, we can find a semisimple element s ∈ G and a unipotent character ψ of
CG(s) such that

χ(1) = ψ(1) · [G : CG(s)]2′ .

If s = 1, i.e. χ(1) is unipotent, then since χ(1)2 = q/2 by (2.2), by [MMT, Lemma 7.2]
we have that

χ(1) ∈
{

(qn + γ)(qn + γq)

2(q + 1)
,

(qn − δ)(qn + δq)

2(q − 1)
| γ, δ = ±1

}
,

and so χ(1) < D′, a contradiction. Hence s 6= 1, and we can represent CG(s) as in
(2.3). We also note that ψ(1)2 = q/2 by (2.4); in particular, ψ(1) > 1. Now we can
repeat the arguments in (b) verbatim (noting in the case n = 4 of (b2) that now we
have (q4 + 1)(q2 + 1)2 divides χ(1) but not N1(N3 − 1)). �

Now we prove Theorem C, which we reformulate below:

Theorem 2.2. Let n ≥ 2 and let q be a power of 2. Let F be an algebraically closed
field of characteristic ` = 0 or ` 6= 2. Suppose that G = Sp2n(q) admits nontrivial
irreducible FG-modules V and W such that V ⊗W is irreducible. Then q = 2.

Proof. (i) First we deal with the case n = 2 (and q ≥ 4). By [GT, Theorem 1.1],
dim(V ), dim(W ) ≥ q(q − 1)2/2. On the other hand, if q > 4 then the largest degree
of irreducible characters of Sp4(q) is (q + 1)2(q2 + 1) [E], which is then smaller than
(q(q − 1)2/2)2, hence V ⊗W cannot be irreducible. If q = 4, then the largest degree
of Sp4(4) is 340, so the irreducibility of V ⊗W forces dim(V ) = dim(W ) = 18, whence
V ∼= W and is self-dual, so V ⊗W cannot be irreducible. From now on we will assume
n ≥ 3 and q ≥ 4.

The proof crucially relies on the characterization of the so-called linear-Weil and
unitary-Weil `-Brauer characters of G, as introduced in [GT, Table I], based on some
local properties (Wε

2), ε = ±, as defined in [GT, §3].
LetN = F2n

q be the natural module forG, endowed with aG-invariant non-degenerate
alternating form (so that G = Sp(N )), and let the parabolic subgroup P be the stabi-
lizer in G of a totally singular 2-dimensional subspace of N . Then, as shown in [GT,
§3], Q = O2(P ) has order q4n−5 with center Z =: Z(Q) > [Q,Q] elementary abelian of
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order q3. Next, P = Q o L, where L ∼= GL2(q) × Sp2n−2(q) is a Levi subgroup. Then
P has four orbits on IBr`(Z):
• O0 := {1Z};
• O1 of length q2 − 1 (all the characters in this orbit are trivial at [Q,Q]); and
• Oε2 of length q(q − 1)(q + ε)/2 for ε = ± – each character λ in the orbit (Wε

2) has
stabilizer

Kλ = Qo
(
Oε

2(q)× Sp2n−4(q)
)

in P .
Now V ∈ IBr`(G) is said to have property (Wε

2) for some ε = ± if the Brauer character
of every irreducible constituent of V |Z belongs to O0∪O1∪Oε2. One of the main results,
Theorem 1.2, of [GT] characterizes the linear-Weil modules of G as the only nontrivial
irreducible modules that have property (W+

2 ), and similarly, the unitary-Weil modules
of G as the only nontrivial irreducible modules that have property (W−2 ).

(ii) Now we return to V,W ∈ IBr`(G), being nontrivial and having irreducible tensor
product. Here we assume that there is some ε = ± such that both V |Z and W |Z
afford an irreducible constituent with character λ ∈ Oε2. Consider the corresponding
isotypic component Vλ of V |Z , which is certainly stabilized by Kλ = StabP (λ). By [GT,
Lemma 9.2] and its proof, there is a unique irreducible Brauer character µ of Q that
lies above λ; in fact, µ|Z = q2n−4λ and Qλ := Q/Ker(λ) is an extraspecial 2-group of
order 2q4n−8. Moreover, there is an irreducible FKλ-module Eλ of dimension q2n−4 such
that Eλ affords the Q-character µ, and the traces of elements of Kλ acting on Eλ are
controlled by [GT, Lemma 2.4]. It follows from Gallagher’s theorem that

Vλ ∼= Eλ ⊗ Aλ,
for some F(Kλ/Q)-module Aλ.

