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Abstract: Virus-like particles resemble infectious virus particles in size, shape, and molecular
composition; however, they fail to productively infect host cells. Historically, the presence of
virus-like particles has been inferred from total particle counts, by microscopy, and infectious
particle counts or plaque-forming-units (PFUs), by plaque assay; the resulting ratio of
particles-to-PFUs is often greater than one, easily 10 or 100, indicating that most particles are
non-infectious. Despite their inability to hijack cells for their reproduction, virus-like particles and
the defective genomes they carry can exhibit a broad range of behaviors: interference with normal
virus growth during co-infections, cell killing, and activation or inhibition of innate immune
signaling. In addition, some virus-like particles become productive as their multiplicities of
infection increase, a sign of cooperation between particles. Here, we review established and
emerging methods to count virus-like particles and characterize their biological functions. We take
a critical look at evidence for defective interfering virus genomes in natural and clinical isolates,
and we review their potential as antiviral therapeutics. In short, we highlight an urgent need to
better understand how virus-like genomes and particles interact with intact functional viruses
during co-infection of their hosts, and their impacts on the transmission, severity, and persistence
of virus-associated diseases.

Keywords: virus-like particles; defective interfering particles; semi-infectious particles; cell killing
particles; defective viral genomes; plaque forming unit; multiplicity of infection; co-infection;
transmission electron microscopy; clonogenic assay; coulter counting; resistive pulse sensing; flow
virometry

1. Introduction

When multiple observations or measures can be made on the same or related
phenomena, their combination or comparison may lead to new understanding or
insights. In astronomy, for example, multiple measures of planetary positions across
seasons provided compelling evidence for a universe that was heliocentric rather than
geocentric [1]. In biology, the diversity of finches observed at within and between
different islands provided evidence for Darwin’s theory on the origin of species [2]. In
virology, the development of foci-forming [3] and plaque-forming assays [4], enabled
the quantitative measures of infectious virus particle levels as foci-forming or
plaque-forming units (PFUs); when such measures were combined with estimates of
total virus-like particles, initially employing electron microscopy [5], the tally of
particle-to-PFU ratios that differed from unity showed that all virus-like particles were
not infectious. For example, particle-to-PFU ratios have ranged from 1-or-2 for
bacteriophages and vaccinia virus [6] to 10 for herpes virus [7], 20-to-50 for influenza
and 30-to-1000 for poliovirus [8], to 40,000 for varicella zoster virus [9]. The ratio for
SARS-CoV-2 ranges from 10*to-10° based on RNA as a proxy for total particles (genomic
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RNA-to-PFU) [10, 11]. Although virologists are aware that different viruses can exhibit
very different particle-to-PFU ratios, it is not so widely known that non-infectious
virus-like particles can exhibit a diversity of biological activities. We focus here on
non-infectious virus-like particles that arise as byproducts of virus growth in susceptible
cells, which can be found in Nature or from laboratory cultures; we do not review here
the extensive literature on engineered virus-like particles for applications as subunit
vaccines [12] or drug delivery vehicles [13]. By reviewing methods for the detection and
quantitative characterization of virus-like particles, we aim to spotlight their diverse
functions and activities.

2. Counting Particles
2.1. Virus and virus-like particles

The counting of virus and virus-like particles of a laboratory, environmental, or
clinical sample exploits physical, chemical or biological aspects of the virus. These
include the size, shape and electrical conductivity of virus particles, their propensity to
be specifically labeled with one or more fluorophores, and the ability of the virus particle
to infect a host cell, cause cell death, or produce virus progeny. Chemical and physical
methods of particle quantification are summarized in Table 1.

Table 1. Virus particle quantification techniques and their characteristics.

Technique Detection type Counting Throughput Detection limit References
Borries (1938)
T issi Ti 2014
ransmission Physical virus Manual and 100 particles ’ . imm ( )
electron ) ) > 10" particles/ml Blancett (2017)
. particle automated per grid .
microscopy Roingeard
(2019)
Chen (2001)
Fl hore-lab
Epifluorescence Horop (?re € Manual and 100 particles ’ . Ortmann and
. lled virus . > 10" particles/ml
microscopy article automated per grid Suttle (2009)
p Parveen (2018)
Tunable resistive Physical virus 10,000 Akpinar (2015)
, ysiea Automated particles per 10’-10" particles/ml P
pulse sensing particle sec Yang (2016)
1 - -
Flow virometr ' U(ﬁgg il/?szslabe Automated iggglsg OOer 10°- 10° particles/ml Rossi (2015)
y , P p p Zamora (2017)
particle sec

2.1.1. Transmission Electron Microscopy

Transmission electron microscopy (TEM) has been used to identify, classify, and
quantify different viruses based on morphology [16]. Historically, the first virus
visualized by TEM was orthopoxvirus [5]; other discoveries include adenovirus,
enterovirus, paramyxovirus, and reovirus. TEM imaging has been crucial in diagnosing
viruses such as smallpox and chickenpox [24] as well as identifying emergent diseases
and outbreaks such as West Nile [25] and severe acute respiratory syndrome (SARS)
[26]. More recently, the novel human coronavirus associated with COVID-19 was
confirmed by its morphological features under TEM visualization [27].

TEM focuses an accelerated electron beam upon a thin specimen that transmits an
image onto a screen; it has a higher resolution than light microscopy owing to the
shorter wavelength of electrons (0.1 angstrom). Thus, TEM can capture atomic scale
resolution of viruses, which are typically 20-to-200 nanometers in size. Before the
establishment of electron microscopy for determining particle-to-PFU ratios, the first
ratio between the count of infectious particles and the count of physical virus particles
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was measured for vaccinia virus, with the quantity of “elementary bodies” being
calculated using the dry weight of a sample [28]. Elementary bodies were first observed
as micron-sized particles from fowl pox lesion scrapings, later realized as components of
the virus particles. The elementary bodies can be isolated by centrifugation and
sedimentation and the dry weight of the elementary bodies is divided by the calculated
mass of one elementary body; this calculation allowed for error in the estimation,
reflecting sample heterogeneity. The plaque assay was used to determine the infectious
titer of the sample; for vaccinia, this resulted in an average ratio of 4.2 particles per
infectious unit [28]. Years later, the particle-to-PFU ratio for vaccinia was found to be 1.5
particles per infectious unit using electron microscopy [6].

For virus quantification, samples are often mixed with latex beads of known size
and concentration [29, 30]. Manual counting is done to quantify the number of virus
particles and beads in several view fields, and using the relative counts of virus particles
and stock beads, the titer of virus in particles/ml can be determined. Defective particles
can in some cases be detected by TEM owing to differences in their size and morphology
from wild-type particles (Figure 1); defective interfering particles of vesicular stomatitis
virus (VSV) are often visibly truncated, with a rounded shape of diameter 76+8 nm,
which is shorter than the prototype bullet-shape 70+8 nm by 204+14 nm of wild-type
VSV particles [31].

Figure 1. Transmission electron microscopy images of vesicular stomatitis virus defective
interfering (DI-T) and standard (VSV) particles. DI-T particles are truncated relative to full-length
VSV particles. Image adapted from [31]. .

