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Abstract: Westudy the linearizedVlasov–Poisson system around suitably stable homo-
geneous equilibria on R

d × R
d (for any d ≥ 1) and establish dispersive L∞ decay

estimates in the physical space.

1. Introduction

This work is concerned with the Vlasov–Poisson system on R
d × R

d for d ≥ 1:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t f + v · ∇x f + E · ∇vf = 0, (x, v) ∈ R
d × R

d ,

E = ∇x�
−1
x (ρ − 1) , ρ(t, x) =

∫

Rd
f(t, x, v) dv,

f|t=0 = f0,

(1.1)

where f (resp. E) describes the distribution function of negatively charged particles (resp.
the electric field) in a plasma with a fixed uniform background of ions. We are interested
in the long time behavior of the solutions to (1.1) around homogeneous equilibria, i.e.
non-negative distribution functions μ(v) satisfying

∫

Rd
μ(v) dv = 1. (1.2)

To this end, we consider solutions of the form f(t, x, v) = μ(v) + f (t, x, v) and specif-
ically focus on the linearized equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t f + v · ∇x f + E · ∇vμ = 0, (x, v) ∈ R
d × R

d ,

E = ∇x�
−1
x ρ, ρ(t, x) =

∫

Rd
f (t, x, v) dv,

f |t=0 = f0.

(1.3)
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Our goal is to establish decay in time for the density ρ of the solution to (1.3). To
this purpose, we will require that μ satisfies some appropriate conditions of stabil-
ity. This problem can be seen as a first step towards the understanding of relaxation
properties around stable homogeneous equilibria (i.e. Landau Damping) for the full
Vlasov–Poisson system (1.1) on the whole space.

Landau Damping was studied in the breakthrough paper [17] by Mouhot and Villani
in the case of T

d × R
d (see also [3] and very recently [14] and also [8,9] for related

models). All these works are based on a linear mechanism called phase mixing, which
is specific to the free transport operator ∂t + v · ∇x on the torus; furthermore they
require perturbations of Gevrey or analytic regularity to handle the non-linear problem,
in order to avoid resonances referred to as plasma echoes. For what concerns the whole
space, an important contribution is due to Bedrossian, Masmoudi and Mouhot who
considered in [4] the screened Vlasov–Poisson system, which corresponds to a low
frequency (or equivalently, long range) regularization of theCoulombpotential, resulting
in the equation

E = ∇x (1 − �x )
−1ρ

for the electric field. They relied on dispersive properties of the free transport operator
∂t + v · ∇x on the whole space in the Fourier side to prove decay in finite regularity
for the full non-linear system in dimensions d ≥ 3 (with a strategy inspired by [3,17]).
In [15] we have very recently revisited this problem with another approach, namely by
developing dispersive L∞ linearized estimates in the physical space, which allowed us
to use a Lagrangian strategy in the spirit of [2] for the non-linear problem (see also [18]).
In particular, [15] shows that in the screened case, in all dimensions, the linear decay in
the physical space is the same as for free transport, up to a logarithmic correction.

One expects the situation to be radically different for the unscreened Coulomb
case (1.3), as evidenced in the pioneering works by Glassey and Schaeffer [12,13]. In
particular [12,13] prove that in dimension d = 1, when μ is a Maxwellian, the L2 norm
of the density of the solution to (1.3) cannot in general decay faster than 1/(log t)13/2

(whereas for free transport it decays like 1/t1/2). Furthermore, [12,13] provide decay
estimates, highlighting the influence of the rate of decay of μ at infinity:

• when μ is a Maxwellian, ρ decays logarithmically fast in L2 and L∞ norm.
• When μ decays at most polynomially fast, ρ decays polynomially fast in L2 and
L∞ norm (with a rate that cannot be better than 1/2 and gets worse when μ decays
faster).

• On the other hand when μ is compactly supported, they show that the L2 norm of
the density may not decay at all.

In this work, we shall consider a general class of analytic homogeneous equilibria
(that includes Maxwellian and power laws for example). Quantitatively, we assume that
there exist R0 > 0 and C0 > 0 so that for all polynomials P of degree less than or equal
to αd , with αd := d + 8,

|Fv(μ)(ξ)| + |Fv(P(v)∇vμ)(ξ)| ≤ C0e
−R0|ξ |, ∀ξ ∈ R

d . (1.4)

where we use Fv to denote the Fourier transform.
Following [4,17], one could expect that a relevant notion of stability is the one in the

sense of Penrose, that would correspond to asking that there is κ > 0 such that

inf
γ≥0, τ∈R, ξ∈Rd

∣
∣
∣
∣1 −

∫ +∞

0
e−(γ+iτ)s iξ

|ξ |2 · Fv(∇vμ)(ξs) ds

∣
∣
∣
∣ ≥ κ. (1.5)
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However, as we will soon observe, though relevant in the torus case, this condition can
never be satisfied on the whole space. This is because of a low frequency (in space)
singularity (i.e. for small values of |ξ |), which is the reason why the decay that can be
obtained in the screened case should not be expected here. This explains (most of) the
results of [12,13]: their strategy is based on a cut-off argument around the singularity,
which accounts for why the rate of decay of μ matters in their result. We shall show that
despite this singularity, with a relevant notion of stability, a natural and much stronger
decay estimate that depends only on the dimension can be obtained.

A simplified version of our main result is stated in the following theorem.

Theorem 1.1. Let d ≥ 1. Let μ be a non-negative radial equilibrium satisfying (1.2)

and (1.4), of the form μ(v) = F
( |v|2

2

)
, with F ′(s) < 0, ∀s ≥ 0. Consider the density

ρ(t, x) of the solution of (1.3). Then we can decompose

ρ(t, x) = ρR(t, x) + ρS
+ (t, x) + ρS−(t, x),

where for all t ≥ 2, we have

‖ρR(t)‖L∞ � log t

td

(
‖ f0‖L1

x,v
+ ‖ f0‖L1

x L
∞
v

)

and for k = 0, 1,

‖ρS±(t)‖L∞ � log t

t
d
2 +k−1

∑

0≤l≤k

(
‖〈v〉l∇l

v f0‖L1
x,v

+ ‖〈v〉l∇l
v f0‖L1

x L
∞
v

)
.

Remark 1.1. All the assumptions, in particular, F ′ < 0, are satisfied when μ is a
Maxwellian equilibrium or a power law μ(v) = cd

1
(1+|v|2)m , with m sufficiently large.

Remark 1.2. The rate of decay of μ does not play any role in this result.

Remark 1.3. Observe that we do not state any decay in L2 and therefore this is not in
contradiction with [12,13].

Remark 1.4. Contrary to the screened case, we do not have ∇k
xρ to decay faster than ρ;

this is due to the singular part ρS±.

In Theorem 1.1 (and in the more general version Theorem 2.1 below), we have only
stated L∞ type dispersive estimates. Nevertheless, we shall provide amuchmore precise
description of the structure of ρR and ρS± in the following. By using by now standard
interpolation estimates, we could deduce from them Strichartz estimates for example
[7,11]. We observe that the regular part ρR enjoys the same decay estimates as the
solution of the linearized screened Vlasov–Poisson system obtained in [15] which are
themselves similar to the ones of the free transport up to the logarithmic factor. Precisely,

ρR = S(t, x) + GR ∗t,x S(t, x)

where the kernel GR(t, x) decays as in the screened case (see Theorem 3.1, below), and
S(t, x) denotes the density associated to the free transport dynamics:

S(t) =
∫

Rd
f0(x − vt, v) dv.
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On the other hand, the singular partρS± is precisely due to a singularity at the frequency
ξ = 0, τ = ±1 in the dispersion relation. It can be seen as the solution to a dispersive
partial differential equation. Indeed, we shall show that ρS± is under the form

ρS±(t, x) = GS± ∗t,x S(t, x),

with the kernel GS± being under the form

GS±(t, x) =
∫

Rd
eZ±(ξ)t+i x ·ξ A±(ξ) dξ

where A± is a smooth amplitude that is compactly supported for small |ξ |. The phase
Z±(ξ) is such that Re Z±(ξ) ≤ 0, in addition, ξ 
→ Re Z±(ξ) vanishes at ξ = 0
and is very flat (and gets flatter when μ decays faster) so that only a very weak decay
connected to the rate of decay of μ can be obtained from this piece of information. This
accounts for the decay results of [12,13]. Here we shall use that the imaginary part of

the phase is non-degenerate so that the decay rate t− d
2 can be obtained from a stationary

phase analysis. A significant part of the analysis of the paper will be to perform a careful
analysis of the singularity of the dispersion relation at τ = ±1, ξ = 0 and to justify that
it gives rise to the above singular term.