Since Z is elementary abelian 2-group, λ = λ̄ and µ = µ̄ by uniqueness. Hence the
dual module E∗λ also affords the Q-character µ, and so we can write

Wλ
∼= E∗λ ⊗ Bλ,

for some F(Kλ/Q)-module Bλ. Now, the socle of Aλ⊗Bλ contains a simple submodule
C ⊗D, where C ∈ IBr`(O

ε
2(q)) and D ∈ IBr`(Sp2n−4(q)). In fact, we can view C as a

(Kλ/Q)-module that is trivial on Sp2n−4(q), and D as a P/Q-module that is trivial on
GL2(q) (recall that P/Q ∼= GL2(q)× Sp2n−4(q)). Hence, working in P/K, we have

IndPKλ(C ⊗D) ∼= IndPKλ(C)⊗D.
As Eλ⊗E∗λ contains the trivial submodule F, it follows that Vλ⊗Wλ contains the simple
Kλ-submodule C ⊗D, which is trivial on Q. Applying Frobenius’ reciprocity, we have

0 6= HomFKλ
(
C ⊗D, (V ⊗W )|Kλ

)
∼= HomFG

(
IndGKλ(C ⊗D), V ⊗W

)
= HomFG

(
IndGP (IndPKλ(C ⊗D)), V ⊗W

)
∼= HomFG

(
IndGP (IndPKλ(C)⊗D), V ⊗W

)
.

Since V ⊗W is irreducible, this implies that there exists a simple subquotient X of
IndPKλ(C) such that V ⊗W is a simple subquotient of IndGP (X ⊗ D). Recalling C is
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trivial on Qo Sp2n−4(q) and working in P/(Qo Sp2n−4(q))
∼= GL2(q), we can view X

as a simple FGL2(q)-module, whence dim(X) ≤ q + 1. Thus we have shown that

(2.5) dim(V ) dim(W ) ≤ dim
(
IndGP (X ⊗D)

)
≤ (q2n − 1)(q2n−2 − 1)

(q − 1)(q2 − 1)
(q + 1) dim(D).

Next, V |Z affords the entire orbit Oε2, and so does W |Z . Using the transitive action of
P , we obtain

(2.6)
dim(V ) ≥ |Oε2| · dim(Vλ) = |Oε2| · q2n−4 dim(Aλ),

dim(W ) ≥ |Oε2| · dim(Wλ) = |Oε2| · q2n−4 dim(Bλ),

whence

(2.7) dim(V ) dim(W ) ≥ |Oε2|2 · q4n−8 dim(Aλ ⊗ Bλ) ≥ |Oε2|2 · q4n−8 dim(C ⊗D).

Together with (2.5), we have shown

(2.8)
(
q(q − 1)(q + ε)/2

)2
q4n−8 ≤ (q2n − 1)(q2n−2 − 1)/(q − 1)2.

(iii) Now, if q ≥ 8, then (2.8) implies that

(q − 1)6

4q4
≤
(
1− 1

q2n
)
·
(
1− 1

q2n−2
)
,

a contradiction, since n ≥ 2. Furthermore, if q = 4 and ε = +, then (2.8) implies that

(q − 1)4(q + 1)2

4q4
≤
(
1− 1

q2n
)
·
(
1− 1

q2n−2
)
,

again a contradiction.
Thus we have shown that, when q ≥ 8, V |Z and W |Z cannot both afford Oε2 for any

ε = ±, and when q = 4, V |Z and W |Z cannot both afford O+
2 .

Note that O0 ∪ O1 = IBr`(Z/[Q,Q]). Hence the faithfulness of V implies that V |Z
must afford Oκ2 for some κ = ±. Using [GT, Theorem 1.2], when q ≥ 8, we have ruled
out the cases where at least one of V , W is not a Weil (linear or unitary) module, or
when both V , W are linear-Weil, or when both V , W are unitary-Weil. Thus when
q = 8, we may assume that V is linear-Weil and W is unitary-Weil.

Likewise, when q = 4, we have ruled out the cases where both V , W are non-Weil,
or when one of V , W is non-Weil and the other is linear-Weil, or when both V , W are
linear-Weil. Thus when q = 4, we may assume that W is unitary-Weil.

