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Abstract

We revisit the proof of Landau damping near stable homogenous equilibria of Vlasov—
Poisson systems with screened interactions in the whole space R4 (for d > 3) that
was first established by Bedrossian, Masmoudi and Mouhot in [5]. Our proof follows
a Lagrangian approach and relies on precise pointwise in time dispersive estimates in
the physical space for the linearized problem that should be of independent interest.
This allows to cut down the smoothness of the initial data required in [5] (roughly,
we only need Lipschitz regularity). Moreover, the time decay estimates we prove
are essentially sharp, being the same as those for free transport, up to a logarithmic
correction.
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1 Introduction

In this paper, we are interested in the large time behavior of solutions to the Vlasov—
Poisson system with screening

B Frédéric Rousset
frederic.rousset @math.u-psud.fr

Daniel Han-Kwan
daniel.han-kwan @polytechnique.edu

Toan T. Nguyen
nguyen@math.psu.edu

1 Centre de Mathématiques Laurent Schwartz (UMR 7640), Institut Polytechnique de Paris, Ecole
Polytechnique, 91128 Palaiseau Cedex, France

2 Department of Mathematics, Penn State University, State College, PA 16803, USA

3 Laboratoire de Mathématiques d’Orsay (UMR 8628), Université Paris-Sud, 91405 Orsay Cedex,
France

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40818-021-00110-5&domain=pdf

18 Page2of37 D. Han-Kwan et al.

ofi+v-Vifi+ E-V,f; =0,

. (1.1)
E=-V,(I-A)" (i =1, pit,x) =f fi(t, x,v)dv,
R4

on the whole space x € R, v € RY, d > 3, where fi = fi(t,x,v) > 0 and
E = E(t, x). The screening effect comes from the fact that the interaction potential
associated to Id — A is exponentially decaying as opposed to the Coulomb potential
associated to —A. This system is sometimes referred to as Vlasov—Yukawa and can
also be seen as the Vlasov—Poisson system describing the dynamics of ions, in a
background of electrons that satisfy a linearization of the Maxwell-Boltzmann law
(we refer for example to [3,6,11]).

The global regularity of finite energy solutions for the Vlasov—Poisson system in
the case of three or lower spatial dimension is by now classical ([9,14,16,19,20]). The
asymptotic behavior of solutions for initial data near the trivial equilibrium 0 has also
been the topic of many studies. This was first established in dimension d > 3 in the
unscreened case by Bardos and Degond in [2], following a Lagrangian approach. More
recently the sharp faster decay of derivatives was established in [15]. This was extended
to (1.1) in dimension d > 2 in [8] making use of the better decay of the electric field
in the case of screened interactions. Other approaches based on vector fields [21] or
Fourier analysis [23] (space—time resonances) were also developed recently.

We are interested in the stability and the large time behavior of solutions near
spatially homogeneous stationary states w(v) such that fRd w(v)dv = 1. Namely, we
look for a solution under the form f; (¢, x, v) = u(v) + f(¢, x, v), where f solves the
perturbed system

of+v-Vof+E -Vyu=—-E-V,f,
E=-V.(1- Ax)flp, p(t,x) = / f(t, x,v)dv, (1.2)
R4

fli=o = fo.

For a class of stable equilibria, we shall study the large time behavior of solutions
to (1.2) for suitably small initial data fo. The dynamics of solutions is expected to
asymptotically approach that of solutions to free transport, a scattering phenomenon
that is often referred to as Landau damping. Landau damping was proved on the torus
T x R? (d > 1) for data with Gevrey regularity [4,17], while on the whole space
R3 x R3 it was recently established for the screened Vlasov—Poisson system (1.2)
by Bedrossian, Masmoudi and Mouhot in [5], for data with finite Sobolev regularity.
The proof in [5] is inspired by that for the torus case. Though dispersion on the whole
space is used at some crucial points in order to close the estimates in finite regularity,
the approach is much more related to the one of [4] for the torus than that of Bardos-
Degond (it is actually dispersive properties of the free transport in the frequency space
that are used to control the so-called echoes of [17]).

In this paper, we prove Landau damping and derive dispersive estimates for solutions
to (1.2) via a Lagrangian approach that is closer to the Bardos-Degond analysis [2] for
the u© = 0 case. Roughly speaking, after proving precise pointwise estimates for the
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linearized equation, the proof of nonlinear stability can be obtained almost in the same
way as in the = 0 case. This will allow to strongly cut down the needed regularity
on the initial data, as compared to [5].

Let us now specify our assumptions on the equilibrium p and state the main result
of this paper. We assume

e H) u e LY(RY) is a smooth decaying function satisfying (v)kVU JTRS W2 and
()*+ov, 1 e W24H+3.1 for some k > d.
e (H2) 1 satisfies the Penrose stability criterion:

inf  inf

+o00 ) 1 o
1—/ e~ YOS g Y, u(sE)ds| > «,
y>01eR, £eRY 0

1+ [

for some constant ¥ > 0, where V,u is the Fourier transform of V,u (see (1.7)
for the convention we use).

Assumption (H2), called Penrose stability criterion in plasma physics, is a classical
linear stability condition which is also used in [4,5,17]. If this assumption is violated in
the sense that the function inside the inf vanishes for some y > 0, the equilibrium g is
linearly unstable, there exist smooth localized perturbations with exponential growth,
and also nonlinearly unstable; we refer for example to [12] Theorem 3.1 for a proof
of nonlinear instability in dimension 1 for periodic boundary conditions (the proof
could be adapted to handle higher dimensions, see [13], and localized perturbations
on the whole space, following [10]). There are many known more tractable sufficient
conditions on u in order for (H2) to be satisfied, we refer for example to [17, Section
2.2]. In particular, this assumption is satisfied for any sufficiently smooth and localized
positive radial equilibrium p(v) = F(Jv|) in dimension d > 3 and for any positive
radial equilibrium with F’ < 0 in any dimension. Assumption (H1) simply states that
the equilibrium p needs to be sufficiently smooth and localized - we did not try to
optimize on this assumption for the sake of readability.

1.1 Main Result

Our main result is as follows. We recall that we consider d > 3.

Theorem 1.1 Assume that (H1) and (H2) are satisfied.
Letk > d, o, p € (1, +00) satisfying p(c —1) > 2d and p’ suchthat p~'+p'~! =
1. Let fo € Wh° 0 W1 be an initial condition for (1.2) with

||(u)k/1’/f0||wa,p < 400, forsome o, p € (1,400) satisfying p(c — 1) > 2d
(1.3)

and
1 follwroe + L follwrs + L foll iz + 1V foll e < €0, (14)

Then ifeg > 0 is small enough, there exists a unique global solution of (1.2) such that

Lol + O IVep Ol + O ol + () THIVep@) e S e0log2 + 1),
(1.5)
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forallt >0, with () =14+ |2

Theorem 1.1 proves that the solution of (1.2) enjoys the same decay properties as
the free transport up to a logarithmic correction. Note that we also establish the sharp
higher decay of derivatives, still up to a logarithmic correction. The same decay holds
for E = —V,(1 — A,)~!p via standard elliptic estimates. Improved decay of higher
derivatives can be obtained by iterating the method introduced in this paper, since
the submission of the paper this analysis has been performed in [18]. Note that the
low dimension cases where dispersion effects are weaker are left open. In dimension
2, when u = 0, the decay properties of the density (with weaker estimates for the
highest order derivatives in order to close the argument) have been established in [§]
it would be very interesting to study the influence of a non-trivial 1 on this behaviour.
The behavior of the highest derivatives is usually hard to establish when studying
decay rates in nonlinear dispersive problems. A common approach is to have non
sharp estimates in a high norm and to recover the linear dispersive rate for much lower
norms, this is in some sense the approach chosen in [5]. Here, since we have tried to
minimize the maximal number of derivatives, we have allowed a logarithmic loss and
could obtain an almost sharp estimate of the L°° decay for the highest derivatives.
It seems possible to suppress the logarithmic loss in the L estimates by involving
higher derivatives with weaker estimates.