Finally, bywell-known dispersive estimates on the density associated to free transport
(see e.g. [2]), we have

‖S(t)‖L1 � ‖ f0‖L1
x,v

, ‖S(t)‖L∞ � 1

td
‖ f0‖L1

x L
∞
v

, t ≥ 1,

‖∇S(t)‖L1 � 1

t
‖∇x f0‖L1

x,v
, ‖∇S(t)‖L∞ � 1

td+1
‖∇x f0‖L1

x L
∞
v

, t ≥ 1.
(1.6)

The stated estimates on the regular and singular part of the density follow from bounds
on the corresponding kernels and the above dispersive bounds on S(t, x). See Sect. 7.

2. Statement of the Theorem with General Assumptions on the Equilibrium

As a matter of fact, Theorem 1.1 is a special case of a more general result, allowing for
a wider class of homogeneous equilibria (not necessarily radial) that satisfy a series of
assumptions, which we now present.
Symmetry assumptions. For all monomials P of odd degree k ≤ αd − 1, we require
that

∫

Rd
P(v)μ(v) dv = 0. (2.1)

We shall also ask that for all p ∈ N \ {0} such that 2p ≤ αd − 1,

∃C p
μ, ∀ξ ∈ R

d ,

∫

Rd
(ξ · v)2pμ(v) dv = C p

μ|ξ |2p. (2.2)

Observe that (2.1) is in particular satisfied when μ is even and (2.2) when μ is radial;
however both can also be satisfied assuming (many) algebraic identities on integrals of
μ against polynomials. For most of the arguments, we shall only need (2.1) and we will
emphasize precisely where the additional assumption (2.2) is needed in the paper.
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Stability assumptions. Two stability assumptions are required.
Assumption (H1).We shall first ask for the stability condition: for every ξ �= 0

inf
γ≥0, τ∈R

∣
∣
∣
∣1 −

∫ +∞

0
e−(γ+iτ)s iξ

|ξ |2 · Fv(∇vμ)(ξs) ds

∣
∣
∣
∣ > 0, (2.3)

which is a weaker non-quantitative version of (1.5)
In order to tame the effect of the singularity at ξ = 0, we shall require another

Penrose stability condition. To this end, let us introduce

mKE (z, η) = −
∫ +∞

0
e−(γ+iτ)s iη

|η|2 ·
∑

k,l

ηkηlFv(vkvl∇vμ)(ηs) ds, z = γ + iτ.

For η ∈ S
d−1, thanks to (1.4), we observe that mKE is holomorphic in Re z > −R0.

Assumption (H2). For every η ∈ S
d−1, there is only one zero of z 
→ 1 − mKE (z, η)

on Re z = 0 which is z = 0. Moreover it satisfies

∂zmK E (0, η) = 0, ∂2z mK E (0, η) �= 0, ∀η ∈ S
d−1. (2.4)

This condition can be interpreted as a kind of Penrose stability condition for the so-called
kinetic Euler equation, which is a singular Vlasov equation arising in the quasineutral
limit of the Vlasov–Poisson system and in Brenier’s incompressible optimal transport
[5,6].

We are finally in position to state the main result of the paper.

Theorem 2.1. Assume that (1.2), (1.4), (2.1), (2.2), (H1) and (H2) are satisfied. Then
the conclusions of Theorem 1.1 hold.

Remark 2.1. The assumption (H2) can be replaced by
Assumption (H2’). For every η ∈ S

d−1, there is no zero of z 
→ 1 − mKE (z, η) on
Re z = 0. The proof of Theorem 2.1 gets slightly simplified in that case. However we
have decided to focus on (H2) as (H2’) is never satisfied for radial equilibria.

Theorem 1.1 follows from Theorem 2.1 once that we have checked that the radial
equilibria μ = F(|v|2/2) that we consider satisfy all required assumptions:

• we have already seen that (2.1) and (2.2) are satisfied when μ is radial.
• As seen from [17, Proposition 2.1 and Remark 2.2], the assumption (H1) is verified
for radial equilibria in any dimension assuming that F ′ < 0.

• Finally the assumption (H2) is also satisfied if F ′ < 0. We postpone the proof of
this result to an appendix, see Sect. 8.

The rest of the paper is dedicated to the proof of Theorem 2.1.

3. Reduction to Kernel Estimates

We study the linear equation

ρ(t, x) =
∫ t

0

∫

Rd
−[∇x�

−1
x ρ](s, x − (t − s)v) · ∇vμ(v) dvds + S(t, x), t ≥ 0,

(3.1)
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with S being a given source term (see later, we can rewrite (1.3) under this form by
integrating along the characteristics of the free transport). In what follows, we extend
ρ and S by zero for t < 0 so that the Eq. (3.1) is satisfied for t ∈ R. First, taking the
Fourier transform in space of (3.1) in space, we get

Fx (ρ)(t, ξ) =
∫ t

−∞

∫

Rd
e−iξ ·(t−s)v iξ

|ξ |2Fx (ρ)(s, ξ) · ∇vμ(v) dvds + Fx (S)(t, ξ)

=
∫ t

−∞
iξ

|ξ |2Fx (ρ)(s, ξ) · Fv(∇vμ)(ξ(t − s))ds + Fx (S)(t, ξ)

in whichFx ,Fv denotes the Fourier transform in x, v, respectively. Next, for γ > 0, we
take the Fourier transform in time of the above identity and note that the integral term
is a convolution in time, yielding

F(e−γ tρ)(τ, ξ) = mV P (γ, τ, ξ)F(e−γ tρ)(τ, ξ) + F(e−γ t S)(τ, ξ),

where F denotes the Fourier transform in time and space and mV P (γ, τ, ξ) is the
corresponding Fourier symbol defined by

mV P (γ, τ, ξ) =
∫ +∞

0
e−(γ+iτ)s iξ

|ξ |2 · Fv(∇vμ)(ξs) ds. (3.2)

This leads to

ρ(t, x) = S +

(

eγ t
(

F−1 mV P (γ, ·)
1 − mV P (γ, ·)

))

∗t,x S = S + G ∗t,x S, (3.3)

where we have set

G(t, x) =
∫

R×Rd
eγ t+iτ t ei x ·ξ mV P (γ, τ, ξ)

1 − mV P (γ, τ, ξ)
dτdξ. (3.4)

The aim of the remaining will be to estimate the kernel G. Note that the definition of
the kernel G depends on γ , but that in regions where the integrand is an holomorphic
function of z = γ +iτ it actually does not depend on γ sincewe can appropriately change
the integration contour, via the Cauchy formula, without changing G. In particular, by
taking the limit γ → +∞, we get that G|t<0 = 0.

Precisely, in this paper, we shall prove:

Theorem 3.1. For t ≤ 1, we have the estimate

‖G(t)‖L∞ � 1

td−1 , ‖G(t)‖L1 � t.

