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ABSTRACT

Bayesian computation of high-dimensional linear regression models using Markov chain Monte Carlo
(MCMQC) or its variants can be extremely slow or completely prohibitive since these methods perform costly
computations at each iteration of the sampling chain. Furthermore, this computational cost cannot usually
be efficiently divided across a parallel architecture. These problems are aggravated if the data size is large
or data arrive sequentially over time (streaming or online settings). This article proposes a novel dynamic
feature partitioned regression (DFP) for efficient online inference for high-dimensional linear regressions
with large or streaming data. DFP constructs a pseudo posterior density of the parameters at every time
point, and quickly updates the pseudo posterior when a new block of data (data shard) arrives. DFP
updates the pseudo posterior at every time point suitably and partitions the set of parameters to exploit
parallelization for efficient posterior computation. The proposed approach is applied to high-dimensional
linear regression models with Gaussian scale mixture priors and spike-and-slab priors on large parameter
spaces, along with large data, and is found to yield state-of-the-art inferential performance. The algorithm
enjoys theoretical support with pseudoposterior densities over time being arbitrarily close to the full
posterior as the data size grows, as shown in the supplementary material. Supplementary material also
contains details of the DFP algorithm applied to different priors. Package to implement DFP is available
in https://github.com/Rene-Gutierrez/DynParRegReg. The dataset is available in https://github.com/Rene-
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1. Introduction

With recent technological progress, data containing a large
number of predictors (a couple of thousand or more) are
ubiquitous. In such settings, it is commonly of interest to
consider the linear regression model

y=+B+e€ €~N(©O0?, (1)

where x is a p x 1 predictor, B is the corresponding p x 1
coeflicient, y is the continuous response and o? is the error
variance. Bayesian methods for estimating B provide a natural
probabilistic characterization of uncertainty in the parameters
and in predictions. Fitting Bayesian linear regression models
in the presence of very high-dimensional predictors presents
onerous computational burdens either due to decomposition
of large matrices or due to poor convergence and inferential
issues caused by the high correlations among the parameters.
This article develops a dynamic approach, called dynamic fea-
ture partitioning (DFP), for boosting the scalability of high-
dimensional Bayesian linear models for large/streaming data.
Broadly, two classes of prior distributions on B are typ-
ically employed in high-dimensional regression literature.
The traditional approach is to develop a discrete mixture

of prior distributions (George and McCulloch 1997; Scott
and Berger 2010). These methods enjoy the advantage of
inducing exact sparsity for a subset of parameters and minimax
rate of posterior contraction (Castillo et al. 2015) in high-
dimensional regression, but face computational challenges
when the number of predictors is even moderately large. As
an alternative to this approach, continuous shrinkage priors
(Armagan, Dunson, and Lee 2013; Carvalho, Polson, and Scott
2010) have emerged which induce approximate sparsity in
high-dimensional parameters. Such prior distributions can
mostly be expressed as global-local scale mixtures of Gaussians
(Polson and Scott 2010) and offer an approximation to the
operating characteristics of discrete mixture priors. Global-
local priors allow parameters to be updated in blocks via a
fairly automatic Gibbs sampler that leads to rapid mixing and
convergence of the resulting Gibbs sampler. However, unless
care is exercised, sampling can be expensive for large values of
p- In fact, existing algorithms (Rue 2001) to sample from the
full conditional posterior of B require storing and computing
the Cholesky decomposition of a p x p matrix, that necessitates
p? floating point operations, which can be severely prohibitive
for large p. There are available linear algebra artifacts such as the
Sherman-Woodbury-Morrison matrix identity (Hager 1989) to
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enable efficient computations in high-dimensional regressions
involving small n and large p, though it is less clear as to how
these approaches can be adapted when the number of samples
is massive to start with, or data is observed in a stream. Besides,
having small sample size may limit the inferential accuracy for
large p.

In fact, when the number of observations is massive, data
processing and computational bottlenecks render all the above
mentioned methods for high-dimensional regression infeasi-
ble as they demand likelihood evaluations for updating model
parameters at every sampling iteration, which can be costly.
Matters are more complicated in the case of streaming data,
where the posterior distribution changes once a new data shard
arrives, so that the MCMC samples from the posterior distribu-
tion up to the last time point become useless.

We propose a novel online Bayesian sampling algorithm,
referred to as dynamic feature partitioning (DFP) that enables
efficient computation of high-dimensional regression in the
presence of a large number of parameters and a large sample
size. DFP works with data shards that are sequentially fed
to the model. The DFP framework dynamically partitions
the set of parameters into disjoint subsets with the onset
of a new data shard and obtains posterior samples for each
subset of the parameters by sampling from a distribution that
conditions on functions of the point estimates of the remaining
parameters and sufficient statistics from the data observed so
far, instead of sampling from the full conditional distribution.
While the ordinary un-approximated full conditional posterior
distributions of these parameter subsets would have been
updated sequentially at each iteration of the Markov Chain,
DFP constructs approximations of the conditional posterior
distributions of each parameter subset, allowing posterior
updates of these parameter subsets at different processors
in parallel. This leads to a significant gain in computational
efficiency over the sequential updating of parameter subsets
in the ordinary MCMC. Additionally, the algorithm needs
storing and propagating only a few lower dimensional sufficient
statistics of the data over time, implying storage efficiency
in the model fitting procedure. Moreover, we show that the
DFP algorithm leads to approximations of the conditional
distributions producing samples from the correct target
posterior asymptotically. The DFP algorithm is demonstrated
to be highly versatile and efficient across a variety of high-
dimensional linear regression settings, enabling online sampling
of parameters with dramatic reductions in the per-iteration
computational requirement.

We now offer a brief description of some of the important
approaches in the online Bayesian learning and highlight the
contribution of the DFP algorithm to the literature. To this end,
online variational Bayes algorithms perform approximation of
the full data posterior with a product of block independent
marginal posteriors (Hoffman, Bach, and Blei 2010; Camp-
bell et al. 2015) and are popular for efficient online Bayesian
learning for streaming data. Although the DFP framework pro-
poses approximating the full posterior distribution, the approx-
imation technique is fundamentally different from variational
approximations. While variational Bayes approximates the full
posterior distribution by a distribution with block indepen-
dent marginals, the DFP framework invokes approximation of
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posterior conditional distributions for subsets of parameters.
More importantly, variational approximations often pre-decide
parameter blocks which are to be considered independent in
the posterior inference, while DFP dynamically adapts to ensure
efficient construction of mutually exhaustive and exclusive sub-
sets of parameters. As a result, variational approximation may
underestimate uncertainty from the variationally approximated
posterior distribution of 8, while DFP is demonstrated to have
close to nominal coverage in almost all high-dimensional simu-
lation examples.

In the general Bayesian literature of streaming data, sequen-
tial Monte Carlo (SMC) (Lopes and Tsay 2011; Doucet, De Fre-
itas, and Gordon 2001; Moral, Jasra, and Zhou 2017) is one
of the most popular online methods that relies on resampling
particles sequentially as data shards arrive over time. A naive
implementation of SMC might be less efficient and less accurate
involving large n and p due to the need to employ very large
numbers of particles to obtain adequate approximations and
prevent particle degeneracy. The latter is addressed through
rejuvenation steps using all the data (or sufficient statistics),
which may become expensive in an online setting (Snyder et al.
2008). There are approaches in the recent years to overcome
the dimensionality issues in the SMC algorithm mainly in the
context of fitting state-space models. To this end, carefully con-
structed SMC algorithms (Chopin et al. 2004; Beskos et al. 2014;
Carvalho et al. 2010) show promise in terms of scaling in a
polynomial complexity with the number of parameters, though
the complexity as a function of the size of the dataset is either
growing with time (e.g., for Chopin et al. 2004) or is not apparent
from the context. Rebeschini and Handel (2015) developed a
blocking strategy for high-dimensional particle learning (PL)
where the error of approximation is free of the dimension of
the parameter space. Unfortunately, the numerical examples for
high dimensions provided by Rebeschini and Handel (2015)
did not demonstrate satisfactory performance with large state-
space models. Furthermore, the results rely on the decay of
correlations for state-space varying parameters in the fitted
model, which is suitable in the context of state-space models,
but less satisfactory for our problem of interest. Wigren, Mur-
ray, and Lindsten (2018) proposed another approach for high-
dimensional PL in state-space models, though the numerical
illustration of the approach may struggle to comfortably scale
beyond a few dozen dimensional state-space models. Lindsten
etal. (2017) proposed a new SMC algorithm based on parameter
partitioning in the high-dimensional space, though difficulties
may arise when joining the partitions, which requires a careful
resampling. In the same vein, Gunawan et al. (2018) proposed
an approach that employs a sub-sampling technique to combat
the problem of large data in the realm of high-dimensional
problems. Arguably, there is a general lack of extensive empirical
investigations of SMC or PL algorithms proposed for high-
dimensional problems, and most of them do not come with any
open-source code for implementation.

