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Abstract
We revisit the proof of Landau damping near stable homogenous equilibria of Vlasov–
Poisson systems with screened interactions in the whole space R

d (for d ≥ 3) that
was first established by Bedrossian, Masmoudi and Mouhot in [5]. Our proof follows
a Lagrangian approach and relies on precise pointwise in time dispersive estimates in
the physical space for the linearized problem that should be of independent interest.
This allows to cut down the smoothness of the initial data required in [5] (roughly,
we only need Lipschitz regularity). Moreover, the time decay estimates we prove
are essentially sharp, being the same as those for free transport, up to a logarithmic
correction.

Keywords Vlasov equations · Non-linear stability · Spatially homogeneous steady
states · Dispersive estimates

1 Introduction

In this paper, we are interested in the large time behavior of solutions to the Vlasov–
Poisson system with screening
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⎧
⎨

⎩

∂t fi + v · ∇x fi + E · ∇v fi = 0,

E = −∇x (1 − �x )
−1(ρi − 1), ρi (t, x) =

∫

Rd
fi (t, x, v) dv,

(1.1)

on the whole space x ∈ R
d , v ∈ R

d , d ≥ 3, where fi = fi (t, x, v) ≥ 0 and
E = E(t, x). The screening effect comes from the fact that the interaction potential
associated to Id − � is exponentially decaying as opposed to the Coulomb potential
associated to −�. This system is sometimes referred to as Vlasov–Yukawa and can
also be seen as the Vlasov–Poisson system describing the dynamics of ions, in a
background of electrons that satisfy a linearization of the Maxwell-Boltzmann law
(we refer for example to [3,6,11]).

The global regularity of finite energy solutions for the Vlasov–Poisson system in
the case of three or lower spatial dimension is by now classical ([9,14,16,19,20]). The
asymptotic behavior of solutions for initial data near the trivial equilibrium 0 has also
been the topic of many studies. This was first established in dimension d ≥ 3 in the
unscreened case by Bardos andDegond in [2], following a Lagrangian approach.More
recently the sharp faster decay of derivativeswas established in [15]. Thiswas extended
to (1.1) in dimension d ≥ 2 in [8] making use of the better decay of the electric field
in the case of screened interactions. Other approaches based on vector fields [21] or
Fourier analysis [23] (space–time resonances) were also developed recently.

We are interested in the stability and the large time behavior of solutions near
spatially homogeneous stationary states μ(v) such that

∫

Rd μ(v) dv = 1. Namely, we
look for a solution under the form fi (t, x, v) = μ(v)+ f (t, x, v), where f solves the
perturbed system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t f + v · ∇x f + E · ∇vμ = −E · ∇v f ,

E = −∇x (1 − �x )
−1ρ, ρ(t, x) =

∫

Rd
f (t, x, v) dv,

f |t=0 = f0.

(1.2)

For a class of stable equilibria, we shall study the large time behavior of solutions
to (1.2) for suitably small initial data f0. The dynamics of solutions is expected to
asymptotically approach that of solutions to free transport, a scattering phenomenon
that is often referred to as Landau damping. Landau damping was proved on the torus
T
d × R

d (d ≥ 1) for data with Gevrey regularity [4,17], while on the whole space
R
3 × R

3 it was recently established for the screened Vlasov–Poisson system (1.2)
by Bedrossian, Masmoudi and Mouhot in [5], for data with finite Sobolev regularity.
The proof in [5] is inspired by that for the torus case. Though dispersion on the whole
space is used at some crucial points in order to close the estimates in finite regularity,
the approach is much more related to the one of [4] for the torus than that of Bardos-
Degond (it is actually dispersive properties of the free transport in the frequency space
that are used to control the so-called echoes of [17]).

In this paper,weproveLandaudamping andderivedispersive estimates for solutions
to (1.2) via a Lagrangian approach that is closer to the Bardos-Degond analysis [2] for
the μ = 0 case. Roughly speaking, after proving precise pointwise estimates for the
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linearized equation, the proof of nonlinear stability can be obtained almost in the same
way as in the μ = 0 case. This will allow to strongly cut down the needed regularity
on the initial data, as compared to [5].

Let us now specify our assumptions on the equilibrium μ and state the main result
of this paper. We assume

• (H1) μ ∈ L1(Rd) is a smooth decaying function satisfying 〈v〉k∇vμ ∈ W 2,∞ and
〈v〉4d+6∇vμ ∈ W 2d+5,1 for some k > d.

• (H2) μ satisfies the Penrose stability criterion:

inf
γ≥0

inf
τ∈R, ξ∈Rd

∣
∣
∣
∣1 −

∫ +∞

0
e−(γ+iτ)s 1

1 + |ξ |2 iξ · ∇̂vμ(sξ) ds

∣
∣
∣
∣ ≥ κ,

for some constant κ > 0, where ∇̂vμ is the Fourier transform of ∇vμ (see (1.7)
for the convention we use).

Assumption (H2), called Penrose stability criterion in plasma physics, is a classical
linear stability condition which is also used in [4,5,17]. If this assumption is violated in
the sense that the function inside the inf vanishes for some γ > 0, the equilibriumμ is
linearly unstable, there exist smooth localized perturbations with exponential growth,
and also nonlinearly unstable; we refer for example to [12] Theorem 3.1 for a proof
of nonlinear instability in dimension 1 for periodic boundary conditions (the proof
could be adapted to handle higher dimensions, see [13], and localized perturbations
on the whole space, following [10]). There are many known more tractable sufficient
conditions on μ in order for (H2) to be satisfied, we refer for example to [17, Section
2.2]. In particular, this assumption is satisfied for any sufficiently smooth and localized
positive radial equilibrium μ(v) = F(|v|) in dimension d ≥ 3 and for any positive
radial equilibrium with F ′ < 0 in any dimension. Assumption (H1) simply states that
the equilibrium μ needs to be sufficiently smooth and localized - we did not try to
optimize on this assumption for the sake of readability.

1.1 Main Result

Our main result is as follows. We recall that we consider d ≥ 3.

Theorem 1.1 Assume that (H1) and (H2) are satisfied.
Let k > d, σ, p ∈ (1,+∞) satisfying p(σ −1) > 2d and p′ such that p−1+ p′−1 =

1. Let f0 ∈ W 1,∞ ∩ W 1,1 be an initial condition for (1.2) with

‖〈v〉k/p′
f0‖W σ,p < +∞, for some σ, p ∈ (1,+∞) satisfying p(σ − 1) > 2d

(1.3)
and

‖〈v〉k f0‖W 1,∞ + ‖ f0‖W 1,1 + ‖ f0‖L1
x L

∞
v

+ ‖∇x,v f0‖L1
x L

∞
v

≤ ε0. (1.4)

Then if ε0 > 0 is small enough, there exists a unique global solution of (1.2) such that

‖ρ(t)‖L1 + 〈t〉‖∇xρ(t)‖L1 + 〈t〉d‖ρ(t)‖L∞ + 〈t〉d+1‖∇xρ(t)‖L∞ � ε0 log(2 + t),
(1.5)
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for all t ≥ 0, with 〈·〉 = √
1 + | · |2.

Theorem 1.1 proves that the solution of (1.2) enjoys the same decay properties as
the free transport up to a logarithmic correction. Note that we also establish the sharp
higher decay of derivatives, still up to a logarithmic correction. The same decay holds
for E = −∇x (1 − �x )

−1ρ via standard elliptic estimates. Improved decay of higher
derivatives can be obtained by iterating the method introduced in this paper, since
the submission of the paper this analysis has been performed in [18]. Note that the
low dimension cases where dispersion effects are weaker are left open. In dimension
2, when μ = 0, the decay properties of the density (with weaker estimates for the
highest order derivatives in order to close the argument) have been established in [8]
it would be very interesting to study the influence of a non-trivial μ on this behaviour.
The behavior of the highest derivatives is usually hard to establish when studying
decay rates in nonlinear dispersive problems. A common approach is to have non
sharp estimates in a high norm and to recover the linear dispersive rate for much lower
norms, this is in some sense the approach chosen in [5]. Here, since we have tried to
minimize the maximal number of derivatives, we have allowed a logarithmic loss and
could obtain an almost sharp estimate of the L∞ decay for the highest derivatives.
It seems possible to suppress the logarithmic loss in the L∞ estimates by involving
higher derivatives with weaker estimates.

Note that we have not tried to optimize the needed regularity of the initial data in
this statement, (1.3) means that we ask slightly more than Lipschitz regularity for the
initial condition f0. Since we can take p arbitrarily large, this means that σ can be
taken arbitrarily close to one. We could actually take σ = 1 + 2d

p by replacing W σ,p

by the Besov space Bσ
p,1 (this would change in particular the local existence result of

Proposition 3.1). Note that we do not ask for any smallness in (1.3). This is used only
in order to ensure that a certain quantity (namelyN (t) defined in (3.4)), that we shall
use for a bootstrap argument, is continuous in time.

We could actually even only ask σ > 2d
p , so that loosely speaking,merely smallness

in Hölder norm (instead of Lipschitz) would be needed, but this would require to
replace the W 1,∞ and W 1,1 estimates for the density ρ proved in the paper by more
technical C 0,α = Bα∞,∞ and Bα

1,∞ estimates. The main part of the analysis of this
paper, namely the linearized estimates for the density ρ, is based on a Littlewood–
Paley decomposition and is thus amenable to such a generalization. For the non-linear
estimates, one should replace differentiation by finite differences.

As a consequence of Theorem 1.1, we obtain the aforemetioned scattering property
for the solution to (1.2).