Moreover, assuming (1.2), (1.4), (2.1), (2.2), (H1), (H2), we can write for t ≥ 1,

G(t, x) = GR(t, x) + GS
+(t, x) + GS−(t, x) (3.5)

where

‖GR(t)‖L∞ � 1

td+1
, ‖GR(t)‖L1 � 1

t
, ∀t ≥ 1

and

‖GS±(t)‖L∞ � 1

t
d
2

, ‖GS±(t)‖L2 � 1, ∀t ≥ 1.
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In the decomposition (3.5), the oscillatory kernelsGS±(t, x) account for the residue of
the integral (3.4) at the poles z = Z±(ξ) computed in Lemma 4.2, which is only present
for small ξ . The precise description of the kernels is given explicitly in Lemma 5.1, and
they can be seen as the kernel of the propagator of a dispersive PDE, see Proposition
5.4. The regular part of G(t, x) is given by

GR(t, x) =
∫

Rd
eix ·ξ

(∫

Re z=−δ̃|ξ |
ezt

mV P (z, ξ)

1 − mV P (z, ξ)
dz

)

dξ

for some well-chosen small enough constant δ̃ > 0. See Sect. 5.

4. Properties of the Symbol mV P

For (γ, τ, ξ) ∈ R×R×R
d , we define the symbolmV P (γ, τ, ξ) as in (3.2). In addition,

we introduce

mV B(γ, τ, ξ) =
∫ +∞

0
e−(γ+iτ)s iξ · Fv(∇vμ)(ξs) ds, (4.1)

mKE (γ, τ, ξ) = −
∫ +∞

0
e−(γ+iτ)s iξ

|ξ |2 ·
∑

k,l

ξkξlFv(vkvl∇vμ)(ξs) ds. (4.2)

Remark 4.1. As already mentioned, mKE is the symbol associated to the Kinetic Euler
equation. It turns out that the symbolmV B is the one associated to the so-called Vlasov–
Benney equation (see e.g. [1]) which is another singular Vlasov equation that shows up
in the quasineutral limit of the Vlasov–Poisson system [16].

Let us define �R0 = A ∩ CR0 where,

A =
{

(γ, τ, ξ) ∈ R
d+2,

1

2
< |γ | + |τ | + |ξ | < 2

}

,

CR0 =
{
(γ, τ, ξ) ∈ R

d+2, ξ �= 0, γ > −R0|ξ |
}

.

4.1. Estimates of mV P . The following is an adaptation of Lemma 2.2 in [15]. We get
stronger properties due to the regularity assumption (1.4) and the symmetry assump-
tion (2.1).

Proposition 4.1. Assuming (1.2), (1.4) and (2.1), we have the following properties. For
every (γ, τ, ξ) ∈ CR0 ,

mV P (γ, τ, ξ) = 1

|ξ |2mV B(γ, τ, ξ),

mV P (γ, τ, ξ) = − 1

(γ + iτ)2
(1 − mKE (γ, τ, ξ)) (4.3)

The symbols mV B(γ, τ, ξ) and mK E (γ, τ, ξ) are for ξ �= 0 holomorphic with respect to
the variable z = γ + iτ in γ > −R0|ξ |. Moreover, they are positively homogeneous of
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degree zero and mV B, mKE ∈ C αd−2(CR0/2). Quantitatively, there exists C > 0 such
that

|∂α
z ∂

β
ξ mV B(γ, τ, ξ)| + |∂α

z ∂
β
ξ mKE (γ, τ, ξ)|

≤ C

|(γ, τ, ξ)||α|+|β| , ∀|α| + |β| ≤ αd − 2, ∀(γ, τ, ξ) ∈ CR0/2, (4.4)

where we use ∂z = ∂γ − i∂τ .

Remark 4.2. In the following, we shall often abuse notations and write the symbols as
functions of (γ, τ, ξ) or (z, ξ) depending on what is most convenient.

Proof. Let us first observe that thanks to (1.4), mV P , mKE and mV B are well-defined
in CR0 and holomorphic in z for ξ �= 0 and Re z > −R0|ξ |. Let us prove (4.3). The first
relation is trivial. For the second one, by two successive integrations by parts in s, we
obtain

mV P (γ, τ, ξ) = 1

γ + iτ

∫ +∞

0
e−(γ+iτ)s iξ

|ξ |2 · ∂s (Fv(∇vμ)(ξs)) ds

= 1

(γ + iτ)2

∫ +∞

0
e−(γ+iτ)s iξ

|ξ |2 · ∂2s (Fv(∇vμ)(ξs)) ds

+
1

(γ + iτ)2

iξ

|ξ |2 · ∂s (Fv(∇vμ)(ξs)) |s=0.

Since by (1.2),

∂2s (Fv(∇vμ)(ξs)) = −
∑

k,l

ξkξlFv(vkvl∇vμ)(ξs),
iξ

|ξ |2 · ∂s (Fv(∇vμ)(ξs)) |s=0 = −1,

wefinally get (4.3). The degree zero homogeneity property comes from a straightforward
change of variable. It remains to prove (4.4). We first give the proof for mV B .

Since we have

mV B(γ, τ, ξ) =
∫ +∞

0
e−(γ+iτ)t iξ · ∇̂vμ(tξ) dt,

we get by using (1.4), that

|mV B(γ, τ, ξ)| ≤ C
∫ +∞

0
|ξ |e−R0|ξ |t/2 dt ≤ C, ∀(γ, τ, ξ) ∈ CR0/2.

We now estimate the derivatives in �R0/2; let us first handle the case when |ξ | ≥ 1
4 .

Thanks to (1.4), we also have that

|∂α
z ∂

β
ξ mV B(γ, τ, ξ)| �

∫ +∞

0
〈t〉|α|+|β||ξ |e−R0|ξ |t/2 dt

and therefore, for |ξ | ≥ 1
4 and |α| + |β| ≤ αd , we obtain

|∂α
z ∂

β
ξ mV B(γ, τ, ξ)| � 1, (γ, τ, ξ) ∈ �R0/2, |ξ | ≥ 1

4
. (4.5)
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Let us next consider the case |ξ | ≤ 1
4 , in which we make use of the fact that |z| is

positively bounded from below, recalling (γ, τ, ξ) ∈ A. Integrating by parts again, we
get for every n = 2, . . . , αd ,

mV B(γ, τ, ξ) =
n∑

k=2

1

zk
Pk(ξ) +

1

zn
Rn(γ, τ, ξ) (4.6)

where

Pk(ξ) = (−1)k−1i kξ · F
(
v⊗k−1∇vμ

)
(0) : ξ⊗k−1,

Rn(γ, τ, ξ) =
∫ +∞

0
e−(γ+iτ)t rn(t, ξ) dt,

rn(t, ξ) = (−1)ninξ · F (
v⊗n∇vμ

)
(tξ) : ξ⊗n,

with the definition

ξ · F(v⊗k∇vμ)(ζ ) : ξ⊗k =
∑

j0, j1,... jk

ξ j0ξ j1 · · · ξ jkF(v j1 · · · v jk∂v j0
μ)(ζ ).

Note that Pk is a homogeneous polynomial of degree k. Thanks to (1.4), we have

|rn(t, ξ)| � |ξ |n+1e−R0|ξ |t .

More generally, we have for all |β| ≤ n,

|∂β
ξ rn(t, ξ)| ≤ |ξ |n+1−|β|e−R0|ξ |t .

Consequently, applying derivatives to the expansion (4.6) and using the above esti-
mates with n = αd , we get for |ξ | ≤ 1

4 and (γ, τ, ξ) ∈ �R0/2 (which in particular
implies that |z| ≥ 1

4 ),

|∂α
z ∂

β
ξ mV B(γ, τ, ξ)| � 1 +

∫ +∞

0
t |α||ξ |αd+1−|β|e−R0|ξ |t/2 dt

� 1 +
∫ +∞

0
s|α||ξ |αd+1−|β|−|α|e−R0s/2 ds.

Thus, we get for |α| + |β| ≤ αd ,

|∂α
z ∂

β
ξ mV B(γ, τ, ξ)| � 1, (γ, τ, ξ) ∈ �R0/2, |ξ | ≤ 1

4
.

This, together with (4.5), concludes the proof of the estimates for mV B on �R0/2; we
finally obtain (4.4) for mV B by degree zero homogeneity.