While TEM can produce high-resolution images, its throughput is limited by its
field of view; higher magnification enables greater confidence in particle identification,
but the sampling field is then smaller. Interpretation of TEM images depends on the
operator, and during virus quantification the accidental counting of debris can cause
overestimation; owing to its dependence on human counting, TEM quantification has a
relatively low throughput. Particle counting requires a high enough number of particles
to reflect the average number in the sample, but not so high as to overwhelm the manual
counter. In practice, such counting has a lower detection limit of 10 particles per mL;
samples may need to be concentrated prior to analysis. Specimen preparation can be
complex and tedious, typically requiring several hours, and artifacts in the images may
result from the preparation steps; the virus is purified from cell debris, and a suitable
supporting film needs to be prepared to hold the sample, often using a coated copper
grid [29]. Three methods have been compared, employing sucrose-density purification
followed by negative staining, thin section electron microscopy of pelleted
resin-embedded supernatants, and direct counting after negative staining [30]; direct
counting, where a known titer of latex beads was added to samples, was found to be the
most accurate and reproducible.

2.1.2. Epifluorescence Microscopy
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In epifluorescence microscopy (EFM) virus particles are stained with fluorescent
dyes that can bind nucleic acids and proteins of the virus. Fluorescence microscopy uses
dyes that will produce a distinguishable signal, with the requirement being a
signal-to-noise ratio higher than five [19]. DAPI, Yo-Pro-1, SYBR Green, and SYBR Gold
are dyes commonly used to stain nucleic acids [18, 32]. Proteins are specifically labeled
by monoclonal antibodies (MAb); typically, the MAb or primary antibody is further
bound by a secondary antibody that is covalently linked with a fluorescent dye. When
exposed to different excitation wavelengths of light, different dyes will fluoresce.
Conventionally, fluorescence microscopes are limited by the diffraction of light, with a
resolution of 200-350 nm [33].

Compared to TEM, EFM equipment is less expensive, and sample preparation is
relatively simple, making EFM a favored method for analyzing samples in the field.
EFM has been most commonly used to count viruses in marine samples. Collecting and
fixing samples takes 15-20 minutes, slide preparation takes one hour, and enumeration
takes 30 minutes [34]. The EFM method using nucleic acids stained by Yo-Pro or DAPI
were more precise than the TEM method, with TEM underestimating the number of
viruses in samples [35, 36]; counts of SYBR Gold-stained viral particles using direct
epifluorescence microscopy were 1.34 times higher than counts based on TEM [17].

2.1.3. Resistive Pulse Sensing

Resistive pulse sensing (RPS) is a particle detection method based on the Coulter
principle, first developed and released by Wallace Coulter more than sixty years ago
[37]. The principle takes advantage of the low electrical conductivity of the cells or
particles relative to the conductive aqueous salt solution in which they are suspended; it
refers to a change in impedance comparable to a particle's volume when it passes
through a pore, momentarily reducing the flow of electric current through the solution,
called a blockade event. The pore of the device is large enough for the particle to pass
through, but small enough that the current flow through the cross-sectional area of the
pore is detectably perturbed by the passage of the particle. The device is calibrated by a
solution containing nano-particles of known size and concentration; an appropriate
dilution is needed to minimize the possibility that two particles simultaneously occupy
the pore. Rod-shaped virus particles such as Tobacco mosaic virus may rotate in order to
pass through a solid-state nanopore, which produces noise and unclear signals in the
current readings [20, 38]. For virus populations with varied sizes and aggregates,
particles may become stuck in the pore. This can be avoided by adjusting the nanopore
size or by using tunable elastic nanopores.

Tunable resistive pulse sensing (TRPS) is a variant of RPS techniques that uses an
elastic membrane containing a pore that can be stretched or relaxed, differing from the
standard fixed solid-state pores. The resulting size of the pore aperture can be fine tuned
to better match different sizes of particles, which is especially important for polydisperse
populations of viruses that have a wide range of sizes. The ability to determine the size
of blockade events can also allow for the determination of coincidence and aggregate
events, for example, when the pulse magnitude is an integer multiple of the typical
individual pulses [39]; the pulse shape depends on the trajectory and movement speed
of the particles. The stretchability of the pore also allows for recovery from blockages
[40, 41], to prevent clogging. This technology was mainly developed by Izon Science
[20], and their qViro platform is able to provide estimates for the concentration of
particles as well as the size distribution and surface charges of particles [42]. Currently,
the smallest commercial nanopores have a diameter of 100 nm, with a minimal detection
limit of 70nm [20, 42]. In practice, TRPS has a quantification range from 10’ to 10"
particles/mL [21].
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2.1.4. Flow Cytometry and Virometry

Flow cytometry combined the Coulter principle with fluorescence detection as a
high-throughput method to measure the nucleic acid content and size of cells [43]. Cells
are directed one-by-one into a flow stream by a laminar sheath-flow system, and they
are excited by a laser beam. The resulting deflected light is characterized as forward
scatter (FSC), measuring size of the cell, and side scatter (55C), reflecting its granularity,
a measure of surface irregularity or coarseness. It is noteworthy that flow cytometric
measures of infected-cell granularity have been found to correlate with resulting virus
titers for herpes simplex virus [44]. A standard flow cytometer is not able to effectively
detect particles below 500 nm; modifications that include the use of high-wattage
excitation lasers and reduced flow chamber diameter [45], wider-angle sampling of
scattered light [46], as well as fluorescent labeling, have enabled virus particle
quantification [47, 48]. Based on its origins from flow cytometry, this technology has
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been called flow virometry. A schematic for flow virometry is shown in Figure 2.

Figure 2. Counting of virus-like particles by flow virometry. The apparatus employs a
flow-focusing stream to align particles as they move single file through the beam of a powerful
laser, followed by enhanced wide-angle FSC detection. The standard FSC signal used in
conventional cell counting is blocked, and the wide-angle FSC signal is enhanced by setting a
higher threshold for detection, reducing noise, and thereby enabling sensitive detection of
nano-scale particles. Image adapted from [45].

A powerful feature of flow virometry is the ability to characterize heterogeneity at
the level of individual virions. By taking advantage of multiple fluorescent labels, a flow
virometer can characterize multiple characteristics of individual virus particles. For
example, magnetic nanoparticles (MNPs) coupled with specific monoclonal antibodies
have been used to capture and separate virions, and the separated complexes have been
analyzed by flow virometry. This technique has been used to analyze the maturation of
Dengue virus particles produced from different sources [49], and the antigen and
envelope protein composition of HIV-1 particles [50, 51]. Current limitations of MNP
capture are that only virions complexed with MNPs can be analyzed and steric
interference, which limits the antigens per virion that are accessible for labeling by
antibodies. Many modern flow virometers are able to sort heterogeneous samples using
fluorescence-activated cell sorting (FACS), which allows for further characterization of
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the sorted particles. A flow virometry assay was used to characterize the RNA and
glycoprotein content of Junin virus particles that were sorted and analyzed for distinct
infectivity profiles based on size [52].