Thus in the rest of the proof we may assume that q ≥ 4, W is unitary-Weil; in
particular,

either dim(W ) ∈
{

(qn−1)(qn−q)
2(q+1)

, (q
n+1)(qn+q)
2(q+1)

, (q
n+1)(qn+q)
2(q+1)

− 1
}

and dim(Bλ) = 1,

or dim(W ) = q2n−1
q+1

and dim(Bλ) ≤ 2.

Indeed, dim(W ) is listed in [GT, Table I], and the bound on dim(Bλ) follows from (2.6)
with ε = −. It follows that

(2.9) dim(W ) ≥ (qn − 1)(qn − q)
2(q + 1)

dim(Bλ).
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(iv) Here we consider the case where q = 4, n ≥ 4, and W is unitary-Weil, and V is
non-Weil or unitary-Weil. Then we can write V |P = V1 ⊕ V2, where

V2 :=
⊕
λ∈O−2

Eλ ⊗ Aλ

and V1 is some FP -module that does not afford O−2 on restriction to Z. Fix a transvec-
tion t ∈ Z and let ψ, ψj denote the Brauer character of V and of Vj, j = 1, 2. Then

ψ(t) = ψ1(t) + q2n−4 dim(Aλ)
∑
λ′∈O−2

λ′(t) = ψU(t)− 6 · 42n−4 dim(Aλ),

where the equality
∑

λ′∈O−2
λ′(t) = −q(q − 1)/2 follows from the proof of [GT, Propo-

sition 4.1]. Since dim(V2) = |O−2 | · q2n−4 dim(Aλ) = 18 · 42n−4 dim(Aλ), we obtain

(2.10) ψ(t) = ψ1(t)− dim(V2)/3.

Now, we can find a G-conjugate t1 of t which is contained (as a transvection) in the
subgroup Sp2n−4(q). Then t1 acts on Qλ/Z(Qλ), viewed as a (4n−8)-dimensional vector
space over Fq, with a fixed point subspace of codimension 2. The aforementioned remark
about the character of the Kλ-module Eλ in the first paragraph of (ii) shows that the
trace of t1 on Eλ has absolute value 0 or q2n−5. It follows that

(2.11) |ψ(t)| = |ψ(t1)| ≤ dim(V1) + q2n−5 · |O−2 | · dim(Aλ) = dim(V1) + dim(V2)/4.

Note that |t| = 2, and so ψ1(t) ∈ Z and − dim(V1) ≤ ψ1(t) ≤ dim(V1) = ψ1(1). Suppose
in addition that dim(V1) = ψ1(1) < dim(V2)/3. Then together with (2.10) and (2.11),
we obtain

dim(V1) + dim(V2)/4 ≥ |ψ(t)| = dim(V2)/3− ψ1(t) ≥ dim(V2)/3− dim(V1),

and so dim(V1) ≥ dim(V2)/24. Thus we always have dim(V1) ≥ dim(V2)/24, whence

(2.12) dim(V ) ≥ 25

24
dim(V2) =

25

24
· 18 · 42n−4 dim(Aλ).

Now we apply (2.9) and (2.12) to (2.5) to obtain

25

24
· 18 · 42n−4 dim(Aλ) ·

(4n − 1)(4n − 4)

10
dim(Bλ) ≤

(42n − 1)(42n−2 − 1)

9
dim(D).

As dim(D) ≤ dim(Aλ) dim(Bλ), this implies

135

2 · 43
≤
(

1 +
1

4n

)(
1 +

1

4n−1

)
,

which is a contradiction since n ≥ 4.

(v) Here we consider the case (n, q) = (3, 4). Then dim(W ) ≥ 378. Since the largest
degree of irreducible characters of G = Sp6(4) is 371280 [GAP], it follows from the
irreducibility of V ⊗W that dim(V ) ≤ 982. This implies by [GT, Theorem 1.1] that V
is a Weil module. Leaving out the case V is linear-Weil to the next parts (vi) and (vii)
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of the proof, we assume here that V is unitary-Weil. Then, in addition to (2.9) we also
have that

dim(V ) ≥ (qn − 1)(qn − q)
2(q + 1)

dim(Aλ).

Applying this and (2.9) to (2.5), we obtain

(4n − 1)(4n − 4)

10
dim(Aλ) ·

(4n − 1)(4n − 4)

10
dim(Bλ) ≤

(42n − 1)(42n−2 − 1)

9
dim(D).

As dim(D) ≤ dim(Aλ) dim(Bλ) and (n, q) = (3, 4), this is a contradiction.