Corollary 1.1 With the same assumptions and notations as in Theorem 1.1, there is
f∞ ∈ W 1,∞ given by

f∞(x, v) = f0 (x + Y∞(x, v), v + W∞(x, v)) + μ (v + W∞(x, v)) − μ(v)

such that

‖ f (t, x + tv, v) − f∞(x, v)‖L∞
x,v

� ε0
log(2 + t)

〈t〉d−1 , (1.6)

for all t ≥ 0. Moreover, we also have that ‖Y∞‖L∞
x,v

+ ‖W∞‖L∞
x,v

� ε0.
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The proof which is an easy consequence of (1.5) will be given in Section 8.
The remaining of the paper is devoted to the proof of Theorem 1.1 and is organized

as follows. Linear estimates are derived in Section 2. This is the main ingredient in the
proof: we shall establish in particular that the density ρ of the solution of the linearized
equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t f + v · ∇x f + E · ∇vμ = 0,

E = −∇x (1 − �x )
−1ρ, ρ(t, x) =

∫

Rd
f (t, x, v) dv,

f |t=0 = f0

enjoys the same pointwise in time L p decay as that of the free transport equation (that
corresponds to μ = 0), up to a logarithmic correction.

The bootstrap argument allowing to get Theorem 1.1 is introduced in Section 3.
Section 4 and 5 are devoted to stability estimates for characteristics. In viewof applying
the linear estimates of Section 2, several source terms need to be estimated. The
contribution from the initial data is studied in Section 6, while the estimates on the
terms due to the reaction term −E · ∇vμ are established in Section 7. Note that
in order to establish the higher decay of derivatives, we shall use a different, more
straightforward change of variables than in [15]. This approach actually allows to
recover the estimate of [15] without logarithmic loss. The logarithmic loss in our main
result only comes from the linear estimates in the presence of a non-trivial μ. The
paper ends with a reminder of a few classical estimates related to the Littlewood–
Paley decomposition.

1.2 Notations

We use ·̂ for the “space” Fourier transform on R
d and ·̃ for the “space–time” Fourier

transform on R
d+1 with the convention:

ĝ(ξ) =
∫

Rd
e−i x ·ξ g(x) dx, h̃(τ, ξ) =

∫

R

∫

Rd
e−iτ t e−i x ·ξh(t, x) dxdt . (1.7)

Throughout the paper, functions depending on time are extended by zero for t < 0.
We shall use the homogeneous Littlewood–Paley decomposition in R

n with n = d
or d + 1. We write for u ∈ S ′(Rn),

u =
∑

q∈Z
uq

where

uq(ζ ) = u(ζ )χq(ζ ), χq(ζ ) = χ(
ζ

2q
), · = ·̂ or ·̃, (1.8)

and χ ∈ [0, 1] is a fixed smooth compactly supported function in the annulus 3
4 ≤

|ζ | ≤ 8/3 which is equal to one in the annulus 4
3 ≤ |ζ | ≤ 3/2. More precisely, we
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take

χ(ζ ) = φ(ζ/2) − φ(ζ )

where ζ �→ φ(ζ ) ∈ [0, 1] is a smooth nonnegative function which is supported in
the ball B(0, 4/3) and which is identically one in the ball B(0, 3/4). The classical
Bernstein Lemma is recalled in Lemma A.1.

2 Linear Estimates

In this section we study the linear equation

ρ(t, x) =
∫ t

0

∫

Rd
[∇x (1−�x )

−1ρ](s, x−(t−s)v) ·∇vμ(v) dvds+ S(t, x), t ≥ 0,

(2.1)
with S being a given source term. In what follows, we extend ρ and S by zero for
t < 0 so that the equation (2.1) is satisfied for t ∈ R. The main result of this section
is the following.

Theorem 2.1 Assume that (H1) and (H2) are satisfied. Then for all S ∈ L1(R, L1(Rd)∩
L∞(Rd)), there exists a unique solution of (2.1) in L1

loc(R, L2(Rd)) that can be
expressed in the following way:

ρ = S + G ∗t,x S, (2.2)

where the kernel G(t, x) satisfies G|t<0 = 0 and there exists C > 0 such that the
following uniform estimates hold:

‖G(t)‖L1 ≤ C

1 + t
, ‖G(t)‖L∞ ≤ C

td−1+δ + td+1 , ∀t > 0, (2.3)

where δ ∈ (0, 1) can be chosen arbitrarily small. Furthermore, its spatial derivatives
satisfy

‖∇xG(t)‖L1 ≤ C

t2
, ‖∇xG(t)‖L∞ ≤ C

td+2 , ∀t ≥ 1. (2.4)

As a corollary of Theorem 2.1, we immediately obtain decay estimates for the
solution of (2.1).

Corollary 2.1 Assume that (H1) and (H2) are satisfied. Then, there exists M > 0 such
that for all S ∈ L1(R, L1(Rd)∩L∞(Rd)), the solution of (2.1) satisfies the estimates

‖ρ(t)‖L1 + td‖ρ(t)‖L∞ ≤ M log(1 + t)‖S‖Y 0
t
,

t‖∇ρ(t)‖L1 + td+1‖∇ρ(t)‖L∞ ≤ M log(1 + t)‖S‖Y 1
t
,
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for t ≥ 1, where the norms Y 0
t ,Y 1

t are defined by

‖S‖Y 0
t

= sup
[0,t]

(
‖S(s)‖L1 + (1 + s)d‖S(s)‖L∞

)
,

‖S‖Y 1
t

= sup
[0,t]

(
‖S(s)‖L1 + (1 + s)‖∇S(s)‖L1 + (1 + s)d+1‖∇S(s)‖L∞

)
.

(2.5)

In Corollary 2.1, we state only large time estimates, since the estimates for t ≤ 1
can be obtained in a straightforward way.

Note that derivatives decay at a t−1 faster rate. In particular, Corollary 2.1 immedi-
ately yields decay estimates for the linearized Vlasov–Poisson system of (1.2) around
μ(v), namely for the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t f + v · ∇x f + E · ∇vμ = 0,

E = −∇x (1 − �x )
−1ρ, ρ(t, x) =

∫

Rd
f (t, x, v) dv,

f |t=0 = f0.

(2.6)

Indeed, using the method of characteristics, we obtain that ρ solves (2.1) with S(t, x)
given by

S(t, x) =
∫

Rd
f0(x − tv, v) dv.

Assuming that f0 ∈ L1
x,v and f0 ∈ L1

x (L
∞
v ), we have from the standard dispersive

estimates for free transport (see [2]) that

‖S(t)‖L1 ≤ ‖ f0‖L1 , ‖S(t)‖L∞ ≤ 1

td
‖ f0‖L1

x L
∞
v

.

Similar estimates hold for derivatives:

‖∇S(t)‖L1 ≤ 1

t
‖∇v f0‖L1 , ‖∇S(t)‖L∞ ≤ 1

td+1 ‖∇v f0‖L1
x L

∞
v

.

Therefore, we obtain from Corollary 2.1 that the pointwise behavior of the density
of the linearized equation (2.6) is the same as the one of the free transport, up to a
logarithmic loss.

Let us right away provide the proof of Corollary 2.1.

Proof of Corollary 2.1 Using the representation (2.2) and the fact that S and G vanish
for negative times we obtain

ρ(t) = S(t) +
∫ t

0
G(t − s) ∗x S(s) ds.
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Therefore, using (2.3), we obtain

‖ρ(t)‖L1 � ‖S(t)‖L1 +
∫ t

0

1

1 + (t − s)
‖S(s)‖L1 ds

�
(

1 +
∫ t

0

1

1 + s
ds

)

sup
[0,t]

‖S(s)‖L1 .

In a similar way, we have

‖ρ(t)‖L∞ � ‖S(t)‖L∞ +
∫ t

2

0
‖G(t − s)‖L∞‖S(s)‖L1 ds

+
∫ t

t
2

‖G(t − s)‖L1‖S(s)‖L∞ ds.

Therefore, using again (2.3), we get that

‖ρ(t)‖L∞ � ‖S(t)‖L∞ + 1

td+1

∫ t
2

0
‖S(s)‖L1 ds +

∫ t

t
2

1

1 + t − s
‖S(s)‖L∞ ds

� ‖S(t)‖L∞ + 1

td
sup

[0,t/2]
‖S(s)‖L1 + 1

td
sup

[t/2,t]
(1 + sd)‖S(s)‖L∞

∫ t
2

0

1

1 + s
ds

� t−d log(1 + t)‖S‖Y 0
t
,

upon recalling the notation (2.5). This proves the desired estimates for ρ(t). Similarly,
we compute

t‖∇ρ(t)‖L p � t‖∇S(t)‖L p + t
∫ t

2

0
‖∇G(t − s)‖L p‖S(s)‖L1 ds

+ t
∫ t

t
2

‖G(t − s)‖L1‖∇S(s)‖L p ds

for p = 1 and p = ∞. By using (2.3) and (2.4), the estimates for derivatives follow.
��

Before giving the proof of Theorem 2.1 it will be useful to establish some properties
of the kernel of the integral equation (2.1).

Let us set w = x − (t − s)v and then integrate by parts to get the equivalent
formulation

ρ(t, x) =
∫ t

0

∫

Rd
ρ(s, w)

((

1 − 1

(t − s)2
�v

)−1

�vμ

)

×
(
x − w

t − s

)
1

(t − s)d+1 dwds + S(t, x), t ≥ 0. (2.7)
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Since ρ and S by zero for t < 0, the equation (2.1) is satisfied for t ∈ R and can be
rewritten as the convolution equation

ρ(t, x) = (K ∗t,x ρ)(t, x) + S(t, x), t ∈ R, (2.8)

where the kernel K is given by

K (t, x) = 1

td+1

((

1 − 1

t2
�v

)−1

�vμ

)
( x

t

)
1t>0.

Note that we have

(K ∗t,x ρ)(t, x) =
∫

R

∫

Rd
K (t − s, x − w)ρ(s, w)dwds

=
∫ t

0
(K (t − s, ·) ∗x ρ(s, ·)) (x) ds,

where we use the notation ∗t,x for the space–time convolution and ∗x for the space
convolution.

We have the following properties for the kernel K :

Lemma 2.1 Assuming (H1), there exists C > 0 such that the following estimates hold:

‖K (t)‖L1 ≤ C

1 + t
, ‖K (t)‖L∞ ≤ C

td(1 + t)
, ∀t > 0.