Note that we have not tried to optimize the needed regularity of the initial data in
this statement, (1.3) means that we ask slightly more than Lipschitz regularity for the
initial condition fj. Since we can take p arbitrarily large, this means that o can be
taken arbitrarily close to one. We could actually take 0 = 1 + % by replacing W7
by the Besov space B;yl (this would change in particular the local existence result of
Proposition 3.1). Note that we do not ask for any smallness in (1.3). This is used only
in order to ensure that a certain quantity (namely N '(¢) defined in (3.4)), that we shall
use for a bootstrap argument, is continuous in time.

We could actually even only ask o > 2d 5o that loosely speaking, merely smallness
in Holder norm (instead of Lipschitz) would be needed, but this would require to
replace the W1->° and W!-! estimates for the density p proved in the paper by more
technical €0 = B3, « and BY  estimates. The main part of the analysis of this
paper, namely the linearized estimates for the density p, is based on a Littlewood—
Paley decomposition and is thus amenable to such a generalization. For the non-linear
estimates, one should replace differentiation by finite differences.

As a consequence of Theorem 1.1, we obtain the aforemetioned scattering property
for the solution to (1.2).

Corollary 1.1 With the same assumptions and notations as in Theorem 1.1, there is
foo € WE given by

foo(x,v) = fo (x + Yoo (x, v), v 4+ Weo(x, ) + 1 (v + Weo(x, v)) — p(v)

such that log(@ + 1)
og t
£ x +1v,0) = foolx, V)L, §80(t)T’ (1.6)
forallt > 0. Moreover, we also have that || Yool L3, + [WesllLes, < 0.
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The proof which is an easy consequence of (1.5) will be given in Section 8.

The remaining of the paper is devoted to the proof of Theorem 1.1 and is organized
as follows. Linear estimates are derived in Section 2. This is the main ingredient in the
proof: we shall establish in particular that the density p of the solution of the linearized
equation

hftv-Vif+E-Vyu=0,
E:_VX(I_AX)_1p1 ,O(t,x):/ f(t,x,v)dv,
R4

fli=0o = fo

enjoys the same pointwise in time L? decay as that of the free transport equation (that
corresponds to u = 0), up to a logarithmic correction.

The bootstrap argument allowing to get Theorem 1.1 is introduced in Section 3.
Section4 and 5 are devoted to stability estimates for characteristics. In view of applying
the linear estimates of Section 2, several source terms need to be estimated. The
contribution from the initial data is studied in Section 6, while the estimates on the
terms due to the reaction term —FE - V,u are established in Section 7. Note that
in order to establish the higher decay of derivatives, we shall use a different, more
straightforward change of variables than in [15]. This approach actually allows to
recover the estimate of [15] without logarithmic loss. The logarithmic loss in our main
result only comes from the linear estimates in the presence of a non-trivial p. The
paper ends with a reminder of a few classical estimates related to the Littlewood—
Paley decomposition.

1.2 Notations

We use = for the “space” Fourier transform on R? and ~ for the “space—time” Fourier
transform on RY*+! with the convention:

§(S)=/ e Eg(x) dx, Z(r,é):// e e N Ep(t x)y dxdt.  (1.7)
R4 R JR4

Throughout the paper, functions depending on time are extended by zero for ¢ < 0.
We shall use the homogeneous Littlewood—Paley decomposition in R” with n = d
ord + 1. We write for u € S’'(R"),

MZE Ug

qe

where r
ug (&) =u@)xq(6), xq&) = X(z_q)’ T="or 7 (1.8)

and x € [0, 1] is a fixed smooth compactly supported function in the annulus % <
|¢] < 8/3 which is equal to one in the annulus % < |¢| < 3/2. More precisely, we
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take

X&) =9(/2) = ¢()

where ¢ — ¢(¢) € [0, 1] is a smooth nonnegative function which is supported in
the ball B(0,4/3) and which is identically one in the ball B(0, 3/4). The classical
Bernstein Lemma is recalled in Lemma A.1.

2 Linear Estimates

In this section we study the linear equation

1
p(t,X)=/ / [Ve(1=A) " pl(s, x — (t —5)v) - Vyu(v) dvds +S(t, x), 1 =0,
0 JR4

2.1
with § being a given source term. In what follows, we extend p and S by zero for
t < 0 so that the equation (2.1) is satisfied for + € R. The main result of this section
is the following.

Theorem 2.1 Assume that (H1)and (H2) are satisfied. Thenforall S € L'(R, L' (R%)N
L®(RY)Y), there exists a unique solution of (2.1) in L}OC(R, L2(RY)) that can be
expressed in the following way:

p=8S4+G*xS, 2.2)

where the kernel G(t, x) satisfies G|;<o = 0 and there exists C > 0 such that the
following uniform estimates hold:

C
IGOIp < ——,  1G@)lre <

R @ e >0 @23

where § € (0, 1) can be chosen arbitrarily small. Furthermore, its spatial derivatives
satisfy

C
VGOl < ok IVxG (@)L~ <

C
= v > 1. 2.4

As a corollary of Theorem 2.1, we immediately obtain decay estimates for the
solution of (2.1).

Corollary 2.1 Assume that (HI) and (H2) are satisfied. Then, there exists M > 0 such
that forall S € LY(R, L' (R?) N L>®(R?)), the solution of (2.1) satisfies the estimates

Lo @iz + 1o @) llLe < Mlog(1+D)IS |y,
HVPD g + 1 IVp@ e < Mlog(1+ ISy,
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ort > 1, where the norms Y0, Y} are defined by
t t

ISl = sup (ISl + 1+ 9SG o)
[0.7]

(2.5)
ISl = sup (ISl + 1+ 919Gl + 1+ TSl )
ot

In Corollary 2.1, we state only large time estimates, since the estimates for r < 1
can be obtained in a straightforward way.

Note that derivatives decay at a r—! faster rate. In particular, Corollary 2.1 immedi-
ately yields decay estimates for the linearized Vlasov—Poisson system of (1.2) around
w(v), namely for the system

Of+v-Vif+E-Vyu=0,
E=-V.(1=A)"p, p(t,x)= /Rd f(t, x,v)dv, (2.6)
fli=o = fo.
Indeed, using the method of characteristics, we obtain that p solves (2.1) with S(¢, x)
given by

S, x) = / fo(x —tv, v)dv.
R4

Assuming that fy € L}C’U and fy € L}C(L,j'o), we have from the standard dispersive
estimates for free transport (see [2]) that

1
ISOlLr = Ifolipr, NSOz~ < t—dllfollL}.L;aO-

Similar estimates hold for derivatives:

1 1
VSOl = ;”vaOHLls [VS@)llLe < W”vaOHL}LgO'

Therefore, we obtain from Corollary 2.1 that the pointwise behavior of the density
of the linearized equation (2.6) is the same as the one of the free transport, up to a
logarithmic loss.

Let us right away provide the proof of Corollary 2.1.