On a separate note, Hamiltonian Monte Carlo (HMC) meth-
ods with stochastic gradient descent can also leverage the online
nature of the data (Betancourt 2018) while exploring the distri-
bution efficiently. However, HMC may not be suitable for com-
puting high-dimensional regressions with a discrete mixture of
prior distributions involving a large number of binary variables,
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which can be easily accommodated by the DFP algorithm (see
Section 4.3).

In the context of distributed model fitting in high-
dimensional regression, Christidis et al. (2020) recently devel-
oped a compelling method to build an ensemble of models
by splitting the set of covariates into different but possible
overlapping groups. A penalty term is introduced to encourage
diversity between groups, and model stacking is used to generate
accurate predictions. Our approach is fundamentally different
from their approach in a number of ways. While “splitting”
in the context of DFP algorithm refers to partitioning of the
parameters to update their conditional posterior distributions
separately for computational advantages, splitting generates
different models that try to achieve more accuracy when
stacked in Christidis et al. (2020). Importantly, Christidis et al.
(2020) were not designed to draw online inference in streaming
data which is the goal of our approach. Thus, our approach
allows the number and constitution of parameter partitions
to evolve over time, while their approach fixes the number
of partitions. Nevertheless, incorporating some overlapping
in our partitioning of parameters similar to Christidis et al.
(2020) might help improving inference further over the current
implementation of DFP, which we plan to explore elsewhere.

The rest of the article is organized as follows. Section 2
introduces a number of shrinkage priors and variable selection
priors in high-dimensional regression and describes the com-
putational challenges with big n and p. Section 3 introduces
the assumptions, notations and then the description of the DFP
algorithm. Section 4 demonstrates the performance of DFP for
high-dimensional linear regression with (i) the Bayesian Lasso
and (ii) the Horseshoe shrinkage prior distributions and (iii) the
Spike and Lasso discrete mixture prior distribution for variable
selection (described in Section 2.3). Further evidence on the
empirical performance of DFP is provided in the analysis of
a financial dataset consisting of the minute by minute average
log-prices of the NASDAQ stock exchange from September 10,
2018 to November 13, 2018 during trading hours in Section
5. Finally, Section 6 concludes the article with discussions and
possibilities of future directions. Theoretical insights into the
convergence behavior of the DFP algorithm are provided in the
supplementary material.

2. Computational Challenges in High-Dimensional
Regression Models

This section motivates the need for the dynamic feature parti-
tioning algorithm by highlighting the issues with performing
online inference in Bayesian high-dimensional linear models
with big or streaming data. Let D; = {X;,y,} be the data
(responses and predictors) shard observed at time t and D% =
{Ds,s = 1,...,t} denote the data observed through time t, t =
L, ..., T. We assume that shards are of equal size, with each shard
containing n samples, that is, X; is of dimension n x p and y, is
of dimension n x 1. We emphasize that such an assumption is
not required for the algorithmic development in the next section
and is kept merely to simplify notations.

In the context of the linear regression model in Equation
(1), without the focus being on regularization or variable

selection, a Bayesian hierarchical model is set up by assigning
a prior Blo® ~ N(ug,0°%p) and 02 ~ IG(a,b). With
data D observed through time f, the marginal poste-
rior density of parameters o> and B at time t appear in
closed form and are given by IG(a}, by) and Multivariate —
tar (IF (by /ay) V), respectively, where af = a + nt/2,
wio= (g + N XX)T B g + X X, Vi =
(Zp' + 2 XX) L b = b+ (T g g + Xl vy, —
w¥ Vi~lu¥) /2. Notably, posterior distributions depend on the
data only through the three sufficient statistics y &, X/ X,
S Xly and Y '_, yly.. Hence, the posterior distribution
at time ¢ with the onset of data D; can readily be constructed
by storing and updating the sufficient statistics without having
the need to store the entire data D) through time t. When p is
large, the major challenge in computing posterior distributions
at time ¢ comes from evaluating V} which involves taking the
inverse of a p x p matrix. However, the marginal posterior
distribution of 8 being in closed form, operating characteristics
of the posteriors are available analytically, bypassing the need to
follow an iterative sampling scheme to estimate these operating
characteristics.

Such closed-form expressions for the marginal posterior dis-
tributions of parameters are hard to come by when the focus
is on Bayesian high-dimensional regularization (shrinkage) or
variable selection priors. This article considers the Bayesian
Lasso and Horseshoe priors as two representative priors from
the class of shrinkage priors and the Spike-and-Lasso prior
from the class of variable selection priors. Below we briefly
introduce online posterior computation with these priors with
large or streaming data and describe computational challenges
with large p. The computational challenges are similar in other
Bayesian shrinkage or variable selection priors.

2.1. Bayesian Lasso Shrinkage Prior

The Bayesian Lasso shrinkage prior stands as an important
example of the global-local (GL) scale mixtures (Polson and
Scott 2010) of normal prior distributions. The prior takes the
specific form p(Bjlo%,1) = & exp(—Aljl/0), j = 1,..p,
A2 ~ G(r,d), with the conditional posterior distribution of
given other parameters not available in closed form. However,
conditional distributions can be obtained in closed form using
a data augmentation approach. In fact, the hierarchical data
augmented model with the Bayesian Lasso prior on § with data
DY = {(y,X;) : s = 1,...,t} up to time t is given by

¥ Xs, B,0% ~ Ny (XsB,0°I,), s=1,.,t
)»2
Blt*,0* ~ N, (0,6°M,), 1t/ ~ Exp (7) ,

M ~Grnd), j=1,..p

1
T (0'2) X 0'_2,

where 7, ..., ‘L"g are predictor specific latent variables employed

for data augmentation, T2 = (1712,..., rpz)/ and M, =
diag(z?). The batch MCMC implemented using the customary
Gibbs sampler alternates between the full conditional dis-
tributions of (i) Blo2, A%, 2, DY; (ii) o2|B, A2, 2, DY; (iii)
A22|B,02, 1%, DY, and (iv) rjz|02,kz,ﬁ,D(t),j = 1,..,p, given



by

Blo2, 20200 ~ N, ((s(”+M—1) S9,0% (s + ;1) 1>’

o?|B,7%,22, P ~ 1G (

nt+p (ng) +8's"8 - 2/3/s§t)) i B/M;lﬂ)
2 2 ’

1 A2g2
— 18,6222, D" ~ Iny — Gaussian [ | Z-2-,27 |,
P 2
YT
3218,0%,1%, DY ~ IG (p+r, =l yal. @)

The full conditional posterior distributions at time ¢ depend
on the data D® only through a few sufficient statistics S?) =
SV 4x1x,, 8 = sV 4Xy, and S = 8™V +y)y,, which
are updated at the onset of a new data shard. At each time t =
1,..., T, the main computational issue lies in the Gibbs sampling
step of B that requires decomposing a p X p covariance matrix
costing ~ p* floating point operations (flops) and ~ p? storage
units, and is rendered infeasible.

2.2. Horseshoe Shrinkage Prior

We also consider the popularly used Horseshoe (Carvalho, Pol-
son, and Scott 2010) shrinkage prior on high-dimensional pre-
dictor coefficients, which is well recognized in the Bayesian
shrinkage literature for its ability to artfully shrink unimportant
predictor coefficients while applying minimum shrinkage on
important coefficients. Several recent articles theoretically prove
its ability to estimate true predictor coefficients a-posteriori in
presence of both high and low sparsity (Armagan et al. 2013).

Similar to the Bayesian Lasso, the Horseshoe shrinkage prior
also does not admit closed form full posterior of B. Thus,
Gibbs sampling is implemented by invoking a data augmenta-
tion approach similar to the Bayesian Lasso. The hierarchical
data augmented model with the Horseshoe shrinkage prior is
given by

ys|Xs,ﬁ,(72 ~ Ny XS/S,JZI,,), s=1,.,t, Blo* 1%

(
A~ N (O,TZGZMx) , n(az) (' ai’
11 1
)»2|1)]~Ig<— ;]), Uj”"IQ(E,l)a
74 ! ~7TG 11 i=1
|§ < %‘)’ ‘E (E; ),]— ,..,p’

(Bio o) My = diag (Wh...03). 0 =

/
AL ,)»}27) and v = (vy,... ,vp)/. The data augmentation

allows the batch MCMC procedure to draw MCMC samples at
time ¢ from the following full conditional distributions,

-1 -1
Mt M1
Blo?, 12,32, (’)NN ((S(t) 72 ) Sgt),az (SY)-F )} ) )
T T

t t t —1
® NIG(nt—t-p’S()+;3/S§)ﬂ—2ﬂ/sg) LB ﬁ>’
2

where 8 =

Uz\ﬂ,tz,AZ,D

2 212
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2
1 Bj
210, . 22 2 () o
kj\ﬂj,vj,r,a ,D IG( |: —',—21’2 i|),
1
uj|;\?,D(f>~1G< <1+>>
] A2

£1B,02,72, D ~ <1,

>,r2|ﬂ,x,oz,

) p+1 l ﬂ/M ﬂ
D (2 & + —5— 702 (3)

The conditional distributions are dependent on the data D®
only through sufficient statistics $®) = {S(t) S(t) s§t>} which are
updated using Sit) = s?*“ + X)X, S(t) S(t D4
sy

Xy, and
= Sgt_l) + ¥,,. Similar to the Bayesian Lasso, the Gibbs
sampling step of B involves decomposing and storing a p x p
matrix per iteration that becomes costly with big p.

