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ABSTRACT: Molecular photon upconversion via triplet−triplet annihilation (TTA-
UC) is an intriguing strategy to harness sub-bandgap photons and surpass the
Shockley−Queisser (SQ) limit for solar energy conversion. In this perspective, we
briefly summarize the progress to date harnessing TTA-UC in solar cells using both
optically and electrically coupled schemes. We then highlight the efficiency limiting
processes for these schemes and outline possible paths toward upconverted
photocurrent contributions of >1 mA/cm2. Further progress in red-shifting absorption,
coupling to high-energy light harvesting motifs, photon management, sensitizer/
annihilator design, and more are necessary for the realization of a viable TTA-UC solar
cell that can pass the SQ limit.
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Photon upconversion (UC) is the process of combining
two or more low energy photons to generate a higher

energy excited state and offers a means of pushing the
maximum theoretical limits of single junction solar cells from
33% to >45%.1 Of the strategies, molecular UC via triplet−
triplet annihilation (TTA) is particularly appealing, because
TTA efficiencies of >30% (ΦTTA = # of singlet excited states/#
of triplet excited states)2 can be achieved and it is efficient
under noncoherent, solar intensities.3,4 Previous estimates
indicate that coupling even a 20% efficient TTA-UC scheme to
a 22% efficient perovskite solar cell, for example, could increase
the short circuit current (Jsc) and power conversion efficiencies
(PCE) by ∼2.5 mA and ∼2 percentage points, respectively.5

Since the first report of utilizing TTA-UC for sunlight to
electrical conversion in 2012,6 notable advancements have
been made in harnessing the photocurrent contribution from
UC (JUC), with the progress to date summarized in Figure
1.6−20 This graph includes device relevance and device impact
thresholds, which are roughly the minimum JUC to overcome
PCE measurement uncertainties (0.1 mA/cm2) and a >1
percentage point increase in PCE (1.0 mA/cm2), respec-
tively.5,21

Figure 1 also partitions the performance outcomes into the
two primary strategies for harnessing TTA-UC: optically (in
gray) and electrically (in red) coupled schemes. A general
depiction of both strategies is shown in Figure 2. Briefly, in the
optically coupled scheme, an UC solution or film is used in
conjunction with a standard solar cell.6−8,10,11 Sub-bandgap
light is transmitted through the solar cell, absorbed by a TTA-
UC solution or film, upconverted, and then emitted photons
are directed back at the solar cell. For the electrically coupled
scheme, the sensitizer (S) and annihilator (A) pair are
incorporated into the solar cell. The low energy light is

absorbed by S, the triplet state transferred to A, then following
TTA but prior to emission, the upconverted state is charge-
separated (CS) and the charge-collected at the electrodes.
Noting that the y-axis of Figure 1 is on a log scale, significant

progress has been made with both strategies over the past
decade, but we are still yet to reach the device impact
threshold. Herein, we discuss the limitations of current TTA-
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Figure 1. Progression in photocurrent contribution from TTA-UC
under 1 sun intensity (AM1.5) (reference numbers are given in
brackets) with optically and electrically coupled schemes in gray and
red, respectively.
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UC solar cells as well as outline possible steps forward to
increase JUC and enhance the impact of TTA-UC on solar cell
performance.
Despite their differences, both schemes can benefit from

progress in chromophore design like (1) new sensitizers with
long triplet lifetimes and high extinction coefficients from 700
to 1000 nm, (2) new annihilator molecules with low
nonradiative rates, optimized singlet−triplet gaps, and high
TTA yields (i.e., minimal losses via the triplet and quintet TTA
decay channels), and (3) appropriate energetic matching
between new S-A pairs. Even using current materials/
strategies, these advances will help to improve low-energy
light-harvesting efficiencies (ΦLHE), increase the upconversion
quantum yield (ΦUC), and decrease the maximum TTA
efficiency onset threshold (i.e., the Ith value).

22 However, these
schemes also have distinct limitations that require unique
materials design and engineering solutions.
The optically coupled scheme is arguably the more

straightforward of the two strategies and offers several notable
advantages, including (1) it can build upon already available,
high efficiency solar cells, (2) the solar cell and TTA-UC
components can be independently designed/tuned, (3) any of
the already available UC emission materials can be used, and
(4) only excited-state energies, and not redox potentials, of the
S and A are a concern.
Unfortunately, the highest JUC reported to date for an

optically coupled scheme is below 0.1 mA cm−2. The low
photocurrent can be attributed to several factors (Figure 3).

First, while sub-band gap light readily transmits through the
active solar cell material, the remainder of the device (i.e.,
blocking layers, the electrical contact, and substrate) are not
optimized for low energy or upconverted light transmission, so
60% or more of photons are absorbed and lost as heat (ΦT <
0.4).8 While some transmission losses are inevitable, attempts
to optimize light transmission are limited, so there is ample
opportunity for improvements, in terms of both materials
selection and solar cell optimization.