(vi) The rest of the proof is to handle the case where V is linear-Weil and W is
unitary-Weil, and q ≥ 4 as above.

First we consider the case where dim(V ) = (q2n−1)/(q−1). According to [GT, Table I
and Proposition 7.9], there is a one-dimensional FP1-moduleX such that V ∼= IndGP1

(X),
where P1 is the stabilizer in G of a one-dimensional subspace of N . It follows that

V ⊗W ∼= IndGP1

(
X ⊗W |P1

)
,

forcing W |P1 to be irreducible. But this contradicts [GT, Proposition 7.4].
According to [GT, Table I], it remains to consider the case where V is inside the

reduction modulo ` of a complex module VC which affords the linear-Weil character ρin
for some i = 1, 2. Suppose that VC(mod `) = V . By [L, Theorem 1.1], in this case the
simple self-dual module V is a (graph) submodule of IndGP1

(F), where F denotes the

trivial FP1-module. By duality, V is also a quotient of IndGP1
(F), whence V |P1 contains

F. On the other hand, by [GT, Proposition 7.4], the fixed-point submodule Y for W |Q1

is nonzero and has dimension at most (q2n−2 − 1)/(q + 1), where Q1 := O2(P1), and Y
is stabilized by P1. Thus V ⊗W contains F ⊗ Y ∼= Y as a P1-submodule, and so, by
irreducibility and Frobenius’ reciprocity, V ⊗W is a quotient of IndGP1

(Y ), whence

(qn + 1)(qn − q)
2(q − 1)

· (qn − 1)(qn − q)
2(q + 1)

≤ dim(V ) dim(W )

≤ [G : P1] dim(Y ) ≤ q2n − 1

q − 1
· q

2n−2 − 1

q + 1
,

a contradiction. In particular, we have completed the proof in the case ` = 0.

(vii) By [GT, Table I], it remains to consider the case where either `|(qn− 1)/(q− 1)
and VC affords the character ρ1n of degree (qn + 1)(qn − q)/2(q − 1), or `|(qn + 1)
and VC affords the character ρ2n of degree (qn − 1)(qn + q)/2(q − 1); in either case,
dim(V ) = dim(VC)− 1. We will let ρ denote the corresponding character ρin of VC.

First we assume that W is obtained by reducing modulo ` a CG-module WC, which
then affords a unitary-Weil character say θ, by [GT, Table I]. As we mentioned at
the end of (vi), ρθ is reducible. On the other hand, if χ◦ denotes the restriction to
`′-elements of a complex character χ of G, then ρ0 − 1G is the Brauer character of V
and so (ρθ)0 − θ0 is the Brauer character of the irreducible FG-module V ⊗W , and
we are assuming that θ0 is the Brauer character of W . It follows that ρθ must be the
sum of two irreducible complex characters, one of degree θ(1) and the other of degree
(ρ(1)−1)θ(1). The latter contradicts Lemma 2.1(i) applied to N1 = ρ(1) and N2 = θ(1).
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According to [GT, Table I], the only case left to consider for W is that `|(q + 1)
and W is inside the reduction modulo ` of a complex module WC which affords the
unitary-Weil character β = βn of degree (qn + 1)(qn + q)/2(q + 1). Now we have

(2.13) (ρβ)◦ = (ρ0 − 1G)(β0 − 1G) + (ρ0 − 1G) + (β0 − 1G) + 1G,

a sum of 4 irreducible Brauer characters (of V ⊗W , V , W , and F, respectively. Again
by the conclusion at the end of (vi), ρβ = γ1 + . . . + γm is the sum of m ≥ 2 complex
irreducible characters of G. Because [ρβ, 1G] = [ρ, β̄]G = 0, 1G is not a constituent of
ρβ, and so (2.13) implies that m ≤ 3. Furthermore, by [GT, Theorem 6.1],

(2.14) None of γi(1) can be ρ(1)− 1 or β(1)− 1.

It follows that m = 2.
Using Lemma 2.1(i) for (N1, N2) = (ρ(1), β(1) − 1) and (2.14), we now have that

{γ1(1), γ2(1)} must be either

{(ρ(1)− 1)(β(1)− 1) + 1, ρ(1) + β(1)− 2},
or

{β(1)(ρ(1)− 1), β(1)},
or

{ρ(1)(β(1)− 1), ρ(1)}.
The first case where γi(1) = ρ(1) + β(1)− 2 is ruled out by [GT, Theorem 6.1], since

max

(
q2n − 1

q + 1
,
(qn − 1)(qn + q)

2(q − 1)

)
< ρ(1) + β(1)− 2 <

q2n − 1

q − 1
.