2.3. Spike-and-Lasso Variable Selection Prior

Although shrinkage priors are designed to shrink the posterior
distributions of unimportant predictor coeflicients close to zero,
the shrinkage frameworks do not allow detection of unimpor-
tant predictors. In contrast, the spike-and-slab discrete mixture
of distributions are specifically designed for variable selection
in high-dimensional regressions (George and McCulloch 1997).
In this section, a variant of the spike-and-slab mixture prior is
introduced as,

ﬂj|c72, tjz,)/j ~ y;N (0,021j2> + (1 —y)N (O,O'ZCZ) ,

rjz ~ exp(k2/2), yj ~ Ber(9),

2 ~ Ga(r,d), 6 ~ Beta(a, b).
Integrating over the latent variables 'Cjz, we obtain Bjlo 2, A2, yj ~
Y;DE(A/o)+(1—yj))N(0, o%c?),forj = 1,..., p, as a mixture of a
double-exponential and normal densities. We refer to this mix-
ture distribution as the Spike-and-Lasso distribution. Choosing
¢ small, the prior performs simultaneous variable selection and
parameter estimation, adaptively thresholding small effects with
the concentrated normal spike while minimally shrinking the
large effects with the heavy-tailed double exponential (DE) slab
distribution. Allowing the prior inclusion probability 6 to be
random enables us to automatically adjust for multiple compar-
isons (Scott and Berger 2010). Spike-and-slab discrete mixture
priors enjoy attractive theoretical properties (Castillo et al. 2015)
and a transformed spike-and-slab prior has recently been added
as a penalty to the frequentist penalized optimization literature

(Rockova and George 2018).

With data up to time ¢, D® and sufficient statistics SY),

(t) , and S(t), the prior formulation and data model lead to
the followmg closed form full conditional posteriors facilitating
implementation with a Gibbs sampler

Blo?, %y, DO ~ N, <(s§z> M- ) 'O, (S(,) s )71>’

0) (*) 0) P
S +ﬂS B — ZﬂS +B M8
o218, 72,22, DM ~ 1G ("f+P ( 3 ) ,

2

Yy
3218, 0%, 12, DO ~ 1G (p+ " %’1 +dl,
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P )4
9~Beta(a+2yj,b+p—2yj),

j=1 j=1

1 A2g2
—lyj= l,ﬁ,az,)»z,D(t) ~ Inv — Gaussian —Z,Az R
Y hi

Tj2|}’j =0,8,02,22, D ~ exp(a2/2),

yjlﬂ,az,tz,G,D(t) ~ Ber(nj),
1 2
_1 B
2.2 2 _
0 (a Tj ) exp < 2021:].2)
nj = 1 2 2\’
-3 B; _1 B;
6 (azrjz) exp <— 20%[};) +(1-0)(c3) Zexp (—;2)

where M =

wj = ¢ otherwise. The computational issue arises from the
Gibbs sampling step of B that incurs a complexity of O(p?),
as well as due to updating y;’s, j = 1,...,p resulting in high
auto-correlation. Updating subsets of § parameters in smaller
blocks may be an option. However, shrinkage or variable selec-
tion priors generally do not allow closed form marginal dis-
tributions for such blocks of regression parameters. Again, the
sequential nature of Gibbs sampling prohibits updating blocks
of parameter § in parallel. The dynamic feature partitioning
strategy developed in the next section will provide a solution to
this computational challenge by parallelizing the approximate
Bayesian computation of blocks of parameters into different
processors.

“)

diag(wl,...,wp) with w; = sz if i = L

3. Dynamic Feature Partition in High-Dimensional
Regression

The dynamic feature partitioning (DFP) is a general online
algorithm for streaming data that partitions the large parameter
set into mutually exclusive and exhaustive subsets and facilitates
rapid Bayesian updating of different parameter subsets in par-
allel. While the algorithm is applied to mitigate the aforemen-
tioned computational issues in the Bayesian high-dimensional
linear regression, the algorithm per se is more general in nature
and could be implemented beyond high-dimensional linear
regressions.

3.1. Relevant Notations and Details of DFP

Let © = {01,...,0,4} represent the parameter space with g
parameters, which is bigger than p (the no. of predictors),
since the parameter space includes the error variance o2 as
well as latent variables from the data augmentation procedures

described in Section 2. We further assume

1. g is fixed over time, that is, the parameter space does not
change with the arrival of new data shards.

2. Ateach time point, the posterior distribution of the parame-
ters © depends on the data only through lower dimensional
functions of D) which are referred to as sufficient statistics.
More formally, §%) is a vector of sufficient statistics for
O if ®|D® has the same distribution as @|S®. Denot-
ing f (®|DW) as the full posterior distribution of @, this
assumption implies that f(@|D®) = f(®|S®).

Referring to Section 2, both 1 and 2 are valid for linear regression
models with shrinkage prior distributions or discrete mixture
variable selection priors on coefficients.

At time t, consider a partition of the parameter indices given
by ¥ = {G},....G}, such that G; N G, = A1 # I
and U, G! = {L,...,q). Also let @ = 16 | i€ G
and O g =0y gq =0 [ie(l....qgh\ G} =
{6; | i ¢ G;} be parameters contained and not contained in
the Ith partition, respectively. We consider both the number of
partitions k; and the constitution of each partition to be adaptive
and dynamically changing over time. The prior specifications
and conditional independence assumptions often suggest nat-
ural parameter partitioning schemes. We provide an outline
of the dynamic parameter partitioning schemes employed in
this article in the context of high-dimensional regressions with
shrinkage and Spike and Lasso priors toward the end of this
section.

Consider also a sequence of point estimates 0" constructed
dynamically over time for the parameter ®. Given a partition
of the parameter space at time t, the DFP approximation to

the posterior full conditional distribution f (GGf |®—Gf’ S(t)) of
G)G; (I =1, ..., k), referred to as the DFP pseudoconditional pos-

terior, is given by f (965 I@(_t;;)’ S(ﬂ), with ©_: replaced by

. . . A (-1
its point estimate ®(—G§)

at time (# — 1). Since the conditioning
set remains fixed throughout time ¢, conditional distributions
Ogis for I = 1, ..., k; are not dependent on each other at time
t. This eliminates the need to sequentially update parameter
blocks OGf s, and samples can rather be drawn rapidly from k;
DFP pseudo conditional posteriors in parallel. All these con-
cepts and notations will be used to describe the DFP algorithm
below.

3.2. DFP Algorithm for Online Approximate MCMC
Inference

The DFP algorithm provides an online approximate MCMC
sampling based on dynamically adaptive parameter partitions
and their point estimates constructed sequentially over time.
The algorithm begins by initializing the point estimate of @

(call it @(0)) at some default value and initializing sufficient
statistics $©0 at 0. When new data shard D, arrives at time ¢
(t = 1, .., T), sufficient statistics S are updated as a function of
$#=V and D;, denoted as §) = g(S*~ 1, D;). In the examples of
Section 2, g(-) is implicitly defined through the three equations,
s = &7V 4 xx, 8Y = §§7V + Xy, and S =
Sgt_l) +y,y,. The dynamic partitioning scheme (described later)
then updates partitions of the set of parameters and creates new
partitions G at time t. The DFP algorithm then proceeds by
sampling from the DFP pseudo conditional posteriors at time
t in parallel. If the DFP pseudo conditional posteriors are in
closed form, one may consider block updating of (-)G; from

f (@Glr I@(_tgltl ), S(’)>. Otherwise, the sampling in each partition

proceeds by employing a Gibbs sampler with smaller blocks of
parameters in the Ith partition. More specifically, 6, € QG; is



updated by drawing S (a moderately large number, taken to be

500 in Section 4) approximate MCMC samples
from f (9j|®G§\ i @8;;), S(t)>, where the tilde emphasizes the
fact that we are sampling from an approximation to the full
conditional distribution, instead of the full conditional distri-

bution. Often this distribution depends on a lower dimensional

. A =1
function of ®G§\{j}’ Q—G;
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and SO, as we will see in Sec-

tions 4.1-4.3. Once S approximate MCMC samples are drawn
from DFP pseudo conditional posteriors fairly rapidly, we use
these samples to construct the point estimates of parameters at

. . NG s
time ¢, given by 0" . mour exposition, we use the mean of the S

samples 6" The theoretical results

in the supplementary material prove desirable performance of

éj(l’t), o 9}(5’” to construct

the proposed algorithm when the sequence of estimators "
is consistent in estimating the true parameters as t — 00. In
practice, we found this assumption can be validated empirically
for implementation of DFP in Sections 4.1-4.3. In fact, the

A0 . . .
trace-plots of @ corresponding to representative regression
parameters in Section 4 show convergence around the true
data generating parameters. Efficient updating of DFP pseudo
conditional posteriors using the sufficient statistics and point
estimates of parameters from the previous time point lead to
scalable inference.

