ON IRREDUCIBLE PRODUCTS OF CHARACTERS
GABRIEL NAVARRO AND PHAM HUU TIEP

ABSTRACT. We study the problem when the product of two non-linear Galois conju-
gate characters of a finite group is irreducible. We also prove new results on irreducible
tensor products of cross-characteristic Brauer characters of quasisimple groups of Lie

type.

1. INTRODUCTION

In character theory we soon learn that the product of complex non-linear characters
is rarely irreducible. If G is a finite group and x € Irr(G) is non-linear, we know that x>
is not irreducible (because the tensor product V@V of any G-module has the symmetric
submodule). And, if y is the complex-conjugate of x, then xy is also not irreducible,
simply because it contains the trivial character. What might be perhaps a surprise is
that there are examples of non-linear characters x such that xx? is irreducible, where
o € Gal(Q/Q) is a Galois automorphism. In our first result in this paper, we show that
essentially there are only five examples illustrating this phenomenon.

Theorem A. Let G be a finite group, and let x € Irr(G) be faithful. If xx° € Irr(G),
then ¥(G) = Z(Q). If G is quasi-simple and x(1) > 1, then G = 2- A5, 3 - Ag, 2 - Jo,
3- Jg, or 41 : PSL3(4)

Notice that the first part of Theorem A implies that there are no solvable examples
of irreducible products of faithful non-linear Galois conjugate characters, using that
Cs(F(G)) < F(G) in a solvable group G. (This consequence can also be deduced from
the main results on irreducible product of characters in solvable groups in [Is2].) Once
these five examples among quasi-simple groups are discovered, we can easily construct
many groups having non-linear faithful Galois conjugate characters whose product is
irreducible, by using central products of those, extensions, wreath products, etc. It
might well be that the semisimple layer E(G) in Theorem A is a central product of a
number of copies of these five groups, but this seems difficult to prove, and perhaps,
the result is not totally worth the effort.
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In the case of quasisimple groups, Theorem A follows from the following stronger
result:

Theorem B. Let G be a finite quasisimple group, and let o, B be irreducible characters
of G of the same degree (1) = B(1) > 1. Suppose that af is irreducible. Then
(G/(Ker(a) N Ker(B)),a(1)) is (2-As,2), (3-Aq,3), (6-A7,6), (2-J5,6), (3-J5,18),
((22 x 3) - PSL3(4),6), (4, - PSL3(4),8), (4% - PSL3(4),8), ((3% x 2) - PSU4(3),6), or
(3-G5(3),27).

The study of irreducible products of ordinary (and ¢-Brauer) characters of quasisimple
groups was initiated by I. Zisser in [Zi], Bessenrodt and Kleshchev and collaborators for
alternating groups and their covers [B], [BK1], [BK2], [BK3], [KT1], and continued by
K. Magaard and the second author in [MT] for groups of Lie type. This problem is an
important part of the Aschbacher—Scott program [A] on classifying maximal subgroups
of finite classical groups. The main result of [MT] solved the problem for all finite groups
of Lie type over fields F, with ¢ > 5, except for the symplectic groups and groups of
type Fy and %F) in characteristic 2. In the second result in this paper, we complete the
classification for the symplectic series, still leaving open the case of Sp,,,(2).

Theorem C. Let n > 2 and let q be a power of 2. Let F be an algebraically closed field
of characteristic ¢ = 0 or £ # 2. Suppose that G = Sp,,,(q) admits nontrivial irreducible
FG-modules V- and W such that V ® W is irreducible. Then q = 2.

Together with the main results of [MT] and [KT2, Theorem 8.7], Theorem C implies
the following result on irreducible tensor products of cross characteristic representations
of finite quasisimple groups of Lie type.

Theorem D. Let G be a finite quasisimple group of Lie type, of simply connected type,
defined over a field I, of characteristic p. Suppose that, for some £ = 0 or not equal to
p, G admits (- Brauer characters o and (3, both of degree > 1, such that a3 is irreducible.
Then one of the following holds:

(1) g <3, but G % SL,(q).
(ii) G = Sp,,,(5), at least one of v, 5 is a Weil character, but (1) # p(1).
(iii) 2|q, G = Fy(q) or *Fy(q), and ( divides |G).

As discussed in Remark 2.3 below, G = SU,(2) with n > 4, and Sp,,,(¢) with ¢ = 2
and n > 3, and with ¢ = 3,5 with n > 2, indeed occur in Theorem D, at least when
¢ =0.

We end this note with a question. When studying irreducible product of characters
and normal constituents, a problem naturally shows up: if G is a quasi-simple group and
a, f € Irr(G) are faithful, when is af = m~y for some v € Irr(G)? (Or more generally,
when is aff a sum of Aut(G)-conjugates of some ~?) Although there are (very few)
quasi-simple examples of this, we conjecture that this never happens in simple groups.

Conjecture E. Suppose that G is a simple group, and let o, 3,y € Irr(G). If aff = mry
for certain integer m, then m = 1.
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2. PROOFS OF THEOREMS C AND D

Proposition 2.1. Let ¢ = 2/ > 4 be a power of 2, n > 3, G := Sp,,(q), and let Ny be
any of the integers

(¢"+1)(¢" —q) or (¢" —1)(¢" +4q)

2(¢ —1) 2(q—1)
(i) Let Ny be any of the integers
no__ n __ n n n n 2n __
(@ -1"~q) ("+1(¢"+q ("+D@"+g) , ¢"—1
2(¢+1) 2(g+1) 2(g+1) qg+1

Then G has no irreducible complex character of degree (N3 — 1)Ns.
(ii) Let N3 := (¢"+1)(¢"+q)/2(q+1). Then G has no irreducible complex character
of degree N1(N3 — 1).