The second case is impossible by Lemma 2.1(i) applied to N1 = ρ(1) and N2 = β(1).
The third case is impossible by Lemma 2.1(ii) applied to N1 = ρ(1) and N3 = β(1). �

Proof of Theorem D. The fact that either q ≤ 3, or G must be one of the groups
described in (ii)–(iii) of Theorem D follows from [MT, Theorems 1.1 and 1.2] and
Theorem 2.2. Next, the case G = SLn(2) or SLn(3) is ruled out by [MT, Proposition
3.3] and [KT2, Theorem 8.8], respectively. Now we consider the case G = Sp2n(5).
By [MT, Proposition 5.2], it must be the case that at least one of α and β, say α,
is a Weil character. Assume now that β(1) = α(1). By [GMST, Theorem 2.1], β
is also a Weil character; moreover, α is obtained by reducing modulo ` a complex
Weil character αC, and likewise, β is obtained by reducing modulo ` a complex Weil
character βC, furthermore, αCβC is irreducible. By [MT, Proposition 5.4], we have that
{α(1), β(1)} = {(5n − 1)/2, (5n + 1)/2}, i.e. α(1) 6= β(1), a contradiction. �

Remark 2.3. (i) The case q = 2, i.e. G = Sp2n(2), can indeed occur in Theorem D
and Theorem 2.2: as shown in [MMT, Proposition 7.4], when n ≥ 3, αnβn and
αnγn are irreducible, where αn, βn, γn ∈ Irr(Sp2n(2)) are unitary-Weil characters
(as defined in [GT, Table I]) of degree

(2n − 1)(2n−1 − 1)/3, (2n + 1)(2n−1 + 1)/3, (22n − 1)/3.

It is plausible that these are the only irreducible tensor products of nontrivial
complex characters of Sp2n(2) when n ≥ 4.
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(ii) The cases G = SUn(2) with n ≥ 4, and Sp2n(3), Sp2n(5) with n ≥ 2, can
indeed occur in Theorem D, see [LST, Proposition 3.3(iii)] and [MT, Proposition
5.4]. In all these exhibited examples, both of the characters α and β are Weil
characters. On the other hand, [GMT, Theorem 1.3] offers further examples of
irreducible tensor products αβ of Sp2n(3) (with n ≥ 3), where exactly one of α
and β is a Weil character.

Remark 2.4. Note that Aut(Sp4(4)) admits two irreducible complex characters of
degree 18 and 50 whose tensor product is irreducible, whereas Sp4(4) has no such
example. Thus the almost simple groups may behave differently than the simple groups
with respect to the irreducible tensor product problem.

3. Proof of Theorems A and B

First we prove Theorem B, which we restate below:

Theorem 3.1. Let G be a finite quasisimple group, and let α, β be irreducible characters
of G of the same degree α(1) = β(1) > 1. Suppose that αβ is irreducible. Then
(G/(Ker(α) ∩ Ker(β)), α(1)) is (2 · A5, 2), (3 · A6, 3), (6 · A7, 6), (2 · J2, 6), (3 · J3, 18),
((22 × 3) · PSL3(4), 6), (41 · PSL3(4), 8), (42 · PSL3(4), 8), ((32 × 2) · PSU4(3), 6), or
(3 ·G2(3), 27).

Proof. (i) Let S = G/Z(G) be the non-abelian simple quotient of G. Then the small
cases S = An with n ≤ 10, or S is one of the 26 sporadic simple groups, or

S = SL3(2), PSL3(4), SL6(2), SL7(2), SU3(3), SU3(4),PSU3(8),
SU4(2), PSU4(3), PSU6(2), Sp4(4), Sp6(2), Ω7(3), Sp8(2),
Ω±8 (2), 2B2(8), G2(3), G2(4), 2F4(2)′, F4(2), 2E6(2)

are checked using [GAP].
Next we consider the case S = An with n ≥ 11. If G = S, then by [Zi, Theorem

10] and its proof, we must have that n = k2 for some k ∈ N, and, say α, is obtained
by restricting the Sn-character labeled by the partition (n− 1, 1), whereas the other is
one of the two constituent of the Sn-character labeled by the partition (k, k, . . . , k); in
particular, α(1) < β(1).