Note that we get in particular from this lemma that K ∈ L1
loc(R, L1(Rd)) so that its

Fourier transform on R
d+1 is well defined (at least as a tempered distribution). We

shall not use explicitly these precise properties of K besides the fact that its Fourier
transform makes sense.

Proof We clearly get that

‖K (t, ·)‖L∞ ≤ C

td+1 ‖Ft‖L∞ ,

and by change of variables, that

‖K (t, ·)‖L1 ≤ C

t
‖Ft‖L1 ,

where

Ft (v) =
((

1 − 1

t2
�v

)−1

�vμ

)

(v),
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so that it only remains to estimate the L1 and L∞ norms of Ft .Weuse the homogeneous
Littlewood–Paley decomposition and the Bernstein inequality (A.1) to get that for
every p ∈ [1,+∞],

‖Ft‖L p �
∑

q∈Z

22q

1 + 22q
t2

‖μq‖L p .

We can thus obtain from that uniformly for t > 0,

‖Ft‖L p �
∑

q≤0

22q‖μq‖L p +
∑

q≥0

2−q‖μq‖W 3,p � ‖μ‖W 3,p .

This yields the estimates for t ≥ 1. It remains to improve the estimates for t ∈ (0, 1].
This time, we additionally rely on the bound (1 + |ξ |2

t2
) ≥ max

(
2 |ξ |

t ,
|ξ |2
t2

)
to obtain

‖Ft‖L p �
∑

q≤0

t2q‖μq‖L p +
∑

q≥0

t2‖μq‖L p

�
∑

q≤0

t2q‖μq‖L p +
∑

q≥0

t22−q‖μq‖W 1,p � t‖μ‖W 1,p ,

hence concluding the proof.

Proof of Theorem 2.1

We now give the proof of Theorem 2.1 which we shall split in several steps. As already
justified in [5,17] (see in particular the proof of Proposition 2.2 in [5] and the proof
of Theorem 3.1 in [17]), we can express the solution of (2.1) through its space–time
Fourier transform by

ρ̃(τ, ξ) = 1

1 − K̃ (τ, ξ)
S̃(τ, ξ)

in which K̃ (τ, ξ) is given by

K̃ (τ, ξ) =
∫ +∞

0
e−iτ t iξ

1 + |ξ |2 · ∇̂vμ(tξ) dt . (2.9)

The fact that the inverse Fourier transform of 1
1−K̃ (τ,ξ)

S̃(τ, ξ) vanishes for t < 0

comes from a Paley-Wiener type argument and uses the fact that 1 − K̃ (z, ξ) does
not cancel in the half-plane � z ≤ 0, which is precisely the Penrose stability condition
(H2).
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We can then write

ρ̃(τ, ξ) = S̃(τ, ξ) + K̃ (τ, ξ)

1 − K̃ (τ, ξ)
S̃(τ, ξ)

and hence the expression (2.2) follows by setting

G(t, x) = F−1
(τ,ξ)→(t,x)

( K̃ (τ, ξ)

1 − K̃ (τ, ξ)

)
. (2.10)

It thus remains to check the claimed properties of G.

At first, we observe that for ξ �= 0, K̃ (z,ξ)

1−K̃ (z,ξ)
is a holomorphic function in � z < 0

thanks to (H1) and (H2):

• the Penrose condition (H2) ensures that 1 − K̃ (z, ξ) is away from 0,
• and (H1) entails that ∇̂vμ and its derivatives are decreasing sufficiently fast, so
that one can apply Lebesgue dominated convergence theorem.

Now, note that thanks to (H1) and (H2), K̃ (z,ξ)

1−K̃ (z,ξ)
is uniformly bounded in � z ≤ 0.

Indeed, by (H1), ∇vμ ∈ W 2,1 and therefore we get

∀τ ∈ R, γ ≥ 0, |K̃ (τ − iγ, ξ)| �
∫ +∞

0
e−γ t |ξ |

(1 + t |ξ |)2 dt �
∫ +∞

0

ds

(1 + s)2
.

(2.11)
In addition, by integration by parts, we can compute

K̃ (τ, ξ) =
∫ +∞

0

(1 − ∂2t )(e−iτ t )

1 + τ 2

iξ

1 + |ξ |2 · ∇̂vμ(tξ) dt

=
∫ +∞

0

e−iτ t

1 + τ 2

iξ

1 + |ξ |2 · (1 − ∂2t )∇̂vμ(tξ) dt

− 1

1 + τ 2

iξ

1 + |ξ |2 ξ · ∇ξ [∇̂vμ](0).

Note that we have used that ∇̂vμ(0) = 0, which ensures that a boundary term cancel.
By (H1), 〈v〉2∇vμ ∈ W 2,1. This yields, arguing similarly as for (2.11), for any fixed
ξ �= 0,

|K̃ (τ, ξ)| � 1

1 + τ 2
.

Since a similar expression holds for the derivatives ∂α
τ K̃ (τ, ξ) and by (H1), 〈v〉2∇vμ ∈

W 4,1, for any fixed ξ �= 0, we have

|∂α
τ K̃ (τ, ξ)| � 1

1 + τ 2
, α ≤ 2, (2.12)

uniformly in τ .
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This entails in particular that K̃ (τ,ξ)

1−K̃ (τ,ξ)
and its inverse Fourier transform in time

have moderate decrease. Therefore, thanks to an adequate version of the Paley-Wiener

theorem (see Theorem 3.5 in [22]), we get that F−1
τ→t

(
K̃

1−K̃

)
vanishes for t < 0 for

every ξ . We conclude that G vanishes for t < 0.
It remains to prove the pointwise decay estimates (2.3)-(2.4).We need the following

properties of K̃ (τ, ξ).

Lemma 2.2 We can write

K̃ (τ, ξ) = 1

1 + |ξ |2 K̃
h,1(τ, ξ) (2.13)

where K̃ h,1(τ, ξ) is positively homogeneousof degree zeroand K̃ h,1 ∈ C 2d+3(Rd+1\{0}).
Moreover, there exists C > 0 such that

|∂α
τ ∂

β
ξ K̃

h,1(τ, ξ)| ≤ C, ∀(α, β), |α| + |β| ≤ 2d + 3, ∀(τ, ξ) ∈ S
d , (2.14)

where S
d is the unit sphere of R

d+1.

Proof From the definition (2.9), we have

K̃ h,1(τ, ξ) =
∫ +∞

0
e−iτ t iξ · ∇̂vμ(tξ) dt .

We observe that for λ > 0,

K̃ h,1(λτ, λξ) =
∫ +∞

0
e−iλτ t iλξ · ∇̂vμ(tλξ) dt = K̃ h,1(τ, ξ),

upon using the change of variable s = λt . Note that by using again (2.11), we have

sup
(τ,ξ)∈Rd+1

|K̃ h,1(τ, ξ)| < +∞.

To estimate the derivatives on the sphere, we first handle the case when |ξ | ≥ 1
2 .

Thanks to (H1), 〈v〉2d+3∇vμ ∈ W 2d+5,1 and consequently, we have

|∂α
τ ∂

β
ξ K̃

h,1(τ, ξ)| �
∫ +∞

0

〈t〉|α|+|β|

(1 + t |ξ |)N dt

for N = 2d + 5, and therefore, for |ξ | ≥ 1
2 and |α| + |β| ≤ 2d + 3, we have

|∂α
τ ∂

β
ξ K̃

h,1(τ, ξ)| � 1, (τ, ξ) ∈ S
d , |ξ | ≥ 1

2
. (2.15)
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Let us next consider the case when |ξ | ≤ 1
2 , in which we make use of the fact that

τ is bounded below away from zero, recalling (τ, ξ) ∈ S
d . Integrating by parts, we

get for every n ≥ 2

K̃ h,1(τ, ξ) =
n∑

k=2

1

(iτ)k
Pk(ξ) + 1

(iτ)n
Rn(τ, ξ) (2.16)

where

Pk(ξ) = iξ · (Dk−1
ξ ∇̂vμ)(0) : ξ⊗k−1,

Rn(τ, ξ) =
∫ +∞

0
e−iτ t rn(t, ξ) dt, rn(t, ξ) = iξ · (Dn

ξ ∇̂vμ)(tξ)) : ξ⊗n,

with the definition

ξ · (Dk
ξ ∇̂vμ)(ζ ) : ξ⊗k =

∑

j0, j1,··· jk
ξ j0ξ j1 · · · ξ jk

∂k

∂ξ j1
· · · ∂ξ jk

∂̂v j0
μ(ζ ).

Note thatPk is a homogeneouspolynomial of degree k. Thanks to (H1), 〈v〉2d+3∇vμ ∈
W 2d+5,1 and thus we have for all n ≤ 2d + 3,

|rn(t, ξ)| � |ξ |n+1

(1 + t |ξ |)N ,

for N = 2d + 5. More generally, using 〈v〉4d+6∇vμ ∈ W 2d+5,1, we have for all
n ≤ 2d + 3 and |β| ≤ 2d + 3,

|∂β
ξ rn(t, ξ)| � |ξ |n+1−|β|

(1 + t |ξ |)N−|β| .

Consequently, applying derivatives to the expansion (2.16), we get for |ξ | ≤ 1
2 ,

|∂α
τ ∂

β
ξ K̃

h,1(τ, ξ)| � 1 +
∫ +∞

0

t |α||ξ |n+1−|β|

(1 + t |ξ |)N−|β| dt � 1 +
∫ +∞

0

s|α||ξ |n−|β|−|α|

(1 + s)N−|β| ds.

Thus, we can fix n = 2d + 3. We get for |α| + |β| ≤ 2d + 3,

|∂α
τ ∂

β
ξ K̃

h,1(τ, ξ)| � 1, (τ, ξ) ∈ S
d , |ξ | ≤ 1

2
.

This, together with (2.15), concludes the proof.