Partitioning schemes: As discussed before, an efficient partition-
ing of parameter indices G at the tth time is achieved by heav-
ily exploiting the nature of the model and prior distributions.
We believe that a general partitioning scheme that is applica-
ble to any model and/or any prior distribution is unappealing
since it will not be able to fully exploit the specific features
of the model and prior distributions. Since the main focus
of this article is on Bayesian shrinkage and variable selection
priors in high-dimensional linear regression models, broadly
two different partitioning schemes are proposed, one for the
model (1) with shrinkage priors and the other for spike-and-slab
priors.

(A) Partitioning algorithm for shrinkage priors: Referring to the
discussion in Sections 2.1 and 2.2, the computational bottleneck
mainly arises due to sampling from the posterior full conditional
of B. Therefore, in the course of developing a partitioning
strategy for the set of parameters in Equation (1) with shrinkage
priors, the main focus rests on how to partition # into blocks of
sub-vectors with a minimal loss of information due to separately
updating these blocks residing in different subset partitions
from their DFP full conditionals. To this end, we set the max-
imum size of each block of B residing in different partitions to
be less than or equal to M at every time to keep a control on
the computational complexity. M is user defined and its choice
depends on the available computational resources. In our empir-
ical investigations with high-dimensional linear regression with
Bayesian shrinkage priors, we find M = 100 to be sufficient and
provide discussion on how the choice of small values of M affects
inference. Thereafter we envision the problem of partitioning
B at time t as a graph partitioning problem. To elaborate, at
time t, for j,j/ € {1,..,p}, let the sample correlation between
S iterates of B; and B from time (¢t — 1) following the DFP
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algorithm, given by {Bj(s’t_l)}f:1 and {Bj(/s’[_l)}f:l, be denoted
by rj7. A graph is constructed with nodes as the predictor
indices {1,..., p} and an edge between two nodes j,j if r;; > ¢
where ¢ € (0,1). Our proposed scheme constructs different
graphs in this manner corresponding to different choices of
the cutoff c € seq(0.01,0.99,by=0.01). Thereafter we
find connected components of all these constructed graphs and
look for the smallest value of ¢ (say ¢*) for which the size of all
connected components are less than M. Such an implementation
is readily achieved by the functionalities in the 1graph package
in R. Let there be b; connected components corresponding to
the cut-oft value ¢* at time ¢, which we denote by {Pft), s P}Ef) }.
These b; connected components at time ¢ are recognized as
partitions of the indices {1,..,p} and B;’s corresponding to
different connected components go to different partitions of the

parameter sets at time ¢. Thus, ﬂpm,..., ﬂpm go to different
1 b

subsets in the implementation of DFP at time ¢. Since the data
augmentation approaches in Sections 2.1 and 2.2 introduce
latent vectors (72 in Section 2.1, A and v in Section 2.2) related
to B, we either keep all elements of a latent vector together in
one partition or divide a latent vector into blocks with indices
{P(t) s eees P,Sf)} and send the latent vector with indices 73,?) to the
same parameter subset where f po lies. Variance o' and other

hierarchical parameters are kept together in a separate partition.
Since a partition involves blocks of B with size at most M,
sampling them together from their DFP full conditionals incurs
complexity at most of O(M?). We later empirically establish that
the subsets of parameters constructed by the above partitioning
scheme stabilize over time. In fact, our empirical analysis also
demonstrates that the optimal value ¢* also stabilizes as time
progresses.

(B) Partitioning algorithm for Spike and Lasso priors: Since the
Spike and Lasso example in Section 2.3 involves coefficients
belonging to one of the two mixture components at every
iteration of the posterior sampling, the parameter partitioning
scheme adopted for shrinkage priors appears to be less efficient
here. Instead, we propose a dynamic partitioning scheme of the
parameter space by tacitly exploiting the natural partitioning of
the B parameters and associated latent vector 7 into important

and unimportant components. Define @1, = {(B}, rjz)
900 = 1) and @ = ((Btd) : PV = 0}, where
5/}“_1) € {0,1} corresponds to the point estimate of y; at

time (¢t — 1). Thereafter our partitioning scheme suggests
keeping the entire @, in one partition and dividing ®,; into
subsets, with each subset of @, containing (8;, rjz) for a single j.
Additionally, all ;’s are kept in the same partition and 12,02, 6
in another partition. Since spike-and-slab priors are typically
employed to recover B parameters which are sparse in nature
in the truth, @y, is expected to be of small to moderate size
with cardinality much smaller than p as time progresses. Thus,
updating (8; : B; € ©y;)’ together requires computational
complexity of order |@1;|> << p’. On the other hand, B;’s for
j € ©y; are updated individually without incurring any notable
computational burden. A similar strategy is followed when the
double exponential slab distribution in the Spike-and-Lasso
prior is replaced by any other distribution.
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4. lllustrations of DFP with Shrinkage and Discrete
Mixture Priors in High-Dimensional Regressions

This section illustrates parametric and predictive performances
of the online DFP algorithm for (i) Bayesian Lasso, (ii) Horse-
shoe and (iii) Spike and Lasso discrete mixture priors. For
the simulation examples in (i)-(iii), shards of size n = 1000
observations arrive sequentially over T = 500 time horizons.
Data shard D at time ¢ consists of an n1x 1 response vector y, and
an n x p predictor matrix X; = (x14, ..., Xp)’, t = 1,..., T. Ateach
time, § = 500 approximate MCMC samples of @, ..., (~)sz are

drawn from their respective DFP pseudo conditional posteriors
to approximate the full posterior distribution f(@|D®).

The p x 1 predictor vector xj; (j = 1,...,n) at time ¢ is gen-
erated as xjy ~ N(0, H), where H = Block-diag(Hj, ..., Higo),
with each H; being a 50 x 50 Toeplitz structured matrix having
the (m, m’)th element as p"”_'"/', o € (0,1). This is to mimic
the scenario where there are blocks of predictors such that
predictors within a block are correlated and predictors across
blocks are uncorrelated. All simulation examples consider high
correlations among predictors in a block with o = 0.9. This pre-
sumably induces strong associations among parameters, which
is often challenging for any high-dimensional regression frame-
work to estimate. The inferential challenge appears to be more
critical for the DFP framework as it relies on parameter parti-
tioning, which might naturally weaken correlations a-posteriori
among parameters. To simulate the true predictor coeflicients
B = (B1, ... By)’, the following scenarios are considered:

Simulation 1: 50 randomly selected fB’s are drawn iid from
N(3,1), 50 randomly selected B;’s are drawn iid from N(1,1), rest
are all set to 0.

Simulation 2: 50 randomly selected B;’s are drawn iid from
N(3,1), rest are all set to 0.

Simulation 3: All B;’s are drawn iid from U(—1, 1).

Simulation 1 focuses on a sparse case with varying magnitudes
of nonzero coefficients. We will refer to it as the low and high
sparse case. Simulation 2 corresponds to a sparse case with
similar magnitudes of nonzero coeflicients, while Simulation
3 corresponds to a dense case which is motivated by practical
applications where each of the covariates has a small effect on
the outcome. The responses y, for t = 1, ..., T are generated from
X and the true predictor coefficients using (1), with o? chosen
so as to keep a signal-to-noise ratio of 1 for the generated data.