Proof of Corollary 2.1 Using the representation (2.2) and the fact that S and G vanish
for negative times we obtain

t

p) = S(@) +/ G(t —s) %, S(s)ds.
0
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Therefore, using (2.3), we obtain

! 1
< [
lo@ g S NS@I —|—/O par— 1S(s)|Iz1 ds

|
< 1+/ ds) sup [|S(s)|lz1-
( o L+s [0.1] L

In a similar way, we have

t

oIz S IS@ e +/02 G = s)LellS(s) L1 ds

t
+ﬁ 1G (& = )l I1S(5) 1z ds.
2

Therefore, using again (2.3), we get that

1 [ |
IIp(t)IILooSIIS(t)IILw+m/O IS 7 dS+f£ 1+ﬁllS(S)llLoods

t

1 1 b)
S NSOl + — sup [[S)|[zr + — sup (1 +Sd)||S(S)||L°°/
% 10,1/2) 2.0 0

S 17 log(1 + 0S|l yo.

ds
1+

upon recalling the notation (2.5). This proves the desired estimates for p (¢). Similarly,
we compute

I3

2
HVe®liLr StIVS@lLr +th IVG (@ =)L lIS() L1 ds

t
+I[ G = )NilIVS$) e ds
2
for p = 1 and p = oo. By using (2.3) and (2.4), the estimates for derivatives follow.
O

Before giving the proof of Theorem 2.1 it will be useful to establish some properties
of the kernel of the integral equation (2.1).

Let us set w = x — (t — s)v and then integrate by parts to get the equivalent
formulation

—1
p(t, x) —/ / p(s, w) (< (z—s)ZA) Avu)

Y L dwd 0 2
X s ) G wds + S(t,x), t=>0. 2.7)
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Since p and S by zero for ¢ < 0, the equation (2.1) is satisfied for # € R and can be
rewritten as the convolution equation

pt,x) = (K *x p)(t,x)+ S, x), tekR, 2.8)

where the kernel K is given by

1 1o\ x
K(I,X) = m 1-— t_zAv AU[L (;) 1[>().

Note that we have
(K *; x P)(l,x):// Kt —s,x—w)p(s, wdwds
R JRA
t
=/0 (Kt —5,) e pls, ) () ds,

where we use the notation *; , for the space—time convolution and *, for the space
convolution.
We have the following properties for the kernel K :

Lemma 2.1 Assuming (HI), there exists C > 0 such that the following estimates hold:

C C
K(t < —, K®)|pe < ———, Vt>0.
KOl = 77> IKOle =4a+0 >

Note that we get in particular from this lemma that K € L 110 (R, L' (R%)) so that its

Fourier transform on RY*+! is well defined (at least as a tempered distribution). We
shall not use explicitly these precise properties of K besides the fact that its Fourier
transform makes sense.

Proof We clearly get that
C
K, )L = WIIlele,
and by change of variables, that
C
K@ ) = TIIlelLl,

where

1 —1
Fi(v) = ((1 - l_2Av> Avﬂ) (v),
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so that it only remains to estimate the L' and L° norms of F;. We use the homogeneous
Littlewood—Paley decomposition and the Bernstein inequality (A.1) to get that for
every p € [1, +o0],

IF e S Z 7 lligliee.
qu 2

We can thus obtain from that uniformly for 7z > 0,

1F e S 2% ugler + > 27 Ulugllwse < lnllwss-
g=0 q=0

This yields the estimates for ¢ > 1. It remains to improve the estimates for r € (0, 1].
This time, we additionally rely on the bound (1 + 'E =5-) > max (2 &l ‘S‘ ) to obtain

1FillLe S 2 glir + Y P ligllee

q=0 q=0
2~—
S 2 uglie + Y 22 ugllwrr S iy,
=0 =0

hence concluding the proof.

Proof of Theorem 2.1

We now give the proof of Theorem 2.1 which we shall split in several steps. As already
justified in [5,17] (see in particular the proof of Proposition 2.2 in [5] and the proof
of Theorem 3.1 in [17]), we can express the solution of (2.1) through its space—time
Fourier transform by

~ 1 ~
p(t,§) = T(r,é)S(T’ &)

in which K (z, £) is given by

~ oo L i —
K(7,§) =/ e - Vou(t€) dt. (2.9)
0 L+ "
The fact that the inverse Fourier transform of e ( S)S (t, &) vanishes for t < 0

comes from a Paley-Wiener type argument and uses the fact that 1 — K(z. €) does
not cancel in the half-plane ¥ z < 0, which is precisely the Penrose stability condition
(H2).
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We can then write

K(t,£)

T_ R é)S(f, £)

plr.&) =56 +
and hence the expression (2.2) follows by setting

K(z,8) )

_ 1
G(t,x) = ]-'(r’s)ﬁ(t’x)<—l TN

(2.10)
It thus remains to check the claimed properties of G.

At first, we observe that for & # 0, ITK[% is a holomorphic function in Iz < 0
thanks to (H1) and (H2): ’

e the Penrose condition (H2) ensures that 1 — K (z, £) is away from 0,
e and (H1) entails that V, . and its derivatives are decreasing sufficiently fast, so
that one can apply Lebesgue dominated convergence theorem.

Now, note that thanks to (H1) and (H2), ; f I((Z(ZS)S) is uniformly bounded in Iz < 0.

Indeed, by (H1), V,iu € W21 and therefore we get

VieRy >0, |R@—i $)|</+"° e Il d;</+°° ds

T , Y = U, T—1y, N e - S [
0 (1+tIg])? o (1492

2.11)

In addition, by integration by parts, we can compute

L [PPA—eT) iE
Reo = [ S22 S

+o0 ,—itt . o
=/0 R N

T+ 21+ 6P
S R )
T2 14 g e

Note that we have used that ﬂ(O) = 0, which ensures that a boundary term cancel.
By (H1), (0)2Vyu € W21, This yields, arguing similarly as for (2.11), for any fixed
§#0,

IK (7, &) <

1+ 172

Since a similar expression holds for the derivatives 9% K (t,&)and by (H1), ()2Vyu €
w41 for any fixed £ # 0, we have

~ 1
|07 K(7,8)| S Ta2 o5 2, (2.12)

uniformly in 7.
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K(z.8)
1-K(z,8)
have moderate decrease. Therefore, thanks to an adequate version of the Paley-Wiener

This entails in particular that and its inverse Fourier transform in time

theorem (see Theorem 3.5 in [22]), we get that fr__l) ' (171(1?) vanishes for < 0 for

every &. We conclude that G vanishes for t < 0.
It remains to prove the pointwise decay estimates (2.3)-(2.4). We need the following
properties of K (t, ).

Lemma 2.2 We can write

K(t,&) K"l(z, &) (2.13)

N

where K1 (7, &) is positively homogeneous of degree zero and Khl e ¢2d+3 (RITI\{0}).
Moreover, there exists C > 0 such that

099 K" (2. 8)| < €. V(@.p). la| + 1Bl <24 +3, Y(r.6) €S’ (2.14)
where S is the unit sphere of R4+,
Proof From the definition (2.9), we have
KMz, 8) =/ e 'TiE - Vyu(1§) dr.

0

We observe that for A > 0,
KM, 0) = / e MTiNE - Vyu(hg) di = K™ (z, 8),
0

upon using the change of variable s = Az. Note that by using again (2.11), we have

sup  |K™1(1,8)] < +00.
(r,E)ERdJrl

To estimate the derivatives on the sphere, we first handle the case when |§| > %
Thanks to (H1), (v)2¢3V,u € W24+31 and consequently, we have

(r)lI+1AI

029l K™ (z, £)] s/m—N
o (L+1[gD

for N = 2d + 5, and therefore, for |&]| > % and || + | 8] < 2d + 3, we have

~ 1
praf KM @l <1 g est gz o (2.15)
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Let us next consider the case when |&] < %, in which we make use of the fact that
7 is bounded below away from zero, recalling (z, £) € S¢. Integrating by parts, we
get for every n > 2

n

~ 1 1
K"z, 6) = —— P (E) + —— Ry (1, £) (2.16)
,Z; (iok (i)

where
P(&) = i& - (DET'V,u)(0) 1 941

+00 . /\
Rn(r,$)=/0 e (1, ) dt, ra(t,€) = i& - (DFVyu)(1§)) : £,

with the definition

k

£-(DEVum (@) 6% = Y g8, g 3oy 0.