Proof. (a) Note that when (n,q) = (3,4), N1 — 1 is divisible by 31 or 59, which is not a
divisor of [Spg(4)|, and N3 — 1 is divisible by 7%, which is again not a divisor of [Spg(4)|.
Likewise, when (n, q) = (4,4), N; — 1 is divisible by 251 or 127, and N3 — 1 is divisible
by 131, and none of these primes is a divisor of |Spg(4)|. Similarly, when (n,q) = (3,8),
N; — 1 is divisible by 313 or 18979, and N3 — 1 is divisible by 29, and none of these
primes is a divisor of |Spy(8)|. Hence the statements follow in these cases.

From now on we will assume that n > 5 when ¢ = 4 and n > 4 when ¢ = 8. These
conditions ensure by [Zs] that 2¥ — 1 has a primitive prime divisor ¢(2, k), i.e. a prime
that divides 2¥ — 1 but not Hi.:ll(Qi —1)forke{(2n—-2)f,(n—1)f}.

(b) To prove (i), assume by way of contradiction that there is y € Irr(G) such that x
has degree D = (N; —1)Ny. We choose ng € {n,n—1} to be odd. A direct computation
shows that, for each N,, there is a prime

(2.1) Ce{l(2,2nf),0(2,2n —2)f),l(2,n0f)}
that does not divide x(1). Thus
(2.2) Cx(@), x(1)2 < q/2.

We will use (2.2) to derive a contradiction, using Lusztig’s classification of irreducible
characters of G [C, DM]. Since the dual group of G can be identified with G, we can
find a semisimple element s € G and a unipotent character ¢ of C(s) such that

x(1) =¢(1) - [G: Cals)la-

If s =1, ie. x(1) is unipotent, then since x(1)s < ¢/2 by (2.2), by [MMT, Lemma 7.2
we have that

(¢" +)(q" +vq) (¢" —0)(q" + dq) _
e {1, T, SO 1 d =),

and so x(1) < D, a contradiction. Hence s # 1, and
(2.3) Cq(s) = Spy,(q) X GLp, (") X ... x GLy, (¢") x GU,, (¢**) X ... x GUy, (¢°™),
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where a, k,m € Z>, b;,1i, ¢, 8; € Z>1, and

k m
n:a—i-me—Fchsj, a<n-—1.
i=1 j=1

Now, if 2<a <n-—2,or 2 <br; <n—2 for some ¢, or 2 < ¢;s; < n — 2 for some 7,
then

Ca(s) < Spya(q) X Span—2a(a),
with 2 <d <n—2and d=a, d= b, or d=c;s;. Insuch a case, the choice (2.1) of
¢ implies that ¢ divides [G : C¢(s)]w, contradicting (2.2). Thus
a,biri,cjs; € {0,1,n — 1,n}.
Moreover, the same argument rules out that case where a = 1 and, in addition, some
b;r; or ¢c;s; equals 1.
(bl) Suppose b;r; = n for some ¢ or ¢;s; = n for some j. If n > 7, then
X(1) > [G: Ca(s)]y > (¢ —1)(¢* = 1)...(¢" = 1) > ¢""* > D,
a contradiction. Consider the case 3 < n < 6. Here, if (1) > 1, then ¢|¢(1) by [MMT,
Lemma 7.2], contradicting (2.2). Hence #(1) = 1, and so 2 1 x(1) and

n 1 n 2n_1
N, = D@+ g ‘
2(¢+1) q+1

In particular, we can choose ¢ = £(2,(2n — 2)f)} to fulfill (2.2). For brevity, we can
write

Ca(s) = GLi(¢"),
where br = n, and GL® stands for GL. when ¢ = 4+ and for GU when ¢ = —. Now, if
r > 2, then ¢ divides [G : Cg(s)]w, contradicting (2.2). Hence r = 1. In this case, (2.2)
is fulfilled for both two choices ¢, := ¢(2,(n — 1)f) and ¢_ := £(2,(2n — 2)f). On the
other hand, at least one of ¢, and ¢_ divides [G : Cg($)]2 = [Spa,(q) : GL; (¢)]2, again
contradicting (2.2).

(b2) Suppose b;r; = n — 1 for some i or ¢;s; =n — 1 for some j. Then

" —1 D(a? n—1
71 (g—=D(@=1)...(¢"" —1).
Now, if n > 6, then D’ > (¢ — 1)?/(¢*> — 1) > D, a contradiction. If n = 5, then
D' > D since ¢ > 4, again a contradiction.

Suppose n = 4. In this case, D = x(1) is divisible by [G : Cg(s)]2, a multiple of
[Sps(q) : Spy(q) x GL3(q)]er when b;r; = 3 and of [Spg(q) : Spy(q) x GUs(q)]er when
cjs; = 3. Tt follows that D is divisible by (¢* 4+ 1)(¢? + 1)%. On the other hand, N; is
congruent to 0 or —1 modulo ¢* + 1, and N; is congruent to 0 or —1 modulo ¢* + 1.
Hence Ny — 1 is coprime to (¢* +1)(¢* + 1)*. As D = (N; — 1)Ny, N is divisible by
(¢* + 1)(¢* + 1)?, again leading to a contradiction since Ny < ¢5.