Second is the TTA-UC efficiency of the films. The highest
upconversion emission quantum yields (ΦUC) reported to date
are on the order of 38% (ΦUC(max) = 50%) but are achieved in
solution.3 Because of issues such as solvent evaporation, solid-
state UC films are the more practical option but suffer from
notably lower ΦUC (11%),23 primarily because of decreased
molecular mobility hindering energy transfer and TTA. But
progress has been made using solid-state materials with
increased mobility and/or triplet migration in polymers, gels,
self-assembled motifs, nanocapsules, and more.24−26 Further
increases in ΦUC with materials design will directly translate to
increased JUC.
However, achieving high efficiency for generating the

upconverted state (ΦUCs) is not enough. We must also
minimize 1A* to S back-energy transfer (ΦET) and maximize
the photon output coupling yield (ΦOUT) from the UC film to
the solar cell. ΦET is dictated by the overlap integral for the
emission of 1A* and absorption of S and the concentration of
the sensitizer. Porphyrins are a popular choice for S because of
the transmission window between the Soret- and Q-bands
minimizes the spectral overlap with 1A* emission. However, at
high S concentrations, even a small overlap integral can lead to
significant losses, because of ΦET. Consequently, the need for
high S concentrations for maximized external light-harvesting
efficiencies (ΦLHE = # S*/# of incident photons) must be
weighed against losses due to ΦET. Also noteworthy is the fact
that systems with increased triplet mobilities are favorable for
TTA but they also typically increase singlet mobilities and ΦET.
Some of these losses can be mitigated using an additional
singlet sink or collector molecule that emits from the singlet
excited states but they do inherently lead to energy losses.27,28

ΦOUT is the fraction of UC photons generated that exit the
upconversion film toward the solar cell. Decreases in ΦOUT can
be due to scattering, waveguiding, and inner filtering by A/S,
which are architecture-dependent phenomena. For example,
since UC emission is isotropic, a back reflector must be
included to direct photons toward the solar cell.8,29 Analyses
show that the incorporation of a Lambertian reflector and
optimized UC film thickness can increase JUC by a factor of 6-
fold or more.21 Improved reflector design combined with new
sensitizers with increased extinction coefficients and decreased
overlap integrals are key steps toward decreasing ΦET and
increasing ΦOUT.
Accounting for reasonable improvements on all of these

fronts, device-relevant JUC values (>1 mA/cm2) are attainable
with an optically coupled TTA-UC solar cell scheme.21

As an aside, an optically coupled, solar concentrator/
waveguide strategy for harnessing TTA-UC in a solar has
recently been reported.30−32 However, the JUC-only contribu-
tion was not measured and their overall performance were
reported in terms of device area (i.e., not area of irradiation) so
the outcomes were not included in Figure 1. Nonetheless,
many of the losses and proposed improvements noted above,
except for solar cell transparency, apply to TTA-UC wave-
guides as well.
The electrically coupled TTA-UC scheme also has distinct

advantages and disadvantages. First, they do not rely on
upconverted photon generation, so concerns with photon
management, nonproductive back ET, and sensitizer concen-
tration are diminished. Second, typically the S’s and A’s are in
proximity, which decreases diffusion-related ΦET limitations.
Finally, photocurrents of >0.3 mA/cm2 have already been
demonstrated under 1 sun intensities.17

Figure 2. A general depiction of (a) optically and (b) electrically
coupled strategies for harnessing TTA-UC in a solar cell with the
sensitizer and annihilator molecules depicted in red and blue,
respectively (CS = charge separation).

Figure 3. Diagram depicting the events and quantum yields for TTA-
UC in an optically coupled UC solar cell.
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On the other hand, these are entirely new solar cell
architectures that will require significant optimization in both
performance and production if they are ever to be
commercially viable. Additionally, since charge separation is
required, not only are excited-state energetics a concern but
also redox potentials, which introduces additional demands/
restrictions on sensitizer and annihilator design. The device is
also inherently more complex enabling new loss pathways. We
are effectively requiring these devices to be good at both TTA-
UC and photocurrent generation, each of which is a nontrivial
challenge.
To date, TTA-UC has been incorporated into both dye-

sensitized solar cells (DSSCs)9−13,15−20 and organic photo-
voltaic (OPV)14 device architectures, as well as a proof-of-
concept hybrid film.33 The DSSC motif is most common with
heterogeneous, codeposited, and metal-ion-linked architectures
shown in Figure 4.