0
JosJ1se+ Jk ”'asj"

Note that &y is ahomogeneous polynomial of degree k. Thanks to (H1), (v)2d+3 Vou €
W2d+5.1 and thus we have for all n < 2d + 3,

|§-|n+l

< 2
IO S e

for N = 2d + 5. More generally, using (v)**0v,u € W24+>1 we have for all
n<2d+3and|B| <2d+3,
|;§|n+lf\ﬁ|

p st
|ag rn(hf)' SJ (1 +t|§|)N_|ﬂ|'

Consequently, applying derivatives to the expansion (2.16), we get for |§| < 1

|8?8§’1?h’1<r,s>|§1+/

+oo tlol\|g):|n+17|ﬁ| 4 <1+/~+oo s\a||§|n*|f3|*\a|
o (L+r]gpN-IAl 0

(1 +5)V=1Al

Thus, we can fix n = 2d + 3. We get for || + |B| < 2d + 3,
~ 1
praf KM @ oISl g eS <.

This, together with (2.15), concludes the proof.

Remark 2.1 We can also express the expansion (2.16) for n = 2 in a slightly different
way. We write
=hl 1 £ =h,2
K" (1, 8) = e z(f;‘)+( " KT (T, 8) 2.17)
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where &, is a homogeneous polynomial of degree two in & and
R = [ eivis (0@ dr.
0

From the same arguments as in the proof of Lemma 2.2, we get that Kh2(z, &) is
homogeneous of degree zero on R4*! and that

929l K12z, 6)| < €. V(@ p). lal +1pl <24 +3, ¥(r.&) e’ (218)

Combining Remark 2.1 and Lemma 2.2, we obtain

Corollary 2.2 We can write the expansion

~ St g 22E)  E o, )
’“”f)—m(’( ©O T Ty O

where K1, K2 are positively homogeneous of degree zero and satisfy the estimates
(2.14), (2.18) and P, (&) is a homogeneous polynomial of degree 2.

Proof The corollary follows from a combination of (2.13) and (2.17).

Let us now use the properties of K(z, &) to derive the pointwise decay estimates
for G (¢, x), recalling (2.10). We first use the homogeneous Littlewood—Paley decom-
position of R¥*! to decompose G (z, x), yielding

G(t.x) =) Gylt.x),

qe

recalling (1.8). The general strategy will consist of treating differently the contribution
of high and low frequencies. We first deal with high frequencies:

Lemma 2.3 There exist A > 1 and C > 0 such that for every § € (0, 1] and every g
with 29 > A, we have the estimates

2q(1+5) 1
G,(t <C ,
1G4 Ol = €y g
2q(d+1+8) 1
1G4~ < C vVt € R, (2.19)

1422 (1424tHN’
for N =d + 3.

Proof We first observe that we can rewrite (2.10) under the form
G=K+KG.
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Let ¢ be a smooth cut-off function that is supported in an annulus slightly larger than
that of x, so that ¢ = 1 on the support of x. Setting

Ky=o ((Tz’f)> K,

we hence get the convolution equation

Gy = Ky + Ky %5 Gy. (2.20)

Let us first bound K. We shall prove that for all ¢ > 1,

- q8 24
K, (t , 2.21
1K Oy S T35 e (2.21)
for N = d + 3. Using the expansion in Corollary 2.2, we write
'qu = kvq,l + Eq,Zv
with
I’Z = —Eh)l ’ ’ 3
~ —1 §®2 =h.2 «@2(5) )
K,»= KM (T,E) + T7,8).
e 1+|s|2+r2<1+|5|2 @O+ e ) @9
We first check (2.21) for K 1. By a scaling argument, we can write
Kg1(t,x) =249 D, (291, 29x)
where
—1 =
ke (T, X) = f(f,S)H(T,X)Kf{»l(th’ 24¢).
We claim that
aqB7T
07 0z kq,1(T, &) < T2 (222)

uniformly in g for g > 1for |a|+|B] < N +d. This yields (2.21) for K 1. Indeed,
from (2.22), we obtain from taking integration by parts

1

kg 1 (T, X)| < ’
kq t (T O S T332 T T 2 XV

which in turn implies

1
kg1 (TN 1 S 1+22 (1+|THV"
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Therefore, by a change of variables, we obtain

1 24
K, 1(t S :
[Kg 1Dl S 14224 (1 +24|t[)N

We now prove the claim (2.22). By homogeneity of K™, we can write

Ky (1, 8) = K"z &) (1.8).

1
1+ 2987 + (277)?

Since K”! is a smooth homogeneous function of degree zero that satisfies (2.14), that
is

0 K" &) Sl )77 <,

since on support of x, |§] + |t| is bounded from below by a strictly positive number.
On the other hand,

24ly| 1
< <
N1+ 224 (€2 + T2) 2~ 4 2%

3y :
TE\ 1+ 2962 + (247)2

on the support of x. We thus deduce the estimate (2.22), and hence (2.21) for K 1.
For what concerns K », using (A.3), for any § € (0, 1], we have

1

5| £ =h2
IKg 2Ol <27 ‘f(f,g)ﬁ(,,x) <m1{ (T, ) xq (T, 5))

Ly

+29°

’

1
~1
Fle6)—(t.x) <qu(f, S)) y

Again, note that K"2 is a smooth homogeneous function of degree zero that satis-
fies (2.18) and therefore we have

0! K" 9 S I eI S,

on the support of x. As a result, arguing as for K, ; with a scaling argument, we
deduce (2.21).
Moreover, exactly as above, we obtain for all ¢ > 1,

248 24
o ; . 2.23
IKqgOliL S 1+ 224 (14 24)¢|)N o

Therefore, rewriting (2.20) as
Gy(t,x) =Ky, x) + / (qu(t —5,) %y Gy (s, ~)) (x)ds, (2.24)
R
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and taking the L' norm in x and by using (2.21) and (2.23), we thus obtain that

98 24 248 24

G,(t S
” L]()”L1 ~ 1+22¢] (1+2q|t|)N +~/l\§ 1+22q (1+2q|t—s|

w16yl ds.
Letussetforall T € R
N T
NGglllhir = A +1T) IIGq(Z—q)IILl-

We deduce after a change of variables that

NGyl S > + = / Sl 1 1G4lll1,sdS
T I42% 0 142% Jp AT = SOV A +[SHN ’
29248 249
G ’
S 152 + T 2% §2§||| qlllis
(2.25)

where we have used that for N > 1,

dS < +o0.

u / (A +Tp" 1
rerJr (1+ T = SPN (1 + ISPV

Consequently, after taking the sup in 7', we can find A > 1 sufficiently large such that
for all ¢ satisfying 29 > A, the last term on the right of (2.25) is absorbed into the
left, yielding

492498

Gollir S ——r.
sw lIGqlliur S 1z

This proves the L' estimate in (2.19).
It remains to estimate the L°° norm. The proof follows the same lines. Arguing as
for (2.21), we obtain
248 24q(d+1)
1+2% (1 +24)t)N’

1K g (Dl oo ray + 1Kq (Dl ooy S

for any § € (0, 1]. We then get by using (2.20) and (2.21) that

248 24q(d+1) .
r— G cod
1+ﬂa+%mw+é”“ 111Gy (s)llLds
248 2q(d+1) 248 24
< o
~1 422 (14240t )N R 1 +220 (1 424|t —s])

1GqllL> <

v 1Gq ()L~ ds.
We then conclude as before by setting
N T
G gllloe,r = (1 +1T1) 1Gq G lzee,
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that

243894 (d+1) 2498

1+ 2% * 1+ 224

sup [[1Ggllloe, 7 sup [[|Ggllloc.s-
T s

The estimate (2.19) for the L norm thus follows by choosing A sufficiently large.

From now on, A > 1 is fixed and there remains to estimate G, for 29 < A. This is
the content of the next lemma.