Let us now prove the estimates for mKE on �R0/2. The same argument as above
applies for |ξ | ≥ 1/4. Thus it suffices to study |ξ | ≤ 1/4. As before, we can integrate
by parts to get that

mKE (z, ξ) =
n∑

k=2

1

zk
Qk(ξ) +

1

zn
RK E
n (γ, τ, ξ) (4.7)
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where

Qk(ξ) = (−1)ki k
ξ

|ξ |2 · F
(
v⊗k+1∇vμ

)
(0) : ξ⊗k+1,

RK E
n (γ, τ, ξ) =

∫ +∞

0
e−(γ+iτ)t r K E

n (t, ξ) dt,

r K E
n (t, ξ) = (−1)n+1in

ξ

|ξ |2 · F
(
v⊗n+2∇vμ

)
(tξ) : ξ⊗n+2.

In this case, we need to study more carefully the structure of this expansion since the
function ξ ⊗ ξ/|ξ |2 multiplied by a polynomial of ξ is not necessarily a smooth function
of ξ . We first observe that if k is odd, we have

Qk(ξ) = 0, ∀ξ.

Indeed, we can integrate by parts and use that
∫

Rd
v⊗kμ(v) dv = 0

if k is odd thanks to the symmetry assumption (2.1). We thus have the expansion

mKE (z, ξ) =
l∑

p=1

1

z2p
Q2p(ξ) +

1

z2l+1
RK E
2l+1(γ, τ, ξ). (4.8)

Moreover, we have

Q2p(ξ) = (−1)p
ξ

|ξ |2 · F
(
v⊗2p+1∇vμ

)
(0) : ξ⊗2p+1

= (−1)p
1

|ξ |2
∑

j0,..., j2p+1

ξ j0 · · · ξ j2p+1
∫

Rd
v j1 · · · v j2p+1∂v j0

μ(v) dv.

Integrating by parts, we observe that if j1, . . . , j2p+1 are all different from j0, the integral
vanishes, therefore, after relabelling, we get that

Q2p(ξ) = (−1)p+1(2p + 1)
1

|ξ |2
∑

j0, j2..., j2p+1

(ξ j0)
2ξ j2 · · · ξ j2p+1

∫

Rd
v j2 · · · v j2p+1μ(v) dv

= (−1)p+1(2p + 1)
∑

j2,..., j2p+1

ξ j2 · · · ξ j2p+1
∫

Rd
v j2 · · · v j2p+1μ(v) dv

= (−1)p+1(2p + 1)
∫

Rd
(ξ · v)2pμ(v) dv.

We have thus obtained that Q2p is a polynomial in ξ and hence a smooth function of
ξ . We can then get from the expansion (4.8) and similar estimates as for mV B that the
derivatives with respect to z and ξ of order less than αd − 2 are uniformly bounded for
|ξ | ≤ 1/4. Finally, the estimate (4.4) follows by using the degree zero homogeneity.

��
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In the proof of Proposition 4.1, we have obtained a refined asymptotic expansion of
mKE , for which we have relied on the symmetry assumption (2.1). We gather this very
useful statement in the following lemma.

Lemma 4.1. Assuming (1.2), (1.4) and (2.1), we have the following expansion of mK E

for all l ≤ �αd−3
2 �:

mK E (z, ξ) =
l∑

p=1

1

z2p
Q2p(ξ) +

1

z2l+1
RK E
2l+1(γ, τ, ξ), (4.9)

Q2p(ξ) = (−1)p+1(2p + 1)ξ⊗2p :
∫

Rd
v⊗2pμ(v) dv

= (−1)p+1(2p + 1)
∫

Rd
(ξ · v)2pμ(v) dv, (4.10)

RK E
2l+1(z, ξ) =

∫ +∞

0
e−(γ+iτ)t r K E

2l+1(t, ξ) dt, r K E
2l+1(t, ξ)

= (−1)l+1
ξ

|ξ |2 · F
(
v⊗2l+2∇vμ

)
(tξ) : ξ⊗2l+3 (4.11)

where the remainder satisfies uniformly for (γ, τ, ξ) ∈ CR0/2 the estimate

|∂α
z ∂

β
ξ RK E

2l+1(z, ξ)| � |ξ |2l+1−|α|−|β|, |α| + |β| ≤ 2l + 1. (4.12)

In particular, we get

Q2(ξ) = −3Hμξ · ξ, Hμ =
∫

Rd
v ⊗ v μ(v) dv.

Under the additional symmetry assumption (2.2), we have

Q2p(ξ) = (−1)p(2p + 1)|ξ |2pC p
μ (4.13)

where

C p
μ =

∫

Rd
v
2p
1 μ(v) dv.

In particular, we have

Cμ := C1
μ = 1

d

∫

Rd
|v|2 μ(v) dv.

As a consequence of Proposition 4.1, we obtain estimates for mV P .

Corollary 4.1. The symbol mV P (γ, τ, ξ) for ξ �= 0 is holomorphic with respect to the
variable z = γ + iτ in Re z > −R0|ξ |. Moreover, it is positively homogeneous of degree
−2 and mV P ∈ C αd−2(CR0/2). Quantitatively, there exists C > 0 such that

|∂α
z ∂

β
ξ mV P (γ, τ, ξ)| ≤ C

|(γ, τ, ξ)|2+|α|+|β| ,

∀|α| + |β| ≤ αd − 2, ∀(γ, τ, ξ) ∈ CR0/2. (4.14)
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Proof. The fact thatmV P is positively homogeneous of degree−2 follows from a change
of variable in the definition (3.2). To get (4.14), it thus suffices to prove that mV P and
its derivatives are uniformly bounded in �R0/2. This follows from (4.3) and (4.4) in
Proposition 4.1 by using the relation

mV P (γ, τ, ξ) = 1

|ξ |2mV B(γ, τ, ξ)

for |ξ | ≥ 1/4 and

mV P (γ, τ, ξ) = − 1

(γ + iτ)2
(1 − mKE (γ, τ, ξ))

for |ξ | ≤ 1/4. ��

4.2. Zeroes of 1 − mV P. In this section we give a sharp description of the zeros of
1 − mV P . As we shall see, they are localized in the region |γ | ≤ ε3|ξ |, |τ ± 1| ≤ ε3|ξ |
and |ξ | ≤ ε3 for some small ε3. Using the implicit function theorem, we are able to
describe them by smooth curves.

Proposition 4.2. Assuming that (1.2), (1.4) and (2.1) hold, we have the following prop-
erties:

(i) There exists M > 0 such that for every (γ, τ, ξ) ∈ CR0/2 and |(γ, τ, ξ)| ≥ M, we
have

|1 − mV P (γ, τ, ξ)| ≥ 1

2
.

(ii) Assuming (H1), for every δ > 0, there exists cδ > 0 and Rδ ∈ (0, R0/2] such that
for every (γ, τ, ξ) ∈ CRδ with |ξ | ≥ δ, we have

|1 − mV P (γ, τ, ξ)| ≥ cδ.