Remark 2.1 We can also express the expansion (2.16) for n = 2 in a slightly different
way. We write

K̃ h,1(τ, ξ) = 1

(iτ)2
P2(ξ) + ξ⊗2

(iτ)2
: K̃ h,2(τ, ξ) (2.17)

123



18 Page 14 of 37 D. Han-Kwan et al.

where P2 is a homogeneous polynomial of degree two in ξ and

K̃ h,2(τ, ξ) =
∫ +∞

0
e−iτ t iξ · (D2

ξ ∇̂vμ)(tξ) dt .

From the same arguments as in the proof of Lemma 2.2, we get that K̃ h,2(τ, ξ) is
homogeneous of degree zero on R

d+1 and that

|∂α
τ ∂

β
ξ K̃

h,2(τ, ξ)| ≤ C, ∀(α, β), |α| + |β| ≤ 2d + 3, ∀(τ, ξ) ∈ S
d . (2.18)

Combining Remark 2.1 and Lemma 2.2, we obtain

Corollary 2.2 We can write the expansion

K̃ (τ, ξ) = 1

1 + |ξ |2 + τ 2

(

K̃ h,1(τ, ξ) − P2(ξ)

1 + |ξ |2 − ξ⊗2

1 + |ξ |2 : K̃ h,2(τ, ξ)

)

where K̃ h,1, K̃ h,2 are positively homogeneous of degree zero and satisfy the estimates
(2.14), (2.18) and P2(ξ) is a homogeneous polynomial of degree 2.

Proof The corollary follows from a combination of (2.13) and (2.17).

Let us now use the properties of K̃ (τ, ξ) to derive the pointwise decay estimates
for G(t, x), recalling (2.10). We first use the homogeneous Littlewood–Paley decom-
position of R

d+1 to decompose G(t, x), yielding

G(t, x) =
∑

q∈Z
Gq(t, x),

recalling (1.8). The general strategy will consist of treating differently the contribution
of high and low frequencies. We first deal with high frequencies:

Lemma 2.3 There exist A ≥ 1 and C > 0 such that for every δ ∈ (0, 1] and every q
with 2q ≥ A, we have the estimates

‖Gq(t)‖L1 ≤ C
2q(1+δ)

1 + 22q
1

(1 + 2q |t |)N ,

‖Gq(t)‖L∞ ≤ C
2q(d+1+δ)

1 + 22q
1

(1 + 2q |t |)N , ∀t ∈ R, (2.19)

for N = d + 3.

Proof We first observe that we can rewrite (2.10) under the form

G̃ = K̃ + K̃ G̃.
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Let ϕ be a smooth cut-off function that is supported in an annulus slightly larger than
that of χ , so that ϕ = 1 on the support of χ . Setting

K̃q = ϕ

(
(τ, ξ)

2q

)

K̃ ,

we hence get the convolution equation

Gq = Kq + Kq ∗t,x Gq . (2.20)

Let us first bound Kq . We shall prove that for all q > 1,

‖Kq(t)‖L1
x

� 2qδ

1 + 22q
2q

(1 + 2q |t |)N , (2.21)

for N = d + 3. Using the expansion in Corollary 2.2, we write

K̃q = K̃q,1 + K̃q,2,

with

K̃q,1 = 1

1 + |ξ |2 + τ 2
K̃ h,1(τ, ξ)χq(τ, ξ),

K̃q,2 = −1

1 + |ξ |2 + τ 2

(
ξ⊗2

1 + |ξ |2 : K̃ h,2(τ, ξ) + P2(ξ)

1 + |ξ |2
)

χq(τ, ξ).

We first check (2.21) for Kq,1. By a scaling argument, we can write

Kq,1(t, x) = 2q(d+1)kq,1(2
q t, 2q x)

where

kq,1(T , X) = F−1
(τ,ξ)→(T ,X) K̃q,1(2

qτ, 2qξ).

We claim that

|∂α
τ ∂

β
ξ k̃q,1(τ, ξ)| � 1

1 + 22q
, (2.22)

uniformly in q for q > 1 for |α|+|β| ≤ N +d. This yields (2.21) for Kq,1. Indeed,
from (2.22), we obtain from taking integration by parts

|kq,1(T , X)| � 1

1 + 22q
1

(1 + |T | + |X |)N+d
,

which in turn implies

‖kq,1(T )‖L1
X

� 1

1 + 22q
1

(1 + |T |)N .
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Therefore, by a change of variables, we obtain

‖Kq,1(t)‖L1
x

� 1

1 + 22q
2q

(1 + 2q |t |)N .

We now prove the claim (2.22). By homogeneity of K̃ h,1, we can write

k̃q,1(τ, ξ) = 1

1 + |2qξ |2 + (2qτ)2
K̃ h,1(τ, ξ)χ(τ, ξ).

Since K̃ h,1 is a smooth homogeneous function of degree zero that satisfies (2.14), that
is

|∂γ
τ,ξ K̃

h,1(τ, ξ)| � |(τ, ξ)|−|γ | � 1,

since on support of χ , |ξ | + |τ | is bounded from below by a strictly positive number.
On the other hand,

∣
∣
∣
∣∂

γ
τ,ξ

(
1

1 + |2qξ |2 + (2qτ)2

)∣
∣
∣
∣ � 2q|γ |

(1 + 22q(|ξ |2 + τ 2))1+|γ |/2 � 1

1 + 22q

on the support of χ . We thus deduce the estimate (2.22), and hence (2.21) for Kq,1.
For what concerns Kq,2, using (A.3), for any δ ∈ (0, 1], we have

‖Kq,2(t)‖L1
x

� 2qδ

∥
∥
∥
∥F

−1
(τ,ξ)→(t,x)

(
1

1 + |ξ |2 + τ 2
K̃ h,2(τ, χ)χq(τ, ξ)

)∥
∥
∥
∥
L1
x

+ 2qδ

∥
∥
∥
∥F

−1
(τ,ξ)→(t,x)

(
1

1 + |ξ |2 + τ 2
χq(τ, ξ)

)∥
∥
∥
∥
L1
x

,

Again, note that K̃ h,2 is a smooth homogeneous function of degree zero that satis-
fies (2.18) and therefore we have

|∂γ
τ,ξ K̃

h,2(τ, ξ)| � |(τ, ξ)|−|γ | � 1,

on the support of χ . As a result, arguing as for Kq,1 with a scaling argument, we
deduce (2.21).

Moreover, exactly as above, we obtain for all q > 1,

‖Kq(t)‖L1
x

� 2qδ

1 + 22q
2q

(1 + 2q |t |)N . (2.23)

Therefore, rewriting (2.20) as

Gq(t, x) = Kq(t, x) +
∫

R

(
Kq(t − s, ·) ∗x Gq(s, ·)

)
(x) ds, (2.24)
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and taking the L1 norm in x and by using (2.21) and (2.23), we thus obtain that

‖Gq(t)‖L1 � 2qδ

1 + 22q
2q

(1 + 2q |t |)N +
∫

R

2qδ

1 + 22q
2q

(1 + 2q |t − s|)N ‖Gq(s)‖L1 ds.

Let us set for all T ∈ R

|||Gq |||1,T = (1 + |T |)N‖Gq(
T

2q
)‖L1 .

We deduce after a change of variables that

|||Gq |||1,T � 2q2qδ

1 + 22q
+ 2qδ

1 + 22q

∫

R

(1 + |T |)N
(1 + |T − S|)N

1

(1 + |S|)N |||Gq |||1,S dS

� 2q2qδ

1 + 22q
+ 2qδ

1 + 22q
sup
S∈R

|||Gq |||1,S,
(2.25)

where we have used that for N > 1,

sup
T∈R

∫

R

(1 + |T |)N
(1 + |T − S|)N

1

(1 + |S|)N dS < +∞.

Consequently, after taking the sup in T , we can find A > 1 sufficiently large such that
for all q satisfying 2q > A, the last term on the right of (2.25) is absorbed into the
left, yielding

sup
T

|||Gq |||1,T � 2q2qδ

1 + 22q
.

This proves the L1 estimate in (2.19).
It remains to estimate the L∞ norm. The proof follows the same lines. Arguing as

for (2.21), we obtain

‖Kq(t)‖L∞(Rd ) + ‖Kq(t)‖L∞(Rd ) � 2qδ

1 + 22q
2q(d+1)

(1 + 2q |t |)N ,

for any δ ∈ (0, 1]. We then get by using (2.20) and (2.21) that

‖Gq(t)‖L∞ � 2qδ

1 + 22q
2q(d+1)

(1 + 2q |t |)N +
∫

R

‖Kq(t − s)‖L1‖Gq(s)‖L∞ds

� 2qδ

1 + 22q
2q(d+1)

(1 + 2q |t |)N +
∫

R

2qδ

1 + 22q
2q

(1 + 2q |t − s|)N ‖Gq(s)‖L∞ ds.

We then conclude as before by setting

|||Gq |||∞,T = (1 + |T |)N‖Gq(
T

2q
)‖L∞ ,
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that

sup
T

|||Gq |||∞,T � 2qδ2q(d+1)

1 + 22q
+ 2qδ

1 + 22q
sup
S

|||Gq |||∞,S .

The estimate (2.19) for the L∞ norm thus follows by choosing A sufficiently large.

From now on, A > 1 is fixed and there remains to estimate Gq for 2q ≤ A. This is
the content of the next lemma.

Lemma 2.4 For A > 1, there exists C > 0 such that for every q ∈ Z with 2q ≤ A, we
have the estimate

‖Gq(t)‖L1 ≤ C
2q

(1 + 2q |t |)N , ‖Gq(t)‖L∞ ≤ C
2q(d+1)

(1 + 2q |t |)N , ∀t ∈ R, (2.26)

for N = d + 3.

Proof We use directly the expression (2.10) and argue as in the proof of Lemma 2.3.
By a scaling argument we can write that

Gq(t, x) = 2q(d+1)gq(2
q t, 2q x)

where

gq(T , X) = F−1
(τ,ξ)→(T ,X)

K̃ (2qτ, 2qξ)

1 − K̃ (2qτ, 2qξ)
χ(τ, ξ).