Hence we may assume that G = 2 · An and α is faithful. Assume β is faithful. If
neither α nor β is a basic spin character, then αβ is reducible by [KT1, Theorem F]. So
we may assume that α is a basic spin character, in which case, by [KT1, Theorem A],
β is also basic spin as it has the same degree. Now γ := αβ is an irreducible character
of An, of degree D1 := 22bn/2−1c ≥ 2n−3, and it lies under an irreducible character δ of
Sn of degree D = D1 or 2D1, a 2-power. As n ≥ 9, it follows from [BBOO, Theorem
2.4] that n = D + 1, a contradiction.

It remains to consider the case α is faithful but β is not. If moreover α is basic spin,
then β(1) = α(1) = 2bn/2−1c ≥ 2(n−3)/2 > n − 1, and so β cannot be lying under an
irreducible character of Sn by the same result [BBOO, Theorem 2.4]. Hence we may
assume that α is not basic spin, and α(1) = β(1) > 2bn/2−1c ≥ 2(n−3)/2 > n − 1. This
final case is ruled out by the recent result [Mo, Theorem 1.2].
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(ii) From now on we let S be a simple group of Lie type defined over Fq, q = pf , not
isomorphic to any of the small groups handled using [GAP] in (i). (One can use [MT,
Theorem 1.2] to slightly reduce the number of subcases for S to be considered here, but
we will give a uniform treatment of all possibilities.) The main idea is to show that, in
most cases, any irreducible character of G of degree α(1) has `-defect 0 for some prime
`. In particular, β also has `-defect 0, but then αβ has degree divisible by |G|2` and so
cannot be irreducible.

To exhibit the above `, we will rely on the arguments in [M], which also use the
existence of primitive prime divisors `(m) := `(q,m), i.e. a prime divisor of qm−1 that
does not divide

∏m−1
i=1 (qi − 1) [Zs], for suitable m.

First we consider the case S = PSLn(q) with n ≥ 4, (n, q) 6= (4, 2), (6, 2), (7, 2); in
particular, both `(n) and `(n − 1) exist. As shown in [M], α has defect 0 for at least
one of the primes `(n), `(n− 1), or p, whence the above observation applies.

If S = PSL2(q) with q ≥ 8 and q 6= 9, then α(1) ≥ (q − 1)/ gcd(2, q − 1) and so
αβ has degree too big to be an irreducible character of G. Assume S = PSL3(q) and
q 6= 2, 4. Then `(3) exists, and if α does not have `(3)-defect 0, then α(1) ≥ q(q + 1),
and again αβ has too big degree.

Next we consider the case S = PSUn(q) with n ≥ 4, (n, q) 6= (4, 2), (4, 3), (6, 2); in
particular, the primitive prime divisors `1 and `2 as indicated in [M, Table 3.5] exist.
As shown in [M], α has defect 0 for at least one of the primes `1, `2, or p, whence we
are done. Assume S = PSU3(q) and q 6= 2, 3, 4, 8. Then `(6) exists, and if α does not
have `(6)-defect 0, then α(1) ≥ q(q − 1), and αβ has too big degree.

(iii) Assume S = Ω2n+1(q) with n ≥ 3, (n, q) 6= (3, 2), (3, 3), (4, 2); in particular,
the primitive prime divisors `1 and `2 as indicated in [M, Table 3.5] exist. As shown
in [M], α has defect 0 for at least one of the primes `1, `2, or p, or else 2|n and α has
`(n− 1)-defect 0, and so we are done again. Assume S = Ω5(q) and q ≥ 5. Then `(4)
exists, and if α does not have `(4)-defect 0, then α(1) ≥ (q2− 1)/2, and αβ has too big
degree to be irreducible.

Next we consider the case S = PSp2n(q) with n ≥ 3 and 2 - q; in particular, the
primitive prime divisors `1 and `2 as indicated in [M, Table 3.5] exist. If moreover α
is unipotent, then one can argue as in the above case of Ω2n+1(q). Assume α is not
unipotent. As shown in [M], if α does not have defect 0 for at least one of the primes
`1, `2, or p, then 2|n and α(1) = qn(n−1)(qn − 1)/2 (and so αβ has too big degree),
or α(1) = (qn − 1)/2. In the latter case, both α and β are Weil characters by [TZ,
Theorem 5.2], and αβ is reducible by [MT, Proposition 5.4].