(iii) Assuming (H2), there exists R1 ∈ (0, R0/2], ε1 > 0 and Cε1 > 0, cε1 > 0 such that
for every (γ, τ, ξ) ∈ CR1 and |γ | ≤ ε1|ξ |, |(τ, ξ)| ≤ ε1, we have

∣
∣
∣
∣

mV P (γ, τ, ξ)

1 − mV P (γ, τ, ξ)

∣
∣
∣
∣ ≤ Cε1 , |z2 + 1 − mKE (z, ξ)| ≥ cε1 min(1, |z̃|2),
z = |ξ |z̃. (4.15)

(iv) There exists ε2 ∈ (0,min(R0/2, ε1)], A0 ≥ 1, such that for every ε ∈ (0, ε2],
for every A ≥ A0 and for every (γ, τ, ξ) ∈ CR1 , with |ξ | ≤ ε, |γ | ≤ ε|ξ |, and
||τ | − 1| ≥ Aε|ξ |, 1

ε1
≥ |τ | ≥ ε1,

there holds

|1 − mV P (γ, τ, ξ)| ≥ A ε ε21|ξ |/4. (4.16)

(v) Assuming (H1), there exists ε3 > 0, ε3 ∈ (0,min(R0/2, ε2)] such that for every
ξ �= 0, the zeros of 1 − mV P (γ, τ, ξ) with |ξ | ≤ ε3, |γ | ≤ ε3|ξ |, ||τ | − 1| ≤ ε3|ξ |
are given by two C 1 curves

Z±(r, ω) = ±i + r�±(r, ω) + irT±(r, ω)

where ξ = rω, ω ∈ S
d−1, �± ≤ 0, �±(0, ω) = 0, ∂r�±(0, ω) = 0, �±(r, ω) < 0

for r �= 0 and T± is real with T±(0, ω) = 0, ∂rT±(0, ω) �= 0.
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Proof. Let us start with i). To this end, we can apply Corollary 4.1. This entails that

|mV P (γ, τ, ξ)| ≤ C

|(γ, τ, ξ)|2 , ∀(γ, τ, ξ) ∈ CR0/2

and hence

|1 − mV P (γ, τ, ξ)| ≥ 1

2

if |(γ, τ, ξ)| is sufficiently large.
Let us prove ii). By using i), the estimate is true if we have in addition |(γ, τ, ξ)| ≥ M ,

it thus suffices to consider the case that |ξ | ≥ δ and |(γ, τ, ξ)| ≤ M . By (H1) and by
compactness, we get that

|1 − mV P (γ, τ, ξ)| ≥ 2cδ

for some cδ > 0 if γ ≥ 0. By continuity, the inequality without the factor 2 remains true
for γ = −α|ξ | for α ≤ c with c > 0 small enough.

To prove iii), we observe that by Proposition 4.1, we can write

mV P

1 − mV P
= − 1

z2
1 − mKE

1 + 1
z2

(1 − mKE )
= 1 − mKE

z2 + 1 − mKE
. (4.17)

By degree zero homogeneity of mKE , we can set z̃ = z/|ξ |, η = ξ/|ξ | , with z̃ = γ̃ + i τ̃
and |γ̃ | ≤ ε1, |τ̃ | ≤ ε1/|ξ |. This yields

mV P

1 − mV P
(z, ξ) = 1 − mKE (z̃, η)

|ξ |2 z̃2 + 1 − mKE (z̃, η)
.

By using (4.9), we have that uniformly for |γ̃ | ≤ R0/2 and η ∈ S
d−1,

lim
|τ̃ |→+∞

|mKE (z̃, η)| = 0.

Therefore, for |τ̃ | ≥ M sufficiently large

|1 − mKE (z̃, η)| ≥ 1

2

and hence for ε1 sufficiently small, we get
∣
∣
∣|ξ |2 z̃2 + 1 − mKE (z̃, η)

∣
∣
∣ =

∣
∣
∣z2 + 1 − mKE (z̃, η)

∣
∣
∣ ≥ 1

4
.

As a consequence, we conclude that
∣
∣
∣

mV P
1−mV P

∣
∣
∣ is bounded.

In a similar way, for every ε̃ > 0 if ε̃ ≤ |τ̃ | ≤ M , 1 − mKE (i τ̃ , η) does not vanish
thanks to (H2). By compactness and continuity this remains true uniformly for γ̃ suffi-
ciently small and η ∈ S

d−1. In this regime, we thus also get
∣
∣|ξ |2 z̃2 + 1 − mKE (z̃, η)

∣
∣

is uniformly strictly positive and also that mV P
1−mV P

is bounded.
Consequently there only remains to study the vicinity of z̃ = 0. From (H2), we have

that

1 − mKE (z̃, η) = a2(η)z̃2 + O(z̃3), (4.18)
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where by compactness, infSd−1 |a2(η)| ≥ cs > 0 for some cs > 0. In particular, we find
that

|ξ |2 z̃2 + 1 − mKE (z̃, η) = (a2(η) − |ξ |2)z̃2 + O(z̃3)

and hence that for ε1 and hence |ξ | sufficiently small,
∣
∣
∣|ξ |2 z̃2 + 1 − mKE (z̃, η)

∣
∣
∣ ≥ cs

2
|z̃|2.

This also yields that mV P
1−mV P

is uniformly bounded thanks to (4.17)–(4.18).
Next, we prove iv). We use again that

1 − mV P (γ, τ, ξ) = 1

(γ + iτ)2

(
(γ + iτ)2 + (1 − mKE (γ, τ, ξ)

)
. (4.19)

This yields, as |τ |2 ≤ 1/ε21,

|1 − mV P (γ, τ, ξ)| ≥ ε21

2

∣
∣
∣(γ + iτ)2 + (1 − mKE (γ, τ, ξ))

∣
∣
∣ .

We shall need the behavior of mKE (γ, τ, ξ) close to ξ = 0. By using the expansion
(4.9) for l = 1, we obtain that in this regime, for some C > 0,

|mKE (γ, τ, ξ)| ≤ C

ε21
|ξ |2,

therefore, we obtain that for ε2 sufficiently small
∣
∣
∣(γ + iτ)2 + (1 − mKE (γ, τ, ξ))

∣
∣
∣

≥ |γ + i(τ − 1)||γ + i(τ + 1)| − |mKE (γ, τ, ξ)|

≥ |τ − 1| |τ + 1| − C

ε21
|ξ |2 ≥

(
2

3
A − C

ε21

)

ε|ξ |. (4.20)

We thus find (4.16) for ε2 sufficiently small and A ≥ A0 sufficiently large.
We finally prove v). We use again (4.19), we have to study the zeros of

g(z, ξ) = z2 + 1 − mKE (γ, τ, ξ).

Writing z = ±i + rz, ξ = rω, with |z| small, we get by using Lemma 4.1 and the
expansion (4.9) that

g(z, ξ) = ±2irz + r2z2 − 1

(±i + rz)2

(
3Hμω · ω r2 + r4m2(±i + rz, r, ω)

)
,

(4.21)

where m2 is a smooth function of its arguments. We can thus set

g(z, ξ) = r f±(z, r, ω),
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where

f±(z, r, ω) = ±2iz + rz2 − r

(±i + rz)2

(
3Hμω · ω + r2m2(±i + rz, r, ω)

)
.

(4.22)

It thus suffices to study the zeros of f± for |z| sufficiently small, r > 0 close to zero.
We would like to use the implicit function theorem, nevertheless, since r = 0 is on the
boundary of the domain of definition of f , we shall first look for a smooth extension of
f± for small negative r . We can use again the expansion (4.9) in Lemma 4.1 to observe
that r2m2 can be expanded as a polynomial in r with even powers plus a remainder of
order O(r2n). Consequently, we choose an extension by setting

m±(z, r, ω) = r2m2(±i + |r |z, |r |, ω),

then m± is a C 1 function of its arguments for |z| ≤ R0/2, |r | < 1/2, ω ∈ S
d−1, which

moreover satisfies

m±(z, 0, ω) = ∂rm±(z, 0, ω) = 0. (4.23)

Let us set

F±(z, r, ω) = ±2iz + rz2 − r

(±i + rz)2
(
3Hμω · ω + m±(z, r, ω)