Suppose n = 3, in which case ¢ > 16 by our assumption. Then D is greater than
(¢®—1)(¢* —1)(¢* —1)/(q — 1)3, which is the upper bound for the degree of irreducible
characters of Spg(¢q) [Lu], again a contradiction.

x(1) > [G: Cg(s)]y > D' =
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(b3) In the remaining case, we must then have a =n — 1, and so

Ca(s) = SP2n-2(a) X GL1(g) or Spa,—»(q) x GU1(g)-
Since x(1)2 < ¢/2 by (2.2), we must have by [MMT, Lemma 7.2] that
(" + " +g) (" =0)(¢" " +0q) }
1)edl, , S =+1Y,
vy { 2q+1) -1 7
whence x(1) < ¥(1)(¢** —1)/(¢ — 1) < D, a contradiction.

(c) To prove (ii), assume by way of contradiction that there is xy € Irr(G) such
that y has degree D' = N;(N3 — 1). Note that for each choice of N, we can find
e {0(2,2nf),0(2,(2n — 2)f)} such that

(2.4) 1 x(1), x(1)2 =q/2.

As above, we can find a semisimple element s € G and a unipotent character 1 of
Cq(s) such that

x(1) =9(1) -G : Ca(s)]z-
If s =1, i.e. x(1) is unipotent, then since x(1); = ¢/2 by (2.2), by [MMT, Lemma 7.2]
we have that
n n n_§ n )
V(1) € {(q +9)(¢" +9q) (¢" —9)(¢" +d9) | ,5:7:1},
2(¢ +1) 2(¢ - 1)
and so x(1) < D', a contradiction. Hence s # 1, and we can represent Cg(s) as in
(2.3). We also note that (1), = ¢/2 by (2.4); in particular, (1) > 1. Now we can

repeat the arguments in (b) verbatim (noting in the case n = 4 of (b2) that now we
have (¢* 4+ 1)(¢* + 1)? divides (1) but not N;(Ns — 1)). O

Now we prove Theorem C, which we reformulate below:

Theorem 2.2. Let n > 2 and let q be a power of 2. Let F be an algebraically closed
field of characteristic £ = 0 or £ # 2. Suppose that G = Sp,,(q) admits nontrivial
irreducible FG-modules V- and W such that V @ W is irreducible. Then q = 2.

Proof. (i) First we deal with the case n = 2 (and ¢ > 4). By [GT, Theorem 1.1],
dim(V),dim(W) > g(¢ — 1)?/2. On the other hand, if ¢ > 4 then the largest degree
of irreducible characters of Sp,(¢) is (¢ + 1)*(¢* + 1) [E], which is then smaller than
(q(qg — 1)?/2)?, hence V ® W cannot be irreducible. If ¢ = 4, then the largest degree
of Sp,(4) is 340, so the irreducibility of V @ W forces dim(V') = dim(W) = 18, whence
V 2 W and is self-dual, so V ® W cannot be irreducible. From now on we will assume
n >3 and g > 4.

The proof crucially relies on the characterization of the so-called linear-Weil and
unitary- Weil ¢-Brauer characters of GG, as introduced in [GT, Table I], based on some
local properties (W5), € = %, as defined in [GT, §3].

Let N = Fg” be the natural module for G, endowed with a G-invariant non-degenerate
alternating form (so that G = Sp(N)), and let the parabolic subgroup P be the stabi-
lizer in G of a totally singular 2-dimensional subspace of A'. Then, as shown in [GT,
§3], Q = Oy(P) has order ¢'"~ with center Z =: Z(Q) > [Q, Q] elementary abelian of
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order ¢*. Next, P = Q x L, where L = GLy(q) X Spy,_5(q) is a Levi subgroup. Then
P has four orbits on IBr,(Z):

® 00 = {1z},

e O of length ¢? — 1 (all the characters in this orbit are trivial at [Q, Q]); and

e 05 of length ¢(q — 1)(q + ¢)/2 for e = & — each character A in the orbit (W5) has
stabilizer

Ky=@Q x (Oé(q) X SPQn—4<Q))
in P.

Now V' € IBry(G) is said to have property (W) for some ¢ = = if the Brauer character
of every irreducible constituent of V| belongs to OyUO; UO5. One of the main results,
Theorem 1.2, of [GT] characterizes the linear-Weil modules of G as the only nontrivial
irreducible modules that have property (W, ), and similarly, the unitary-Weil modules
of G as the only nontrivial irreducible modules that have property (W, ).

(ii) Now we return to V, W € IBr,(G), being nontrivial and having irreducible tensor
product. Here we assume that there is some ¢ = =+ such that both V|z and W/,
afford an irreducible constituent with character A € O35. Consider the corresponding
isotypic component V) of V|, which is certainly stabilized by K, = Stabp()). By [GT,
Lemma 9.2] and its proof, there is a unique irreducible Brauer character p of @ that
lies above \; in fact, plz = ¢4\ and Q) := Q/Ker()) is an extraspecial 2-group of
order 2¢*"~8. Moreover, there is an irreducible FK,-module E of dimension ¢>*~* such
that F) affords the @)-character u, and the traces of elements of K, acting on E) are
controlled by [GT, Lemma 2.4]. It follows from Gallagher’s theorem that

VW= E)\® A,

for some F(K,/Q)-module A,. B
Since Z is elementary abelian 2-group, A = A and p = p by uniqueness. Hence the
dual module Ef also affords the @)-character p, and so we can write

Wy = E} ® By,

for some (K, /Q)-module B,. Now, the socle of Ay ® B, contains a simple submodule
C ® D, where C' € IBr,(O5(q)) and D € IBry(Spy,_4(¢)). In fact, we can view C as a
(K,/Q)-module that is trivial on Sp,,,_4(¢q), and D as a P/@Q-module that is trivial on
GL2(q) (recall that P/Q = GL2(q) X Sps,,_4(q)). Hence, working in P/K, we have

Indy (C ® D) = Indj, (C) ® D.