To get the result, it is sufficient to prove that ∂α
τ ∂

β
ξ g̃q is bounded on the support of χ

uniformly in q for 2q ≤ A for |α|+|β| ≤ N +d. From the Penrose stability condition
(H2), such an estimate for g̃q follows from a similar one bearing on

k̃q(τ, ξ) = K̃ (2qτ, 2qξ)χ(τ, ξ).

From Corollary 2.2, we can write by homogeneity that

k̃q(τ, ξ) = 1

1 + |2qξ |2 + (2qτ)2
(

K̃ h,1(τ, ξ) − P2(ξ)

2−2q + |ξ |2 − ξ⊗2

2−2q + |ξ |2 : K̃ h,2(τ, ξ)

)

χ(τ, ξ).

Since on the support of χ , |ξ | + |τ | is bounded below by a positive number, we have
that uniformly in q,

∣
∣
∣
∣∂

γ
τ,ξ

(
1

1 + |2qξ |2 + (2qτ)2

)∣
∣
∣
∣ � 2q|γ |

(1 + 22q(|ξ |2 + τ 2))1+|γ |/2 � 1.
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We also observe that on the support of χ , ξ belongs to a ball so that we have

∣
∣
∣
∣∂

α
ξ

(
P2(ξ)

2−2q + |ξ |2
)∣

∣
∣
∣ +

∣
∣
∣
∣∂

α
ξ

(
ξ⊗2

2−2q + |ξ |2
)∣

∣
∣
∣ � 22q|α| � 1.

This is for the control of these terms that we use that we are in the low frequency
regime 2q ≤ A. Since K̃ h,1(τ, ξ) and K̃ h,2(τ, ξ) satisfy (2.14), (2.18), the uniform
estimate for ∂α

τ ∂
β
ξ k̃q follows.

End of the Proof of Theorem 2.1

We shall combine Lemma 2.3 and Lemma 2.4. Let A be given by Lemma 2.3.
We have

‖G(t)‖L1 ≤
∑

2q≤A

‖Gq(t)‖L1 +
∑

2q≥A

‖Gq(t)‖L1 (2.27)

Let us first consider large time estimates that is to say for t ≥ A. In this case, the
second sum gives

∑

2q≥A

‖Gq(t)‖L1 �
∑

2q≥A

2q(1+δ)

1 + 22q
1

(1 + 2q |t |)N � 1

|t |N ,

since δ ≤ 1. For the first sum, we split

∑

2q≤A

‖Gq(t)‖L1 �
∑

2q≤A

2q

(1 + 2q |t |)N �
∑

2q≤t−1

2q

(1 + 2q |t |)N +
∑

t−1≤2q≤A

2q

(1 + 2q |t |)N .

The first term above contains only negative q so that

∑

2q≤t−1

2q

(1 + 2q |t |)N �
∑

2q≤t−1

2q � 1

t
.

For the second term, we write

∑

t−1≤2q≤A

2q

(1 + 2q |t |)N � 1

t N
∑

t−1≤2q≤1

2q(1−N ) + 1

t N
∑

1≤2q≤A

2q(1−N ) � 1

t
+ 1

t N
,

since N > 1. We have thus proven that for t large enough

‖G(t)‖L1 � 1

t
.

The estimates for the L∞ norm follows the same lines using that N > d + 1.
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Let us explain how we obtain the estimates for t ≤ A. We use again (2.27). For the
first sum, we just use that

∑

2q≤A

‖Gq(t)‖L1 �
∑

2q≤A

2q

(1 + 2q |t |)N �
∑

2q≤A

2q � 1.

For the second sum, we write

∑

2q≥A

‖Gq(t)‖L1 �
∑

2q≥A

2q(1+δ)

1 + 22q
1

(1 + 2q |t |)N �
∑

2q≥A

2q(−1+δ) � 1.

To get the short time estimates for the L∞ norm, we only handle in a slightly different
way the second sum. We write

∑

2q≥A

‖Gq(t)‖L∞ �
∑

2q≥A

2q(d+1+δ)

1 + 22q
1

(1 + 2q |t |)N

�
∑

t−1≥2q≥A

2q(d−1+δ) + 1

t N
∑

2q≥t−1

2q(d−1+δ−N ) � 1

td−1+δ
.

We can also estimate derivatives of G using the Bernstein inequality (A.1). Note
that we will use only large time estimates (that is to say for t ≥ 1). We write

‖∇G(t)‖L1 ≤
∑

2q≤A

2q‖Gq(t)‖L1 +
∑

2q≥A

2q‖Gq(t)‖L1

�
∑

2q≤t−1

22q + 1

t N
∑

t−1≤2q≤A

2q(2−N ) + 1

t N
∑

2q≥A

2q(2+δ)

2q(2+N )
� 1

t2
+ 1

t N
.

The estimate for the L∞ norm of the derivatives follows the same lines, using N >

d + 2. This concludes the proof of Theorem 2.2.

3 The Bootstrap Argument

Equippedwith the linear estimates (in the formofCorollary 2.1),we are now inposition
to introduce the continuation argument that we shall use to establish Theorem 1.1. As
usual, the characteristics (Xs,t (x, v), Vs,t (x, v)) associated to the transport equation
with the vector field (v, E(t, x)) are defined as the solution to the ODE system:

⎧
⎪⎨

⎪⎩

d

ds
Xs,t (x, v) = Vs,t (x, v), Xt,t (x, v) = x,

d

ds
Vs,t (x, v) = E(s, Xs,t (x, v)), Vt,t (x, v) = v.

(3.1)
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By themethod of characteristics, the solution to the Vlasov–Poisson system (1.2) must
satisfy

f (t, x, v) = f0(X0,t (x, v), V0,t (x, v)) −
∫ t

0
E(s, Xs,t (x, v)) · ∇vμ(Vs,t (x, v)) ds.

(3.2)
Consequently, ρ(t, x) = ∫

Rd f (t, x, v) dv solves the equation

ρ(t, x)−
∫ t

0

∫

Rd
[∇x (1−�x )

−1ρ](s, x − (t − s)v) · ∇vμ(v) dvds = S(t, x), (3.3)

with

S(t, x) =
∫

Rd
f0(X0,t (x, v), V0,t (x, v)) dv

+
∫ t

0

∫

Rd
E(s, x − (t − s)v) · ∇vμ(v) dvds

−
∫ t

0

∫

Rd
E(s, Xs,t (x, v)) · ∇vμ(Vs,t (x, v)) dvds.

To study (3.3), let us introduce the following weighted in time norm:

N (t) = sup
[0,t]

1

log(2 + s)
(
‖ρ(s)‖L1 + 〈s〉d‖ρ(s)‖L∞ + 〈s〉‖∇ρ(s)‖L1 + 〈s〉d+1‖∇ρ(s)‖L∞

)
.

(3.4)

First, we recall the following local well-posedness result for (1.2) whose proof is
standard and therefore omitted. Inwhat follows, we shall say that f ∈ W σ,p

k if 〈v〉k f ∈
W σ,p

x,v .

Proposition 3.1 [Local well-posedness] Let f0 ∈ W 1,1 ∩ W σ,p
k/p′ with k > d, p(σ −

1) > 2d and p−1 + p′−1 = 1. Then, there exists T0 > 0 and a unique classical
solution f (t) ∈ C ([0, T0],W 1,1 ∩ W σ,p

k/p′). Denote by T � > 0 the maximal existence
time; if T � < +∞, then

‖ρ‖L1(0,T �,W 1,∞) = +∞. (3.5)

We thus apply Proposition 3.1, to obtain a unique local solution f (t) ∈
C ([0, T0],W 1,1∩W σ,p

k/p′) of (1.2) that can be continued as long as ‖ρ(t)‖W 1,∞ remains
bounded. We note that the continuity in time of f and the Sobolev embedding entail
that the function t �→ N (t) is continuous as well.

Let ε ∈ (0, 1] to be fixed later. We define

T = sup
{
t ∈ (0, T �), N (t) ≤ ε

}
, (3.6)
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where T � is the maximal time of existence. By continuity of N and thanks to the
blow-up criterion (3.5), there is ε0 > 0 such that if

‖〈v〉k f0‖W 1,∞ + ‖ f0‖W 1,1 ≤ ε0,

then T � > 2 and moreover we can ensure that the time defined in (3.6) also satisfies
T > 2.

Now applying the linear theory, namely Corollary 2.1, for the equation (3.3), we
have

N (t) ≤ M ′ (‖S‖Y 0
t

+ ‖S‖Y 1
t

)
, (3.7)

for t ≤ T , where the norms Y 0
t ,Y 1

t are defined as in (2.5).
The main task is therefore to estimate ‖S‖Y 0

t
+ ‖S‖Y 1

t
. We are going to prove the

following result.

Theorem 3.1 There exist ε1 ∈ (0, 1], C0 > 0 such that for all ε ∈ (0, ε1), for all
t ≤ T (where T is defined as in (3.6)),

‖S‖Y 0
t

+ ‖S‖Y 1
t

≤ C0ε0 + C0ε
2. (3.8)

With Theorem 3.1 at hand, we can conclude the proof of Theorem 1.1.

Proof We choose ε0 and ε small enough so that ε0 ≤ ε ≤ ε1 and

C0ε0 + C0ε
2 ≤ 1

2M ′ ε, (3.9)

where M ′ is the constant appearing in (3.7).
Assume that T < T �. We deduce by Theorem 3.1, (3.7) and (3.9) that

N (T ) ≤ 1

2
ε.

This is a contradiction with the definition of T as by continuity of N , we would then
find T1 ∈ (T , T �) such that

N (T1) ≤ ε.