Because flow virometry is flow-based and non-visualization based, flow virometry
is a fast technique that relies less on the operator than EFM, with throughput up to
2000-6000 particles per second and producing results for a sample in less than 1 hour.
Operating a viral flow cytometer is less technically demanding than other methods such
as TEM, and many steps of the process are automated [22, 48]. Disadvantages of flow
virometry include the potential for overestimation of particle levels due to background
noise. Events of coincidence will underestimate particle counts, which is why
determining a correct dilution is important for flow-based analysis. The probability of
coincidence events can be described by the Poisson distribution:

P(n) = —(Tt);{(m
where r is the flow rate (particles per second) through the detection volume and ¢ is the
time spent within the detection volume. Typically, a high concentration of about 6 X 10°
particles/ml gives 10 percent probability of two particles occupying the detection
volume at the same time, with higher concentrations resulting in greater probability of
coincidence. The lowest limit of detection of flow virometry is around 100nm [48],

limiting the detection of smaller virus particles.

2.2. Infectious virus particles

Infectious virus particles are quantified by plaque assay or end-point dilution,
which both involve visualization of macroscopic regions of cytopathology. Virus
particles that infect cells and kill them without making virus progeny can be quantified
by their ability to prevent formation of cell colonies, called the clonogenic assay. These
methods are summarized in Table 2.

Table 2. Virus particle quantification techniques based on biological functions and characteristics.

Technique

Detection type Counting Time Units References

Baer &

Infectious virus

Plaque assay . Manual 2-14 days pfu/mL Kehn-Hall
particle (2014)
. . . . . . Flint et al. (2004)
.En(.i—pomt Infectious virus titer Manual .Varle's de}')endmg'on TCID,/mL Reed & Muench
Dilution assay for 50% CPE infection time of virus (1938)
Based on incubation Ngunijiri et al.
Clonogenic s . Manual or  time for visible colonies (2008)
11-kill 1 KPs/mL
assay Cell-killing particle Automated (1 - 3 weeks for CKPs/m Franken et al.
eukaryotes) (2006)

2.2.1. Plaque Assay

The plaque assay is the most widely used method for the quantification of
infectious particles or virus titers. The assay is carried out by preparing serial dilutions
of a virus stock of unknown titer and applying them to susceptible cell monolayers; after
adsorption and infection initiation, cells are overlaid with agar to localize spread of
subsequent rounds of infection to the vicinity of initial infected cells; macroscopic
regions of cell death called ‘plaques’ can be made visible by crystal violet, which stains
intact cells and leaves dead-cell or infected areas unstained. Since each plaque arises
from the amplification of an initial single infectious particle, plaque counts, combined
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with known volumes of known dilutions can be used to calculate the concentration of
infectious particles in the stock sample. The infectious virus titer is reported in plaque
forming foci (PFF) or plaque forming units (PFU) per ml of solution.

2.2.2. End-point dilution

An alternative to the plaque assay, the end-point dilution assay, is also used to
quantify infectious virus titer. End-point dilution measures viral titer based on the
dilution at which half of the total cell cultures become infected, expressed as a 50 percent
tissue culture infectious dose (TCID50 or TCIDs;) per ml. A virus stock of unknown titer
is used to produce 10-fold dilutions, where one milliliter of each dilution is applied to
multiple (say ten) cell cultures. After incubation, plates are inspected for cell death or
cytopathic effects (CPE). The dilution at which 50% of the cultures exhibit CPE is
considered the end point; for example, if 50 percent of the cultures at 10*-fold dilution
exhibit CPE, then the stock has a titer of approximately 10* TCIDs, per ml. In practice,
the TCIDs, is determined from this dilution by calculation using the Spearman-Karber or
Reed-Muench method, though other methods exist [57, 58]. Values of TCID;/ml and
PFU/ml are not equivalent, but are comparable [57]. For consistency, and owing to the
broader use of the plaque assay, we focus here on PFU or PFF measures of virus titer.

2.3. Cell-killing particles (Clonogenic assay)

The clonogenic assay, also known as the colony forming assay, was first developed
by Marcus and Puck to determine the effects of radiation on cells [59]. The procedure
was later adapted to measure cell-killing particles (CKPs) of Influenza A [55]. In a
clonogenic assay, cells are grown in monolayers. Virus particles are attached to the
monolayers at various known multiplicities of PFP, and the infected cells are
monodispersed and seeded into culture plates to allow for colony formation. After
colonies are produced, they are fixed and stained for counting [60]. A survival curve is
produced from the fraction of surviving cell colonies remaining from each multiplicity
of PFP. Using the Poisson distribution with the survival curve function, the titer of CKPs
can be calculated assuming that the virus attachment is nearly 100% and that each CKP
will kill the cell it infects, resulting in no visible colony [61]. Marcus and Sekellick first
used a cell-killing assay to measure ratios between CKPs and PFPs in three different
peaks of DIP and PFP activity [61]; more recently the clonogenic assay was used to show
for a variant of influenza A virus that CKPs were seven-fold more prevalent than PFPs
[55].

3. Virus-like Particles: Emergence, Function, and Prevalence

Although they are often dismissed as bothersome non-infectious byproducts of
standard or infectious virus cultures, virus-like particles can exhibit diverse biological
functions; these include interference with normal infection, induction of apoptosis or
host-cell killing, and activation of innate immune signaling. While next generation and
single-molecule sequencing have revealed the heterogeneity of natural and clinical virus
isolates, both in genome sequences and lengths, studies have focused on subpopulations
that carry full-length genomes and are infectious; understanding how genetic variation
contributes different functions in different cellular and infection environments remains
an aspect of natural virus populations that is largely unexplored. Understanding how to
quantify the functional diversity of virus-like particles may provide insights into their
ecological and evolutionary roles in the natural persistence of viruses and suggest more
robust strategies for their management. Below we discuss the different virus-like
particles and how to characterize their biological functions.

3.1. Defective Interfering Particles
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Virus particles that are unable to replicate independently are called defective or
non-infectious particles. The most widely studied class of defective particles can
interfere with normal or standard virus infections, as shown in Figure 3. Defective
interfering particles, often abbreviated as DI particles or DIPs, were first characterized
by Preben von Magnus, who discovered that mice inoculated with the second and third
culture passages of influenza virus exhibited few signs of infection; incomplete influenza
virus particles were interfering with wild-type replication [62]. Their name, defective
interfering particles, coined in 1970, reflects both the non-infectious but function of these
particles [63].

DIPs and their associated defective genomes were useful probes of replication
mechanisms, before and during the rise of recombinant DNA technologies in the 1980s
and 1990s. Cloned cDNA samples from vesicular stomatitis virus (VSV) and other RNA
viruses were used to recover DIPs [64], and polymerase chain reaction assays were
developed in 1992 to measure copy-back and other defective viral genomes [65].

® o ®
® o @
@ @
@
Host cell
. Fully infectious particle [\f\ Fully infectious genome
. Defective interfering particle ~N DIP genome

Figure 3. Defective interfering particles (DIPs): emergence and biology. DIPs arise from normal
virus infections (left), and they amplify during cell co-infections with fully infectious particles
(middle). DIPs alone are unable to productively infect cells (right).

