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ABSTRACT

Epitaxial ScxAl1�xN thin films of �100 nm thickness grown on metal polar GaN substrates are found to exhibit significantly enhanced
relative dielectric permittivity (er) values relative to AlN. er values of �17–21 for Sc mole fractions of 17%–25% (x¼ 0.17–0.25) measured
electrically by capacitance–voltage measurements indicate that ScxAl1�xN has the largest relative dielectric permittivity of any existing nitride
material. Since epitaxial ScxAl1�xN layers deposited on GaN also exhibit large polarization discontinuity, the heterojunction can exploit the
in situ high-K dielectric property to extend transistor operation for power electronics and high-speed microwave applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0075636

Currently, wide-bandgap, gallium nitride semiconductor based
high electron mobility transistors (HEMTs) use AlGaN/GaN or AlN/
GaN heterojunctions to generate high density 2D electron gases
(2DEGs) due to the polarization discontinuity. These 2DEGs exhibit
high electron mobility—much higher than silicon inversion channels,
and simultaneously a wider energy bandgap than silicon that enables a
higher breakdown voltage. The combination of high speed and high
voltage operation has established the Al(Ga)N/GaN semiconductor
system as the leading contender for energy-efficient power electronics
and microwave applications for 6G and beyond.1

The performance limit of GaN HEMTs is currently limited by
the properties of the gate barrier layer. For example, though the break-
down electric field of GaN is >3MV/cm, GaN HEMTs exhibit
roughly 1MV/cm effective breakdown field in large part because of
enhanced gate leakage by Fowler–Nordheim tunneling at high drain
voltages. This limits the applications of GaN HEMTs in power elec-
tronics by restricting the drain voltage. The restricted drain voltage
also limits the handling capability of devices in RF applications.
Another important aspect is transistor speed. The speed of GaN

HEMTs could be improved if the gate barrier is made thinner to
increase the transconductance. The transconductance can be expressed
as gm � Cgs�vsat, where Cgs ¼ eb/tb is the gate-source capacitance, eb is
the dielectric constant of the barrier layer, tb is its thickness, and vsat is
the electron saturation velocity in the conducting channel. However,
decreasing tb increases the Fowler–Nordheim tunneling induced gate
leakage current exponentially,2,3 causing a severe penalty in the break-
down voltage.

This classic transistor design bottleneck can be solved by taking a
cue from silicon MOSFET technology: by employing a high-K dielec-
tric barrier layer. Since GaN HEMTs are grown by epitaxial processes,
it would be ideal if there was an epitaxial, in situ grown high-K dielec-
tric. This would potentially simplify device processing but even more
importantly, could avoid well-known problems associated with chemi-
cal contamination and interfacial defects. The Fowler–Nordheim gate
current can be expressed as JFN ¼ JFN,0 � exp[�F0/F], where F is the
electric field across the barrier and F0 is the characteristic tunneling
field,4,5 which depends on the barrier height and barrier thickness.
Accordingly, a thick gate dielectric with higher dielectric permittivity
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(“high K” or high er) offers the advantage of decreased electron tunnel-
ing and leakage currents without a decrease in the gate capacitance.6

In this work, the dielectric constant of epitaxial single-crystalline
�100nm thick ScxAl1�xN layers grown on nþGaN (Nd� 2 � 1019/
cm3) with x¼ 0.17–0.25 is found to exhibit up to 2.4 times larger er
values than AlN (er� 8.9).

The ScxAl1�xN/GaN heterostructures discussed in this study
were grown by molecular beam epitaxy (MBE) in a VeecoVR GenXplor
system with a base pressure of 10�10Torr on Suzhou NanonwinVR con-
ductive n-type bulk GaN substrates. A Sc metal source of nominally
99.9% purity (including C and O impurities) from Ames Laboratory
was evaporated from a W crucible using a TelemarkVR electron beam
evaporation system integrated with MBE equipment. Sc flux control
was achieved with an InficonVR electron impact emission spectroscopy
(EIES) system by directly measuring the Sc atomic optical emission
spectra. Aluminum (99.9999% purity), gallium (99.999 99% purity),
and silicon (99.9999% purity) were supplied using Knudsen effusion
cells. Nitrogen (99.999 95% purity) active species were supplied using
a VeecoVR RF UNI-Bulb plasma source with a growth pressure of
approximately 10�5Torr. The reported growth temperature is the sub-
strate heater temperature measured by a thermocouple. In situ moni-
toring of film growth was performed using a KSA Instruments
reflection high energy electron diffraction (RHEED) apparatus with a
Staib electron gun operating at 15 kV and 1.5A. Post-growth x-ray dif-
fraction (XRD) was performed on a PanAlytical Empyrean diffractom-
eter at 45 kV, 40mA with Cu Ka1 radiation (1.540 57 Å). Post growth
AFM measurements were performed using an Asylum Research
Cypher ES system. Capacitance–voltage (CV) measurements were per-
formed on a Cascade Microtech 11000 probe station using Keithley
4200 in an N2 ambient environment at 500 kHz AC frequency at
room temperature on 40lm and larger diameter circular Ti/Au elec-
trodes patterned lithographically. Calibration for CV measurements
consisted of an open circuit calibration with the probes floating, a
short circuit calibration with probes on the same metal, and a 50 X
impedance calibration with the probes across a 50 X resistor. CV mea-
surements were performed using a parallel series conductance model
to extract the capacitance of the system. Frequency-response measure-
ments were performed using a Keysight E4980E LCR meter and a
Keysight 4294A (precision impedance analyzer) using a short/open/
load calibration with coaxial on-wafer Kelvin probes.