Competitors. The performance of DFP is compared with a set
of competitors suitable for high-dimensional linear regression
models. We specifically compare with (a) batch MCMC that
draws S MCMC samples from the full conditional distributions
at every time point with the full data D) through time ¢ at dis-
posal; and (b) conditional density filtering (C-DF) (Guhaniyogi,
Qamar, and Dunson 2013). Batch MCMC offers the “gold stan-
dard” for ordinary Gibbs sampling that uses the full data D)
at time t. At time ¢, batch MCMC initializes the MCMC chain
at the last iterate in time (+ — 1). In examples (i)-(iii), the
conditional posterior distributions depend on the data through
lower dimensional sufficient statistics, and hence batch MCMC
only stores and propagates the sufficient statistics to update the
conditional distributions in successive time points. Conditional

density filtering is proposed in the same vein as DFP with an
important difference. While DFP proposes dynamic partition-
ing of the set of parameters, C-DF works with parameter par-
titions fixed over time. We find that the naive implementation
of C-DF demonstrates considerably inferior performance than
DFP. To make C-DF more competitive, we employ a version of
C-DF that draws samples from parameter partitions sequen-
tially rather than in parallel, to be able to use samples from
one partition to construct more accurate point estimates for the
other partitions at every time. Such an implementation of C-DF
considerably improves its performance, though at the expense
of added computational burden. Overall, comparison with this
improved version of C-DF will demonstrate the advantages of
dynamic partitioning over fixed partitioning as a tool to pro-
vide a better approximation to the full posterior distribution of
parameters. Online variational inference provides an alternate
strategy to draw approximate inference in presence of big data
and a large number of parameters. However, in the absence of
any open-source code for online variational inference in high-
dimensional linear regression, we refrain from employing it as
a competitor. Finally, we compare our approach with a variant
of the Sequential Monte Carlo (SMC) approach. As discussed
in the introduction, most of the developments in SMC and PL
algorithms have taken place in the high-dimensional state-space
models and they do not assume seamless extensions to high-
dimensional static parametric models with p as high as 5000.
Therefore, we adapt the recent sub-sampled SMC approach
outlined in Gunawan et al. (2018) to our setting. Note that the
approach in Gunawan et al. (2018) is designed for the scenario
when the entire dataset is available to the user. To adapt it
to the streaming data context, we employ a data annealing
approach instead of the temperature annealing approach used
by the authors. Our data annealing approach performs data sub-
sampling from the entire data D) when a new batch arrives at
time ¢ and uses the sub-sampling density approximation as well
as the Hamiltonian Monte-Carlo technique for efficient drawing
of high-dimensional Monte Carlo samples. This approach uses
the entire data set (up to time t) D in drawing SMC sam-
ples at time t, and strictly speaking is not an online Bayesian
competitor. Nevertheless, it can demonstrate the state-of-the-art
performance from SMC which will be helpful in assessing the
performance of DFP. We refer to this approach as sub-sampled
SMC (SSMC).

Assessing parametric inference with DFP. Parametric inference
with DFP is demonstrated using plots of kernel density estimates
for marginal approximate DFP posterior densities of represen-
tative model parameters shown at various time points. Kernel
density estimates for the batch MCMC at the same time points
are also overlaid to assess quality of parametric inference with
the DFP approximation in comparison with the “gold standard”
The true value of the respective parameters are overlaid to
assess the point estimation of parameters from DFP. Addition-

ally trace-plots of é;(t) over time ¢t for representative parameters

. . ~(t
are also presented to provide evidence of convergence of 0" to
the true parameter as time progresses.

Assessing predictive inference with DFP and competitors. To
measure the predictive performance of competitors, we report:



(al) mean squared prediction error (MSPE); (a2) Interval score
(Gneiting and Raftery 2007) of the 95% predictive interval;
(a3) coverage of the 95% predictive interval, and (a4) average
run time for each batch or shard. Note that (al) demonstrates
the performance in terms of point prediction, while (a2) and
(a3) show how well calibrated the predictions turn out to be.
Finally, (a4) helps readers gauge the computation time vis-a-
vis accuracy of the competitors. At time (¢ — 1), evaluations of
predictive performance metrics (al)-(a3) are based on the data
shard observed at time t. All results are based on averages over
10 independent replications. All computation times are based
on an R implementation in a cluster computing environment
with three interactive analysis servers, 32 cores each with the
Dell PE R820: 4x Intel Xeon Sandy Bridge E5-4640 processor,
16GB RAM and 1TB SATA hard drive.

Assessing dynamic partitions of the set of parameters over time.
For the strategies implemented to dynamically construct subsets
in high-dimensional regression with either shrinkage priors or
variable selection priors, we monitor the stability of subsets as
time progresses. To this end, we evaluate the Adjusted Rand
Index (ARI) (Hubert and Arabie 1985) between partitions of
parameters corresponding to two successive time points and
plot the ARI over time. The ARI evaluates the agreement in
subset assignment between two subsetting/partitioning config-
urations and is corrected for chance. It ranges between —1 and
1, with larger values indicating agreement between partitioning
configurations. Thus, the ARI should converge around 1 as
time progresses if the partitions stabilize over time. For the
partitioning algorithm implemented for shrinkage priors, we
additionally check trace-plot for the optimal value ¢* over time
and offer an understanding of the sensitivity of inference to the
choice of M. In order to being not repetitive, we present trace-
plot of ¢* or sensitivity to the choice of M only for the Bayesian
Lasso prior. The conclusions are similar for the Horseshoe prior.

4.1. DFP with Bayesian Lasso

We consider the first application of DFP with the popular
Bayesian Lasso (Park and Casella 2008) shrinkage prior on high-
dimensional predictor coefficients. Details of the Bayesian Lasso
prior and challenges regarding posterior computation with the

Bayesian Lasso prior has already been presented in Section 2.1.

The DFP algorithm applied to this setting proposes dynamic
partitioning of the parameter space over k; = b; + 1 subsets
at time t. Let the partition of the parameter space at time ¢ be
defined by

5 2
0.0 = {ﬂim ) o B ho }
I mytetm_ 1 ey 41 mytetmy by pegmy
l = 1,.., ht,
2,2
= {0 ,)\. >
Ogw { }

where the Ith partition, I = 1, .., b; consists of 2m; parameters
(my is also a function of t) and i5f1)1+,,.+m,71+1,..., iﬁ,?ﬁ,“ml €
{1,..,p} correspond to the indices of predictor coefficients
and latent variables belonging to the Ith partition at time ¢.
!
Let at time ¢, B; = | B.o s e Bty , 112 =
1 lm1+--'+m,

my+-tmp_1+1
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!
2 s T2 , M;; = diag(z}) and B_; be
by eetmy_ 41 bmy o tmy

the vector of all Bj’s except those included in ;. ;3\;[71), ﬁf;l),

’flz(t_l) are the point estimates of l,ﬂ_l,rlz, respectively, at
time (t — 1). Sit; and S;? are analogously defined. Also assume

SY?—I = SYZ__I; + X} X; 1, where X;; and X; _; are the sub-
matrices of X; corresponding to B; and B_j, respectively.
Section 4.1 of the supplementary material describes details of
implementing of Algorithm 1 for the Bayesian Lasso.

Due to space constraint, density estimates for a few selected
predictor coefficients are displayed at + = 250,500. Since
Simulation 1 is the most interesting scenario, posterior densities
of a randomly chosen zero coefficient, a nonzero coeflicient
with a lower magnitude and a nonzero coeflicient with a higher
magnitude are presented in Figure 1. Posterior densities of the
selected B;’s in the batch MCMC and DFP tend to show discrep-
ancies in the earlier time points. These discrepancies diminish
att = 500, empirically validating the fact that approximate DFP
draws converge to the full posterior distribution in time. This
conclusion remains valid for Simulations 2 and 3.

While drawing inference from DEFP, we also investigate con-
vergence of model parameters and convergence of dynamic
partitions of the set of parameters over time. The trace-plot of
the ARI between parameter partitions at successive time points
shown in Figure 1 under Simulation 1 indicates convergence
around 1 within the first 100 time points. We also monitor the
optimal value ¢* chosen over time by the DFP algorithm and
found it to stabilize rapidly (see Figure 1). Similar investigation
in Simulations 2 and 3 lead to equivalent conclusions and hence
they have not been included in the figures. Further, we monitor
B

J

the convergence of B;* over time for f; corresponding to a high

signal, low signal and zero signal in the truth. Figure 2 shows ,/3;0)
values concentrating around the true data-generating parameter

as time progresses. It also serves as an empirical assurance that

the convergence of 8" to the true parameter is a reasonable
assumption in the theoretical study of DFP.

We also present MSPE, coverage, interval score for the 95%
predictive intervals and computation time in seconds per batch
of the competing methods for Simulation 1 in Figure 1. Figures 3
and 4 highlight the same quantities for Simulations 2 and 3
respectively, except the computation time which is similar for
competitors across the three simulations. Batch MCMC, being
a batch method, is expected to converge faster. The predictive
inference of DFP improves rapidly and becomes indistinguish-
able from batch MCMC within t ~ 100 — 150 for all three
simulations. In contrast, the predictive performance of C-DF
appears to be inferior to batch MCMC even at t = 150. To
ensure that the faster decay in MSPE of DFP compared to C-DF
can actually be attributed to dynamic construction of parameter
subsets at each time, we explore three other versions of DFP
for which we update partitions of the parameter set in every
10, 50, and 100 batches. We refer to them as lagged DFP with
lag = 10,50, 100, respectively. The regular DFP corresponds
to lag = 1. The trace-plots of MSPE for the regular DFP (i.e.,
with lag= 1) along with lagged DFP for the Bayesian Lasso
Model in the three simulation settings are shown in Figure 5.
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Figure 1. Performance measures for MCMC, DFP, and CDF in the case of Bayesian Lasso under the high and low sparse case are presented in the first row. Coverage and
Interval scores are based on the average of the 95% predictive intervals. Confidence bands are based on repeating the analysis over 10 replications. The second row shows
estimated densities of selected parameters att = 250 and t = 500 for DFP and batch MCMC. Finally, third row presents the trace-plot of the ARI between partitions in two

successive time points for DFP and the trace-plot for the optimal value ¢* of DFP.
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As the value of lag increases, it takes more time for MSPE in
the lagged DFP to stabilize. In fact, the figure shows that the
MSPE for a lagged DFP with lag= 100 takes about 50 more data
shards to stabilize compared to the MSPE of the regular DFP.
Thus, dynamic partitioning learns posterior correlations among
parameters accurately which yields a better approximation of

the full posterior than C-DF or any other lagged version of DFP
in the earlier time points.