3.1.1. DIP Emergence

DIPs arise as byproducts of virus replication and infection. When a cell is infected
by a virus, the viral replication complex uses the virus genome or anti-genome as a
template to instruct the synthesis of full-length genomic templates for eventual
packaging into virus progeny particles. Stretches of the template that are flanked by
similar or identical short (less than 20 nucleotide) repeat sequences can enable hopping
of the elongating replication complex between the repeats, causing within-strand or
between-strand recombination, leaving a deletion in the resulting genomic template
[66-68]. If the deletion or other mutation causes loss of an essential virus function, then
the replication product is functionally defective; the product is a DVG or defective viral
genome. DVGs have long been associated with DIPs; more recently, DVGs have been
discovered in natural and clinical virus isolates, enabled in part by advances in deep and
single molecule sequencing. Interest in biological functions of DVGs is growing,
especially their possible roles in disease development and severity; details are reviewed
elsewhere [69, 70]. Two facets of DVGs that contribute to their persistence in nature have
to date garnered less attention: their emergence and potential for evolution.

The structure and evolution of DVG populations will depend on their rates of
generation. Here, it is useful to distinguish between rates and frequencies of mutation
(recombination, or deletion), defined by Drake and Holland [71, 72]. Specifically, the rate
of mutation reflects the chance of a biochemical event caused by the replication
machinery and its processing of the template, as a function of the intracellular
environment. The mutation rate is typically reported for point mutations as a probability
of occurrence per nucleotide copied; for deletions it is a probability per genome
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replication. For example, rates of deletion of 10®-to-10° per replication have been
estimated for the polymerase complex of the T7 phage [73]; larger deletions were lost at
lower rates, based on measures of function recovery linked to deletion of
different-length sequences engineered into the phage ligase.

In contrast to the mutation rate, the mutation frequency depends on both the
mutation rate as well as the ability of the resulting DVG to enrich relative to other
genomes in the population [72]. In short, the frequency of a given DVG is a
population-level measure that is subject to Darwinian selection. The selection and
persistence of DVGs in the lab and in nature depends in part on their ability to replicate
and spread among cells as DIPs. An estimate of mutation frequency can be obtained by
quantifying DIP levels relative to intact infectious particles descended from a single
infected cell; in practice, this was done for populations of VSV isolated from small
plaques [74], and estimated to be 10®-to-107, a value that will reflect a combination of
rates RNA recombination to form DVGs, and the fraction of DVGs that can be packaged
and co-infect cells with intact virus to replicate and spread as DIPs. Similarly, a deletion
frequency of about 10® was estimated for DVGs of phage T7 that deleted their gene
encoding T7 RNA polymerase [75]. Such DVGs and their DIPs can reproduce faster than
full-length genomes in recombinant host cells that supply this essential phage enzyme in
trans [75]; this estimate of deletion frequency is based on quantification of DIPs as early
as they can be detected in small-plaque populations of the phage. If the small plaques
are permitted to expand, different DVG and DIP lineages emerge, each descended from
the same ancestral phage genome; they enrich to different extents along different spatial
directions, as the plaque expands radially [75]. By employing an engineered and
artificial host cellular environment, this work revealed the emergence and evolution of a
subset DVGs that would be otherwise undetected in natural infections.

Other aspects of DVG and DIP evolution have been revealed by other serial-passage
or continuous cell and virus cultures. Such cultures have been shown to promote the
emergence, enrichment, and displacement of longer DVGs by shorter higher fitness
DVG variants; such evolution of DVGs has been demonstrated by tomato bushy stunt
virus (TBSV) during serial propagation on plants [76], by phage T7 during continuous
culture on bacteria [77], and by VSV during serial-passage culture on mammal cells [14].
For TBSV, mechanisms of enhanced DVG stability and encapsidation efficiency did not
account the fitness advantage of shorter DVGs [78]; these results suggest the shorter
DVGs gain a selection advantage over the longer DVGS owing to their higher rates of
replication[79]. In other cases, such as for influenza A virus, selection processes can
favor packaging of DVGs over intact genomes [80], [81][82][83]the emergence of super
promoters that create an imbalance in the genome segments required for productive
infection [84], or some combination of factors that do not require deletions to effectively
replicate and interfere with normal virus growth [85].

[86]More complex evolutionary dynamics of viruses and their defective genomes
can exhibit co-evolution. The emergence of DVGs and DIPs can create an environment
that selects for intact virus that resist interference; for example, mutants of intact VSV
can resist DVG and DIP interference by mutations that impact genome replication and
encapsidation [87]. Moreover, such DIP-resistant intact viruses further create an
environment that promotes the emergence and enrichment of new variant DIPs; across
hundreds of undiluted serial passage cultures, intact virus and their associated DIPs
exhibit multiple rounds of co-evolution [88]. Other DIP-resistant intact viruses,
including rabies [89], lymphocytic choriomeningitis [90], Sindbis [91], and West Nile
virus [92], have the potential to exhibit similar co-evolutionary dynamics.

Finally, DVGs can evolve to cooperate in a manner that frees them from any
dependence on intact virus for their growth. Serial-passage cultures of
foot-and-mouth-disease virus (FMDYV) at high multiplicities of infection enable the
emergence and enrichment of DVGs and DIPs that are infectious by complementation;
by co-infecting the same cell, they provide in trans the replication, encapsidation, and
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other functions needed to propagate their DVGs and their associated defective
cooperating particles [93]. Such cooperation between separately packaged virus
components occurs in nature for multipartite viruses; the ecology and evolution of
multipartite viruses has recently been reviewed [94]. The reverse of the functional
segregation process, whereby separate virus-derived defective RNA segments
recombine to form an intact fully infectious monopartite virus has also been
demonstrated; DVGs of TBSV and a related cucumber necrosis tombusvirus that
co-infected plant-derived protoplasts formed chimeric recombinants that were infectious
in whole plants [95]. Similarly, engineered DVGs of Sindbis virus that were unable to
replicate on their own in host cells, could recombine with each other to form fully
infectious virus [96]. The resulting cooperation between genetic elements that retain or
lack replication and packaging functions have broader and deeper implications beyond
virology, including key transitions in the origins of life [97].

3.1.2. Measures of DIP Interference

The simplest models of DIP interference with virus growth assume single-hit
behavior, where a cell co-infected with intact virus and at least one DI particle can only
produce DI particle progeny [98-101], but experimentally observed interference
behaviors are not quite so simple. The extent of interference depends on dose, the
relative levels for standard and DI particles that co-infect a cell; for example, higher
concentrations of standard influenza A virus can partially rescue standard virus
production during co-infection with DI particles [102]. Moreover, by interfering with the
production of resources that are essential for standard virus replication, DI particles and
genomes can at elevated doses inhibit their own replication.