All ScxAl1�xN/n
þGaN heterostructures for this study were

epitaxially grown in a reactive nitrogen environment in the MBE
chamber at 200W RF nitrogen plasma power and 1.95 standard cubic
centimeters per minute (sccm) flow rate. The nþGaN layers were
grown with a Si doping concentration of �2 � 1019/cm3 under metal
rich conditions with III/V ratio>1 at 700 �C substrate temperature to
promote smooth morphologies for the subsequent ScxAl1�xN layers
and to serve as the conductive bottom electrode. Sc and Al atomic per-
centages in the film were adjusted by the ratio of the respective fluxes
from the effusion cell for Al and E-Beam for Sc. The ScxAl1�xN layers
were grown under nitrogen rich conditions with III/V ratio �0.85 at a
substrate temperature of�600 �C. Sc and Al were co deposited contin-
uously during the growth. A more detailed description of the growth
and justification for the Sc source selection is described elsewhere,7

and the RHEED and AFM data appear in the supplementary material.
Figure 1 shows the XRD scans of the ScxAl1�xN/GaN hetero-

structures with varying Sc concentrations. An increasing 2h position

as the Sc content is increased indicates a decrease in the c-axis lattice
parameter. Interference fringes indicate smooth and coherent
ScxAl1�xN-GaN interfaces. The full-width-half maximum (FWHM)
of the 002 peak positions ranges from 0.03� to 0.05� (100–180 arc sec).
The thickness of the ScxAl1�xN layers was verified by x-ray reflectivity
(XRR) measurements (not shown). In situ RHEED images confirm
epitaxial, single-crystalline growth of ScxAl1�xN.

Figure 2(a) shows the lattice parameter evolution with a Sc con-
tent evaluated from x ray with information from prior ScxAl1�xN sam-
ples grown at the same deposition conditions (e.g., III/V ratio,
substrate temperature) calibrated by prior Rutherford backscattering
(RBS) measurements. Figure 2(b) shows the wurtzite crystal structure
of AlN and the a and c-axis lattice parameters: Sc substitutes the Al
sites. Energy dispersive spectroscopy (EDS) results from scanning elec-
tron microscopy (SEM) obtained Sc mole fractions that were similar
(within 2 atomic %) to the Sc mole fractions mentioned. The uncer-
tainty in the Sc content is 64.5% for SEM-EDS and 62% for RBS.
The Sc mole fractions were independently calibrated using Rutherford
backscattering. A non-monotonic trend of the c-axis lattice parameter
with Sc mole fraction is seen. This trend cannot be explained from
epitaxial strain alone. The in-plane lattice parameter (a axis) of
ScxAl1�xN at higher Sc mole fractions (x> 0.18) is larger than that of
GaN. Accordingly, ScxAl1�xN films would be under compressive
strain and cause the in-plane lattice parameter to effectively decrease.
A positive Poisson ratio would then cause the out of plane lattice
parameter (c axis) to increase. The opposite is true for ScxAl1�xN at
lower Sc mole fractions (x< 0.18), where a tensile strain to GaN would
cause the in-plane lattice parameter to effectively increase and the out-
of-plane lattice parameter to effectively decrease. Thus, the observed
experimental trend is opposite of strain-based expectation.