Assume now that S = PΩε
2n(q) with n ≥ 4, ε = ±, and (n, q) 6= (4, 2); in particular,

the primitive prime divisors `1 and `2 as indicated in [M, Table 3.5] exist. As shown
in [M], if α does not have defect 0 for at least one of the primes `1, `2, or p, then 2|n,
ε = +, and α has `(2n− 4)-defect 0, and so we are done again.

(iv) Now we consider exceptional groups of Lie type. We will again use the primes
`1, `2, `3 as indicated in [M, §4]. First let S = 2B2(q) with q ≥ 8. If α does not have
defect 0 neither for `1 nor for `2 or 2, then α is one of the two, complex conjugate,
unipotent characters of degree (q − 1)

√
q/2. Hence αβ = α2 or αα, none of which can

be irreducible. The same arguments apply to the case S = 2G2(q) with q ≥ 27.
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Suppose S = 2F4(q) with q ≥ 8. Then, as shown in [M], either α has defect 0 for at
least one of `1, `2, `3, or 2, or else α(1) = q2(q4 − 1)2/3, in which case αβ(1) is too big.
Next assume that S = G2(q) with q ≥ 5. Then, as shown in [M], either α has defect 0
for at least one of `1, `2, or p, or else α(1) = q(q2 − 1)2/3, in which case αβ(1) is too
big. If S = 3D4(q), then all α of positive `(12)-defect have too big degree for αβ to be
irreducible. Suppose S = F4(q) with q > 2. Then, as shown in [M], either α has defect
0 for at least one of `1, `2, or p, or else α(1) is again too big.

Finally, suppose that S = 2E6(q) with q > 2, or S = E6(q), E7(q), or E8(q). In all
these cases, as shown in [M], α has defect 0 for at least one of the primes `1, `2, `3, or
p, and so we are done. �

Remark 3.2. We note that, in fact, out treatment of generic (that is, not the ones
considered in (i), plus a few addtional small exceptions) Lie-type groups in Theorem
3.1 also applies to the case where L := E(G) is quasisimple, F (G) = Z(G), and
α, β ∈ Irr(G) are nontrivial on L. Indeed, the arguments show that, if θ is an irreducible
constituent of α|L, then either θ has `-defect 0 for some prime ` that does not divide
|Out(L)|, hence also coprime to |G/Z(G)L|, or it is the Steinberg character of L. Apart
from a small list of exceptions, it follows that αβ(1) does not divide |G/Z(G)|, and so
αβ cannot be irreducible. The case of 2 · Sn is handled in [B], [BK1], [BK3], see also
[BK2] for the case of An.

Now we can prove Theorem A. As the reader will see, for the first part, we reproduce
some arguments in Theorem 2.3 of [Is2] for not necessarily solvable groups.

Proof of Theorem A. Suppose that µG = χ, where µ ∈ Irr(H), and H is a subgroup of
G. Then

χχσ = µGχσ = (µ(χσ)H)G

and we deduce that (χσ)H is irreducible. Since

[(χσ)H , (χ
σ)H ] = [χH , χH ]

we deduce that χH ∈ Irr(H). Then χH = µ and by degrees we have that G = H.
Therefore, we have that χ is primitive. In particular, by the Clifford correspondence,
if N / G, then χN is a multiple of an irreducible character τ of N . If furthermore this
character τ is linear, then N ≤ Z(G) is cyclic (using that χ is faithful). In particular,
every abelian normal subgroup of G is central and cyclic.

Assume that Z(G) < F(G), and we look for a contradiction. As we said, we simply
rearrange some of the arguments in Theorem 2.3 of [Is2] in our particular case, and check
that we can apply them when G is not necessarily solvable, to obtain a contradiction.

Let E / G be nilpotent and minimal such that E is not contained in Z(G), and let
Z = E ∩ Z(G). By the first paragraph in the proof, we have that E is not abelian.
(In the situation of Theorem 2.3 of [Is2], to obtain that E is non-abelian takes a few
paragraphs and a previous lemma on solvable groups.) Arguing as in the first paragraph
of the proof of Theorem 2.3 of [Is2], we have that E is a p-group of nilpotent class 2,
Z > 1, and that E/Z is an abelian chief factor of G. Write χE = dθ, for some faithful
θ ∈ Irr(E) and χZ = χ(1)λ, where λ ∈ Irr(Z). By Theorem 6.18 of [Is3], we have that
θ is fully ramified with respect to E/Z. (Notice that if θ extends λ, then θ is linear
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and faithful, so E is abelian.) Hence λE = eθ, where e2 = |E : Z|. Also, (λσ)E = eθσ.
Write ν = λλσ, and notice that

νE = θθσ .