Quantitative studies of VSV have provided evidence for complex feedback of
interfering processes on DI genome and particle production. Using radioisotopes to
metabolically label both DI and standard particles, density-based separation by
ultracentrifugation, and quantification of both DI and standard particle populations,
increasing inputs of DI particles were found to dramatically reduce production of
standard particles, but the highest yields DI particles were under input doses that
exhibited minimal interference with standard particle production [103]. Further
quantitative studies using plaque-reduction assays and two-tiered titrations revealed
highly non-linear virus and DI particle production with DI input dose [104], as shown in
Figure 4. Specifically, for a fixed dose of virus and increasing DIP inputs, levels of
standard virus production drop, as anticipated; greater numbers of DVGs can compete
for replication and packaging resources, leading to fewer resources for standard virus
production. However, at the highest levels of DIP inputs, standard virus production
exhibits a partial recovery and increasing DIP dose causes DI particle yields to drop
[104]. This phenomenon has been previously described as “interference of interference”
[105]. A similar phenomenon has been described for engineered conditionally replicative
or defective interfering HIV that “shoots itself in the molecular foot”; the DIP inhibits the
virus so effectively that its own production is inhibited [106].
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Figure 4. Production of (a) standard virus and (b) DI particles by co-infected cells is a complex
function of DI particle inputs. All cells were co-infected with standard virus (MOI 20) and
different input levels of DI particles. Levels of standard virus and DI particles were determined by
plaque assay and plaque-reduction assay; adapted from [104].

3.1.3. DIPs in vitro

DIPs have been found for many DNA and RNA viruses. DIP-forming DNA viruses
include herpes simplex virus [107], pseudorabies virus [82], and Ageratum yellow vein
virus [108]. RNA viruses that produce DIPs in vitro include vesicular stomatitis virus
[109], Newcastle disease [110], measles [111], influenza [112], mouse hepatitis virus
[113], and more recently, SARS-CoV-2 [114]. Defective viral genomes of SARS CoV-2
form readily in culture [115], but it remains to be shown to what extent they interfere or
interact with intact coronavirus growth.

3.1.4. DIPs in vivo

The discovery of DIPs for most viruses was initially considered to be irrelevant to
natural infections owing to their origins in vitro [116], but in the last 15 years preliminary
evidence has emerged for DIPs in vivo. For example, short fragments of Dengue viral
RNA containing only key regulatory elements for packaging at 3’ and 5’ ends and large
internal deletions were found in serum from infected patients; patient sera were used to
infect mosquito cultures which developed identical RNA fragments, opening the
possibility that the RNA fragments were transmitted as fully packaged DIPs.
Transcribed in vitro RNA corresponding to the in vivo samples were shown to be
packaged into virus-like particles and transmitted over three passages in the presence of
the wildtype virus. In preparations of Dengue virus with these short RNA fragments,
yields of wildtype virus were reduced [117, 118], providing support for interference and
the most compelling evidence for DIPs in vivo. More recently, the same RNA from the
serum was used to infect cell lines that support dengue virus growth, and again,
infectious virus production was reduced; moreover, the RNA was shown to induce
activity of RIG-I, MDAS5, and interferon, consistent with the immunostimulatory activity
characteristic of DIPs (see Section 3.1.5) [119].

RNA from nasopharyngeal samples of influenza A patients carried large internal
deletions, overlap sequences at their 3" and 5" ends, and retained viral packaging signals
[120], similar to RNA from DIPs generated in vitro [121, 122]. Identical RNA sequences
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were found in two patients in the same contact group, pointing to the possibility of
defective virus transmission. A more compelling case for natural DIPs of influenza A
virus will follow from further studies; for example, interference with standard virus
replication or growth has yet to be demonstrated, and DI particles rather than DVGs
remain to be isolated and characterized. An inverse relationship was discovered between
the number of defective viral genomes and the severity of an influenza A virus infection;
specifically, clinical isolates showed a lower level of DVGs associated with a fatal
infection and higher levels of DVGs in a mild case. These DVGs worked by inducing in
their hosts a protective innate immune response [123]; it remains to be seen whether
such DVGs are packaged and transmitted with viable virus.

Immunostimulatory defective viral genomes (iDVGs) of human respiratory
syncytial virus (RSV) were found in human cells which triggered an antiviral immune
response [124], characteristic of DIPs (see Section 3.1.5). However, the study focused on
DVGs rather than DI particles; DIPs of in vivo RSV remain to be isolated and
characterized.

Direct sequencing of a nasopharyngeal sample from a patient infected with Middle
East respiratory syndrome (MERS) coronavirus revealed two virus variants with internal
deletions that resulted in the truncation of viral proteins, and bioinformatic analysis
suggested the variants were defective in packaging [125, 126]. Functional tests for
interference behavior have yet to be performed to provide evidence that these variants
are DIPs . In the case of SARS-CoV-2, genomes that harbor large identical deletions were
found in multiple patients who had only mild symptoms or were asymptomatic [127,
128]; it remains to be seen what role, if any, DVGs may play in the severity of COVID-19.

3.1.5. DIPs and the Immune Response

Recent reviews have summarized the role of DIPs in activating the immune
response [69, 116]. Specifically, DIPs induce type I interferons (IFN), which play a critical
role in innate immunity; mechanistically, the pattern-recognition receptor RIG-I
preferentially binds with shorter genomes, such as the DVGs from DIPs, which then
induces type I IFNs and other pro-inflammatory cytokines. In addition to activating
immune responses, RIG-I activation can induce apoptosis; thus, DIPs have potential as
anti-viral as well as anti-tumor therapeutics [129].

Beyond activating IFN associated innate immune responses, DIPs can also suppress
IFN [130]. Eight strains of influenza A virus (IAV) were assayed in cell lines that hyper
produce IFN, and their effects on IFN levels were quantified using interferon
dose-response curves [131, 132]. DIPs of strains which induced IFN were named
IFN-inducing particles (IFPs) and particles which suppressed IFN were named IFN
induction-suppressing particles (ISPs). The IFP activity appeared to be caused by the
presence of a double-stranded RNA molecule, as particles with single-stranded RNA did
not induce IFN; such effects of dsSRNA on IFN induction had been well established [133,
134]. IFN induction was enhanced by UV irradiation, which helped convert ISPs into
IFPs and confirmed that the IFN activity is not dependent on virus replication or
infectivity. IAV strains with deletions in NS1 were found to induce IFN at 20-fold higher
levels than the parent stains; the inhibitory effects of NS1 on IFN induction are now well
established [135, 136]. These findings highlight how DIPs can activate or inhibit host
defensive responses by their dsRNA structures or expressed anti-IFN functions.

Most recently, DVGs detected in nasal secretions of RSV have been associated with
clinical patient responses to the virus. In children, DVGs were associated with a higher
viral load and more robust pro-inflammatory response. In adults, however, the clinical
response was based on the time at which DVGs were detected, rather than solely their
presence. DVGs detected early in the course of infection were associated with mild
disease, and DVGs detected later were linked to severe disease. Patients with DVGs had
heightened expression of cytokines, including IFN alpha, which aligned with past
studies linking induction of IFN to DVGs and DIPs [137].
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Aside from their roles in triggering innate immune responses, work on Sendai virus
has provided evidence of roles DIPs and DVGs play in adaptive immunity. Sendai
stocks rich with DIPs were shown to induce dendritic cell maturation in human and
mouse cells by helping upregulate cytokine activity. This pathway worked
independently of IFN, and suggests possible applications of DIPs as vaccine adjuvants,
stimulating dendritic cell maturation [138]. Subsequent studies showed that DIPs could
upregulate the activity of pattern recognition receptors on dendritic cells which then
stimulated T cell activation [139-141]. Also, Sendai DIPs were used as adjuvants for
inactivated influenza A vaccines, where the DIP RNA enhanced the production of
anti-influenza hemagglutinin specific IgG, showing that these DIPs exhibit broad
adjuvant activity [140].

