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ABSTRACT

Bubble trajectories in the presence of a decaying Lamb-Oseen vortex are calculated using a modified Maxey-Riley equation. Some bubbles
are shown to get trapped within the vortex in quasi-equilibrium states. All the trapped bubbles exit the vortex at a time that is only a function
of the Galilei number and the vortex Reynolds number. The set of initial bubble locations that lead to entrapment is numerically determined
to show the capturing potential of a single vortex. The results provide insight into the likelihood of bubble entrapment within vortical struc-

tures in turbulent flows.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0053658

Understanding the dynamics of particle motion in fluid flows is
required for a wide variety of applications. These include predicting
particle motion in the environment as well as flows of engineering
interest.”” One particular case of interest is that of wall-bounded tur-
bulent flows in which small particles or bubbles are used to modify
coherent drag-producing structures.”” Recently, this has been simu-
lated via direct numerical simulations with promising results for light
particles suppressing isotropic turbulence,” along with large eddy sim-
ulations showing turbulent drag reduction via bubbles in channel and
boundary layer flows.” In this study, we wish to uncover the physics of
how a small bubble moves in the presence of a vortex as a step toward
understanding the complex dynamics of bubbles in turbulence. It has
been shown that bubbles can be attracted to the center of a single vor-
tex,'””'? which is significant because it can provide an opportunity to
target and control vortical structures in turbulence. In the present
study, we show that bubble motion through a vortex that diffuses over
time, which is a better representation of an evolving vortex in a turbu-
lent flow, can lead to interesting features such as selective entrapment.

The problem of bubble or light particle tracking is not a new one,
and many aspects have been studied rigorously over the past several
decades."” There are now many sophisticated multiphase flow solvers
and bubble-tracking methods, such as level-set and front tracking
methods,"* ¢ for a wide range of bubble sizes, which include bubble
deformation. However, we study a simplified vortex model for a point
particle to examine the basic principles of a single bubble’s behavior
near a vortex. A direct numerical simulation of turbulent flow with a

large number of bubbles provides statistical information that can be
challenging to interpret, and point particle models are at least qualita-
tively similar.'” Furthermore, the potential dependence of the results on
a large number of parameters present in such a problem makes it diffi-
cult to obtain broad scientific insight which a simple model like ours
can provide. Real turbulent vortical structures are 3D and continuously
break and merge, but the present Lamb-Oseen vortex model, in particu-
lar, is useful because it is an exact solution to the Navier-Stokes equa-
tions, which provides a tractable framework to understand how bubbles
behave in the presence of vortices. It also includes one effect of flow
unsteadiness due to the realistic vortex diffusion, and this feature may
provide useful insight into the potential entrapment of bubbles by tran-
sient vortical structures in a turbulent flow.
The modified Maxey-Riley equation for a 2D bubble with lift in
the x-y plane is given by'*
%:3%+T—t’(u—v)+(u—v)xw—2g, (1)
where u is the fluid velocity, v is the bubble velocity, e is the fluid vor-
ticity, g is gravity, and 1, = a*/(6v) is the so-called “bubble response
time,” defined as the time it takes for the bubble to reach ~63% of its
terminal velocity when released from rest. Here, we consider cases that
are in the microbubble regime. Therefore, we may assume that the
bubble does not deform and acts as a point particle with zero mass
and perfect slip at the surface-fluid interface. Additionally, we model
the flow field, u, as a Lamb-Oseen line vortex in the z-direction, which
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has a core radius of r* = 2.2418+/1t,"” assumed to be much larger
than the radius of the bubble. % is the acceleration of the bubble,
whereas B¢ is the material derivative of the fluid velocity and repre-
sents added mass effects. The next terms in Eq. (1) represent Stokes’
drag, lift due to vorticity, and buoyancy, respectively. This simplified
model is relevant to bubbles in a turbulent boundary layer and is con-
sistent with the observed bubble motion.*®