Lemma 2.4 For A > 1, there exists C > 0 such that for every g € Z with29 < A, we
have the estimate

2q(d+1)

G, (t < C——,
1Gy @1 =< T2

1Gg(D)llLe < Vi eR, (2.26)

C—Zq
(1 424)ehN”
for N =d + 3.

Proof We use directly the expression (2.10) and argue as in the proof of Lemma 2.3.
By a scaling argument we can write that

Gy(t,x) =21 Dg (297, 29x)
where

o (T.X) = F-! K297, 249¢)
(T, X) =

(r,s>—><T,X)mx(t, £).

To get the result, it is sufficient to prove that 9% 85 84 is bounded on the support of x
uniformly in g for 29 < A for |a|+|B| < N +d. From the Penrose stability condition
(H2), such an estimate for g, follows from a similar one bearing on

ky(r.8) = K@Q97,298) 1 (1. §).

From Corollary 2.2, we can write by homogeneity that

~ 1
(8 = T r ¥ 2
o P (&) 92 s
(K S S A T A (I’E)) 18-

Since on the support of y, |£| + || is bounded below by a positive number, we have
that uniformly in ¢,

1 241yl
ay < < 1
= <1 +12962 + (2%)2)’ ~ A+ 224(E] + D) I
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We also observe that on the support of x, & belongs to a ball so that we have

of PE) o £®2 24lal
% (22q+|5|2>‘+3 (2 2q+|s|2)‘ 7R

This is for the control of these terms that we use that we are in the low frequency
regime 2¢ < A. Since K!(t, &) and K% (t, &) satisfy (2.14), (2.18), the uniform
estimate for 97 85 ky follows.

End of the Proof of Theorem 2.1

We shall combine Lemma 2.3 and Lemma 2.4. Let A be given by Lemma 2.3.
We have
IGOIL < D 1G@ll + Y 1G]l (2.27)

21<A 29> A

Let us first consider large time estimates that is to say for t > A. In this case, the
second sum gives

2q(145) 1 1
Gollp < ST
DGOl Z 1422 (1429)e)N ~ eV

29>A 29>

since § < 1. For the first sum, we split

2q 2(1 2q
IGeDlp S ) ——— RS A A+ 24)hN
2 1000 = 2 T aay 22 ST VR s

291<A t—1<24<A

The first term above contains only negative g so that

24
Z (1+2‘1|t|)NN Z

29 <t—1

N|>—‘

For the second term, we write
24 1 1 1 1
s < 29(1=N) | = 2a(1-N) < _ —+ -,
12 (1 +2‘1|t|)N ~ N Z tN Z tN
t—1<2a<A t—1<2d<1 1<29<A
since N > 1. We have thus proven that for ¢ large enough

1

IGOIIL < 7

The estimates for the L°° norm follows the same lines using that N > d + 1.
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Let us explain how we obtain the estimates for t < A. We use again (2.27). For the
first sum, we just use that

24
< I q <
> GOl S Y. e S 2 S

29<A 29<A 29<A
For the second sum, we write
2q(1+5) 1

G, 1 < < 20140 <
> 16,0l S Y- T ST > <
20>A 20>A 20>A

To get the short time estimates for the L° norm, we only handle in a slightly different
way the second sum. We write

Z Z 2q(d+1+8) 1
[[AGIIESS 5 5
e oA 1+2%9 (14 24]¢t))
1 1
qd—=1+8) , q(d—1+48—N)
S )2 +x 22 S
t—1>24>4 24 >¢~1

We can also estimate derivatives of G using the Bernstein inequality (A.1). Note
that we will use only large time estimates (that is to say for r > 1). We write

IVGOIr < Y. 290Gl + Y 290G @)l

20<A 20>A
1 1 24(2+8) 1 1
2, L q@—N) , S <«
S P+y 3 WV cmmSatw
20 <t~ ! t—1<29<A 29>A

The estimate for the L° norm of the derivatives follows the same lines, using N >
d + 2. This concludes the proof of Theorem 2.2.

3 The Bootstrap Argument

Equipped with the linear estimates (in the form of Corollary 2.1), we are now in position
to introduce the continuation argument that we shall use to establish Theorem 1.1. As
usual, the characteristics (X, /(x, v), Vs ;(x, v)) associated to the transport equation
with the vector field (v, E (¢, x)) are defined as the solution to the ODE system:

d

%Xs,z(x, v) = Vi (x,v), X1 (x,0) = x,

p 3.1
s 5.0(x,v) = E(s, X5 (x,v)), Vii(x,v) =v.
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By the method of characteristics, the solution to the Vlasov—Poisson system (1.2) must
satisfy

1
f@, x,v) = fo(Xos(x,v), Voulx,v)) —/0 E(s, Xs,1(x,0)) - Vo (Vi1 (x, v)) ds.

(3.2)
Consequently, p(z, x) = fRd f(t, x, v) dv solves the equation

t
,O(t,X)—/ /I[Vx(l—Ax)_lp](s,x—(t—S)v)~Vv,u(v)dvdS = 8(t,x), (3.3)
0 JRA
with
S(t9~x) = \/Rd fO(XO,l(xvv)v VO)[(.X:, v))dv
t
+f / E(s,x — (t —s)v) - Vyu(v)dvds
0 JRY
t
- / / E(5, X506, 1) - VoV s (x, v)) dvds.
0 JRY

To study (3.3), let us introduce the following weighted in time norm:

N(t) = sup —
[O,E log(2 +s)

(Il + 6 1ol + ($HITP@ I + (D IV 1 ).

(34)

First, we recall the following local well-posedness result for (1.2) whose proof is
standard and therefore omitted. In what follows, we shall say that f e ng Pif )k f e
Wyl
Proposition 3.1 [Local well-posedness] Let fo € W' n W,f/’;, withk > d, p(o —
1) > 2d and p~' + p'~' = 1. Then, there exists Ty > 0 and a unique classical
solution f(t) € €([0, Tol, W1 n W,f/’g,). Denote by T* > 0 the maximal existence
time; if T* < +o00, then
loll .7+ wieey = +00. 3.5)
We thus apply Proposition 3.1, to obtain a unique local solution f(t) €
€ ([0, To], Whin W,f/’]f,) of (1.2) that can be continued as long as || o (¢) ||y1,c Temains
bounded. We note that the continuity in time of f and the Sobolev embedding entail

that the function t — A/(¢) is continuous as well.
Let e € (0, 1] to be fixed later. We define

T = sup {t €0, T, Nt) < s}, (3.6)
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where T* is the maximal time of existence. By continuity of A/ and thanks to the
blow-up criterion (3.5), there is &g > 0 such that if

1) follwree + Il follwia < eo,

then 7* > 2 and moreover we can ensure that the time defined in (3.6) also satisfies
T > 2.
Now applying the linear theory, namely Corollary 2.1, for the equation (3.3), we
have
N = M (ISl + 1Sly;) (3.7)

fort < T, where the norms Yto, Y,1 are defined as in (2.5).

The main task is therefore to estimate ||.S|| yo + ISl yl- We are going to prove the
following result.

Theorem 3.1 There exist &1 € (0,1], Co > 0 such that for all ¢ € (0, €1), for all
t < T (where T is defined as in (3.6)),

ISllyo + ISlly1 < Cogo + Coe”. (3.8)

With Theorem 3.1 at hand, we can conclude the proof of Theorem 1.1.

Proof We choose ¢ and & small enough so that g < & < & and

Coeo + C0£2 <

1
< 56 (39)

where M’ is the constant appearing in (3.7).
Assume that T < T*. We deduce by Theorem 3.1, (3.7) and (3.9) that

N(T) < %8.

This is a contradiction with the definition of T' as by continuity of A/, we would then
find T € (T, T*) such that

N(T) <e.