3.1.6. DIPs as Antiviral Therapies

Owing to their ability to interfere with standard virus infections, DIPs have been
proposed as potentially transmissible antiviral therapies. For example, a cloned DI virus
of IAV with a large internal deletion, called 244 DI virus, has been administered
intranasally to mice and found to protect against infections by several strains of IAV; in
ferrets, intranasal administration of 244 DI reduced fever, weight loss, respiratory
symptoms, and the infectious load of the standard virus relative to infected controls,
providing further evidence that 244 DI virus can act as an effective antiviral [142]. A
different DI virus derived from IAV, OP7, has exhibited strong interference when
co-infected with IAV, based on a decrease in the infectivity of the released virions,
support for OP7 as a potential antiviral therapy [85]. Further, therapeutic IAV particles
have been engineered to spread DI genomic segments to divert normal IAV infection
toward the production of non-infectious particles, with demonstrated protection against
lethal virus in an animal model [143].

Engineered DIPs from human immunodeficiency virus (HIV) have been shown to
reduce wildtype HIV replication [144-147]. Multi-scale models based on HIV data from
sub-Saharan Africa suggested how so-called therapeutic interfering particles (TIPs)
could lower HIV/AIDS prevalence by 30 fold in the next 50 years [148]. The proposed
TIPs would be lentiviral vectors which lack genes required to self-replicate, but retain
HIV packaging signals, so the vectors could move from hosts infected with HIV and
outcompete the wild type virus for resources. The difference between a normal DIP and
these TIPs is that the TIPs would be engineered to have a basic reproductive ratio (R,)
that is greater than 1; the TIP would generate more genomic RNA (gRNA) than the wild
type virus, exploit viral resources made by the wild type virus, driving down wild type
virus replication, disease progression, and transmission on large scale [149].

Recently, DIPs have been explored as therapeutics against flaviviruses. A
production cell line used a combination of lentiviral and retroviral vectors to stably
produce virus-free DIPs of dengue virus; following purification and concentration, the
DIPs displayed antiviral activity in cells co-infected with dengue virus. Such production
systems and DIP activities might well be realized for diverse viruses, providing a
potential platform technology for DIP-based antiviral therapeutics [150]. For Zika virus,
DVGs were computationally analyzed to pinpoint which DVG sequences would be most
effective as TIPs. Sequences of DVGs that increased in frequency during consecutive
serial passaging were identified and tested for interference activity against the wild type
virus. Then, the DVGs were engineered into VLPs, which displayed comparable
interference, confirming their possible use as TIPs. The VLPs were used to infect mice
and mosquitoes, reducing transmission of the wild type virus by up to 90% in
mosquitoes and reduced viral loads in the brains and ovaries of mice. Similar DVGs
were found from passage cultures of West Nile and yellow fever virus, suggesting this
methodology can be generalized to arboviruses, and potentially to others [151].

The COVID-19 pandemic has spurred the development of synthetic DVGs and DIPs
against human coronaviruses, specifically SARS-CoV-2. Based on known DIPs of
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coronaviruses [115, 152], a design incorporated 5 and 3’ ends, and putative packaging
signals from the SARS-CoV-2 genome [153]. The fragments were assembled in frame,
synthesized as DNA, inserted into plasmids, transcribed to form gRNA, and
electroporated into cells infected with SARS-CoV 2; the DI genome was found to
replicate about 3-fold faster than the wild type, while reducing the amount of wild type
virus by about half in 24 hours; a next step will be to evaluate the strategy in animal
models. A more indepth study designed therapeutic interfering particles based on
mechanistic modeling, synthesis of TIPs that included 5 and 3’ regions of the
SARS-CoV-2 genome, packaging signals, and a fluorescent reporter; the TIPs were tested
in cell culture, human lung organoids, and in hamsters. The engineered TIPs were found
to inhibit SARS-CoV-2 replication by 10-to-100 fold in cells, and suppressed virus load
by 10-fold in the lungs of hamsters, and reduced inflammation and severe disease when
administered pre- or post-infection [154]. These encouraging results provide hope for
eventual testing and optimization in human clinical trials.

Finally, engineered DIPs may contribute toward a new paradigm to promote public
health: specifically, vaccines that reduce infectious disease owing to their broad
protective effects [155]. For example, an enteroviral therapeutic interfering particle
(eTIP1) based on polio DVGs triggered an antiviral state in the respiratory tract of mice
that inhibited virus replication and protected against infection by enteroviruses,
influenza, and SARS-CoV-2 [156]. The protection was achieved by administering eTIP1
within 24-to-48 hours pre- or post-exposure to virus, and it was mediated by type I IFN
signaling and a virus-specific neutralizing antibody response that persisted several
weeks. Such strategies have the potential to protect against the emergence of virus
variants owing to their broad antiviral effects.

3.2. Semi-Infectious Particles

Influenza A virus (IAV) typically exhibits particle-to-PFU ratios of 10-to-100 [157],
so more than 90 percent of the particles in an IAV population are non-infectious. In a key
experiment, IAV particles could initiate infections in single susceptible cells by starting
gene expression, but most then failed to express one or more essential proteins; the cells
also made no virus progeny, based on the lack of infection spread to nearby cells [158].
A small minority of cells infected by single particles exhibited productive infections.
However, when cells were infected by multiple particles (at MOI 5), most cells were
productive. Since cells infected by single or multiple particles exhibited either poor or
efficient production, the invading entities were named semi-infectious particles (SIPs);
see Figure 5.

Generally, SIPs differ from DIPs. SIPs do not interfere with standard virus
production during co-infections, and they lack the large internal deletions that are
genomic signatures for DIPs [159]. Further, most SIPs of IAV appear to be fully intact;
they carry each of the eight viral RNA genomic segments [160]. So why does only a
small fraction of IAV particles productively infect cells?

High particle-to-PFU ratios can arise from the particles that lack essential functions
for infection, such as DIPs, but also from SIPs, which one might expect to be fully
functional based on their genome sequences, biomolecular composition, and structure.
However, single-cell measures and quantitative models indicate an important role for
stochastic or noisy processes in the mixed on/off behaviors of IAV SIPs and other
viruses.

Common measures of average-cell behavior measured from a population of cells
mask significant heterogeneity that can best be appreciated by measurements at the
single-cell level [161-164]. In perhaps the most extreme case of masked behaviors,
significant subpopulations of infected cells fail to make infectious virus progeny;
specifically, infected cells that exhibit early viral gene expression fail to produce
detectable viral progeny for 30 percent of VSV-infected cells [163], 80 percent of
vaccinia-infected cells [165], and 90 percent for IAV-infected cells [158]. Further, the
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remaining cells that produce infectious virus progeny exhibit yield distributions that
vary from 10-to-1000 fold; such broad distributions have been observed for cells infected
by phage [166], VSV [163], polio [167], and IAV [168].