As E)\® EY contains the trivial submodule F, it follows that V), @ W) contains the simple
Ky-submodule C' ® D, which is trivial on ). Applying Frobenius’ reciprocity, we have

0 # Hompg, (C @ D, (V@ W)|k,)
=~ Hompg (Indf (C ® D),V @ W)
= Hompg (Indg(Indj, (C ® D)),V @ W)
=~ Hompe (IndZ(Indj, (C) ® D),V @ W).

Since V' ® W is irreducible, this implies that there exists a simple subquotient X of
Ind%(C’) such that V' @ W is a simple subquotient of Ind%(X ® D). Recalling C is
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trivial on @ X Sp,,,_,(q) and working in P/(Q % Sp,,_,(q)) = GLs(q), we can view X
as a simple FGLy(g)-module, whence dim(X) < ¢+ 1. Thus we have shown that

1) (g™ - 1)
(¢—1(¢*—1)

Next, V| affords the entire orbit O35, and so does W|;. Using the transitive action of
P, we obtain

(2.5)  dim(V)dim(W) < dim(Ind%(X ® D)) < (4

(q+1)dim(D).

dim(V) > 03] - dim(V}) = |O5] - ¢*"~* dim(A,),

(2:6) dim(W) > |O5] - dim(Wy) = |05 - ¢4 dim(By),

whence
(2.7)  dim(V)dim(W) > |O5)? - ¢*"* dim(A, @ By) > |05 - ¢*"*dim(C ® D).
Together with (2.5), we have shown

2 n— n n—
(2.8) (ala=1)(a+e)/2)¢" " < (¢ =D~ 1)/(¢—1)*.
(iii) Now, if ¢ > 8, then (2.8) implies that
(g — 1)6 1 1
4q* < (1 - an> ’ (1 - q2n—2>’
a contradiction, since n > 2. Furthermore, if ¢ = 4 and ¢ = 4, then (2.8) implies that
(¢ —1)"(g+1)? 1 1
o S0 g) (- ms),

again a contradiction.

Thus we have shown that, when ¢ > 8, V|z and W]z cannot both afford Of for any
e =+, and when ¢ = 4, V| and W]z cannot both afford O5 .

Note that Oy U O; = IBry(Z/[Q, @]). Hence the faithfulness of V' implies that V|z
must afford Of for some k = +. Using [GT, Theorem 1.2}, when ¢ > 8, we have ruled
out the cases where at least one of V', W is not a Weil (linear or unitary) module, or
when both V', W are linear-Weil, or when both V, W are unitary-Weil. Thus when
q = 8, we may assume that V' is linear-Weil and W is unitary-Weil.

Likewise, when g = 4, we have ruled out the cases where both V', W are non-Weil,
or when one of V', W is non-Weil and the other is linear-Weil, or when both V', W are
linear-Weil. Thus when ¢ = 4, we may assume that W is unitary-Weil.

Thus in the rest of the proof we may assume that ¢ > 4, W is unitary-Weil; in
particular,

either dim(WW) € { W50 @ obleto @ lertd L and dim(By) = 1,

or dim(W) = qj:ll and dim(B,) < 2.

Indeed, dim(W) is listed in [GT, Table I], and the bound on dim(B,) follows from (2.6)
with e = —. It follows that

(¢" = 1)(¢" —q)
2(g+1)

(2.9) dim(W) > dim(B,).
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(iv) Here we consider the case where ¢ = 4, n > 4, and W is unitary-Weil, and V is
non-Weil or unitary-Weil. Then we can write V|p = V] & Vs, where

‘/22: @ E>\®A>\

A0y

and V; is some [FP-module that does not afford O, on restriction to Z. Fix a transvec-
tion ¢t € Z and let v, ¢; denote the Brauer character of V and of V;, j = 1,2. Then

Y(t) =i (t) + ¢ dim(Ay) Y N(E) = u(t) — 647 dim(4),
Neoy
where the equality >, co- A'(t) = —q(q — 1)/2 follows from the proof of [GT, Propo-
sition 4.1]. Since dim(V3) = |05 | - ¢**~*dim(A,) = 18 - 4**~* dim(A,), we obtain
(2.10) B(t) = G (8) — dim(V3)/3.

Now, we can find a G-conjugate t; of ¢t which is contained (as a transvection) in the
subgroup Sp,,,_4(q). Then t; acts on Q,/Z(Q,), viewed as a (4n—8)-dimensional vector
space over [F,, with a fixed point subspace of codimension 2. The aforementioned remark
about the character of the K)-module E) in the first paragraph of (ii) shows that the
trace of t; on E)\ has absolute value 0 or ¢**~5. It follows that

(2.11) ()] = [¢(ty)] < dim(V1) + ¢ - |05 | - dim(Ay) = dim(V1) + dim(V2) /4.