Once we know that T = T �, we also get that T � = +∞: indeed from the blow-up
criterion of Proposition 3.1, we cannot have T � < +∞ since then N (T �) ≤ ε. ��

The rest of this paper is devoted to the proof of Theorem 3.1. We shall therefore
work on the interval [0, T ], on which we have N (t) ≤ ε, a property which we will
refer to as the bootstrap assumption. All subsequent estimates will be independent of
T .
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4 Decay Estimates for Characteristics

In this section, we study the characteristics (Xs,t (x, v), Vs,t (x, v)) defined as the
solutions to the ODEs (3.1). Integrating (3.1), we have for all 0 ≤ s ≤ t ≤ T ,

Xs,t (x, v) = x − v(t − s) +
∫ t

s
(τ − s)E

(
τ, Xτ,t (x, v)

)
dτ

Vs,t (x, v) = v −
∫ t

s
E

(
τ, Xτ,t (x, v)

)
dτ.

(4.1)

We have the following pointwise bounds on characteristics.

Proposition 4.1 There is ε1 ∈ (0, 1) such that the following holds for all ε ≤ ε1. For
all 0 ≤ s, t ≤ T and for x, v ∈ R

d , the map x �→ Xs,t (x, v) and v �→ Vs,t (x, v) are
C 1 diffeomorphisms, and we can write1

Xs,t (x, v) = x−(t−s)v+Ys,t (x−vt, v), Vs,t (x, v) = v+Ws,t (x−vt, v), (4.2)

where Ys,t (x, v),Ws,t (x, v) satisfy the following uniform estimates

sup
0≤s≤t≤T

1 + sd−1

log(2 + s)
(‖Ys,t‖L∞

x,v
+ ‖∇xYs,t‖L∞

x,v
)

+ sup
0≤s≤t≤T

1 + sd−2

log(2 + s)
‖∇vYs,t‖L∞

x,v
� ε,

sup
0≤s≤t≤T

1 + sd

log(2 + s)
(‖Ws,t‖L∞

x,v
+ ‖∇xWs,t‖L∞

x,v
)

+ sup
0≤s≤t≤T

1 + sd−1

log(2 + s)
‖∇vWs,t‖L∞

x,v
� ε.

(4.3)

Proof Let 0 ≤ s ≤ t ≤ T . By definition of Ys,t , we have from (4.1)

Ys,t (x, v) =
∫ t

s
(τ − s)E

(
τ, x + τv + Yτ,t (x, v)

)
dτ. (4.4)

Differentiating this identity with respect to x and taking the sup norm in x and v, we
get

‖∇xYs,t‖L∞
x,v

�
∫ t

s
(τ − s)‖∇x E(τ, x + τv + Yτ,t (x, v))‖L∞

x,v
(1 + ‖∇xYτ,t‖L∞

x,v
) dτ

� (1 + sup
0≤τ≤t

‖∇xYτ,t‖L∞
x,v

)

∫ t

s
τ‖∇x E(τ )‖L∞ dτ.

(4.5)

1 We have chosen to write the remainder as functions of (x − vt, v), instead of (x, v), in view of the
expected large time behavior, which is that of free transport.
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Next, since ∇x E = −∇x (1 − �x )
−1(∇xρ), we obtain from (A.2) and the bootstrap

assumption that

‖E(τ )‖L∞ + ‖∇x E(τ )‖L∞ � ‖∇xρ(τ)‖L∞ � log(2 + τ)

1 + τ 1+d
ε, (4.6)

and thus τ‖∇x E(τ )‖L∞ is integrable in time. This yields

‖∇xYs,t‖L∞
x,v

� ε(1 + ‖∇xYs,t‖L∞
x,v

).

Thus, for ε sufficiently small, we have ‖∇xYs,t‖L∞
x,v

� ε, for all 0 ≤ s ≤ t ≤ T . There-

fore, taking ε small enough, we deduce that for all v ∈ R
d , the map x �→ Xs,t (x, v)

is a C 1 diffeomorphism (since we have just shown that it is a small perturbation of
x �→ x − (t − s)v). As a consequence, for any integrable function H = H(x), we
have

sup
0≤s,t≤T

‖H(Xs,t )‖L∞
v L1

x
� ‖H‖L1

x
. (4.7)

We are ready to derive the uniform estimates in (4.3). Using the pointwise decay
in (4.6), it follows directly from (4.4) and (4.5) that

‖Ys,t‖L∞
x,v

+ ‖∇xYs,t‖L∞
x,v

� log(2 + s)

1 + sd−1 ε.

In addition, we also obtain from (4.4) that

‖∇vYs,t‖L∞
x,v

�
∫ t

s
(τ − s)‖∇x E(τ )‖L∞(τ + ‖∇vYτ,t‖L∞) dτ

� ε

∫ t

s

log(2 + τ)

1 + τ d−1 dτ + ε

∫ t

s

log(2 + τ)

1 + τ d
‖∇vYτ,t‖L∞ dτ.

In dimension d ≥ 3, since log(2+τ)

1+τ d−1 is integrable, we get from the same argument as
before that

‖∇vYs,t‖L∞
x,v

� ε
log(2 + s)

1 + sd−2 (4.8)

which is particular bounded, giving the claimed estimates on Ys,t (x, v). Similarly, by
construction, we have

Ws,t (x, v) = −
∫ t

s
E

(
τ, x + τv + Yτ,t (x, v)

)
dτ,

which first directly yields

‖Ws,t‖L∞
x,v

� ε

∫ t

s

log(2 + τ)

1 + τ d+1 dτ � ε
log(2 + s)

1 + sd
.
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Moreover, using the estimates already proved for Ys,t , we have

‖∇xWs,t‖L∞
x,v

� ε

∫ t

s

log(2 + τ)

1 + τ d+1 (1 + ‖∇xYτ,t‖L∞
x,v

) dτ � ε
log(2 + s)

1 + sd
.

‖∇vWs,t‖L∞
x,v

� ε

∫ t

s

τ log(2 + τ)

1 + τ d+1 (1 + ‖∇vYτ,t‖L∞
x,v

) dτ � ε
log(2 + s)

1 + sd−1 .

Imposing again ε small enough, we deduce that for all x ∈ R
d , themap v �→ Vs,t (x, v)

is a C 1 diffeomorphism. The proposition follows.

Remark 4.1 In dimension 2, derivatives in v of characteristics have a slow growth in
time (see in particular the estimates leading to (4.8)), which prevents from performing
the same nonlinear stability analysis.

5 Straightening Characteristics

In order to boil down to the case of free transport, we shall rely on a change of variables
in velocity, that is close to the identity on the interval [0, T ]. This is the content of the
following proposition.

Proposition 5.1 There is ε1 ∈ (0, 1) such that the following holds for all ε ≤ ε1. For
all 0 ≤ s, t ≤ T , there exists a C 1 map (x, v) �→ �s,t (x, v) such that

Xs,t (x, �s,t (x, v)) = x − (t − s)v, (5.1)

for all x, v ∈ R
d . In addition, for every x ∈ R

d , v �→ �s,t (x, v) is a diffeomorphism,
and there hold the following uniform estimates

sup
0≤s,t≤T

1 + sd

log(2 + s)

(
‖�s,t (x, v) − v‖L∞

x,v
+ ‖∇x�s,t (x, v)‖L∞

x,v

)
� ε,

sup
0≤s,t≤T

1 + sd−1

log(2 + s)
‖∇v(�s,t (x, v) − v)‖L∞

x,v
� ε.

(5.2)

Proof From (4.1), we write

Xs,t (x, v) = x − (t − s)
(
v + �s,t (x, v)

)

where

�s,t (x, v) = − 1

t − s

∫ t

s
(τ − s)E

(
τ, x − (t − τ)v + Yτ,t (x − vt, v)

)
dτ.

Using (4.6), we obtain

‖�s,t‖L∞
x,v

�
∫ t

s
‖E(τ )‖L∞

x,v
dτ � ε

∫ t

s

log(2 + τ)

1 + τ d+1 dτ � ε
log(2 + s)

1 + sd
.
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In addition, using the bounds on Ys,t (x, v) obtained in the previous section, we get

‖∇x�s,t‖L∞
x,v

� 1

t − s

∫ t

s
(τ − s)‖∇x E(τ )‖L∞

x

(
1 + ‖∇xYτ,t‖L∞

x,v

)
dτ

�
∫ t

s
‖∇x E(τ )‖L∞

x
dτ � ε

log(2 + s)

1 + sd
,

using (4.6). Finally, we compute

‖∇v�s,t‖L∞
x,v

� 1

t − s

∫ t

s
(τ − s)‖∇x E(τ )‖L∞

x

(
t − τ + ‖(∇v − t∇x )Yτ,t‖L∞

x,v

)
dτ

�
∫ t

s
(1 + τ)‖∇x E(τ )‖L∞

x
dτ +

∫ t

s
‖∇x E(τ )‖L∞

x
‖(∇v − τ∇x )Yτ,t‖L∞

x,v
dτ

inwhichwe havewritten t∇xYτ,t = (t−τ)∇xYτ,t+τ∇xYτ,t and used the boundedness
of ∇xYτ,t (x, v). Therefore, using again (4.6) and (4.3), we have

‖∇v�s,t‖L∞
x,v

� ε

∫ t

s

log(2 + τ)

1 + τ d
dτ � ε

log(2 + s)

1 + sd−1 .

We deduce that the map

(x, v) �→ (x, v + �s,t (x, v))

is a C 1 diffeomorphism from R
2d to R

2d with Jacobian determinant close to one. As
a consequence, there exists a C 1 diffeomorphism �s,t (x, v) such that

Xs,t (x, �s,t (x, v)) = x − (t − s)v,

for all x, v. By construction, note that we have

�s,t (x, v) = v − �s,t (x, �s,t (x, v)). (5.3)

The estimates (5.2) for �s,t (x, v) thus follow from the estimates already proved for
�s,t (x, v). This ends the proof of the proposition.

6 Contribution of the Initial Data

In this section, we estimate the contribution of

I(t, x) =
∫

Rd
f0(X0,t (x, v), V0,t (x, v)) dv. (6.1)

Namely, we prove the following proposition.
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Proposition 6.1 For 0 ≤ t ≤ T , there holds

‖I(t)‖L1 + 〈t〉d‖I(t)‖L∞ + 〈t〉‖∇xI(t)‖L1 + 〈t〉d+1‖∇xI(t)‖L∞ ≤ C0ε0, (6.2)

for some positive constant C0.