B @ &

@  Semi-infectious particle Host Cell

Virus genome Nucleus

Figure 5. Three potential fates of semi-infectious particles. (a) A particle infects its host cell but at
least one essential gene fails to be expressed, so the cell makes no progeny, (b) a particle infects its
host cell, all essential genes are expressed; the cell make progeny, and (c) two or more particles
co-infect a host cell, gene or functional deficiencies are overcome by complementation, and the cell
make virus progeny. .

Noteworthy effects of noisy behavior have been revealed by computational models
of different intracellular processes associated with virus-cell interactions: stochastic gene
expression in the lysis-lysogeny decision [169], heterogeneity in the internal levels of
virus intermediates [168, 170], and the sensitivity of infection to degradation of the
entering virus genome [171]. Evidence for stochastic degradation of entering virus
genomes for IAV combined experimental measures from single cells of viral RNA [168],
viral proteins of IAV cells [158], and computational mechanistic modeling [168]. Further
experiments and stochastic modeling of cytosolic diffusional transport have identified
the time point of virus-endosome fusion and the associated diffusion distance for the
release of the viral genome to the nucleus as a critical bottleneck for efficient virus
infection [172]. To overcome the degradation of genomic segments, multiple virions are
required for productive infection; specifically, for IAV approximately 2-to-5 virions must
enter a cell to render it productively infected [173]. In addition to overcoming a loss of
genomic segments by degradation, studies of IAV show how dimerization of the viral
RNA-dependent RNA polymerase may be needed to overcome host-specific barriers to
viral RNA replication [174], providing evidence for a role of collective molecular
interactions in essential viral processing.

The need for cooperation between virus particles is not limited to IAV. Elegant
single-cell studies of vaccinia virus have combined nanoscale fluidic manipulation,
detection of recombinant fluorescent virus particles, and atomic force microscopy (AFM)
to dissect early stages of infection [165]. Based on the efficiency of single-particle inputs,
one may predict efficiencies of two-, three-, and more-input particle behaviors;
deviations from predictions indicate that the overall infection is cooperative. But only 48
percent of surface-bound viruses enter, independent of the total number of particles
bound, indicating entry is not cooperative; further, of those that enter, 80 percent are
unable to direct detectable gene expression, and less than 2 percent of surface-bound
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virus particles were able to complete the entire virus lifecycle and direct assembly of
progeny virions [165].

Beyond the noisy or stochastic behavior, which is inescapable for single infected
cells, other mechanisms may also contribute to the semi-infectious phenotype. For
example, electron microscopy has shown that packaging of genomic segments for IAV
can be incomplete [175], often omitting the segment encoding PB2 [176]. Further, IAV
has a high mutation rate [177], and mutations in multiple IAV genes can make it
susceptible to shut-down by the innate immune system [178]; IAV mutations may also
adversely affect how IAV gene products interact with its many essential host factors
[179].

3.3. Non-infectious Cell Killing Particles

Infectious virus particles typically kill their host cell as a byproduct of producing
virus progeny. Particles that kill their host cell but fail to make detectable progeny have
been called non-infectious cell killing particles (NiCKPs), as shown in Figure 6. In
general, such particles may be quantified by the clonogenic assay (section 2.3), where
cells that are not killed produce colonies that can be readily quantified.

3.3.1. NiCKP characterization

Evidence for NiCKPs was based on differences between measures of cell-killing and
plaque-forming by particles of VSV. The CKPs that failed to produce detectable progeny
by plaque assay were “defective cell killing particles” or NiCKPs, which were produced
at 5-to-9 fold higher concentrations than PFPs [61]. Further, NiCKPs and DIPs both
failed to make virus progeny, but DIPs also failed to kill cells, and DIPs failed to
interfere with host cell killing by NiCKPs. Similar behaviors have been demonstrated for
NiCKPs and DIPs of IAV [180]. A single NiCKP is sufficient to kill a cell [55], and UV
inactivation studies indicate the theoretical target of UV inactivation differs in size for
different IAV particles. More specifically, normal infectious particles have a UV target of
about 13,600 nucleotides (nt), NiCKPs have a UV target of about 2,400 nt, consistent with
one of the polymerase subunit genes, and DIPs have a UV target of about 350 nt,
consistent with the smallest defective viral genomes associated with interference [180].
Finally, assays for infectivity, interference, and cell killing were combined to characterize
the dynamics of IAV populations during high-multiplicity passages; an initial
population of pure infectious particles dropped more than 100-fold during the first
passage as it was replaced by DIPs (68.5 percent) and non-infectious CKPs (31 percent).
During second and third passages, DIPs continued to enrich (above 90 percent) at the
expense of non-infectious CKPs (below 10 percent) and infectious particles (~ 0.01
percent), while total particle counts remained relatively stable and high, above 10,
across passages [180].

3.3.2. Particle Fitness and Virulence

Although descriptions of virus particles as infectious or cell-killing suggest
all-or-nothing behaviors, such descriptions are simplifications for a continuum of
behaviors. The fitness of a virus under specified conditions typically refers to its
replicative ability, while its virulence refers to its capacity to kill cells [181]. The fitness
and virulence of a virus depend on its culture conditions. For example, when a clone of
foot-and-mouth disease virus (FMDV) was passage cultured at large population
numbers, high-fitness high-virulence viruses resulted; however, subsequent
plaque-to-plaque passages produced significant losses in fitness with little loss in
virulence [181]. Such low-fitness high-virulence FMDV particles are analogous to the
non-infectious CKPs described for IAV [180]. Likewise, studies of point mutations on the
effects of FMDYV fitness and virulence give an indication of how these phenotypes are
encoded; fitness can be affected by mutations in any region of the genome, while
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virulence appears to be localized to a subset of viral genes. As a result, virulence can be
more robust than fitness to the effects of deleterious mutations [181]. Studies of fitness
and virulence in other viruses exhibit a variety of behaviors; viral fitness and virulence
are positively correlated but with noteworthy exceptions for VSV [182], and they appear
to lack correlation for infections in plants by Tobacco etch potyvirus [183].
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3.3.3. Application of NiCKPs

Virus-like particles that span a broad range of virulence or cell-killing may have
useful applications in human health. Non-infectious CKPs, which are low-fitness but
remain virulent, may be useful as therapeutics where cell killing is desirable but not
infection spread, as in oncolytic therapies to treat cancer. For example, engineered
highly attenuated VSV, which makes few progeny and small plaques, selectively
infected and killed human gliomas implanted in SCID mice [184]; oncolytic therapy by
VSV has been tested in the United States in phase I clinical trials [185]. Others have
argued for oncolytic strategies that spread rapidly in the host, owing to their high
fitness, but are minimally virulent [182]. Other factors beyond the level of virus fitness
and virulence, including the extent of innate immune activation in healthy and targeted
host cells and tissues, will also be important in the design of oncolytic therapies.
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Figure 6. A non-infectious cell killing particle can trigger apoptosis in a cell.