Note that |t| = 2, and so ¢4 (t) € Z and — dim(V;) < ¢4 (¢) < dim(V4) = 91(1). Suppose
in addition that dim(V;) = (1) < dim(V3)/3. Then together with (2.10) and (2.11),
we obtain

dim(V3) + dim(V3)/4 > |¢(8)] = dim(V3) /3 — ¢ (1) = dim(V3)/3 — dim(V4),
and so dim(V;) > dim(V5)/24. Thus we always have dim(V;) > dim(V5)/24, whence

2 2
(2.12) dim(V) > —5dim(V2) _ D gL dim(Ay).
24 24
Now we apply (2.9) and (2.12) to (2.5) to obtain
2 4" —1)(4" — 4 420 — )42 -1
2—2 18 - 42" dim(A,) - ( ié )dim(BA) < ( )<9 )dim(D).

As dim(D) < dim(A,) dim(B,), this implies

135 _ (0, Y[, 2
243 = 4n g1 )

which is a contradiction since n > 4.

(v) Here we consider the case (n,q) = (3,4). Then dim(W) > 378. Since the largest
degree of irreducible characters of G = Spg(4) is 371280 [GAP], it follows from the
irreducibility of V @ W that dim(V') < 982. This implies by [GT, Theorem 1.1] that V'
is a Weil module. Leaving out the case V' is linear-Weil to the next parts (vi) and (vii)
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of the proof, we assume here that V' is unitary-Weil. Then, in addition to (2.9) we also

have that
q" = 1)(q" —q)

2(¢+1)
Applying this and (2.9) to (2.5), we obtain

(4" —1)(4™ —4) 4m —1)(4™ —4) 420 — 1)(4%72 - 1)

10 10 9

As dim(D) < dim(A,) dim(B,) and (n,q) = (3,4), this is a contradiction.

(vi) The rest of the proof is to handle the case where V is linear-Weil and W is
unitary-Weil, and ¢ > 4 as above.

First we consider the case where dim(V') = (¢*"—1)/(¢—1). According to [GT, Table I

and Proposition 7.9], there is a one-dimensional FP-module X such that V 2 Indf, (X),
where P, is the stabilizer in G of a one-dimensional subspace of . It follows that

VoW =Indg (X @ W|p),

forcing W|p, to be irreducible. But this contradicts [GT, Proposition 7.4].

According to [GT, Table I, it remains to consider the case where V' is inside the
reduction modulo ¢ of a complex module Vi which affords the linear-Weil character pf,
for some i = 1,2. Suppose that Vg(mod ¢) = V. By [L, Theorem 1.1}, in this case the
simple self-dual module V is a (graph) submodule of Ind, (F), where F denotes the
trivial FP-module. By duality, V' is also a quotient of IndIGD1 (F), whence V|p, contains
F. On the other hand, by [GT, Proposition 7.4], the fixed-point submodule Y for W|g,
is nonzero and has dimension at most (¢**~2 — 1)/(q + 1), where @Q; := Oy(P}), and Y
is stabilized by P;. Thus V ® W contains F ® Y = Y as a P;-submodule, and so, by
irreducibility and Frobenius’ reciprocity, V ® W is a quotient of Indg1 (Y), whence

(" +D@" - (@ =D"-q) _ .. .
2= 1) 2+ D) < dim (V') dim (W)

dim(V') > ( dim(A,).

dim(A,) - ( dim(B,) < ( dim(D).

2n 1 an—2 -1

qg—1 . qg+1
a contradiction. In particular, we have completed the proof in the case ¢ = 0.

(vii) By [GT, Table I}, it remains to consider the case where either ¢|(¢" —1)/(¢— 1)
and V¢ affords the character pl of degree (¢" + 1)(¢™ — q)/2(q — 1), or £|(¢" + 1)
and V¢ affords the character p? of degree (¢" — 1)(¢™ + q)/2(¢ — 1); in either case,
dim(V) = dim(Vg) — 1. We will let p denote the corresponding character pf, of V¢.

First we assume that W is obtained by reducing modulo ¢ a CG-module W¢, which
then affords a unitary-Weil character say 6, by [GT, Table I]. As we mentioned at
the end of (vi), pf is reducible. On the other hand, if x° denotes the restriction to
{'-elements of a complex character y of G, then p° — 14 is the Brauer character of V
and so (pf)° — 6° is the Brauer character of the irreducible FG-module V' ® W, and
we are assuming that 6° is the Brauer character of W. It follows that pf must be the
sum of two irreducible complex characters, one of degree (1) and the other of degree
(p(1)—1)0(1). The latter contradicts Lemma 2.1(i) applied to Ny = p(1) and Ny = 6(1).

<[G: P]dim(Y) < 2

)
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According to [GT, Table I], the only case left to consider for W is that ¢|(q + 1)
and W is inside the reduction modulo ¢ of a complex module W which affords the
unitary-Weil character 5 = 3, of degree (¢" + 1)(¢" + q)/2(¢ + 1). Now we have

(2.13) (pB)° = (0" = 16)(B° = 1a) + (° — 1a) + (8° — 16) + 1¢,

a sum of 4 irreducible Brauer characters (of V @ W, V., W and F, respectively. Again
by the conclusion at the end of (vi), p6 = v + ... + Y is the sum of m > 2 complex
irreducible characters of G. Because [pf, 1¢] = [p, Blc = 0, 1¢ is not a constituent of
pB, and so (2.13) implies that m < 3. Furthermore, by [GT, Theorem 6.1],

(2.14) None of 7;(1) can be p(1) — 1 or f(1) — 1.