A possible reason for the non-monotonic trend is the competi-
tion between an increasing average bond length as more Sc is incorpo-
rated into tetrahedral sites and structural distortion that tilts the

FIG. 1. Symmetric 2H-x x-ray diffraction 002 peak positions for �100 nm thick
ScxAl1�xN grown on nþGaN bulk substrates. The 002 peak position increases as
the Sc mole fraction is increased. Sc mole fractions were obtained by comparing
peak positions to those of prior ScxAl1�xN samples calibrated by Rutherford
backscattering.
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tetrahedra away from the c-axis as more Sc is incorporated.8,9 The
increasing average bond length acts to increase the c-axis lattice
parameter. The structural distortion that decreases the projection of
the bonds onto the c-axis acts to decrease the c-axis lattice parameter.
This non-monotonic behavior and deviation from Vegard’s law is
related to the fact that rock salt ScN is more thermodynamically stable
than wurtzite ScN.10–13 Accordingly, ScxAl1�xN can be viewed as a
balance between competing tetrahedral coordination in wurtzite AlN

and octahedral coordination in rock salt ScN. Similar behavior is also
predicted to occur for YxAl1�xN

14 and when alloying other transition
metals into AlN. This non-monotonic behavior is not observed in
AlxGa1�xN and InxAl1�xN alloy systems, because the endmember
binary semiconductors GaN and InN have thermodynamically stable
wurtzite crystal structures.

Figure 3 shows the 500 kHz CV results for samples with three Sc
mole fractions studied in a capacitor geometry, where the underlying

FIG. 2. (a) Symmetric 2H-x XRD 002 peak positions for ScxAl1�xN and the corresponding calculated c-axis lattice parameters. The non-monotonic trend of the c-axis lattice
parameter with a Sc content is observed. (b) Ball and stick crystal structure model of the wurtzite unit cell of AlN, showing the relative a and c axis orientations.

FIG. 3. (a)–(c) CV data at 500 kHz frequency showing the capacitance per unit area and phase angle of Sc contents 17%–25% (x¼ 0.17–0.25) in ScxAl1�xN for 40 lm diame-
ter circular electrodes. (d) Schematic of the heterostructure configuration for CV measurements.
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nþGaN serves as an epitaxial bottom electrode. As indicated in the fig-
ure, Ti/Al top metal electrodes were patterned by optical lithography,
and indium was adhered to the backside of the nþGaN substrate to
serve as a bottom contact for vertical measurements. A relatively con-
stant capacitance value with a small positive slope indicates uniform
and high n type (donor) doping levels in the conductive nþGaN layer.
The figure also shows the phase angle between the real (conductance)
and imaginary (capacitance) parts of impedance where 90� indicates
low conductance. For the three Sc compositions measured (17%–25%
Sc), the capacitance values are roughly constant across a voltage range
that corresponds to average electric fields of �1.0%–1.5%MV/cm
within which the capacitance can be extracted. The drop in the phase
angle below 90� at elevated voltages occurs due to the onset of electri-
cal leakage: the leakage increases with the Sc mole fraction.

Figure 4 shows the measured frequency dependence of er from
1kHz to 20MHz, as extracted from on-wafer capacitance measure-
ments. As can be seen, er ranges from �15 to 20 for the three Sc com-
positions characterized. The values agree with those shown at 500 kHz
(Fig. 3) and indicate that space charge polarization does not signifi-
cantly influence the er values at higher measurement frequencies. It
should be noted that the 17% and 20% samples show a constant
capacitance over the full range of frequencies measured; the modest
apparent frequency dependence seen for the 25% composition devices
is a result of the increased effective conductance due to defects in
ScxAl1�xN layers with higher Sc mole fractions (as indicated by the
larger deviation from the 90� phase at low frequencies).

A summary of CV measurement results for several Ti/Au elec-
trode sizes is included in Table I. The measured er values are relatively
consistent across multiple electrode sizes, indicating the reliability of
the measurements and the ability to probe large diameter electrodes
without significant electrical leakage at low applied voltages. For
40lm diameter electrodes, the nominal phase angles reported corre-
spond to loss tangent (tan d) values of 0.002, 0.003, and 0.016 for 17%,
20%, and 25% Sc, respectively. These loss tangent values are compara-
ble to those obtained from sputter deposited ScxAl1�xN and can be

improved upon. The er�15–20 values establish epitaxial ScxAl1�xN as
a high-K dielectric material with �2X higher dielectric constant than
AlN, GaN, or their alloys.15

Sc has a larger atomic radius than Al and a larger electronic
polarizability. The increase in er is, thus, expected when Sc is added
due to decreased nuclear shielding from the core electrons. Also, the
ionic polarizability of Scþ3 is larger than that of Alþ3,16 partially due to
the smaller electronegativity of Scþ3. A smaller cation electronegativity
implies that the outermost shell experiences a weaker attractive force
on neighboring anion electrons in accordance with increased polariz-
ability. Cation ionic polarizability is dependent on the specific crystal
environment of the cation (e.g., unit cell volume, corresponding
anion), so quantitative values are not easily determined. Nevertheless,
these qualitative trends suggest that isoelectronic alloying of Scþ3 on
tetrahedral sites in the wurtzite unit cell should increase the polariz-
ability of the crystal.