)

and observe that F± is aC 1,Cvalued function of its arguments for |z| ≤ R0/2, |r | < 1/2,
ω ∈ S

d−1 that coincides with f± if r > 0. Therefore it suffices to study the zeros of F±.
For every ω ∈ S

d−1, using (4.23), F±(0, 0, ω) = 0 and

DzF±(0, 0, ω) = ±2i

is invertible (as a linear map fromR
2 toR

2). Therefore by the implicit function theorem,
for every ω ∈ S

d−1, there exists a vicinity of (0, 0, ω) such that the zeros of F± are
given by a C 1 curve. By compactness, we can then find ε3 such that for every |r | ≤ ε3,
|z| ≤ ε3, and ω ∈ S

d−1, the zeros of F±(·, r, ω) are described by a curve z = W±(r, ω)

such that W±(0, ω) = 0. Since by using again (4.23), we have

∂r F±(0, r, ω) = 3Hμω · ω �= 0,

and we also obtain that

∂rW±(0, ω) = ±i
3

2
Hμω · ω.

This yields v). Note that

∂r�±(0, ω) = 0, ∂rT±(0, ω) = ±3

2
Hμω · ω.

The fact that we necessarily have �±(r, ω) < 0 for r > 0 is a consequence of (H1). ��
In the above proof, we have used the implicit function theorem in polar coordinates

in order to describe the zeros of z2 + 1−mKE in the region |γ | ≤ ε3|ξ |, |τ ± 1| ≤ ε3|ξ |
and |ξ | ≤ ε3. Nevertheless, it will be useful to get that Z±(r, ω) are actually smooth
functions of ξ under the additional symmetry assumption (2.2).
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Lemma 4.2. Assuming (1.2), (1.4), (2.1), (2.2) and (H1), there exists ε3 > 0 such that
for every ξ �= 0, the zeros of 1−mV P or equivalently of z2 + 1−mKE with |γ | ≤ ε3|ξ |,
|τ ± 1| ≤ ε3|ξ | and |ξ | ≤ ε3 are given by two smooth curves of class C d+2 under the
form

Z±(ξ) = ±i + i |ξ |2�±(ξ)

where

�±(0) = ±3

2
Cμ ∈ R, Im �± ≥ 0.

Proof. By using the notations of the proof of Proposition 4.2 v), since W± is C 1 and
W±(0, ω) = 0, we can set W±(r, ω) = r W̃±(r, ω) and thanks to (4.22), we see that for
r �= 0, W̃±(r, ω) is a zero of f̃±(z, r, ω) where

f̃±(z, r, ω) = ±2iz + r2z2 − 1

(±i + r2z)2

(
3Hμω · ω + r2m2(±i + r2z, r, ω)

)
.

Moreover, thanks to (2.2), we have that

Hμω · ω = Cμ

is independent of ω and that by using Lemma 4.1 and in particular the expansion (4.9)
and (4.13), we infer that r4m2(±i + r2z, r, ω) has an expansion in terms of polynomials
of r2 of valuation larger than two plus a high order remainder of the form (4.11). We
can therefore write

r2m2(±i + r2z, r, ω) =: m±(z, ξ)

where m± is a smooth function of its arguments such that m±(z, 0) = 0, Dzm±(z, 0) =
0. We can thus write f̃± as a smooth function of ξ :

f̃±(z, ξ) = ±2iz + |ξ |2z2 − 1

(±i + |ξ |2z)2
(
3Cμ + m±(z, ξ)

)
.

Moreover, we observe that

f̃±(±3

2
iCμ, 0) = 0, Dz f̃±(±3

2
iCμ, 0) = ±2i.

Consequently, from the implicit function theorem we find that W̃±(r, ω) is a smooth
function of ξ that we still denote by W̃±(ξ). This yields

Z±(r, ω) = |ξ |2W̃±(ξ), W̃±(0) = ±3

2
iCμ,

which concludes the proof of the lemma. ��



On the Linearized Vlasov–Poisson System 1421

5. Kernel Estimates

5.1. Short time estimates. We start with short time estimates, which require little
assumption on μ.

Proposition 5.1. Assuming (1.4), there exists C > 0 such that for every t ∈ (0, 1],
‖G(t)‖L1 ≤ Ct, ‖G(t)‖L∞ ≤ C

1

td−1 .

Proof. We observe that G(t, x) solves the integral equation

G = K + K ∗t,x G
K (t, x) = eγ tF−1(mV P (γ, τ, ξ))(t, x) = ∫

Rd×R
eγ t+iτ t+i x ·ξmV P (γ, τ, ξ) dτdξ

= − 1
td−1 μ

( x
t

)
1t≥0.

Therefore, we have the estimate

‖K (t)‖L1 � t.

Moreover, as already observed, G vanishes in the past, therefore

G(t, x) = K (t, x) +
∫ t

0
K (t − s, ·) ∗x G(s, ·) ds, ∀t ≥ 0.

This yields

‖G(t)‖L1 � t +
∫ t

0
(t − s)‖G(s)‖L1 ds

and hence from the Gronwall inequality, we get that

‖G(t)‖L1 � t, ∀t ≤ 1.

We also obtain that

‖G(t)‖L∞ � 1

td−1 +
∫ t

2

0

1

(t − s)d−1 ‖G(s)‖L1 ds +
∫ t

t
2

(t − s)‖G(s)‖L∞ ds.

This yields for t ≤ 1 that y(t) = td−1‖G(t)‖L∞ satisfies

y(t) � 1 + td
∫ t

2

0

1

(t − s)d−1 ds + td−1 sup
[0,t]

y(s)
∫ t

t
2

(t − s)
1

sd−1 ds.

Since

td
∫ t

2

0

1

(t − s)d−1 ds = t2
∫ 1

2

0

1

(1 − u)d−1 ds = Ct2

and

td−1
∫ t

t
2

(t − s)
1

sd−1 ds ≤ 2d−1t2
∫ 1

1
2

(1 − u) du � t2,

we get that for every T > 0

sup
[0,T ]

y(t) � 1 + T 2 + T 2 sup
[0,T ]

y(t).

This yields the result for t ∈ (0, T ], T sufficiently small.We can then iterate the argument
finitely many times in a classical way to get the result for t ∈ (0, 1]. This ends the proof.

��
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5.2. Large time estimates. We shall now focus on estimates for t ≥ 1. First, observe
that by setting z = γ + iτ , we can write (3.4) as

G(t, x) = 1

i

∫

Rd
eix ·ξ

(∫

Re z=γ

ezt
mV P (z, ξ)

1 − mV P (z, ξ)
dz

)

dξ.

Let us pick δ > 0 to be fixed later. We split G as a high frequency and a low frequency
part:

G(t, x) = GH (t, x) + GL(t, x) (5.1)

where

GH (t, x) = 1

i

∫

Rd
eix ·ξ

(∫

Re z=γ

ezt
mV P (z, ξ)

1 − mV P (z, ξ)

(

1 − χ

(
ξ

δ

))

dz

)

dξ, (5.2)

GL(t, x) = 1

i

∫

Rd
eix ·ξ

(∫

Re z=γ

ezt
mV P (z, ξ)

1 − mV P (z, ξ)
χ

(
ξ

δ

)

dz

)

dξ. (5.3)

where χ ∈ C∞
c (Rd) is a nonnegative radial function equal to one for |ξ | ≤ 1 and

supported in the ball of radius 2. Note that GH and GL depends on δ. The choice of δ

will be carefully performed in order to estimate GL .

5.2.1. High frequency estimates We shall first estimate the high frequency contribution
GH .

Proposition 5.2. Assuming (1.2), (1.4), (2.1) and (H1), for every δ > 0, there exist
C > 0 and α > 0 such that

‖GH (t)‖L1 ≤ Ce−αt , ‖GH (t)‖L∞ ≤ Ce−αt , ∀t ≥ 1.

Proof. Let us first recall that (1 − χ) is supported in the zone |ξ | ≥ δ > 0 so that
the argument is very similar to the one used in the torus case in [14] for example. For
ξ �= 0, thanks to the Penrose stability condition (H1) and Corollary 4.1, the function
mV P (·, ξ)/(1 − mV P (·, ξ)) is an holomorphic function in {Re z > 0}. Moreover, by
using ii) of Proposition 4.2, for |ξ | ≥ δ, it extends as an holomorphic function in
{Re z > −Rδ|ξ |}, where Rδ is given by ii) of Proposition 4.2, and we have a positive
uniform estimate from below of |1−mV P |. We can then use the Cauchy formula to get
that for |ξ | ≥ δ,
∫

Re z=γ

ezt
mV P (z, ξ)

1 − mV P (z, ξ)
χ

(
ξ

δ

)

dz =
∫

Re z=−Rδ |ξ |/2
ezt

mV P (z, ξ)

1 − mV P (z, ξ)
χ

(
ξ

δ

)

dz.