It follows that m = 2.
Using Lemma 2.1(i) for (Ny, Na) = (p(1),5(1) — 1) and (2.14), we now have that
{71(1),72(1)} must be either

{(p(1) =1(BA) =D +1, p(1) + 5(1) = 2},

{B()(p(1) = 1), A1)},

or
{p(D)(B(1) = 1), p(1)}.
The first case where v;(1) = p(1) 4+ (1) — 2 is ruled out by [GT, Theorem 6.1], since

¢ =1 ("= D"+ ¢" -1
max : .
q+1 2(g — 1) g—1
The second case is impossible by Lemma 2.1(i) applied to N; = p(1) and Ny = S(1).
The third case is impossible by Lemma 2.1(ii) applied to N; = p(1) and N3 = (1). O

Proof of Theorem D. The fact that either ¢ < 3, or G must be one of the groups
described in (ii)—(iii) of Theorem D follows from [MT, Theorems 1.1 and 1.2] and
Theorem 2.2. Next, the case G = SL,(2) or SL,(3) is ruled out by [MT, Proposition
3.3] and [KT2, Theorem 8.8], respectively. Now we consider the case G = Sp,,,(5).
By [MT, Proposition 5.2], it must be the case that at least one of a and S, say «,
is a Weil character. Assume now that (1) = «(1). By [GMST, Theorem 2.1], g
is also a Weil character; moreover, « is obtained by reducing modulo ¢ a complex
WEeil character ac, and likewise, § is obtained by reducing modulo ¢ a complex Weil
character f¢, furthermore, acf¢ is irreducible. By [MT, Proposition 5.4], we have that
{a(1),5(1)} ={(B"—=1)/2,(5" + 1)/2}, i.e. (1) # (1), a contradiction. O

Remark 2.3. (i) The case ¢ = 2, i.e. G = Sp,,(2), can indeed occur in Theorem D
and Theorem 2.2: as shown in [MMT, Proposition 7.4], when n > 3, «, 3, and

@Yy, are irreducible, where a,,, B, 7, € Irr(Spy,,(2)) are unitary- Weil characters
(as defined in [GT, Table I]) of degree

2" -1 =1)/3, 2"+ 12" +1)/3, (2°" —1)/3.

It is plausible that these are the only irreducible tensor products of nontrivial
complex characters of Sp,,(2) when n > 4.

)<p(1)+ﬂ(1>—2<
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(ii) The cases G = SU,(2) with n > 4, and Sp,,,(3), Sp,y,(5) with n > 2, can
indeed occur in Theorem D, see [LST, Proposition 3.3(iii)] and [MT, Proposition
5.4]. In all these exhibited examples, both of the characters o and 5 are Weil
characters. On the other hand, [GMT, Theorem 1.3] offers further examples of
irreducible tensor products a3 of Sp,,(3) (with n > 3), where exactly one of «
and [ is a Weil character.

Remark 2.4. Note that Aut(Sp,(4)) admits two irreducible complex characters of
degree 18 and 50 whose tensor product is irreducible, whereas Sp,(4) has no such
example. Thus the almost simple groups may behave differently than the simple groups
with respect to the irreducible tensor product problem.

3. PROOF oF THEOREMS A AND B

First we prove Theorem B, which we restate below:

Theorem 3.1. Let G be a finite quasisimple group, and let o, B be irreducible characters
of G of the same degree o(1) = B(1) > 1. Suppose that af is irreducible. Then
(G/(Ker(a) N Ker(B)),a(1)) is (2-As,2), (3-Aq,3), (6-A7,6), (2-J3,6), (3-J5,18),
((22 x 3) - PSL3(4),6), (4, - PSL3(4),8), (4% - PSL3(4),8), ((3% x 2) - PSU4(3),6), or
(3-G2(3),27).

)

Proof. (i) Let S = G/Z(G) be the non-abelian simple quotient of G. Then the small
cases S = A, with n < 10, or S is one of the 26 sporadic simple groups, or

S — SLy(2), PSLy(4), SLe(2), SL+(2), SUs(3), SUs(4), PSUs(8),
SUL(2), PSUL(3), PSUs(2), Sps(4), Spe(2), Q4(3), Sps(2),
Q§t<2)v 232(8)7 G2(3)’ G2(4)7 2F4<2)/7 F4(2>7 2E6(2)

are checked using [GAP].

Next we consider the case S = A, with n > 11. If G = S, then by [Zi, Theorem
10] and its proof, we must have that n = k? for some k € N, and, say «, is obtained
by restricting the S,-character labeled by the partition (n — 1,1), whereas the other is
one of the two constituent of the S,-character labeled by the partition (k, k&, ..., k); in
particular, a(1) < B(1).

Hence we may assume that G = 2 - A, and « is faithful. Assume f is faithful. If
neither  nor f is a basic spin character, then af is reducible by [KT1, Theorem F]. So
we may assume that « is a basic spin character, in which case, by [KT1, Theorem A],
B is also basic spin as it has the same degree. Now ~ := af is an irreducible character
of A,, of degree D; := 22l"/2=1] > 973 and it lies under an irreducible character ¢ of
S, of degree D = D; or 2Dy, a 2-power. As n > 9, it follows from [BBOO, Theorem
2.4] that n = D + 1, a contradiction.