Once we know that T = T*, we also get that T* = +o00: indeed from the blow-up
criterion of Proposition 3.1, we cannot have T* < +oo0 since then N (T*) < e. O

The rest of this paper is devoted to the proof of Theorem 3.1. We shall therefore
work on the interval [0, 7], on which we have A/ (t) < &, a property which we will
refer to as the bootstrap assumption. All subsequent estimates will be independent of
T.
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4 Decay Estimates for Characteristics

In this section, we study the characteristics (X ;(x, v), Vs (x, v)) defined as the
solutions to the ODEs (3.1). Integrating (3.1), we have forall0 <s <t < T,

t
X (x,0) = x — v(t —5) +/ (r — s)E(t, Xeo(x, v)) dt
s 4.1)

t
Viilx,v) =v —/ E(n X (x, v)) dr.
s

We have the following pointwise bounds on characteristics.

Proposition 4.1 There is €1 € (0, 1) such that the following holds for all ¢ < ¢1. For
all0 <s,t < T andforx,v e R, the map x — X (x,v) and v — V;(x,v) are
€' diffeomorphisms, and we can write'

Xs (x,v) =x—(t—s)v+Y, (x—vt,v), Vi, (x,v) =v+W,(x—vt,v), (4.2)

where Yy ;1 (x, v), Ws 1 (x, v) satisfy the following uniform estimates

L s i, + 19 Yol
sup ———— (IIYs 1l o0 e
0§s§?§T log(2 +s) SILS, x s, t LT
145972
+ sup ViYL, Se,
0<s<t<T 10g(2 + ) X,
d 4.3)
s
sup  —————([[Wssllze, + Ve Wyl
OSSS?ST log(2 + ) (Ws.illzgs, + 1V Werlleg,)
d—1
4+ sup —||V,W. ~ <.
OESE?ST 10g(2 4 S) ” v S‘t”Lx.v
Proof Let0 < s <t < T. By definition of Y; ;, we have from (4.1)
t
Vs, 0) = / (- S)E(Tvx + TV + You(x, v)) dr. (4.4)
s

Differentiating this identity with respect to x and taking the sup norm in x and v, we
get

t
IViYsillige, < / (T =IVeE(T, x + v+ Yo, (x, V)L, (T + [ VaYrilirg,) dt
s

t
S+ sup ||Ver,t||L§?v)/ TIVxE(T)|[L dT.
N

0<t<t

4.5)

1 We have chosen to write the remainder as functions of (x — vt,v), instead of (x, v), in view of the
expected large time behavior, which is that of free transport.
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Next, since V,E = —V,(1 — A (Vi p), we obtain from (A.2) and the bootstrap
assumption that

log(2 4+ 1)
IE@)llLe + IVxE(@) e S IIVep (D)L S £

Shpome G0

and thus t||Vy E(7)]|| L is integrable in time. This yields

IVi¥silire, S e+ I1Va¥sullig,)-

Thus, for ¢ sufficiently small, we have |V Ys ¢, < e.forall0 <s <t < T There-
fore, taking ¢ small enough, we deduce that for all v € Rd, the map x — X ,(x, v)
is a €' diffeomorphism (since we have just shown that it is a small perturbation of
x = x — (t — s)v). As a consequence, for any integrable function H = H(x), we
have

sup ||H(XS,;)||L30L~|¥ S ||H||L;~ .7

0<s,t<T

We are ready to derive the uniform estimates in (4.3). Using the pointwise decay
in (4.6), it follows directly from (4.4) and (4.5) that

log(2 +5)

1¥s,ellge, + Ve Yol < Tgsdt®

In addition, we also obtain from (4.4) that

1
IVoYs.llLes, 5/ (T =INIViE(@) Lo (t + Vo Yo s llLe) d
N

"log(2 + 1) log(2 + 7:)
< ——d —|IVY, o d
Ng'/; 1+Td_l T+8/; l+ ” Tt”L T.

log(2+r)

In dimension d > 3, since =

before that

is integrable, we get from the same argument as

log(2 +5)
VoYsillLe, S

_— 4.8
xXv N 1 + sd—z ( )

which is particular bounded, giving the claimed estimates on Y ;(x, v). Similarly, by
construction, we have

t
Wsi(x,v) = —f E(‘L’, x4+ tv+4 Y (x, v)) dt
A
which first directly yields

"log(2 + 1) log(2 + s)
[WsillLe, <€ /sm f§€1+—sd'
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Moreover, using the estimates already proved for Y; ;, we have

"log(2 + 1) log(2 + 5)
IVaWstllrgs, S 8/ T U H IVaYellig) de S e——a—.

" tlog(2 + 1) log(2 + )
”VUWV,t”Li% 58\/5, —1+'[d+1 (1+||VUYT’I||L?Ov)dT§SW

Imposing again & small enough, we deduce that for all x € R?, the map v > Vi1 (x,v)
is a ¢! diffeomorphism. The proposition follows.

Remark 4.1 In dimension 2, derivatives in v of characteristics have a slow growth in
time (see in particular the estimates leading to (4.8)), which prevents from performing
the same nonlinear stability analysis.

5 Straightening Characteristics

In order to boil down to the case of free transport, we shall rely on a change of variables
in velocity, that is close to the identity on the interval [0, T']. This is the content of the
following proposition.

Proposition 5.1 There is €1 € (0, 1) such that the following holds for all ¢ < ¢1. For
all0 < s,t < T, there exists a €" map (x, v) — Y (x, v) such that

Xt (x, Ws 1 (x,0)) =x — (t — 5)v, 5.1

forallx,v € R9. In addition, forevery x € RY, v > W, ;(x, v) is a diffeomorphism,
and there hold the following uniform estimates

1 + 54

sup —— (||¥ ,V) — vl oo AVAR\/J ) oc)<s,
R Ty (s, 0) = vl + 192 W (6 D)2, ) S

5.2
145971 ©-2
up

sup  ————[[Vy(Wys (x,v) —v)Lge, S &
0<s.t<T 10g(2 + ) Vo (W1 (x, ) )L

Proof From (4.1), we write
Xsr(x,v) =x — (t — S)<v + Dy 1 (x, v))
where
1 t
D, (x,v) = _t_/ (t — s)E(t,x —(t—1D)v+ Y (x —vt, v)) drt.
—s

Using (4.6), we obtain

"log(2 + 1) log(2 + )
———dt Se——.
1+ zd+l 1+ 54

t
100 M, < / IE@)ls, dr S ¢ /
s S
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In addition, using the bounds on Y; ;(x, v) obtained in the previous section, we get

19y, S —/ (7 = DIVLE@ e (1+ IVa Yol ) de
log(2 + s)
< VE odt Se——————
N/S IVeE@l dr S 6=y
using (4.6). Finally, we compute
IVl S —f (T = IVLE@ e (1 = 7 + (Vs = V) Yelligs, ) d7

S / I+ DIVxE(®)llLye dt +/ IVxE(@) LV — TV Yo il dT
N s

in which we have writtentV,Y; ; = (t —7)V, Y7 ;+7V, Y ; and used the boundedness
of VY7 ;(x, v). Therefore, using again (4.6) and (4.3), we have

IVo®srllLee, <

Xv

/’ log(2 + 1) < 810g(2 +5)
g 147 ~ 1 4sdl

We deduce that the map
(x,v) = (x, v+ Py (x, v))

is a ¢! diffeomorphism from R?¢ to R>¢ with Jacobian determinant close to one. As
a consequence, there exists a ¢! diffeomorphism W, ,(x, v) such that

Xs,t(xa “Ils,t(x’ V) =x— (=9,
for all x, v. By construction, note that we have
qls,t(x» V) =v— cbs,t(xv LIjs,t(xa v)). (5.3)

The estimates (5.2) for Wy ;(x, v) thus follow from the estimates already proved for
@, ;(x, v). This ends the proof of the proposition.