It is more convenient to non-dimensionalize Eq. (1) by scaling
length with the bubble radius, a, and time by the bubble response
time. Doing this and scaling gravity by some characteristic accelera-
tion, gy, gives

av DU Ga
df_3DT+(U V)+(U-V) x Q 18G’ (2)

where the capital letters represent non-dimensional forms of the
respective variables in Eq. (1) and 7 is a non-dimensional time. Ga is
the Galilei number, a non-dimensional parameter defined as
Ga = gya® /1%, where v is the kinematic viscosity. This can be under-
stood intuitively as the ratio of buoyant forces to viscous forces. The
non-dimensional velocity field for a Lamb-Oseen vortex in the -5
plane is given by

Re., 3 22 2
U= _isz@_eXp (_M)) N
121 & + 2 27 ”

Re, ¢ 3(22 + 172)))
+ |:127T sz T }/’2 (1 — exp (_ 21__ €y, (3)

and the vorticity is given by

z2
— Reb‘ eXp <7 3(C + '72)>eg7 (4)

2t

Q

T 4mr

where &, 17, and ( replace x, y, and z as non-dimensional coordinates,
respectively. Re, is the vortex Reynolds number defined as Re, = I' /v
and is a measure of vortex strength relative to the fluid viscosity, where
I' is the circulation. We solve this system of differential equations
numerically using the ode45 function in MATLAB (R2020a) with
stringent convergence criteria (the relative tolerance is set to 10~° and
the absolute tolerance is set to 107! to ensure all features of the trajec-
tories are accurately resolved).

We first consider the case of a bubble released from 1 = —75 at
various ¢ values at time T = 350 and initially rising at terminal velocity.
The solution of Eq. (2) in this case shows a general trend of bubbles
being attracted to the vortex core, shown in Fig. 1, with trajectories
similar to those found in the simulations and experiments in Refs. 10
and 11. For a vortex of a given radius and circulation, it can be
shown'>*"*" that there is a point where all forces acting on the bubble
are in equilibrium, and the bubble can be trapped. The present simula-
tions, however, involve a vortex whose radius increases with time as a
result of viscous diffusion. Therefore, the equilibrium point slowly
moves outward before ceasing to exist, resulting in a quasi-equilibrium
state. If a bubble is drawn into the core and achieves this quasi-
equilibrium state, it may be considered “captured” by the vortex. Its
trajectory first displays a rapid periodic spiraling inside the core before
reaching quasi-equilibrium. At a certain point, the bubble escapes the
pull of the vortex and continues moving upward. The details of the
spiraling motion are affected by the physical properties of the flow and
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FIG. 1. Example trajectories of bubbles (b1—bg) with Re, = 10000, Ga= —240,
released from 1y = —75 at tp = 350 and initially at terminal rise velocity. Paths
bo—bg are all trapped bubble trajectories. A few equilibrium points are plotted (red
dots) along with the vortex core at the release and exit times, 7o and 7.y (black).

bubble as well as the initial conditions; however, the quasi-equilibrium
motion only depends on the constant physical properties. That is, if
the bubble is released early (relative to vortex inception) near the cen-
ter of the vortex, where its strength is large, the bubble will spiral
many more times before reaching the quasi-equilibrium state com-
pared to a similar bubble released later or farther away. However, once
the bubble reaches equilibrium, the trajectory is identical to that of any
other captured bubble, regardless of where or when it starts. In the
example shown in Fig. 1, the gray lines of captured bubble trajectories
(by-bs) collapse onto the highlighted trajectory (bs) around the loca-
tion of the first few equilibrium points shown.

The quasi-equilibrium state is particularly interesting. Since the
bubble velocity and acceleration are very small in that state, Eq. (2)
can be solved under the assumptions that V = ‘;—Y = 0 to determine
positions at each time where the bubble satisfies the equilibrium con-
dition. The instantaneous equilibrium point, however, continually
moves outward with the bubble following suit during this phase of
motion, as illustrated in the example shown in Fig. 1. Figure 2 shows
the bubble speed and the forces acting in the #-direction on the bubble
vs time, which reveals that the time spent in equilibrium is much lon-
ger than the time spent initially spiraling. In this example, the bubble
is released just below the vortex core at T=350 and spirals rapidly
until about 7~ 370 where it remains in quasi-equilibrium until
T & 490 when it escapes and returns to (a different) equilibrium as it
rises upward at terminal velocity. The shape of the trajectory will vary
with physical parameters and initial conditions, but all trapped trajec-
tories exhibit the same qualitative behavior in which there is some
brief period of spiraling when the bubble reaches the vortex core
before it settles into the quasi-equilibrium state, for what can be a
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FIG. 2. (Top) Bubble speed vs time for a
bubble captured by a vortex with
Re, = 10000, Ga=—240, released
from (&, n9) = (0, —75) at 7o = 350.
(Bottom) #-component of forces acting on
the bubble over time as it passes through