It remains to consider the case « is faithful but £ is not. If moreover « is basic spin,
then B(1) = a(1) = 27274 > 200=3)/2 5 5 — 1 and so B cannot be lying under an
irreducible character of S, by the same result [BBOO, Theorem 2.4]. Hence we may
assume that « is not basic spin, and a(1) = §(1) > 2l%/271 > 200=3/2 > 5 1. This
final case is ruled out by the recent result [Mo, Theorem 1.2].
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(ii) From now on we let S be a simple group of Lie type defined over F,, ¢ = p/, not
isomorphic to any of the small groups handled using [GAP] in (i). (One can use [MT,
Theorem 1.2] to slightly reduce the number of subcases for S to be considered here, but
we will give a uniform treatment of all possibilities.) The main idea is to show that, in
most cases, any irreducible character of G of degree a(1) has ¢-defect 0 for some prime
¢. In particular, 8 also has ¢-defect 0, but then a3 has degree divisible by |G|? and so
cannot be irreducible.

To exhibit the above ¢, we will rely on the arguments in [M], which also use the
existence of primitive prime divisors {(m) := {(q,m), i.e. a prime divisor of ¢™ — 1 that
does not divide J[7;"(¢* — 1) [Zs], for suitable m.

First we consider the case S = PSL,(q) with n > 4, (n,q) # (4,2), (6,2), (7,2); in
particular, both ¢(n) and ¢(n — 1) exist. As shown in [M], « has defect 0 for at least
one of the primes ¢(n), {(n — 1), or p, whence the above observation applies.

If S = PSLsy(q) with ¢ > 8 and ¢ # 9, then «(1) > (¢ — 1)/ ged(2,¢ — 1) and so
af has degree too big to be an irreducible character of G. Assume S = PSL3(q) and
q # 2,4. Then ((3) exists, and if a does not have ¢(3)-defect 0, then a(1) > ¢(q¢ + 1),
and again af has too big degree.

Next we consider the case S = PSU,(q) with n > 4, (n,q) # (4,2), (4,3), (6,2); in
particular, the primitive prime divisors ¢; and ¢, as indicated in [M, Table 3.5] exist.
As shown in [M], « has defect 0 for at least one of the primes ¢, {5, or p, whence we
are done. Assume S = PSUj3(q) and ¢q # 2,3,4,8. Then ¢(6) exists, and if o does not
have £(6)-defect 0, then (1) > ¢(q — 1), and af has too big degree.

(iii) Assume S = Qo,41(q) with n > 3, (n,q) # (3,2), (3,3), (4,2); in particular,
the primitive prime divisors ¢; and /s as indicated in [M, Table 3.5 exist. As shown
in [M], « has defect 0 for at least one of the primes ¢1, {5, or p, or else 2|n and « has
¢(n — 1)-defect 0, and so we are done again. Assume S = Q5(¢q) and ¢ > 5. Then ¢(4)
exists, and if @ does not have £(4)-defect 0, then a(1) > (¢* — 1)/2, and a8 has too big
degree to be irreducible.

Next we consider the case S = PSp,,(¢) with n > 3 and 2 t ¢; in particular, the
primitive prime divisors ¢; and ¢, as indicated in [M, Table 3.5] exist. If moreover «
is unipotent, then one can argue as in the above case of {3,,1(¢). Assume « is not
unipotent. As shown in [M], if a does not have defect 0 for at least one of the primes
(1, 5, or p, then 2|n and (1) = ¢"™V(¢" — 1)/2 (and so af8 has too big degree),
or a(l) = (¢™ — 1)/2. In the latter case, both a and 8 are Weil characters by [TZ,
Theorem 5.2, and a3 is reducible by [MT, Proposition 5.4].

Assume now that S = PQ§, (¢) with n >4, e = £, and (n,q) # (4,2); in particular,
the primitive prime divisors ¢; and /s as indicated in [M, Table 3.5 exist. As shown
in [M], if & does not have defect 0 for at least one of the primes ¢y, {5, or p, then 2|n,
¢ =+, and a has ¢(2n — 4)-defect 0, and so we are done again.

(iv) Now we consider exceptional groups of Lie type. We will again use the primes
1,05, 03 as indicated in [M, §4]. First let S = ?By(q) with ¢ > 8. If o does not have
defect 0 neither for ¢; nor for /5 or 2, then « is one of the two, complex conjugate,
unipotent characters of degree (¢ — 1)\/q/_2 Hence a8 = o? or aa, none of which can
be irreducible. The same arguments apply to the case S = ‘Ga(q) with ¢ > 27.
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Suppose S = ?Fy(q) with ¢ > 8. Then, as shown in [M], either o has defect 0 for at
least one of £y, €y, {3, or 2, or else a(1) = ¢*(¢* — 1)?/3, in which case a(1) is too big.
Next assume that S = Ga(q) with ¢ > 5. Then, as shown in [M], either « has defect 0
for at least one of £y, £, or p, or else a(1) = ¢(¢* — 1)?/3, in which case a3(1) is too
big. If S = 3Dy(q), then all « of positive £(12)-defect have too big degree for a3 to be
irreducible. Suppose S = Fy(q) with ¢ > 2. Then, as shown in [M], either a has defect
0 for at least one of £y, ¢5, or p, or else a(1) is again too big.