4. Discussion

Particle-to-PFU ratios. What significance should one assign ratios of particle-to-PFU
or genome-to-PFU that are far greater than one? The ability to quantify such ratios
require total particle or genome levels as well as PFUs measured from the same sample;
such multiple measures are most often performed on samples from ‘clean’ laboratory
cultures of cells and virus rather than from ‘dirty’ or uncultivated environmental
samples. And such cultures typically use transformed cell lines to host the infection
because they can give robust virus titers or enable easy visualization and quantification
of infectious particles by plaque counting. The viruses are often strains that are far
removed from their natural counterparts, having been selected over multiple
generations of passage cultures in the lab to yield robust titers or easily visualized
plaques. The broad ranges of reported particle-to-PFU ratios also reflect a lack of
reference ratios and standardization [186]. Nevertheless, we believe that the utility of
such ratios is not so much in their specific numerical value, but instead, when such ratios
are larger than one they underscore two features that may well hold for viruses and their
hosts in nature: (i) non-infectious virus-like particles easily arise as byproducts of
infection, and (ii) such particles can exhibit diverse biological activities.

Defective viral genomes in nature. We have highlighted compelling examples of
diverse biological activities of virus-like particles and DVGs in vivo or from natural and
clinical isolates. These include semi-infectious particles, which must infect the same cell
with multiple particles in order to give a productive infection for influenza A virus in
mice [158]. Further, the viral genomes with similar or identical defects in essential genes
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have been isolated from human patients and mosquito vectors at different geographical
locations for Dengue virus infections, providing evidence for their long-term
transmission over space and time [117]. More recently, the presence of DVGs arising in
humans has been associated with induction of innate immune responses [124] and
linked to different extents of disease severity for young and old patients of respiratory
syncytial virus [137]. Finally, it is noteworthy that DVGs of polyomavirus, a
double-stranded DNA virus, have been associated with higher viral loads in clinical
samples [187]. We anticipate that deep sequencing and single-molecule sequencing of
patient and environmental isolates will in the coming years reveal still further examples
of DVGs associated with diverse clinical outcomes. An ongoing challenge will be to
characterize the potentially multiple biological activities of such DVGs as well as their
underlying mechanisms; such mechanisms may well act across scales from molecules to
particles, and further to multiple-particle populations.

Engineered study of viruses and virus-like particles. Engineered experimental
systems can enable study of virus-cell behaviors at a deeper level than would be
practical or ethical for natural or patient infections. For example, engineering includes
design, synthesis and application of reporter genomes; single-reporter viruses can be
used to infect cells at low MOI, combined with fluorescent-activated cell sorting (FACS)
to isolate single cells infected by single virus particles, which can be further studied to
study infections start viral gene expression but fail to produce virus, as well as
distributions of yields from productive infections [163]. Engineered dual-color reporting
from virus and DIPs can enable quantification of virus-encoded and DIP-encode gene
expression across populations of single cells under different conditions of co-infection
[188]; micro-well technologies and associated image acquisition and analysis pipelines
can facilitate tracking of such single-cell behaviors over time [162]. Alternatively,
engineering may involve the coupling of wet-lab infection ‘titrations” with mathematical
or computational modeling; effects of DIP dose on the yields virus and DIP activity from
co-infected cells have revealed non-intuitive behaviors, especially at high DIP doses, and
mathematical modeling of the data have suggested single DIPs of VSV cannot fully
inhibit viable virus production [104]. Finally, engineering of artificial environments to
probe isolated single cells over time, when compared with more common populations of
cultured cells, can reveal subtleties of DIPs [162]; co-infection of cells in populations are
less inhibited by DIPs than their single-cell counterparts, suggesting nutrient or
signaling effects within cell populations that temper the inhibitory effects of DIPs on
viral gene expression and growth [189].

How can a virus be “semi-infectious?” Mathematical modeling of single cell
behaviors has highlighted how noisy or stochastic degradation of virus genomes can
cause otherwise identical infected cells to either produce virus or not [171]. More
mechanistic and complex computational models have shown how stochastic synthesis of
transcripts, proteins, and genomes during single-cell infections may contribute to the
broad distribution of virus yields [170], which have been observed experimentally [163,
166, 190]. Such models provide a plausible contributing factor to the phenotype of
semi-infectious particles [159]. More broadly, the challenge of particle-associated
infection has been well articulated by Klasse; “all-or-nothing assumptions about virion
infectivity are flawed and should be replaced by descriptions that allow for spectra of infectious
propensities” [191]. In other terms, the outcomes of a virus-cell interaction can exhibit a
broad distribution of infection-associated behaviors, including failure to make virus
progeny.

Getting back to nature. Transformed cell lines commonly used to culture viruses
are often defective in innate immune signaling and suppression of virus growth; these
include, for example, Vero [192, 193], BHK [194, 195], HEK293T [196], and HeLa [197].
Although, cases are known where differences between viral genome replication,
synthesis and processing of viral proteins, and viral shutoff of host cell processes on
such transformed cell lines are comparable to their behavior in primary cells [198], but
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such studies are rare; comparisons of virus growth and infection spread in culture
highlight greater inhibition where host cells retain innate immune signaling. To what
extent does virus propagation on primary cells and tissues give rise to the diversity of
virus-like particles generated from culture on transformed cells? This remains an open
question.

To culture primary cells is technically challenging, and their infections by viruses
tend to be less productive and highly variable; but it is plausible that the low
productivities and variability reflect features of infection that are a step closer to their
behaviors in nature. Other more natural and challenging to implement culture
environments include conditions that promote primary cell differentiation. For example,
air-liquid interface (ALI) cultures of primary human airway epithelial cells promote
their differentiation to «create a pseudostratified epithelium; goblet and
mucus-producing cells are present, as well as functional cilia, and the epithelium is
susceptible to infection by human rhinovirus-C [199]. The fields of regenerative
medicine and drug testing, which tailor differentiation of human induced pluriopotent
stem cells (iPSCs) toward tissue-like cells, offer potentially more natural and controlled
environments to study virus growth and infection spread behaviors; for example, iPSCs
have been differentiated to create hepatocyte-like cells that support the full life cycle of
hepatitis C virus, including inflammatory host responses to infection [200]. Similar
approaches have been used to create human neural progenitor cells for study of Zika
virus [201] and human 3D lung bud organoids for the study of respiratory syncytial
virus [202]. As these technologies mature and become more widely used, they may help
reveal facets of virus and virus-like particle interactions during growth and spread that
are absent from cultures on transformed cell lines.

Conclusion. Large particle-to-PFU ratios measured for many viruses suggest that
the vast majority of virus-like particles are unable to productively infect their host cells.
However, despite being ‘dead,” virus-like particles can be very much alive in other
facets: parasitizing the resources within host cells that intact viruses establish for
growth, interfering with normal virus growth, activating or inhibiting innate immune
signaling of their host cells, killing their host cells, and teaming with other ‘dead” viruses
to produce infectious progeny. Such understanding of virus-like particles has been
largely gleaned from studies at the level of particles and host cells. A grand challenge
remains to understand how such functions and activities impact the development,
severity, transmission, and persistence of infectious disease in their plant, animal, and
human hosts.
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