6 Contribution of the Initial Data
In this section, we estimate the contribution of
I(t,x)= /Rd Jo(Xo,¢(x, v), Vo1 (x, v)) dv. (6.1)

Namely, we prove the following proposition.
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Proposition 6.1 For 0 <t < T, there holds
IZO N1 + OO Lo + IV Ol 1 + OTHNVI@) e < Coso,  (6.2)

for some positive constant C.

Proof Since
(x,v) = (Xo,(x, ), Vo i (x, v))
is a measure preserving diffeomorphism, we have that
IZ@O N < 1 follzr, < €o-

Next, to prove the L°° estimate, we aim at getting as close as possible to the dynamics
of free transport, which corresponds to fo(x — fv, v). To proceed, we first straighten
the characteristics following Proposition 5.1, yielding

Z(t, x) =/ Jo(x —tv, Vo i (x, W (x, v))) det(Vy Wo s (x, v)) dv,
R4

from which we deduce by using the change of variables w = x — tv

I(t,x) = Vou (x, 7)) det (Vo x-w) dw
(Z,X) - [l‘{d fO (wv 0,t <xa 0,t <x7 P >>> € ( v O,t) (X, T) t_d
6.3)

Then, by using (5.2) that yields

Il det (VyWo,r) llee, S 1,
we get that
< ! < !
IZOll= S @ Jea Il fo(w, ez dw S —q¢o-

Next, to compute the derivative of Z, we shall introduce (Yo ;, Wo ;) as defined in (4.2)
on the characteristics and use the change of variables w = x — vt to get

I(t,x):f fo (x—vt+Y0,,(x—tv, v), v+ Wp,(x — tv, v)) dv
R4

X —w xX—w X—w dw
= Y , , Wi , — —_—.
R O O e A O )

6.4)
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Therefore, we obtain that

V. Z(t, x)

:/ |:(fo0) (UJ‘{‘YO‘[ (wvx_w)vx_w +W0,l‘ <wvx_w>>
Rd t t t
(VoY) (w, — “’)
x—w) x—w xX—w
+ (Vu fo) (W+Y0,t (w, ; ) - + Wo.r (w, p ))
X —w dw
e+ (VuWo) | w, ; prESE

where e is the vector (1, --- , 1)%.
Consequently, from Proposition 4.1, we obtain that

v < v Y X —w X —w W X —w dw
IVZ(r, x)| S - [Vewfol | w+ Yo | w. — )t Wou(wo——))
(6.5)

Going back to the original coordinates, we get

1
IVXZ(t, x)| S ;/Rl [V fol(Xo,:(x,v), Vo (x,v)) dv.

By integrating in x, this yields

~ ~

1 £0
IViZOl o S ;”Vx,va”L] S e

For the L norm, we use again the straightening change of variables v = ¥ ;(x, V)
and w = x — {7 to obtain

1 £0
IVZ(t, x)| < prEa /Rd Vv fo(w, )i dw < g

This yields the proposition for the case t > 1. For 0 < ¢ < 1, the estimates are
straightforward, using directly the bounds on the characteristics from Proposition 4.1.

O
7 Contribution of the Reaction Term
We next turn to the reaction term
R(t,x) = RL(, x) — RnL(Z, x) (7.1)
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where
t
Raw(t, x) = / / Es, X (5 0) - Vopa(Va s (v, v) dvds,
0 JR
t
Ri(t,x) = / / E(s,x — (t —s)v) - Vyu(v)dvds.
0 JRA

In order to estimate R, we shall first establish the following general fact. Let us set
for any given F and v:

t
T[Fa U](l, )C) = _/ / F(S, Xs,t(xs U)) : VUV(VS,I(-xs U)) dvds
0 JRA
t
—i—/ / F(s,x — (t —s)v) - Vyu(v)dvuds.
0 JRA

Note that in particular, we have R(t, x) = T[E, u](t, x). We have

Lemma 7.1 Assume that v € W2'> with

1
[05 V| < A | =1, 2, (7.2)
for some N > d. We have the decomposition
TIF,vI(t, x) = Ti[F,v](t, x) + D[ F, v](z, x), (7.3)

where for j = 1, 2, we have

t
Ti[F,vit,x) = / / F(s,x —(t —s)v) - Hy j[v](s, ¢, x,v),
0 JRd

in which

Ho 1[vI(s, 1, x,v) = Vyu(v) — Vou (Vi (x, Ws s (x, v)))

(7.4)
Ho V1G5, 1%, 0) = Vv (Vi (6, We,r(r, v)| 1 = det(Vy W 1 (x, 0) |
Moreover, for 0 <s <t < T, the kernels enjoy the uniform estimate

I3 log(2 +s)

Hy, ;i 5 x,0)| S 7.5

| 0,][])](5 X U)|N (1+|U|)N 1+Sd_1 ( )
and there exists C such that for every F and for every t € (0, T],

1F )
IT5LF, V1)1 < Ce sup > (7.6)

(0.1 log(2 + )
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175 [F, vI(O)llLe =

Ce (||F(s)||L1 1+sd||F<s)||Loo>' an
[0,7]

d log(2 +s) log(2 +s)

Proof Using the change of variables provided by Proposition 5.1, we obtain

t
TIF,v](,x) = —/ / F(s,x —({ —s)v)
0 JR4
V0 (Vs (5, Wi (x, ) det(Vy Wy  (x, v)) dvds

t
~|—/ f F(s,x — (t —s)v) - Vyv(v)duvds.
0 JRrd

The decomposition (7.3) follows. Moreover, for 0 < s <t < T, the kernels enjoy
the estimate (7.5). This follows from Propositions 4.1 and 5.1: by the mean value
inequality, (7.2) and (4.3)—(5.2), we have

1
[HoaD)(s, 1.2, 0)| S g v = Vo (6, Wi (3, )

1

S g L1 = Ver G ) Vi () = Vi (e, W, 0) ]
1

S oy [P Ve @ IV Vel o = Wi, v)

< ¢ log(2 +s)

NN 1 4sd

We handle Hy > similarly.
Next, using the change of variable w = x — ( — s)v and the bounds on the kernels,
we obtain

! x—w\V log(2 +s) dwds
T;|F < F 1 )

This yields

IT5LF, v1(t)]l 1 <s/ 1 (s )“ng(—jsl)ds

2
< e sup [F@)llr (" log”(2 +5)
0

- ds,
nlog2+s)Jo 1+s

hence the L! estimate. For the L™ norm, we use

og( + s) log(2 +5)

1+ sd-1 as,

I Z5LF, vI(D)ll Lo <—/ IE Nz~ ds +¢ / [ (s)llzee
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which gives

£ IF |l 1+
IZ;[F, vIO)llLee S — | sup ——=———+ sup ——————||F(s)l=
/ 19 \10.1/21108Q2 +5) (/247 l0g(2 + 5)

/’ log?(2 + )
o |1 + gd-1

ds.

This concludes the proof of the lemma. O
As an application of Lemma 7.1, we can now derive appropriate estimates for R.

Proposition7.1 Forall0 <t < T,

IR + (1 + 1D R@) e < €.

Proof Since we have R(t, x) = T[E, u](t, x), the estimate for 1 < ¢ < T follows
from (H1), (7.6), (7.7), the fact that

IEOILr S lp@lLr,

for p € [1, oc], and the bootstrap assumption. The estimates are straightforward for
0 <t < 1, bounding directly (7.1) using the bounds on the characteristics from
Proposition 4.1. O

We shall now estimate derivatives of .
Proposition 7.2 There exists C > O such that for every 0 <t < T

A+ DIVRM N1 + A+t VR@) || < Ce.