the vortex core. M = added mass effects,
D =drag, L =lift, B = buoyancy,
R =resultant force. Note the change in
time spacing starting at = =370, denoted
by the wavy line.
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much longer duration, until it escapes. Although these equilibrium
points are useful for locating where a bubble will nearly come to rest, it
should be noted that bubble entrapment is assumed, and its existence
does not guarantee a given bubble will be trapped. The equilibrium
points are determined solely based on 7, Re,, and Ga, and are the same
irrespective of the bubble’s initial position.

While the duration of entrapment is difficult to determine pre-
cisely, it can be estimated quite well from the Re,, Ga, and initial con-
ditions, which are known a priori. The time at which the bubble enters
the vortex can be estimated based on the bubble rise speed in a still
fluid: 7.,; = 181,/ Ga, where 1 is the 1 position of the bubble at the
time it is released. The exit time (7.y;) can be estimated by solving a
special case of Eq. (2). Using what we found by analyzing the bubble’s
quasi-equilibrium state, the bubble escapes the vortex at the last time
an equilibrium point exists. While this particular point cannot be
found analytically, a nearby one can be: the point at which the equilib-
rium position and the vortex core radius are equivalent. We can take
the bubble’s distance from the origin, / 62 + 12, to be the same as the
core radius at the estimated exit time. Using the scaling variables,
t=1t/1, and r=71"/a, we can convert the core radius of the
Lamb-Oseen vortex to nondimensional form,

22418 | 6a?
F=——= v—r1 = 0.91524/7. (5)
a a 14

Thus, we assume 7¢oe = 0.9152,/T,yi. We substitute this into Egs. (3)
and (4) along with the polar representations, ¢ =rcos0 and

370 400 450 500 T

n = rsin 0, where 0 is the angle measured counterclockwise from the
positive ¢-axis. Given the assumption 7 = r,,, and equilibrium condi-
tions, Eq. (2) is simplified enough to be solved analytically based solely
on Re, and Ga (the solution process is shown in detail in the supple-
mentary material). Consequently, any trapped bubbles with the same
Re, and Ga will have identical estimated exit times, regardless of initial
conditions, due to the vortex diffusing at a rate independent of the
bubble’s effects. This is not the case for two-way coupling simulations,
and 1, varies since the bubble disturbs the vortex,"” thereby reducing
the crucial added mass force necessary for entrapment.

We can define the bubble as “trapped” when it spends at least a
certain amount of time, Az, in the core. The results are robust with
respect to the choice of Atyy, provided Aty < Texit — Tent- A
“capture” region can then be determined by simulating bubbles from
different initial positions to determine which ones are trapped. A few
examples of these capture regions are shown in Fig. 3, where any bub-
ble released inside the boundaries will be captured by the vortex for a
duration of at least At.; = 50. The capture regions in Fig. 3 were
determined using a bubble release time of 7y = 1, but it was found
that the choice of 7, only altered the bottom location of the capture
region, and features near the vortex core were unchanged.

The width and inclination of these fingerlike capture regions vary
with the physical parameters: larger Re, and smaller Ga tend to
expand and rotate the region, whereas a smaller Re, and larger Ga
tend to shrink and straighten it. This aligns with physical intuition
where a higher Ga indicates a stronger buoyant force, meaning bub-
bles further away from the core (in the direction normal to the
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FIG. 3. Capture regions for various Re, and Ga. The black circle represents the
vortex core at T = 500.

buoyant force) are less likely to be captured. On the other hand, a
higher Re, indicates a stronger vortex with higher pressure gradients,
pushing the bubble toward the core. Bubbles more directly opposing
the direction of fluid will naturally slow down and are more likely to
be trapped. Therefore, bubbles to the left of a counterclockwise-
rotating vortex will be favored for entrapment. These regions may
extend very far downward and can be estimated by the relation
Npottoms = 2 (Texit — To — ATerig). For perspective, a vortex in water
with Re, = 10000 and a bubble with a radius of 1 mm may have a
capture region, which extends several meters below the vortex core.