Proof Since

(x, v) �→ (X0,t (x, v), V0,t (x, v))

is a measure preserving diffeomorphism, we have that

‖I(t)‖L1 ≤ ‖ f0‖L1
x,v

≤ ε0.

Next, to prove the L∞ estimate, we aim at getting as close as possible to the dynamics
of free transport, which corresponds to f0(x − tv, v). To proceed, we first straighten
the characteristics following Proposition 5.1, yielding

I(t, x) =
∫

Rd
f0(x − tv, V0,t (x, �0,t (x, v))) det(∇v�0,t (x, v)) dv,

from which we deduce by using the change of variables w = x − tv

I(t, x) =
∫

Rd
f0

(

w, V0,t

(

x, �0,t

(

x,
x − w

t

)))

det
(∇v�0,t

)
(

x,
x − w

t

)
dw

td
.

(6.3)
Then, by using (5.2) that yields

‖ det (∇v�0,t
) ‖L∞

x,v
� 1,

we get that

‖I(t)‖L∞ � 1

td

∫

Rd
‖ f0(w, ·)‖L∞

v
dw � 1

td
ε0.

Next, to compute the derivative of I, we shall introduce (Y0,t ,W0,t ) as defined in (4.2)
on the characteristics and use the change of variables w = x − vt to get

I(t, x) =
∫

Rd
f0

(
x − vt + Y0,t (x − tv, v), v + W0,t (x − tv, v)

)
dv

=
∫

Rd
f0

(

w + Y0,t

(

w,
x − w

t

)

,
x − w

t
+ W0,t

(

w,
x − w

t

))
dw

td
.

(6.4)
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Therefore, we obtain that

∇xI(t, x)

=
∫

Rd

[

(∇x f0)

(

w + Y0,t

(

w,
x − w

t

)

,
x − w

t
+ W0,t

(

w,
x − w

t

))

· (∇vY0,t )

(

w,
x − w

t

)

+ (∇v f0)

(

w + Y0,t

(

w,
x − w

t

)

,
x − w

t
+ W0,t

(

w,
x − w

t

))

·
(

e + (∇vW0,t )

(

w,
x − w

t

)) ]
dw

td+1 ,

where e is the vector (1, · · · , 1)t .
Consequently, from Proposition 4.1, we obtain that

|∇xI(t, x)| �
∫

Rd

∣
∣∇x,v f0

∣
∣

(

w + Y0,t

(

w,
x − w

t

)

,
x − w

t
+ W0,t

(

w,
x − w

t

))
dw

td+1 .

(6.5)
Going back to the original coordinates, we get

|∇xI(t, x)| � 1

t

∫

Rd
|∇x,v f0|(X0,t (x, v), V0,t (x, v)) dv.

By integrating in x , this yields

‖∇xI(t)‖L1 � 1

t
‖∇x,v f0‖L1 � ε0

t
.

For the L∞ norm, we use again the straightening change of variables v = �0,t (x, ṽ)

and w = x − t ṽ to obtain

|∇xI(t, x)| � 1

td+1

∫

Rd
‖∇x,v f0(w, ·)‖L∞

v
dw � ε0

td+1 .

This yields the proposition for the case t ≥ 1. For 0 ≤ t ≤ 1, the estimates are
straightforward, using directly the bounds on the characteristics from Proposition 4.1.

��

7 Contribution of the Reaction Term

We next turn to the reaction term

R(t, x) = RL(t, x) − RNL(t, x) (7.1)
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where

RNL(t, x) =
∫ t

0

∫

Rd
E(s, Xs,t (x, v)) · ∇vμ(Vs,t (x, v)) dvds,

RL(t, x) =
∫ t

0

∫

Rd
E(s, x − (t − s)v) · ∇vμ(v) dvds.

In order to estimate R, we shall first establish the following general fact. Let us set
for any given F and ν:

T [F, ν](t, x) = −
∫ t

0

∫

Rd
F(s, Xs,t (x, v)) · ∇vν(Vs,t (x, v)) dvds

+
∫ t

0

∫

Rd
F(s, x − (t − s)v) · ∇vν(v) dvds.

Note that in particular, we have R(t, x) = T [E, μ](t, x). We have

Lemma 7.1 Assume that ν ∈ W 3,∞
v with

|∂α
v ∇ν| � 1

〈v〉N , |α| = 1, 2, (7.2)

for some N > d. We have the decomposition

T [F, ν](t, x) = T1[F, ν](t, x) + T2[F, ν](t, x), (7.3)

where for j = 1, 2, we have

T j [F, ν](t, x) =
∫ t

0

∫

Rd
F(s, x − (t − s)v) · H0, j [ν](s, t, x, v),

in which

H0,1[ν](s, t, x, v) = ∇vν(v) − ∇vν(Vs,t (x, �s,t (x, v)))

H0,2[ν](s, t, x, v) = ∇vν(Vs,t (x, �s,t (x, v)))
[
1 − det(∇v�s,t (x, v))

]
.

(7.4)

Moreover, for 0 ≤ s ≤ t ≤ T , the kernels enjoy the uniform estimate

|H0, j [ν](s, t, x, v)| � ε

(1 + |v|)N
log(2 + s)

1 + sd−1 (7.5)

and there exists C such that for every F and for every t ∈ (0, T ],

‖T j [F, ν](t)‖L1 ≤ Cε sup
[0,t]

‖F(s)‖L1

log(2 + s)
, (7.6)
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‖T j [F, ν](t)‖L∞ ≤ Cε

td
sup
[0,t]

( ‖F(s)‖L1

log(2 + s)
+ 1 + sd‖F(s)‖L∞

log(2 + s)

)

. (7.7)

Proof Using the change of variables provided by Proposition 5.1, we obtain

T [F, ν](t, x) = −
∫ t

0

∫

Rd
F(s, x − (t − s)v)

· ∇vν(Vs,t (x, �s,t (x, v))) det(∇v�s,t (x, v)) dvds

+
∫ t

0

∫

Rd
F(s, x − (t − s)v) · ∇vν(v) dvds.

The decomposition (7.3) follows. Moreover, for 0 ≤ s ≤ t ≤ T , the kernels enjoy
the estimate (7.5). This follows from Propositions 4.1 and 5.1: by the mean value
inequality, (7.2) and (4.3)–(5.2), we have

|H0,1[ν](s, t, x, v)| � 1

〈v〉N |v − Vs,t (x, �s,t (x, v))|

� 1

〈v〉N
[|v − Vs,t (x, v)| + |Vs,t (x, v) − Vs,t (x, �s,t (x, v))|]

� 1

〈v〉N
[
|v − Vs,t (x, v)| + ‖∇vVs,t‖L∞

x,v
|v − �s,t (x, v)|

]

� ε

〈v〉N
log(2 + s)

1 + sd
.

We handle H0,2 similarly.
Next, using the change of variable w = x − (t − s)v and the bounds on the kernels,

we obtain

|T j [F, ν](t, x)| � ε

∫ t

0

∫

Rd
|F(s, w)|

(

1 +
∣
∣
∣
∣
x − w

t − s

∣
∣
∣
∣

)−N log(2 + s)

1 + sd−1

dwds

(t − s)d
.

This yields

‖T j [F, ν](t)‖L1 � ε

∫ t

0
‖F(s)‖L1

log(2 + s)

1 + sd−1 ds

� ε sup
[0,t]

‖F(s)‖L1

log(2 + s)

∫ t

0

log2(2 + s)

1 + sd−1 ds,

hence the L1 estimate. For the L∞ norm, we use

‖T j [F, ν](t)‖L∞ � ε

td

∫ t
2

0
‖F(s)‖L1

log(2 + s)

1 + sd−1 ds + ε

∫ t

t
2

‖F(s)‖L∞
log(2 + s)

1 + sd−1 ds,
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which gives

‖T j [F, ν](t)‖L∞ � ε

td

(

sup
[0,t/2]

‖F‖L1

log(2 + s)
+ sup

[t/2,t]
1 + sd

log(2 + s)
‖F(s)‖L∞

)

∫ t

0

log2(2 + s)

1 + sd−1 ds.

This concludes the proof of the lemma. ��
As an application of Lemma 7.1, we can now derive appropriate estimates for R.

Proposition 7.1 For all 0 ≤ t ≤ T ,

‖R(t)‖L1 + (1 + td)‖R(t)‖L∞ � ε2.

Proof Since we have R(t, x) = T [E, μ](t, x), the estimate for 1 ≤ t ≤ T follows
from (H1), (7.6), (7.7), the fact that

‖E(t)‖L p � ‖ρ(t)‖L p ,

for p ∈ [1,∞], and the bootstrap assumption. The estimates are straightforward for
0 ≤ t ≤ 1, bounding directly (7.1) using the bounds on the characteristics from
Proposition 4.1. ��
We shall now estimate derivatives of R.

Proposition 7.2 There exists C > 0 such that for every 0 ≤ t ≤ T

(1 + t)‖∇R(t)‖L1 + (1 + td+1)‖∇R(t)‖L∞ ≤ Cε2.

Proof The estimates for 0 ≤ t ≤ 1 follow directly from (7.1) and the bounds on the
characteristics from Proposition 4.1. We therefore focus on the case t ≥ 1. We shall
first express ∇RNL in an appropriate way. Using (4.2), we have

RNL(t, x) =
∫ t

0

∫

Rd
E(s,Ys,t (x − tv, v) + x − tv + sv)

· ∇vμ(Ws,t (x − tv, v) + v) dvds

=
∫ t

0

∫

Rd
E

(

s,Ys,t (w,
x − w

t
) + w + s

t
(x − w)

)

· ∇vμ

(

Ws,t (w,
x − w

t
) + x − w

t

)
dwds

td
.