The measured er values in this report are similar to those
obtained in sputter deposited ScxAl1�xN films and predicted
values.17–30

To further elucidate the observed enhancement in er, we per-
formed density functional calculations for a ScxAl1�xN alloy at 16.7%
Sc using the perturbation theory. The disordered environment of the
alloy was simulated using ten different 108-atom supercells with nine
Sc atoms randomly distributed over the 54 cation sites in each super-
cell. We used projector augmented wave potentials31 as implemented
in the Vienna ab initio simulation package (VASP)32,33 and a plane
wave energy cutoff of 500 eV. Exchange and correlation were treated
in the generalized gradient approximation.34 The C point was used for
Brillouin-zone integration, and the structure was fully optimized with
final Hellmann–Feynman forces less than 5meV.

We found that the electronic part and the in-plane components
of the ionic part of the dielectric constant did not change much relative
to pure AlN. In contrast, the out-of-plane component of the ionic part
exhibited a notable increase with values in different supercells ranging
from 15 to 30. This enhancement can be attributed to bond softening

FIG. 4. (a)–(c) Extracted relative dielectric permittivity (er) at multiple measurement frequencies. The dispersion seen for the 25% Sc sample is indicative of space charge
polarization at very low measurement frequencies. The values at 500 kHz frequency agree with the prior results in this paper.
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along the c direction in the ScxAl1�xN alloy,35 which we confirmed by
a crystal orbital Hamilton population analysis36,37 (see Fig. 5). With
softer out-of-plane bonds, an electric field along the c axis induces
larger atomic displacement and polarization change, giving rise to the
enhanced dielectric response. Averaging the dielectric constant
(including both electric and ionic contributions) over three Cartesian
directions and over ten supercells, we found a value of 15.0 in
satisfactory agreement with the experimental measurement at 17% Sc.

Figure 6 shows a comparison between the low frequency relative
dielectric permittivity of common III-nitride semiconductors and
dielectrics used for III-nitride electronic and photonic devices.
ScxAl1�xN (x¼ 0.25) has an er value that is the highest of any existing
III-nitride material (er� 21) and comparable with other dielectrics
such as HfO2 and Ta2O5. Though the er value for InN is�15, the rela-
tively low bandgap and conductive nature of InN has precluded its use
as a dielectric material; ScxAl1�xN does not suffer from these draw-
backs. Since optical absorption measurements for bandgaps could not
be performed directly on the ScxAl1�xN-GaN heterostructures due to
the smaller bandgap of GaN, films of ScxAl1�xN (0.0< x< 0.25) of
�200nm thicknesses were separately grown on AlN on c-plane sap-
phire substrates with the same conditions (e.g., III/V ratio, tempera-
ture) as those grown on nþGaN discussed earlier. They show near
optical absorption edges ranging from 6.0 to 5.1 eV (not shown). The
bandgaps of ScxAl1�xN on AlN seen here are similar to prior reports
for sputter deposited and MBE grown ScxAl1�xN at a similar Sc con-
tent.39,40 Assuming the bandgap of ScxAl1�xN is the same when grown
on AlN and GaN, this gives ScxAl1�xN a relatively large bandgap and
relative dielectric permittivity. A commonly reported hi-K metric is
the “equivalent oxide thickness” or EOT, which is defined relative to
the SiO2 dielectric thickness that has a low frequency er�3.9. Namely,
a higher relative dielectric permittivity oxide material has a lower
equivalent oxide thickness and is, therefore, attractive for vertical scal-
ing of nitride HEMTs. Here, the term can be extended to hi-K nitride
dielectrics like ScxAl1�xN, as an “equivalent nitride thickness” with a
comparison to Al(Ga)N, or a Si3N4 dielectric thickness with a low-
frequency er of�7.5.