Although the capture region is well-defined for smaller values of
Re, and Ga, the simple shape can break down and produce multiple
tails when these values are large enough, as shown in the examples of
Fig. 4. Increasing Re, and Ga first produces a single narrow streak of
initial points where bubbles are not trapped within the fingerlike
shape; increasing parameters further produces additional streaks and
widens them until no points can be captured (see the supplementary
material for more examples). These streaks arise due to the bubble
accelerating too quickly near the core and passing by it instead of
being captured. The chaotic nature of the system means that the loca-
tion, number, and width of these streaks are interesting but difficult to
predict.

The present simulations reveal the complex dynamics of bubbles
in the presence of vortices, even for the simple but well-defined setting
of a non-deformable bubble rising through a decaying Lamb-Oseen
vortex. The results from the simple model considered here are not
intended to be directly applicable to realistic situations involving tur-
bulent flows, but they provide insights into bubble entrapment by vor-
tices that could be of general relevance as well as reveal interesting
features such as chaotic entrapment patterns. While there is broad
agreement with earlier work that bubbles are generally attracted to the

scitation.org/journal/phf
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FIG. 4. Capture region (shaded) for Re, = 75000 and Ga = —3600. Example
escaped trajectories are plotted in bold (red) and adjacent trapped trajectories are
plotted as thin lines (blue).

vortex core, we have discovered the existence of quasi-equilibrium
points in the decaying vortex that can temporarily “trap” the bubbles
within the vortex. Any trapped bubble is observed to exit the vortex at
a time when the vortex has no theoretical equilibrium point [that is,
when Eq. (2) under equilibrium assumptions has no solution]. Thus, a
method for a priori estimation of the duration of a bubble’s entrap-
ment is demonstrated in this work. Bubble entrapment is also
observed to be practically binary, in the sense that a bubble is either
trapped or it is not. Trapped bubbles may take over two orders of mag-
nitude longer to rise through the computational domain considered
here than bubbles that are not trapped (details in the supplementary
material). This is significant from the point of view of flow control as
the residence time of a bubble is likely to be related to its ability to alter
the vortex.'” The present results also analyze how the “capture region”
varies with the parameters of the problem. This is again significant for
flow control applications that rely on bubbles released from outside
the vortex, which eventually enter and alter the vortex. This region
was found to be finger-shaped, where the finger’s width and curvature
depend on Re, and Ga, and we provide an explanation for the
observed dependence.

Interestingly, for large values of Ga relative to Re,, it is found that
some bubbles released from within the finger-shaped boundary actu-
ally evade capture. That is, two bubbles that are initially very close to
each other can have divergent trajectories in the neighborhood of the
vortex: one of them proceeding to reside within the vortex core for a
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long time, while the other slips past the vortex. This observation is
consistent with chaotic nature of this parameter regime resulting from
relatively small stabilizing viscous effects compared to the other forces
acting on the bubble. Further analysis shows that the loci of all bubble
initial points which lie within the overall finger-shaped boundary of
the capture region but evade capture appear as a series of long streaks.
The width and number of these streaks vary depending on the physical
parameters. Example cases of capture regions, the bubble trajectories
in the chaotic regime, and bubble rise times are shown in the supple-
mentary material. The findings on the duration of bubble entrapment
and capture regions are particularly useful for flow control strategies
involving bubbles, such as suppression of shear layer growth and drag
reduction through the disruption of hairpin vortices in a turbulent
boundary layer.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details. This includes
two videos demonstrating how a bubble moves through a
Lamb-Oseen vortex with emphasis on the forces and the equilibrium
points. Furthermore, there is a description of the non-
dimensionalization process in detail, a detailed analysis of bubble exit
conditions, and further discussion of capture region features including
several figures.

We gratefully acknowledge the support of the National Science
Foundation through Award Nos. 1905288 and 1904953.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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