The average MSPE, run time, coverage and interval scores of
95% predictive intervals over the last 100 time points for all the
competitors are presented in Table 1. The results show that in
all three simulations, DFP emerges as a computationally efficient
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Figure 3. Performance measures for MCMC, DFP, and CDF for Bayesian Lasso under the sparse case (Simulation 2) are presented. Coverage and Interval scores are based
on the average of the 95% predictive intervals. We also show estimated densities for a selected §; att = 250 and t = 500 for both batch MCMC and DFP.
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Figure 4. Performance measures for MCMC, DFP, and CDF for Bayesian Lasso under the dense case (Simulation 3). Coverage and Interval scores are based on the average
of the 95% predictive intervals. Estimated densities of selected parameters at t = 250 and t = 500 for both batch MCMC and DFP are also added.
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Figure 5. The trace-plots of MSPE for regular DFP (lag = 1) and lagged DFP with lag = 10, 50, 100 implemented using Bayesian Lasso in Simulations 1-3.

replacement for batch MCMC, both in terms of point prediction
as well as characterizing predictive uncertainties. As mentioned
earlier, naive implementation of C-DF demonstrates inferior
predictive inference. An improved implementation of C-DF
presented here, in contrast, loses appeal with minimal gain in
computation time over batch MCMC. The SSMC approach also
demonstrates similar inferential performance with DFP with a
higher computation time.

Sensitivity to the choice of M. Our investigation reveals that for
any choice of M, the mean squared prediction error (MSPE)
starts decreasing as time progresses and finally stabilizes. It is
also interesting to note that they stabilize at similar values for
various choices of M. This is not surprising, since the posterior
correlations between parameters become less important factors
in prediction when sample size is much larger than the number
of parameters. However, for a larger value of M, MSPE stabilizes
much more rapidly over time. This is demonstrated for the
Bayesian Lasso shrinkage prior with M = 10 and M = 60

under the three simulation settings, see Figure 6. We conclude
that when inference is necessary at the earlier time points, one
should perhaps adopt a larger choice of M. In contrast, when
inference is only required at very large time points, one may
construct a more efficient DFP algorithm with a smaller value
of M.

4.2. DFP With Horseshoe

Our second application considers implementing DFP on the
Horseshoe shrinkage prior (Carvalho, Polson, and Scott 2010).
The full conditional distributions of parameters along with com-
putational issues in implementing Gibbs sampling with the
Horseshoe shrinkage prior are given in Section 2.2. The DFP
algorithm is employed to incur computational benefits in situa-
tions with large p.

The DFP algorithm applied to this problem considers parti-
tioning the parameters ® = {8,1,v,02, 7%, &} into ky = by + 2
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Algorithm 1: Dynamic Feature Partition

Input: (1) Data shard Dy at time ¢; (2) Parameter partition

G=D; (3) Sufficient Statistics S(‘_l) (4)

1 ~ (S,t—1
Approximate posterior draws o ), RN e
at time (¢t — 1); (5) Parameter Estimates @(t_l)

Output: (1) Approximate posterior draws

Lt St
®( ), ces ®( ) at time t; (2) Suﬂiaent Statistics
$®; (3) Parameter Estimates ®
1 DEP(D,, G, s0-1,8“"")
2 begin
/* Step 1:
of parameters at time t:

Update the partition of the set
the
partitioning schemes should ideally
exploit the nature of the model and
prior distributions. We propose
partitioning schemes specific to the
high-dimensional linear regression with
shrinkage priors and spike and slab
priors in Section 3,
*/
3 | ¢V = PartitionUpdate(@)a’ti1), e (:)(S’til))
/* step 2:

*/
4 | Update $® = g(Dy,8"~D)
/* step 3:

Parameter Blocks in Parallel */
for Gj € ¢" do

for 6, € O do
for s=1:S do
sample éj(s’t) ~f (9 |®Gt\{] st=D ('-)(t 1))

Z

page 12 and 13.

Update Sufficient Statistics

Approximate Sampling for

®w N un

9 end

10 end
11 | end
/* step 4: Update Estimates */
12 | for Gl e G do
13 for 0; € GG; do

/* Compute relevant point estimates
for the parameters from
approximate MCMC samples. We
consider the mean of the samples
as the point estimate for each

parameter */
14 set é\(t) <— stat (éj(l’t), .. ,éj(s’t)>
15 end
16 | end

~ (1t St t
17 | return {G)( ),.. ) )} RN e
18 end
subsets at time ¢ given by

2 2
G(t) = {ﬂ(t) > A 0] > A }
iy - Amp L g ebmy_ g +1 mitetmy g getm
I=1,.,by

Table 1. Bayesian Lasso performance statistics for MCMC, CDF, DFP, and SSMC.

Low and high sparse

Method  Predictive coverage MSPE Int. score Runtime (sec)
MCMC 09149019 0.002¢ 000 3.8270345 339.57846.343
DFP 0.8970.021 0.002¢ 000 3.9250370 148.29243 878
CDF 0.9020,021 0.0020.000 3.8970370 303.21573 600
SSMC 0.9039,018 0.002¢ 000 38110355 234.19857.627
Sparse
Method  Predictive coverage MSPE Int. score Runtime (sec)
MCMC 0.9150.021 0.002¢ 000 3.5020345 400.20388 666
DFP 0.8980.023 0.0029.000 3.5920393 162.78858 104
CDF 0.9039023 0.002¢ 000 3.5560.380 365.98371.200
SSMC 09120021 0.002¢ 000 3.5120346 289.1796.265
Dense
Method  Predictive coverage MSPE Int. score Runtime (sec)
MCMC 0.9400.017 4e — 0510—05 1.6299121  377.822128.891
DFP 09170019 4e — 051005  1.662¢ 148 145.34048 056
CDF 0919018 4e — 051005  1.6540143  352.099105.388
SSMC 0.9430.016 4e — 0510—05  1.628¢.121 278.35445 505

NOTES: Coverage and length are based on the average of the 95% credible pre-
dictive intervals in the last 100 batches. The subscript provides standard errors
calculated over 10 replications.

0., = {V}, O ={02,12,$}.
Gyt Gp42

Let B; and A; be the vector of ;s and A}’s, respectively, cor-

responding to the Ith partition. Define SY;, Sg;, nd S(t) _;as
in Section 4.1. Let M, ; = diag(x;) and B_; be the ,BJS not
contained in B;. A detailed implementation of DEFP for the
Horseshoe prior is described in Section 2.2 of the supplementary
material.

Figure 7 presents dynamically evolving MSPE, coverage,
interval score for the 95% predictive interval and computation
time in seconds per batch of the competing methods for
Simulation 1. As observed in Section 4.1, MSPE for DFP falls
sharply as time progresses and becomes indistinguishable with
the MSPE of batch MCMC after ¢t ~ 200 — 250. While accurate
point prediction is one of our primary objectives, characterizing
uncertainty is of paramount importance given the recent
development in the frequentist literature on characterizing
uncertainties in high-dimensional regressions (Van de Geer
et al. 2014; Zhang and Zhang 2014). Although Bayesian pro-
cedures provide an automatic characterization of uncertainty,
the resulting credible intervals may not possess the correct
frequentist coverage in nonparametric/high-dimensional prob-
lems (Szabd et al. 2015). An attractive adaptive property of the
shrinkage priors, including Horseshoe, is that the lengths of
the intervals automatically adapt between the signal and noise
variables, maintaining close to nominal coverage. Approximate
Bayesian inference with the DFP algorithm is found to preserve
this desirable property of the Horseshoe prior. In fact, Figures 7,
8 and 9 show similar coverage and interval scores for DFP
and batch MCMC as time progresses. This observation is
further reinforced from Table 2 which demonstrates practically
identical performances of batch MCMC, CDF, SSMC and DFP,
with DFP having notably reduced computation time.