Furthermore, most dielectric materials are deposited by ex situ
deposition techniques and/or in a non-epitaxial manner. For example,
polycrystalline and/or amorphous Al2O3, SiO2, and Si3N4 deposited ex
situ are typically used in GaN HEMTs, requiring air-exposure and
loss of control of surface and interfacial properties.41 Since sputter
deposited ScxAl1�xN on metal electrodes has also shown enhanced

TABLE I. Extracted dielectric permittivity (er) for ScxAl1�xN-n
þGaN heterostructures

and measured phase angle (�) at low voltages from CV measurements as a function
of the Sc content and metal electrode diameter (d). Measurements were conducted
at 500 kHz frequency. Values for 33% Sc are not shown as the phase angle deviates
significantly from 90� due to electrical leakage. Note that the er for AlN is �8.9.15

Sc content Parameters d¼ 40 lm d¼ 80 lm d¼ 135 lm

17% er 17 16 15
h (�) �89.85 �89.95 �89.60

20% er 15 15 15
h (�) �89.83 �89.67 �89.64

25% er 22 21 21
h (�) �89.06 �89.09 �88.65

FIG. 5. Integrated (over occupied states) crystal orbital Hamilton populations (ICOHP)
for each cation–anion interaction in a 108-atom ScxAl1�xN (x¼ 16.7%) supercell as a
function of the bond length: (a) Sc–N bonds (circles) and (b) Al–N bonds (diamonds).
Red and blue distinguish bonds along the c axis in the buckled plane. Averages are
denoted using triangles. ICOHP is an indicator of the bonding strength: the more nega-
tive values yield stronger bonds. The magnitude of the averaged ICOHP for Sc–N
bonds along the c axis becomes smaller than that for the in-plane Sc–N bonds or for
the Al–N bonds, indicating softer Sc–N bonds along the c axis.

FIG. 6. Comparison of low frequency relative dielectric permittivity and optical
bandgap of common III-nitride semiconductors and dielectric materials utilized for
III-nitride materials. Several data points were taken from Ref. 38. The results for
various Sc mole fraction ScxAl1�xN discussed here are indicated along the dashed
line. The ScxAl1�xN bandgap value used is from separate ScxAl1�xN samples
grown on AlN on c-plane sapphire templates.
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piezoelectric and ferroelectric properties,42–54 one could potentially
avail of these properties in addition to the high-K since it is now a
complementary metal oxide semiconductor (CMOS) compatible
material due to the utilization of relatively low deposition temperatures
and large wafer scale production of bulk acoustic wave filters.55,56

However, as discussed earlier, in situ deposition of ScxAl1�xN on the
transistor channel potentially eliminates surface contamination and
can be performed in the same epitaxial tools used to deposit AlN and
GaN HEMT thin films such as MBE or MOCVD. Epitaxial growth of
ScxAl1�xN via MBE and MOCVD on semiconducting layers such as
GaN, AlN, and SiC has seen increased attention and development in
recent years39,57–72 with enhanced piezoelectricity and even ferroelec-
tric behavior seen in MBE films.73–75 Analogies for ScxAl1�xN on GaN
may be drawn here55 with the development of hi-K HfO2 for silicon
CMOS and subsequent discovery of ferroelectricity in (HfZr)O2.
Notably, ScxAl1�xN is lattice-matched to the in-plane lattice parameter
of GaN at x� 0.18, making epitaxial stabilization of wurtzite
ScxAl1�xN with tunable thicknesses on GaN possible. This is highly
desirable as AlN grown on GaN forms cracks along the hexagonal unit
cell axes at �6–7nm thicknesses to relieve the tensile misfit strain.76 In
contrast to sputter deposition, MBE typically produces high crystal qual-
ity at ultra-thin thicknesses and is attractive for precise thickness control
and near elimination of chemical contamination of heterojunction inter-
faces, where mobile carriers reside in the transistor channels.

In conclusion, insight into the lattice parameter evolution of
ScxAl1�xN grown epitaxially on GaN is obtained with a trend of
decreasing c-axis lattice parameter values once the Sc content is
increased past the nominally lattice-matched composition of �18% Sc
(x¼ 0.18). The relative dielectric permittivity increases as the Sc con-
tent is increased, reaching a value of �21 at �25% Sc (x¼ 0.25), a
value that is competitive with some existing high-K dielectric materi-
als. The realization of an enhanced er in ScxAl1�xN grown by MBE on
GaN paves the way for the potential usage of ScxAl1�xN as an epitaxial
in situ grown dielectric material that can utilize the unique properties
and functionality of the ScxAl1�xN materials system. This can lead to
increased performance of nitride HEMTs by increasing the breakdown
voltage and decreasing the tunneling current density through reducing
the electric field due to the high-K properties of ScxAl1�xN.

See the supplementary material for in situ RHEED images, ex
situ AFM images, and of the films.
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