Proof The estimates for 0 < ¢t < 1 follow directly from (7.1) and the bounds on the
characteristics from Proposition 4.1. We therefore focus on the case > 1. We shall
first express VRNL in an appropriate way. Using (4.2), we have

t
RNL(t,X)Z/ / E(S,Ys’t(x—tv,v)—l-x—tv+sv)
0 JRd

- Vo (W 1 (x — tv, v) +v) duds

t —
:/ f E<s,Ys,,(w,x w)+w+f(x—w)>
0 JRd t t

X —w x —w)\ dwds
“Vyu | Wy (w, ; ) + ; it

By taking the gradient in x, we next obtain that
9 RNL(, x) = R} +R3 +R3 +RY,
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where

R = ' SOE (s, Y ( r-w Six —
= j s Yo i (w, )t w+ —(x —w)
0 JRd t t

X —w x —w)\ dwds
Vo | Wsr(w, ; )+

t ld+1 ’

t
2 x—w_  x—w)\ dwds
R —/O/WE-av_,vvu(Ws‘,(w, )+ 2 )th,

d X —w X —w s
Zf / 8v/~YS,t(W, —) ViE s, Y (w, )tw+-(x —w)
0 JRrd ’ t t

X —w x —w)\ dwds
: VUI‘L WS,l(ws P ) + P td+l )

! X —w N
:/ / E(s,YS,t(w,—)-l-w—i-—(x—w))
0 Jrd ! 4
X —w X —w x —w)\ dwds
. a,,j Ws.r(w, T) Vo ) Vo | Wy (w, P )+ P pd+1 0

We can now estimate directly R3, R* that are indeed nonlinear terms. Going back to
the v variable and recalling (4.2), we have that

dvds

t
= /(; [l‘{d (3uj- Ys,t(x —vt,v) - Vi E (S, Xs,t(x, v))) -Vt (Vs,t(x, v))

From (4.3), we then obtain the pointwise estimate

log(2 dvd
R, ) <s/ / |V (s, X (v, 0)] ViV (x, v>|Lj§) -

log(2 + ) dvds
<e/ IV E@ls 1o [ Vo (Ve 0l ==

By Proposition 4.1, for all x € RY v > Vii(x,v)is a @ 1 diffeomorphism and
therefore by (4.3) and (H1),

sup/ Vot (Vs ¢ (x, v)|dv < 1.
x JRd

By (A.2) and the bootstrap assumption, we have

log(2 +s)
IVeE@IL S IVap@lp S o5 —2
+s
and thus the above yields
3 log(2 + s) g2 ["1og?(2+5) &2
IR; Ol < / IV E(S)”Llﬁ ds S Ty Tas T ds < 'R
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For the L*° norm, we use again (H1) and the change of variable given by Proposition
5.1 to obtain that

3 e (! x
R, )| <~ IVxE(s, w)| { 1+
t Jo Jrd

Using the bootstrap assumption, we find

w\ "V log2 +s) dwds
14572 (1 —s5)d

— S

log(2 + log(2 +
R, 0] < d+1/0 IVeEGs) L 222D / IV, Es)l oo 22+

+d2 +d2

&2 5 log(2 + ) < &2
~ td+1 0 1 + sd—] ~ td+1 :

The estimates for Rj. are obtained in the same way.

We shall now estimate R}, R?, together with 9;Rr. Recalling (4.2) and going
back to the variable v = (x — w) /¢, we write

dwds

/ / 50 E S Xy,r(x, v)) UIU“(VYI‘(-X v))
R4

[ /1‘@ s, X1 (x, U)) avjvvl/«( Vs (x, U))

dwds

Next, using again the straightening change of variable of Proposition 5.1, we obtain

vds

/ / SOGE (s,x — (1 —9)v) - Vo (Vi (x, Wy (x, v)) det(Vy Wy s (x, v))
vds

/ f E(s,x — (t = $)v) - y; Vo (Vir (x, Wy 1 (x, v)) det(Vy W 1 (x, )

On the other hand, using also the change of variable w = x — fv, we obtain that

—w_dwds
) o

Ro(t, x) = // E(s,w+ - (x—w)) Vuu(
and therefore
ORL(t. ) =R ; +Ri

where

—w_dwds

Ri; = //(sa E)s.w+=(x —w) - Vou(——) T
dwds

/ / (s0;E)(s, x — (1 = 5)v) - Vyu(v)
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—w_dwds

/AdE(s w0 = w)) - By, Vo () S
dwds

/ / E(s,x — (t —s)v) - 8vj Vo (v)
Consequently, we observe that
1
~RI+ R = TIs0;E, pl(t, ), ~RI+ R = T[E 3111, x),

so that by (H1), we can apply Lemma 7.1. Therefore, by (7.6), (7.7) and the bootstrap
assumption, we get that

2 2

. . &
=R, +R Ol S i — R0 + R j(O)llze =12

N td+1 ’
which allows to end the proof. O
We are finally in position to conclude.

Proof This follows from the estimates of Proposition 6.1, Proposition 7.1, and Propo-
sition 7.2. o

8 Proof of Corollary 1.1

We can use again that f is given by (3.2) from the characteristic method. We can also
observe that

t

t
/ E(SvXS,t(va))'VUM(VS,t(x’U))dS:/ diVs,t(x, v) - Vyu (Vs (x, v)) ds
0 0 as
= u() — u(Vo,(x, v)).

By using (Ys.;, Ws,,) that are defined in (4.2), we can thus write that
[, x+tv,v) = folx+Yo,:(x,v), v+Wo(x, v))+u(v+Wo(x, v))—p(v). (8.1)

Consequently, the result follows immediately if we prove that there exists
(Yoo (x, v), Weo(x, v)) such that

log(2 +1)
Yo (x,v) — Yoo, o < go—
1Yo, (x, v) oo (X U)”L_x,v = €0 1 g1
[Wo,i(x, v) = Weo (x, 0) |l 30,
log(2 + ¢
< e og+n
1+14

We give the proof for Yy ;, the one for Wy ; being similar.
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Let us define Y;(s,x,v) = Y, (x,v)lp<s<,. From the integral equation (4.4)
and the decay estimates (1.5), we get that Y, € %,(R" x RZ‘Z) and that for every
n>n=>1,

log(2 + 17)
1Yy — Yy, ||<gb(R+xR2d) S SOW +eollYy — Yy, ||<53,(R+><R2d)~
2

For ¢ sufficiently small, this yields by the Cauchy criterion that lim;_, ;o0 Y; := Y
exists in € (RT x R2?) and then that

log(2 + 1)
”Y; — YOO”(KI,(R"'XRZ“’) S SOW.
We conclude by setting Yoo = Yo (0, -).
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Appendix A

We recall (1.8) for the Littlewood—Paley decomposition in R” . In the paper, we use
it (for n = d and for n = d + 1). Let us state the classical Bernstein Lemma.

Lemma A.1 For every p € [1, +00] and any multi-index o, there exist c > 0, C > 0
such that for every u € LP, we have Bernstein’s inequalities:

2 ugllr < 18 (ug)llLr < C2 uyllLr, Vg € Z. (A.1)

We refer for example to [1, Chapter 2, Lemma 2.1] for the proof. As an application,
we get

LemmaA.2 Let Py and P> be homogeneous polynomials of degree 1 and 2. For all
p €[1,4o00], forallu € L?, forall ¢ € N,

IPL(DY(1 — A ullee < lullze, (A.2)
I1P2(D)Y(1 — A gl < 2% uel o, (A.3)

where uy is defined as in (1.8) and § € (0, 1) is arbitrarily small.

Proof By using the homogeneous Littlewood—Paley decomposition and the Bernstein
inequalities, we get

B 24 _
IPDYA = &) uller S0 gy lugller S Tullr (G227 + 35279,
g€’ q=<0 q>0
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For the second estimate, we write

224

T35 lwgllLr

1P (DY = &) wlr S
qe

Slwllze Y 2% + sup 29wyl Y 279

q<0 q=0 q>0

and apply it for w = u,, which ends the proof. O
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