Indeed, we can apply Corollary (4.1) to get that uniformly for |ξ | ≥ δ and Re z ≥
−Rδ|ξ |/2,

|mV P (z, ξ)| � C

|ξ |2 + τ 2
(5.4)

so that there is no contribution from infinity. Consequently, we have to estimate

GH (t, x) =
∫

Rd
eix ·ξ

∫

R

e−Rδ |ξ |t/2eiτ t mV P (−Rδ|ξ |/2, τ, ξ)

1 − mV P (−Rδ|ξ |/2, τ, ξ)

(

1 − χ

(
ξ

δ

))

dτdξ.
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By using again (5.4) and ii) of Proposition 4.2, we easily get that

|GH (t, x)| �
∫

|ξ |≥δ

e−Rδ |ξ |t/2
∫

R

1

|ξ |2 + τ 2
dτ dξ �

∫

|ξ |≥δ

e−Rδ |ξ |t/2 1

|ξ | dξ � e−α̃t

for some α̃ > 0. This yields

‖GH (t)‖L∞ � e−α̃t , ∀t ≥ 1.

For the L1 norm, by integrating by parts in ξ and applying Corollary 4.1, we obtain in
a similar way that for all multi-indices |β| ≤ d + 1,

|xβGH (t, x)| � (1 + t |β|)e−α̃t , ∀t ≥ 1.

Therefore, we obtain that

|GH (t, x)| ≤ 1

1 + |x |d+1 (1 + td+1)e−α̃t , ∀t ≥ 1

and hence that

‖GH (t)‖L1 � e−αt , ∀t ≥ 1,

with α = α̃/2. ��

5.2.2. Low frequency estimates We shall now estimate the low frequency part GL .

Lemma 5.1. Assuming (1.2), (1.4), (2.1), (H1), (H2), for δ > 0 small enough, we have
the following decomposition of GL:

GL(t, x) = Gr (t, x) + GS
+(t, x) + GS−(t, x) (5.5)

where,

Gr (t, x) =
∫

Rd
eix ·ξ

(∫

Re z=−δ̃|ξ |
ezt

mV P (z, ξ)

1 − mV P (z, ξ)
dz

)

χ

(
ξ

δ

)

dξ, δ̃ = δ3/2,

GS±(t, x) = 2π
∫

Rd
eix ·ξ eZ±(ξ)t a±(ξ)χ

(
ξ

δ

)

dξ,

a±(ξ) = Z±(ξ)2

2Z±(ξ) − ∂zmK E (Z±(ξ), ξ)
,

where the Z±(ξ) are defined as in Lemma 4.2.

Proof. We now deal with the region |ξ | ≤ δ for δ > 0 to be chosen sufficiently small.
For ξ �= 0, we would like again to use the Cauchy formula to change the integration
contour for

Iξ = 1

i

∫

Re z=γ

ezt
mV P (z, ξ)

1 − mV P (z, ξ)
χ

(
ξ

δ

)

dz.

Again for γ > 0 the function 1 − mV P (z, ξ) does not vanish thanks to (H1) so that
we have to carefully study what happens for negative γ with |γ | small. We observe that
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thanks to i) and iii) of Proposition 4.2, for |(γ, τ, ξ)| ≤ 2ε1 or |(γ, τ, ξ)| ≥ 1/(2ε1)
(reducing ε1 if necessary), the function 1 − mV P does not vanish in CR1 .

We shall now choose

0 < δ ≤ ε3

10A0
(5.6)

where ε3 and A0 are given by Proposition 4.2 iv) and v). As a consequence, for |ξ | ≤ δ,
|γ | ≤ δ|ξ |, if |τ | ≥ 1/ε1 or |τ | ≤ ε1, 1 − mV P does not vanish. Then, since δ ≤ ε3, we
get that for |ξ | ≤ δ, |γ | ≤ δ|ξ | and |τ ± 1| ≤ ε3|ξ |, the function 1 − mV P has for each
ξ exactly two zeros described by v) of Proposition 4.2. Moreover, since �±(0, ω) = 0,
∂r�±(0, ω) = 0, we have that for |τ ±1| ≤ δ|ξ |, the zeros in−δ|ξ | ≤ γ ≤ 0 are actually
localized in − Cδ|ξ |2 ≤ −C |ξ |3 ≤ γ ≤ 0 for some C > 0. Therefore, assuming that

δ is sufficiently small, we get in particular that on the line Re z = γ = −δ
3
2 |ξ |, there

is no zero of 1 − mV P for |τ ± 1| ≤ δ|ξ |, |ξ | ≤ δ. Next, using iv) of Proposition 4.2

since δ ≤ ε2, we get that for |γ | ≤ δ
3
2 |ξ |, |τ ± 1| ≥ δ|ξ |, ε1 ≤ |τ | ≤ 1/ε1 and |ξ | ≤ δ,

1 − mV P does not vanish.
To summarize, we have thus obtained that for each ξ �= 0, |ξ | ≤ δ, there are exactly

two zeros of (1 − mV P ) in the region |γ | ≤ δ|ξ | and they are described by v) of
Proposition 4.2. Moreover, they are localized in − Cδ|ξ |2 ≤ γ ≤ 0 and |τ ±1| ≤ ε3|ξ |.
We can thus use the residue formula to write that for ξ �= 0 (note that there is again no
contribution from infinity since the estimate (5.4) is still valid for large τ ),

Iξ = 1

i

∫

Re z=−δ
3
2 |ξ |

ezt
mV P (z, ξ)

1 − mV P (z, ξ)
χ

(
ξ

δ

)

dz

+2πχ

(
ξ

δ

)∑

±
eZ±(r,ω)t

(

Res
mV P

1 − mV P
(·, ξ)

)

|Z±(r,ω)

where r = |ξ |, ω = ξ/|ξ |. Computing the residue, we obtain

2π
∑

±

(

Res
mV P

1 − mV P
(·, ξ)

)

|Z±(r,ω)

= −2π
∑

±

1

∂zmV P (Z±(ξ), ξ)
.

To get regularity in ξ close to ξ = 0, it is convenient to express the residue in terms of
mKE . Thanks to (4.3), we have

mV P = − 1

z2
(1 − mKE )

and hence

∂zmV P = 2

z3
(1 − mKE ) +

1

z2
∂zmK E .

Since (1 − mKE ) = −z2 at z = Z±, we can also write

2π
∑

±

(

Res
mV P

1 − mV P
(·, ξ)

)

|Z±(r,ω)

= 2π
∑

±

Z±(r, ω)2

2Z±(r, ω) − ∂zmK E (Z±(r, ω), ξ)

= 2π
∑

±
a±(ξ),
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with a±(ξ) being defined as in the statement of the lemma. Therefore, we get for each
ξ �= 0,

Iξ = 1

i

∫

Re z=−δ
3
2 |ξ |

ezt
mV P (z, ξ)

1 − mV P (z, ξ)
χ

(
ξ

δ

)

dz + 2π
∑

±
eZ±(ξ)t a±(ξ)χ

(
ξ

δ

)

giving the decomposition stated in the lemma, upon integrating in ξ ∈ R
d and setting

δ̃ = δ
3
2 for notational convenience. The last residual term corresponds to the singular

kernelGS±(t, x), while the first integral term gives the regular part of the kernelGr (t, x).
��

5.2.3. Low frequency estimates: regular part The next step is to estimate Gr and GS±
in (5.5). We start with Gr .

Proposition 5.3 (Study of Gr ). Assuming (1.2), (1.4), (2.1) and (H2), δ can be chosen
small enough so that uniformly for t ≥ 1

‖Gr‖L∞ � 1

td+1
, ‖Gr‖L1 � 1

t
.