Density estimates for a few selected predictor coeflicients
are displayed at t = 250, 500. Since Simulation 1 is the most
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Figure 6. Trace-plots of MSPE for M = 10, 60 implemented using Bayesian Lasso prior in Simulations 1-3.
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Figure 7. Performance measures for MCMC, DFP, and C-DF in the case of Horseshoe under the high and low sparse case (Simulation 1) are presented in the first row.
Coverage and Interval scores are based on the average of the 95% predictive intervals. The second row shows estimated densities of selected parameters at t = 250 and
t = 500 for both batch MCMC and DFP. Confidence bands are based on the analysis over 10 replications.

interesting scenario, posterior densities of a randomly chosen
zero coeflicient, a nonzero coefficient with a lower magnitude
and a nonzero coefficient with a higher magnitude are presented
in Figure 7. For nonzero coefficients, the density estimates seem
to be similar in DFP and in batch MCMC, though DFP yields
marginally narrower credible intervals than batch MCMC cor-
responding to zero coeflicients. We refrain from adding any
further discussion on the convergence of partitions or conver-
gence of ¢, since the conclusion is very similar to Bayesian
Lasso.

One fundamental advantage of the Horseshoe shrinkage
prior over frequentist penalized optimization is its ability to
accurately characterize parametric and predictive uncertainties
without any user dependent choice of tuning parameters.
However, it might lose this appeal due to its high computation
time and inability to provide rapid inference with big » and p.
DEFP applied to the Horseshoe prior solves the computational
bottleneck for big n and p, perhaps offering wider applicability
to the Horseshoe prior in regression problems at a much larger
scale. We expect similar conclusions to hold for other state-of-

the-art shrinkage priors such as, the Generalized Double Pareto
(Armagan, Dunson, and Lee 2013) and the normal gamma
(Grifhin et al. 2010) prior distributions.

4.3. Spike-and-Lasso

Since spike-and-slab prior distributions are primarily designed
to identify important variables in sparse high-dimensional
regressions, we investigate DFP with the Spike and Lasso prior
for Simulations 1 and 2. Again, Section 4.3 of the supplementary
material details out the implementation of Algorithm 1 of Spike
& Lasso prior. Figure 10 presents the dynamic progression of
various performance metrics for DFP, batch MCMC and C-
DF over T = 500 time points. Unlike Sections 4.1 and 4.2,
the operating characteristics of the Spike-and-Lasso applied to
all three competitors take longer time to stabilize. This is not
surprising, given that batch MCMC with spike and slab mixture
priors is known to offer less accurate performance with a smaller
sample size due to the high correlation between various y;s. As
before, DFP approximates batch MCMC accurately in terms of
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Figure 8. Performance measures for MCMC, DFP, and C-DF for Horseshoe under the sparse case (Simulation 2) are presented. Coverage and Interval scores are based on

the average of the 95% predictive intervals. We also show estimated densities of a selected g; at t = 250 and ¢ = 500 for both batch MCMC and DFP.
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Figure 9. Performance measures for MCMC, DFP, and C-DF for Horseshoe under the dense case (Simulation 3) are presented. Coverage and Interval scores are based on

the average of the 95% predictive intervals. We also show estimated densities of a selected f; at t = 250 and ¢ = 500 for both batch MCMC and DFP.
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Figure 10. Performance measures for MCMC, DFP, and C-DF with the Spike-and-Lasso prior under Simulations 1 (1st row) and 2 (second row). Coverage and interval scores

are based on the average of the 95% predictive intervals.

the operating characteristics. In fact, Table 3 shows practically  time points. SSMC continues to show competitive performance
indistinguishable performance of DFP and batch MCMC, while  with a much higher computation time compared to DFP. DFP
C-DF yields marginally larger interval scores even at latter ~dynamicallylearns the partition based on @;; and @,;. Since we



Table 2. Horseshoe performance statistics for MCMC, C-DF, SSMC, and DFP.

Low and high sparse
Method  Predictive coverage MSPE Int. score Runtime (sec)
MCMC 0.924¢ 019 0.0029,001 3.7251.006 298.12657 808
DFP 0.9050.020 0.0029 000 3.7150341 143.58730.989
CDF 0.9099.020 0.002¢.000 3.7040.338 289.12058 638
SSMC 0.9229021 0.0029 001 3.7221 006 288.78383.226
Sparse
Method  Predictive coverage MSPE Int. score Runtime (sec)
MCMC 0.9250.021 0.0029 001 3.3751004 357.01064.220
DFP 0.9060.021 0.0029.000 3.3860.343 164.55547 560
CDF 0.9109.022 0.0029 000 3.372¢349 329.12983.201
SSMC 0.9239.022 0.0029 001 3.3771.026 338.99666.246
Dense
Method  Predictive coverage MSPE Int. score Runtime (sec)
MCMC 09319018 0.0019.000 238321448  262.59434915
DFP 0.8919.022 4e — 051005 1.7499.180 117.41614 589
CDF 0.9030,021 3e — 051¢—05 1.6960.162 261.79868.321
SSMC 0.9329017 0.0019.001 2.2213 996 311.43870.867

NOTES: Coverage and interval scores are based on the average of the 95% credible
predictive intervals of the last 100 batches. Subscripts provide standard errors
over 10 simulations.

Table 3. Spike and Lasso performance statistics for MCMC, CDF, SSMC, and DFP.

Sparse
Method Predictive coverage MSPE Int. score Runtime (sec)
MCMC 0.9210.021 0.0029000 3479335 396.73097.681
DFP 0.8980.023 0.0029.000 3.5870.388 9.2623 476
CDF 0.894¢,023 0.0020000  3.5950385  395.402136.833
SSMC 0.922¢ 02 0.0020.001 3.4830379 311.89752019
Low and high sparse

Method Predictive coverage MSPE Int.score Runtime (sec)
MCMC 09220019 0.0029.000 3.7950324 393.42255 556
DFP 0.8970.021 0.0029000  3.9290.385 9.406, 886
CDF 0.8920.021 0.0029.000 3.9820 380 407.42450 365
SSMC 0.925¢ 017 0.0029.001 3.8020333 314.78345.451

NOTE: MSPE, coverage and interval scores are based on the average of the 95%
credible predictive intervals for the last 100 batches.

consider sparse examples, the cardinality of the set ©1; is never
large, and hence the parameters therein can be updated quickly.
Our detailed investigation also reveals that even a large number
of partitions of ®,; does not compromise the accuracy of the
inference and prediction. This helps to accrue substantial gains
in computation time for DFP compared to its competitors, as
demonstrated in Table 3. In contrast, C-DF fixes the partitions in
the beginning and is unable to leverage the information of the
zero and nonzero fB;’s as the approximate posterior sampling
progresses.

Representative posterior densities of 8;’s from DFP and batch
MCMC (presented in Figure 11) are centered around the truth
and have similar tails. Both Simulations 1 and 2 involve high
sparsity, resulting in the posterior density of 6 centered at a
small value. Again there is a considerable agreement in the
posterior densities of & from DFP and batch MCMC. Finally,
posterior densities of o2 for DFP and batch MCMC are found
to differ by a small margin from the truth. The trace-plots of ,/3\]-(0
for representative coefficients with zero, low and high signals
in the truth are also shown in Figure 12 and they are found
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to converge to the true parameter values. Finally, we explore
how the partitions evolve dynamically and observe that the
ARI between partitions at two successive time points quickly
converges to 1 with time (see Figure 12).

4.4. Sensitivity to the Choice of S

One of the important ingredients in the development of DFP
is the choice of the number of Monte Carlo samples S at every
time and it is instructive to see the effect on inference with
different choices of S. The simulation section presents results
of DFP with § = 500. To assess the sensitivity to the choice
of § in our simulations, we compute DFP after moderately
perturbing S. Table 4 presents the predictive inference with DFP
for § = 500, 750, 1000 in the different simulation cases with the
Bayesian Lasso prior. The results show practically indistinguish-
able inference with different choices of S, with § = 750 and
S = 1000 naturally incurring much more computational cost.
In our experience, the inference can be marginally improved
with much larger choices of S, though such choices practically
diminish any computational advantage of DFP.

5. Application to Financial Stock Database

To illustrate the performance of DFP, we implement DFP for
a financial dataset consisting of minute by minute average log-
prices of the NASDAQ stock exchange from September 10, 2018
to November 13, 2018 during trading hours. The data consist
of log-prices of Apple stocks along with 3430 assets, and the
aim of the data analysis is to evaluate the elasticity of the price
of Apple stocks with respect to the prices of the remaining
assets. This is of particular interest, since Apple, one of the
biggest publicly traded companies in the world, is ubiquitous
in portfolios ranging from retirement funds to small portfolios
managed by individuals in the financial market. Thus accurate
inference on the relationship between Apple and other financial
stocks allows better portfolio diversification. We envision it as a
high-dimensional linear regression problem with the log-price
of the Apple stock as the response and log-prices of other assets
as predictors. Along with prediction, the inferential interest lies
mainly in identifying important predictors significantly asso-
ciated with the response. Hence the Spike-and-Lasso prior on
regression coeflicients are employed.