In all examples to date, A is directly adhered to mesoporous
TiO2 via −COOH or −PO3H2 binding groups. Direct binding
has the advantage of facilitating subpicosecond charge
separation (ΦCS) of the UC state, which outcompetes losses
due to excited-state decay or back ET.34 However, it requires
synthetic modification of A molecules with surface binding
groups. Also, in contrast to the isotropic orientation in a host
medium, surface binding introduces geometric restrictions that
can help or hinder electron transfer, energy transfer, and TTA
events.20,35 Understanding and controlling these orientation-
dependent events will be a crucial step in increasing the
efficiency of triplet migration (kmig) and TTA.
The primary difference between the strategies in Figure 4 is

the sensitization mechanism. For the heterogeneous scheme
(Figure 4a),9,16 S is in the electrolyte solution, so it does not
require surface binding groups, but TET is diffusion-limited
(kdif). Co-deposition (Figure 4b) has the advantage of S−A
proximity18 but the concentration of each is surface- range of
100%-limited, which can affect the light harvesting efficiency.
In addition, the presence of S decreases the packing density of
the A layer, which may hinder triplet migration across the
surface.36 The metal-ion-linked strategy, maximizes both A and
S loading and fixes the molecules in proximity (Figure 4c). It
also enables the formation of triplet-sensitized13 and singlet-
sensitized17 trilayers. However, this scheme requires A to have
geometrically opposed binding groups and orientation-depend-
ent interactions between S and A that are intrinsic to the
scaffolding.
Also shown in orange in Figure 4b is the redox mediator,

which is necessary in DSSCs to regenerate the oxidized dyes
and close the circuit. Unlike in traditional DSSCs where the
excited states are quickly harvested via charge separation, TTA
relies on long-lived triplets prior to UC. Consequently, we
must be conscientious of regeneration (kreg) and excited-state

quenching dynamics (kq).
15 All devices to date have used

either I−/I3
− or CoIII/II polypyridyl mediators, so there is much

to be learned and still significant room for improvement with
new mediators including solid-state hole transport materials.
Finally, and perhaps the largest hurdle for TTA-UC DSSCs,

is efficiently harnessing the high energy photons. In fact, the
strategy comparison in Figure 1 is slightly misleading in that
the optically coupled JUC is a complement to an already
efficient solar cell, whereas the electronically coupled devices
only focus on low-energy light harvesting. The annihilator
molecule can harness high energy light but for this device to
push efficiency limits, it must perform on par with the best
DSSCs to date (i.e., broad absorption, efficient injection, etc.)
and there must be no competitive high energy absorption from
S. The former is a lot to ask from A (i.e., efficient TTA and
PCE), the latter may be physically impossible. The much more
likely solution, originally proposed by Dilbeck et al.,5 is to
generate a layered metal oxide anode where the top, scattering
layer of a record perovskite or DSSC is replaced by an
upconversion layer. Layered devices like these are known37 but
are yet to be implemented in TTA-UC DSSCs.
In 2017, Lin et al. published the first example that harnesses

TTA-UC in an OPV.14 A general depiction of their device
architecture can be seen in Figure 5 and was composed of S
doped into a layer of A with C60 as the electron acceptor/
charge separation layer.

The JUC for this particular device was relatively low (13 μA
cm−2) but one can envision several advantages of this
architecture. These include (1) S doping can be controlled
during vapor deposition, (2) S and A are in close contact for
efficient TET, (3) in terms of fabrication/commercialization, it
is a known architecture, and (4) known TTA pairs can be used
without synthetic modification. There are also several notable
disadvantages. First is that it relies on random walk migration
of triplet and singlet excited states to the annihilation event
and charge-separation interface, respectively. This can lead to
decreased ΦTTA and losses due to polaron quenching (kPQ) but
could be minimized with improved exciton/polaron transport.
The random migration combined with S and A proximity also
allows for 1A* to S back energy transfer (ΦET) especially at
high S concentrations (i.e., high ΦLHE). To remedy these
issues, the authors suggest a triplet energy cascade architecture
where a triplet accepting host for S is independent of the A
layer which could minimize back ET and keep 1A* in
proximity to the charge separation interface. Finally, there is
still the issue of efficiently harnessing high energy photons
which would again require no competitive absorption by S or
the triplet host, or an entirely new architecture where high
energy photons can be absorbed/harnessed prior to the TTA-
UC materials.
In summary, much progress has been made in harnessing

TTA-UC for solar energy conversion, but further improve-
ments are needed in order to achieve device relevance

Figure 4. Generic depiction of (a) heterogeneous, (b) codeposition,
and (c) metal-ion-linked strategies for harnessing TTA-UC in a
DSSC. The redox mediator is shown in orange.

Figure 5. Device structure of an OPV-based TTA-UC solar cell.
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thresholds and eventual application. While there are many
unknowns and challenges ahead with TTA- UC solar cells,
there is little doubt that even with currently available materials
and strategies, performance optimizations would lead to JUC
values of >1 mA/cm2. Further improvements in red-shifting
absorption, coupling to high energy harvesting motifs, photon
management, and more are imminent and will rely on the
intersection of chemical, materials science, and engineering
knowledge and innovation.
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