Finally, suppose that S = 2Eg(q) with ¢ > 2, or S = E4(q), Ez(q), or Eg(q). In all
these cases, as shown in [M], « has defect 0 for at least one of the primes /1, {5, {3, or
p, and so we are done. O

Remark 3.2. We note that, in fact, out treatment of generic (that is, not the ones
considered in (i), plus a few addtional small exceptions) Lie-type groups in Theorem
3.1 also applies to the case where L := FE(G) is quasisimple, F(G) = Z(G), and
a, f € Irr(@G) are nontrivial on L. Indeed, the arguments show that, if # is an irreducible
constituent of «|y, then either 6 has ¢-defect 0 for some prime ¢ that does not divide
|Out(L)|, hence also coprime to |G/Z(G)L|, or it is the Steinberg character of L. Apart
from a small list of exceptions, it follows that a3(1) does not divide |G/Z(G)|, and so
af cannot be irreducible. The case of 2 - S,, is handled in [B], [BK1], [BK3], see also
[BK2] for the case of A,,.

Now we can prove Theorem A. As the reader will see, for the first part, we reproduce
some arguments in Theorem 2.3 of [Is2] for not necessarily solvable groups.

Proof of Theorem A. Suppose that u© = y, where p € Irr(H), and H is a subgroup of
G. Then

XX = 1" = (X )m)©
and we deduce that (x?)g is irreducible. Since

[(X7) s (X)) = [xa, X

we deduce that xy € Irr(H). Then xy = p and by degrees we have that G = H.
Therefore, we have that y is primitive. In particular, by the Clifford correspondence,
if N < G, then xy is a multiple of an irreducible character 7 of N. If furthermore this
character 7 is linear, then N < Z(G) is cyclic (using that y is faithful). In particular,
every abelian normal subgroup of G is central and cyclic.

Assume that Z(G) < F(G), and we look for a contradiction. As we said, we simply
rearrange some of the arguments in Theorem 2.3 of [Is2] in our particular case, and check
that we can apply them when G is not necessarily solvable, to obtain a contradiction.

Let £ < G be nilpotent and minimal such that F is not contained in Z(G), and let
Z = ENZ(G). By the first paragraph in the proof, we have that E is not abelian.
(In the situation of Theorem 2.3 of [Is2], to obtain that F is non-abelian takes a few
paragraphs and a previous lemma on solvable groups.) Arguing as in the first paragraph
of the proof of Theorem 2.3 of [Is2], we have that E is a p-group of nilpotent class 2,
Z > 1, and that E/Z is an abelian chief factor of G. Write xp = df, for some faithful
0 € Irr(E) and xz = x(1)A, where A € Irr(Z). By Theorem 6.18 of [Is3], we have that
0 is fully ramified with respect to E//Z. (Notice that if § extends A, then @ is linear
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and faithful, so F is abelian.) Hence \¥ = ef), where ¢? = |E : Z|. Also, (\?)¥ = ef°.
Write v = A\?, and notice that
vE =007 .

If v extends to E, then, by Problem 6.12 of [Is3], we have that

00" = > .

p€lrr(E)
ng=v

Since xx? is irreducible, it follows that all the extensions of v to E are G-conjugate,
by Clifford’s theorem. We deduce that v = A\? # 1, because, otherwise, A° = \ and
6° = . Then 66° would countain the trivial character 1z, and thus 007 = 0(1)1p,
which is not possible, since # vanishes off Z. In particular, we deduce that |Z| > 2
(since A and A7 are non-trivial.)

Now, Isaacs’ arguments in the last paragraph of page 636 and first paragraph of page
637 in [Is2], show that either |Z| = p is odd or else p = 2 and |Z| = 4 (and in this case
E’ has order 2 and E/E’ is elementary abelian). This latter case is solved by the clever
argument in the last three paragraphs in Theorem 2.3 of [Is2]. So we are left with the
case where |Z| = p, and p odd.

In this final case, the theory in [Isl] (Theorem 9.1) applies, and produces a com-
plement U of E/Z in G/Z, a character ¥ € Char(G), and a bijection of characters
Irr(G|6) — Irr(U|N). Theorem 9.1 of [Isl] only requires that £/Z has odd order, so
we can apply this theorem even if G is non-solvable. Arguing as in the p odd case of
Theorem 2.3 of [Is2], we finish the first part of Theorem A. The second part follows
from the more general result Theorem 3.1. (Note that the characters o and /3 in the
extra examples of 6-A;, (22 x 3)-PSL3(4), 4%-PSL3(4), (3% x 2)-PSU4(3), and 3- G5(3),
are not Galois conjugate.) 0

Notice that Theorem A does not have an analog in characteristic £ > 0 since, outside
(-solvable groups, Gal(Q/Q) does not necessarily act on Brauer characters. For (-
solvable groups, the result easily follows from the Fong-Swan theorem.

Corollary 3.3. Suppose that G is {-solvable. If ¢ € IBr(G) is faithful non-linear and
o € Gal(Q**/Q), then ¢¢° is not irreducible.

Proof. By the Fong-Swan theorem (Theorem 10.1 of [N]), let x € Irr(G) be such that
X° = ¢. Since ¢ is faithful, notice that y is faithful (using the definition for faithful
Brauer characters). Now, (xx?)° = ¢¢?. If ¢p¢7 is irreducible, then xx7 is irreducible.

But his is not possible by Theorem A. O]
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