The data includes several assets, such as ETFs, Trust Funds,
stock tracker indexes, and banks, which as expected, present a
very high degree of collinearity. To avoid less desirable inference
due to high collinearity, a few financial assets are removed along
with assets which have very few transactions (less than 40),
yielding 2015 predictors for the analysis. The dataset consists
of 18330 observations collected over two months.

To compare the predictive inference of DFP with respect
to the gold standard “batch MCMC, the dataset is divided
into 183 approximately equal shards to implement DFP and
the batch MCMC. Both are implemented 10 times with 10
different permutations of the dataset to minimize the effect of
sample ordering on the identification of influential variables.
Furthermore, this allows us to examine if the predictive infer-
ential mechanism in DFP is sufficiently robust to the inaccurate
posterior approximations at earlier time points.
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Figure 11. Estimated densities for a few selected g;s, o2and @ att = 250 and t = 500. The first row presents results for Simulation 1 while the second row demonstrates

performance of DFP in Simulation 2.
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Figure 12. Trace-plots for B}(t) for representative parameters in DFP Spike-and-Lasso implementation under Simulation 1. We include plots for representative predictor
coefficients with low signal, high signal and zero signal in the truth. The horizontal line specifies the true value of the parameters. The left most column shows the trace-plot

of the ARI for the parameter set partitions at two successive time points.

Figure 13 tracks the progression of MSPE, interval score and
coverage of 95% predictive intervals for both DFP and batch
MCMC as more batches are processed. At time ¢, the predictive
inference is assessed with the data shard obtained at time ¢ + 1.
Similar to simulation studies, the behavior of DFP in the early
batches is somewhat erratic due to the inaccurate posterior
approximation in the initial phase of the algorithm, though it
stabilizes as more data shards arrive. Furthermore, the perfor-
mances of the competitors become closer as time progresses,
with batch MCMC demonstrating marginally superior perfor-
mance at higher time points. While batch MCMC runs 500
iterations per batch in 18.35 seconds, DFP finishes 500 iterations
per batch in 0.40 seconds. Such a dramatic improvement in
computation time can be attributed to efficient partitioning of
the parameter space as well as parallel inference on parameter
partitions at each time.

Model fitting observes a high degree of multi-modality in
the posterior distribution is known to have minimal effects on
the predictive inference, but may provide somewhat unreliable
inference in terms of variable selection. This is observed and
noted in the earlier literature on high-dimensional regression

(see, e.g., Guhaniyogi, Qamar, and Dunson 2013). In such cases,
itis customary to run the posterior computation multiple times,
record the set of variables being identified in each of these
runs, and finally declare those variables as influential which
have appeared as influential in more than half of the runs. Due
to the multi-modality in the posterior distribution, we observe
that 10 runs of both DFP and batch MCMC do not lead to the
same set of variables identified. In fact, we find a difference in
the conclusion between DFP and MCMC in terms of identified
variables.

To ensure more reliable inference from DFP and the “gold
standard” batch MCMC for variable selection, we run both
these competitors 10 more times on the dataset of interest. In
these 10 runs, the data is divided into 163 shards with the
first shard having 20% observations, and the rest 162 shards all
approximately equal. We observe that feeding more data early
on leads to reliable variable selection with minimal variation
between different runs. To provide concrete evidence on this
observation, we refer to Table 5 which presents all predictors
identified by either DFP or batch MCMC in any of the 10 runs.
The table also records the number of times among the 10 runs
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Figure 13. Performance measures for MCMC and DFP. MSPE, coverage, and interval scores for 95% predictive intervals are presented. Confidence bands (in a lighter color)

are calculated by observing the variations of these metrics over 10 permutations.

Table 4. Bayesian Lasso performance statistics for DFP with S
500, 750, and 1000.

Table 5. Number of times a stock is selected under DFP and MCMC out of 10 runs
of both methods.

Low and high sparse Company DFP MCMC  Company DFP MCMC
Method Predictive coverage MSPE Int. score  Runtime (sec) Allscripts 10 10 SeaSpine Holdings 6 10
Healthcare Corporation
DFP(S = 500) 0.8970.021 0.0029 000 3.9250370 148.29243878 Solutions, Inc.
DFP(S = 750) 0.906¢ 024 0.0029 000 3.9570344 243.17648245 Alphabet Inc. 10 10 Qorvo, Inc. 7 10
DFP(S = 1000) 09120015 0.0020000 39540358 309.54244.268 Century Aluminum 10 10 Costco Wholesale 7 0
Sparse Company Corporation
Ferroglobe PLC 10 10 iQlYl, Inc. 8 0
Method Predictive coverage MSPE Int. score  Runtime (sec) Skyworks 10 10 The Ultimate 7 0
DFP(S = 500) 0.8980,023 00020000 3.5920303 162.78855.104 solutions, Inc. Isr:’cftwa'e Group,
GRS RO Swm Do T MWum gwen 5 0 omewer o 1
! : : : ’ . : . Gourmet Resources, Inc.
Dense Burgers, Inc.
Method Predictive coverage MSPE Int. score  Runtime (sec) Viavi Solutions Inc. 2 10 KaIF?harmaceuticals, 0 10
DFP(S = 500) 09170019 4e — 0510_05 1.6620148 145.34048 056 ) Inc.
DFP(S = 750) 0.9199 017 4e — 051005 1.6840143 234.0996 408 The Kraft Heinz 8 10 Natlona'l General 0 10
DFP(S = 1000) 0919016 de — 051005 16780141 305.35446 401 Company Holdings Corp
Amazon.com, Inc. 7 10 Applied 0 9
NOTES: Coverage and length are based on the average of the 95% predictive inter- Optoelectronics,
vals on the last 100 batches. The subscript provides standard errors calculated Inc.
over 10 replications. Popular, Inc. 7 9 Atlas Air Worldwide 0 9
Holdings
Caesarstone Ltd. 7 9 Baozun Inc. 0 9
Microsoft 8 9 Genprex, Inc. 0 9

they are identified as influential. It shows that the number of
times a predictor is selected by either batch MCMC or DFP is
very close to 0 or 10, indicating quite reliable variable selection.
Importantly, much less discrepancy is observed between DFP
and batch MCMC, with them identifying 17 and 21 variables as
influential respectively, with 14 identified by both.

6. Conclusion and Future Work

The emergence of large volumes of high-dimensional data man-
dates that model fitting tools evolve quickly to keep pace with the
rapidly growing dimension and size of data. The DFP algorithm
proposed in this article dynamically partitions the parameter
space after observing every data shard and employs fast and
approximate Bayesian inference at each partition in parallel.
The detailed simulation studies of DFP with popular Bayesian
shrinkage priors (Bayesian Lasso, Horseshoe and Spike-and-
Lasso) show indistinguishable inference from batch MCMC
with a considerable reduction of per batch computation time.
The supplementary material contains the proof of convergence
of the DFP algorithm for high-dimensional linear regression as
time t — oo.

The scope of DFP extends well beyond the realm of
high-dimensional linear regression with Gaussian errors. For
example, as part of our future work, we will employ DFP

Corporation

for high-dimensional logistic and probit regressions. While
data augmentation schemes (Albert and Chib 1993; Polson,
Scott, and Windle 2013) in high-dimensional binary regression
allow Gibbs sampling for parameter blocks, making the DFP
formulation natural, they also violate assumptions (1) and
(2) in the formulation of DFP in Section 3 which we seek to
account for. We also propose to extend the DFP formulation
for high-dimensional linear regression with heavy tailed error
distributions. Notably, a heavy tailed error distribution can often
be expressed as a scale mixture of Gaussian errors. Thus, upon
using a data augmentation scheme, developing DFP under this
model will require extending the DFP framework when the
number of parameters increases with the onset of a new data
shard. We would also like to extend our theoretical results on
the convergence of the DFP kernel to the full posterior from a
fixed partitioning set up to an adaptive dynamic partitioning
set up.

Finally, this article constructs 0" as the average of samples
of ® drawn from the DFP algorithm at time ¢. It is be mentioned

: . NG
that the theory allows alternative constructions of 6 ), as long
as the sequence converges to the true data-generating parameter
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as t — 00. As a future exploration, we plan to develop a hybrid

DEFP algorithm where 0" is constructed separately by imple-
menting a frequentist high-dimensional regression technique
(e.g., lasso) at the onset of a new data shard at every time. This

will guarantee consistency of 0" and the purpose of fitting
the DFP algorithm then becomes quantifying uncertainty in the
posterior distribution of parameters. Some of these constitute
our current area of research.
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Supplementary Material

Supplementary Material 1: This document contains proof of the conver-
gence behavior for the DFP algorithm. It also contains details of the DFP
algorithm when applied to the linear high-dimensional regression with
Bayesian Lasso prior, Horseshoe prior and Spike & Lasso prior on coeffi-
cients.

TestScript.R: The package to implement DFP is available at https://github.
com/Rene-Gutierrez/DynParRegReg. We also upload TestScript .R file
which uses functions from the package to run the simulations.
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