By taking the gradient in x , we next obtain that

∂ jRNL(t, x) = R1
j + R2

j + R3
j + R4

j ,
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where

R1
j =

∫ t

0

∫

Rd
s∂ j E

(

s,Ys,t (w,
x − w

t
) + w + s

t
(x − w)

)

· ∇vμ

(

Ws,t (w,
x − w

t
) + x − w

t

)
dwds

td+1 ,

R2
j =

∫ t

0

∫

Rd
E · ∂v j ∇vμ

(

Ws,t (w,
x − w

t
) + x − w

t

)
dwds

td+1 ,

R3
j =

∫ t

0

∫

Rd

(

∂v j Ys,t (w,
x − w

t
) · ∇x E

(

s,Ys,t (w,
x − w

t
) + w + s

t
(x − w)

))

· ∇vμ

(

Ws,t (w,
x − w

t
) + x − w

t

)
dwds

td+1 ,

R4
j =

∫ t

0

∫

Rd
E

(

s,Ys,t (w,
x − w

t
) + w + s

t
(x − w)

)

·
(

∂v j Ws,t (w,
x − w

t
) · ∇v

)

∇vμ

(

Ws,t (w,
x − w

t
) + x − w

t

)
dwds

td+1 .

We can now estimate directlyR3
j ,R4

j that are indeed nonlinear terms. Going back to
the v variable and recalling (4.2), we have that

R3
j =

∫ t

0

∫

Rd

(
∂v j Ys,t (x − vt, v) · ∇x E

(
s, Xs,t (x, v)

)) · ∇vμ
(
Vs,t (x, v)

) dvds

t
.

From (4.3), we then obtain the pointwise estimate

|R3
j (t, x)| � ε

∫ t

0

∫

Rd

∣
∣∇x E(s, Xs,t (x, v))

∣
∣ |∇vμ(Vs,t (x, v)| log(2 + s)

1 + sd−2

dvds

t

� ε

∫ t

0
‖∇x E(s)‖L∞

log(2 + s)

1 + sd−2

∫

Rd
|∇vμ(Vs,t (x, v)|dvds

t
.

By Proposition 4.1, for all x ∈ R
d , v �→ Vs,t (x, v) is a C 1 diffeomorphism and

therefore by (4.3) and (H1),

sup
x

∫

Rd
|∇vμ(Vs,t (x, v)|dv � 1.

By (A.2) and the bootstrap assumption, we have

‖∇x E(s)‖L1 � ‖∇xρ(s)‖L1 � ε
log(2 + s)

1 + s

and thus the above yields

‖R3
j (t)‖L1 � ε

t

∫ t

0
‖∇x E(s)‖L1

log(2 + s)

1 + sd−2 ds � ε2

t

∫ t

0

log2(2 + s)

1 + sd−1 ds � ε2

t
.
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For the L∞ norm, we use again (H1) and the change of variable given by Proposition
5.1 to obtain that

|R3
j (t, x)| � ε

t

∫ t

0

∫

Rd
|∇x E(s, w)|

(

1 +
∣
∣
∣
∣
x − w

t − s

∣
∣
∣
∣

)−N log(2 + s)

1 + sd−2

dwds

(t − s)d
.

Using the bootstrap assumption, we find

|R3
j (t, x)| � ε

td+1

∫ t
2

0
‖∇x E(s)‖L1

log(2 + s)

1 + sd−2 + ε

t

∫ t

t
2

‖∇x E(s)‖L∞
log(2 + s)

1 + sd−2

� ε2

td+1

∫ t
2

0

log2(2 + s)

1 + sd−1 � ε2

td+1 .

The estimates for R4
j are obtained in the same way.

We shall now estimate R1
j , R2

j , together with ∂ jRL. Recalling (4.2) and going
back to the variable v = (x − w)/t , we write

R1
j =

∫ t

0

∫

Rd
s∂ j E

(
s, Xs,t (x, v)

) · ∇vμ
(
Vs,t (x, v)

) dwds

t
,

R2
j =

∫ t

0

∫

Rd
E

(
s, Xs,t (x, v)

) · ∂v j ∇vμ
(
Vs,t (x, v)

) dwds

t
.

Next, using again the straightening change of variable of Proposition 5.1, we obtain

R1
j =

∫ t

0

∫

Rd
s∂ j E (s, x − (t − s)v) · ∇vμ

(
Vs,t (x, �s,t (x, v)

)
det(∇v�s,t (x, v))

dvds

t
,

R2
j =

∫ t

0

∫

Rd
E (s, x − (t − s)v) · ∂v j ∇vμ

(
Vs,t (x, �s,t (x, v)

)
det(∇v�s,t (x, v))

dvds

t
.

On the other hand, using also the change of variable w = x − tv, we obtain that

RL(t, x) =
∫ t

0

∫

Rd
E(s, w + s

t
(x − w)) · ∇vμ(

x − w

t
)
dwds

td

and therefore

∂ jRL(t, x) = R1
L, j + R2

L, j

where

R1
L, j =

∫ t

0

∫

Rd
(s∂ j E)(s, w + s

t
(x − w)) · ∇vμ(

x − w

t
)
dwds

td+1

=
∫ t

0

∫

Rd
(s∂ j E)(s, x − (t − s)v) · ∇vμ(v)

dwds

t
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R2
L, j =

∫ t

0

∫

Rd
E(s, w + s

t
(x − w)) · ∂v j ∇vμ(

x − w

t
)
dwds

td+1

=
∫ t

0

∫

Rd
E(s, x − (t − s)v) · ∂v j ∇vμ(v)

dwds

t
.

Consequently, we observe that

−R1
j + R1

L, j = 1

t
T [s∂ j E, μ](t, x), −R2

j + R2
L, j = 1

t
T [E, ∂ jμ](t, x),

so that by (H1), we can apply Lemma 7.1. Therefore, by (7.6), (7.7) and the bootstrap
assumption, we get that

‖ − Ri
j (t) + Ri

L, j (t)‖L1 � ε2

t
, ‖ − Ri

j (t) + Ri
L, j (t)‖L∞ � ε2

td+1 , i = 1, 2

which allows to end the proof. ��
We are finally in position to conclude.

Proof This follows from the estimates of Proposition 6.1, Proposition 7.1, and Propo-
sition 7.2. ��

8 Proof of Corollary 1.1

We can use again that f is given by (3.2) from the characteristic method. We can also
observe that

∫ t

0
E(s, Xs,t (x, v)) · ∇vμ(Vs,t (x, v)) ds =

∫ t

0

d

ds
Vs,t (x, v) · ∇vμ(Vs,t (x, v)) ds

= μ(v) − μ(V0,t (x, v)).

By using (Ys,t ,Ws,t ) that are defined in (4.2), we can thus write that

f (t, x+tv, v) = f0(x+Y0,t (x, v), v+W0,t (x, v))+μ(v+W0,t (x, v))−μ(v). (8.1)

Consequently, the result follows immediately if we prove that there exists
(Y∞(x, v),W∞(x, v)) such that

‖Y0,t (x, v) − Y∞(x, v)‖L∞
x,v

� ε0
log(2 + t)

1 + td−1 ,

‖W0,t (x, v) − W∞(x, v)‖L∞
x,v

� ε0
log(2 + t)

1 + td
.

We give the proof for Y0,t , the one for W0,t being similar.
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Let us define Yt (s, x, v) = Ys,t (x, v)10≤s≤t . From the integral equation (4.4)
and the decay estimates (1.5), we get that Yt ∈ Cb(R

+ × R
2d) and that for every

t1 ≥ t2 ≥ 1,

‖Yt1 − Yt2‖Cb(R
+×R2d ) � ε0

log(2 + t2)

1 + td−1
2

+ ε0‖Yt1 − Yt2‖Cb(R
+×R2d ).

For ε0 sufficiently small, this yields by the Cauchy criterion that limt→+∞ Yt := Y∞
exists in Cb(R

+ × R
2d) and then that

‖Yt − Y∞‖Cb(R
+×R2d ) � ε0

log(2 + t)

1 + td−1 .

We conclude by setting Y∞ = Y∞(0, ·).
Acknowledgements TN was partially supported by the NSF under grant DMS-1764119 and an AMS
Centennial Fellowship, DHK by the grant ANR-19-CE40-0004 and FR by the grants ANR ODA and
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Appendix A

We recall (1.8) for the Littlewood–Paley decomposition in R
n . In the paper, we use

it (for n = d and for n = d + 1). Let us state the classical Bernstein Lemma.

Lemma A.1 For every p ∈ [1,+∞] and any multi-index α, there exist c > 0, C > 0
such that for every u ∈ L p, we have Bernstein’s inequalities:

c2|α|q‖uq‖L p ≤ ‖∂α(uq)‖L p ≤ C2|α|q‖uq‖L p , ∀q ∈ Z. (A.1)

We refer for example to [1, Chapter 2, Lemma 2.1] for the proof. As an application,
we get

Lemma A.2 Let P1 and P2 be homogeneous polynomials of degree 1 and 2. For all
p ∈ [1,+∞], for all u ∈ L p, for all � ∈ N,

‖P1(D)(1 − �)−1u‖L p � ‖u‖L p , (A.2)

‖P2(D)(1 − �)−1u�‖L p � 2�δ‖u�‖L p , (A.3)

where u� is defined as in (1.8) and δ ∈ (0, 1) is arbitrarily small.

Proof By using the homogeneous Littlewood–Paley decomposition and the Bernstein
inequalities, we get

‖P1(D)(1 − �)−1u‖L p �
∑

q∈Z

2q

1 + 22q
‖uq‖L p � ‖u‖L p (

∑

q≤0

2q +
∑

q≥0

2−q).
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For the second estimate, we write

‖P2(D)(1 − �)−1w‖L p �
∑

q∈Z

22q

1 + 22q
‖wq‖L p

� ‖w‖L p

∑

q<0

22q + sup
q≥0

2qδ‖wq‖L p

∑

q≥0

2−qδ

and apply it for w = u�, which ends the proof. ��
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