If ν extends to E, then, by Problem 6.12 of [Is3], we have that

θθσ =
∑

µ∈Irr(E)
µZ=ν

µ .

Since χχσ is irreducible, it follows that all the extensions of ν to E are G-conjugate,
by Clifford’s theorem. We deduce that ν = λλσ 6= 1, because, otherwise, λσ = λ̄ and
θσ = θ̄. Then θθσ would countain the trivial character 1E, and thus θθσ = θ(1)21E,
which is not possible, since θ vanishes off Z. In particular, we deduce that |Z| > 2
(since λ and λσ are non-trivial.)

Now, Isaacs’ arguments in the last paragraph of page 636 and first paragraph of page
637 in [Is2], show that either |Z| = p is odd or else p = 2 and |Z| = 4 (and in this case
E ′ has order 2 and E/E ′ is elementary abelian). This latter case is solved by the clever
argument in the last three paragraphs in Theorem 2.3 of [Is2]. So we are left with the
case where |Z| = p, and p odd.

In this final case, the theory in [Is1] (Theorem 9.1) applies, and produces a com-
plement U of E/Z in G/Z, a character Ψ(λ) ∈ Char(G), and a bijection of characters
Irr(G|θ) → Irr(U |λ). Theorem 9.1 of [Is1] only requires that E/Z has odd order, so
we can apply this theorem even if G is non-solvable. Arguing as in the p odd case of
Theorem 2.3 of [Is2], we finish the first part of Theorem A. The second part follows
from the more general result Theorem 3.1. (Note that the characters α and β in the
extra examples of 6 ·A7, (22×3) ·PSL3(4), 42 ·PSL3(4), (32×2) ·PSU4(3), and 3 ·G2(3),
are not Galois conjugate.) �

Notice that Theorem A does not have an analog in characteristic ` > 0 since, outside
`-solvable groups, Gal(Q̄/Q) does not necessarily act on Brauer characters. For `-
solvable groups, the result easily follows from the Fong-Swan theorem.

Corollary 3.3. Suppose that G is `-solvable. If φ ∈ IBr(G) is faithful non-linear and
σ ∈ Gal(Qab/Q), then φφσ is not irreducible.

Proof. By the Fong-Swan theorem (Theorem 10.1 of [N]), let χ ∈ Irr(G) be such that
χ◦ = φ. Since φ is faithful, notice that χ is faithful (using the definition for faithful
Brauer characters). Now, (χχσ)◦ = φφσ. If φφσ is irreducible, then χχσ is irreducible.
But his is not possible by Theorem A. �
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[Lu] F. Lübeck, Character degrees and their multiplicities for some groups of Lie type of rank

< 9, http://www.math.rwth-aachen.de/∼Frank.Luebeck/chev/DegMult/index.html
[MMT] K. Magaard, G. Malle, and Pham Huu Tiep, Irreducibility of tensor squares, symmetric

squares, and alternating squares, Pacific J. Math. 202 (2002), 379–427.
[MT] K. Magaard and Pham Huu Tiep, Irreducible tensor products of representations of finite

quasi-simple groups of Lie type, in: ‘Modular Representation Theory of Finite Groups’,
M. J. Collins, B. J. Parshall, L. L. Scott, eds., de Gruyter, Berlin et al, 2001, pp. 239–262.

[M] G. Malle, Almost irreducible tensor squares, Comm. Algebra 27 (1999), 1033–1051.
[Mo] L. Morotti, Irreducible tensor products of representations of covering groups of symmetric

and alternating groups, arXiv:2003.02748.
[N] G. Navarro, ‘Characters and Blocks of Finite Groups’, Cambridge University Press, 1998.
[TZ] Pham Huu Tiep and A. E. Zalesskii, Minimal characters of the finite classical groups,

Comm. Algebra 24 (1996), 2093–2167.
[Zi] I. Zisser, Irreducible products of characters in An, Israel J. Math. 84 (1993), 147–151.
[Zs] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265–284.



16 GABRIEL NAVARRO AND PHAM HUU TIEP

Department of Mathematics, Universitat de València, 46100 Burjassot, València,
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