Proof. Let us write that

Gr (t, x) = 1

i

∫

Rd
eix ·ξ

(∫

Re z=−δ̃|ξ |
e−δ̃|ξ |t eiτ t mV P (z, ξ)

1 − mV P (z, ξ)
dz

)

χ

(
ξ

δ

)

dξ

=
∫

Rd
eix ·ξ Ĩξχ

(
ξ

δ

)

dξ.

Thanks to Proposition 4.1, we observe that

mV P (z, ξ)

1 − mV P (z, ξ)
= − 1

z2
1 − mKE (z, ξ)

1 + 1
z2

(1 − mKE (z, ξ))
= − 1 − mKE (z, ξ)

z2 + 1 − mKE (z, ξ)

= −1 +
z2

z2 + 1 − mKE
= −1 +

z2

z2 + 1

1

(1 − mKE
1+z2

)

= −1 +
z2

z2 + 1
+

z2

(z2 + 1)2
mKE

(1 − mKE
1+z2

)

= − 1

z2 + 1
+

z2

z2 + 1

mKE

(z2 + 1 − mKE )
.

We can thus write

Ĩξ = −1

i

∫

Re z=−δ̃|ξ |
ezt

1

1 + z2
dz + Jξ ,

Jξ = 1

i

∫

Re z=−δ̃|ξ |
ezt

z2

z2 + 1

mKE

(z2 + 1 − mKE )
(z, ξ) dz.

Next, we observe that from the Cauchy formula
∫

Re z=−δ̃|ξ |
ezt

1

1 + z2
dz =

∫

Re z=−�

ezt
1

1 + z2
dz
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for any � ≥ δ̃|ξ | and thus, sending � to +∞, we get that
∫

Re z=−δ̃|ξ |
ezt

1

1 + z2
dz = 0.

We have thus obtained that

Gr (t, x) =
∫

Rd
eix ·ξ Jξχ

(
ξ

δ

)

dξ,

Jξ = 1

i

∫

Re z=−δ̃|ξ |
ezt

z2

z2 + 1

mKE

(z2 + 1 − mKE )
(z, ξ) dz. (5.7)

We shall use this more convenient form to prove the estimates. We shall further split the
Jξ term into

Jξ =
∫

|τ |≤ε1

e−δ̃|ξ |t eiτ t z2

z2 + 1

mKE

(z2 + 1 − mKE )
(z, ξ) dτ

+
∫

|τ |≥ε1, ||τ |−1|≥1/2
e−δ̃|ξ |t eiτ t z2

z2 + 1

mKE

(z2 + 1 − mKE )
(z, ξ) dτ

+
∫

|τ |≥ε1, ||τ |−1|≤ 1
2

e−δ̃|ξ |t eiτ t z2

z2 + 1

mKE

(z2 + 1 − mKE )
(z, ξ) dτ

=: Jξ,1 + Jξ,2 + Jξ,3, (5.8)

wherewe recall that ε1 is defined in iii) of Proposition 4.2 andwe decompose accordingly
Gr into

Gr = Gr
1 + Gr

2 + Gr
3. (5.9)

In the following three lemmas, we shall provide estimates of Gr
i , i = 1, 2, 3.

Let us start with Gr
2, which is the easiest one.

Lemma 5.2. Under the assumptions of Proposition 5.3, δ can be chosen small enough
so that uniformly for t ≥ 1,

‖Gr
2‖L∞ � 1

td+1
, ‖Gr

2‖L1 � 1

t
.

Proof. By using the same factorization as in (4.20), we observe that uniformly for
|ξ | ≤ δ, ||τ | − 1| ≥ 1/2 and γ = −δ̃|ξ |, we can take δ small enough so that

|z2 + 1 − mKE (−δ̃|ξ |, τ, ξ)| ≥ κ0|z2 + 1| > 0, (5.10)

where κ0 depends only on δ and ε1. Moreover, still in the same range of parameters,

|z2 + 1| = |z + i ||z − i | � 1 + τ 2, |z|2 � |ξ |2 + τ 2. (5.11)

Therefore, we get that

|Gr
2(t, x)| �

∫

|ξ |≤δ

e−δ̃|ξ |t
∫

R

|ξ |2 + |τ |2
1 + |τ |4 |mKE (−δ̃|ξ |, τ, ξ)| dτdξ
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�
∫

|ξ |≤δ

e−δ̃|ξ |t
∫

R

|mKE (−δ̃|ξ |, τ, ξ)| dτdξ.

We then set τ = |ξ |τ ′ and use the degree zero homogeneity of mKE to get

|Gr
2(t, x)| �

∫

|ξ |≤δ

e−δ̃|ξ |t |ξ |
∫

R

∣
∣
∣
∣mKE

(

−δ̃, τ ′, ξ

|ξ |
)∣

∣
∣
∣ dτ ′dξ.

From Proposition 4.1, we have that
∣
∣
∣mKE

(
−δ̃, τ ′, ξ

|ξ |
)∣
∣
∣ is uniformly bounded for |τ ′| ≤

2, while we get from Lemma 4.1
∣
∣
∣
∣mKE

(

−δ̃, τ ′, ξ

|ξ |
)∣

∣
∣
∣ � 1

(τ ′)2
, |τ ′| ≥ 2,

and hence
∣
∣
∣
∣mKE

(

−δ̃, τ ′, ξ

|ξ |
)∣

∣
∣
∣ � 1

1 + (τ ′)2
. (5.12)

This yields

|Gr
2(t, x)| �

∫

|ξ |≤δ

e−δ̃|ξ |t |ξ |
∫

R

1

1 + (τ ′)2
dτ ′dξ.

and hence by finally setting ξ̃ = tξ , we obtain

|Gr
2(t, x)| � 1

td+1
.

There remains to estimate the L1 norm. To this end, we use an homogeneous
Littlewood–Paley decomposition. We write

Gr
2 =

∑

q≤0

Gr
2,q , Gr

2,q(t, x) =
∫

Rd
eix ·ξ Jξ,2(t)χ

(
ξ

δ

)

φ

(
ξ

2q

)

dξ,

Jξ,2(t) =
∫

|τ |≥ε1, ||τ |−1|≥1/2
e−δ̃|ξ |t eiτ t z2

z2 + 1

mKE

(z2 + 1 − mKE )
(−δ̃|ξ |, τ, ξ) dτ,

z = −δ̃|ξ | + iτ, (5.13)

where φ is supported in the annulus 1/4 ≤ |ξ | ≤ 4. Changing ξ for ξ/2q , we get that

Gr
2,q(t, x) = 2qdGr

2,q(T, X),

Gr
2,q(T, X) =

∫

Rd
ei X ·ξ Jξ,2,q(T )χ

(
2qξ

δ

)

φ (ξ) dξ, T = 2q t, X = 2q x,

Jξ,2,q(T ) =
∫

|τ |≥ε1, ||τ |−1|≥1/2
e−δ̃|ξ |T e

iτT
2q

z2

z2 + 1

mKE

(z2 + 1 − mKE )
(−δ̃2q |ξ |, τ, 2qξ) dτ,

(5.14)
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where now the integral in ξ is supported on the annulus 1/4 ≤ |ξ | ≤ 4. We then observe
that since 2q ≤ 1, we have that

‖Gq(T, ·)‖L1 �
∑

|α|≤d+1

‖∂α
ξ Jξ,2,q‖L∞ .

By using again (5.10), (5.11) and Proposition 4.1, we get that for |α| ≤ d + 1, and
uniformly for 1/4 ≤ |ξ | ≤ 4,

|∂α
ξ Jξ,2,q(T )| �

∫

||τ |−1|≥1/2
e−δ̃|ξ |T ∑

k≤|α|
2qk |hk(−δ̃2q |ξ |, τ, 2qξ)| dτ,

where hk is positively homogeneous of degree −k. Moreover, by using the expansion
of mKE provided by Lemma 4.1, we also know that for bounded ξ and |τ | ≥ 1/2,

|hk(z, ξ)| � 1

|z2 + 1| � 1

1 + τ 2
.

Therefore, by setting τ = 2q |ξ |τ ′, we obtain that

|∂α
ξ Jξ,2,q(T )| � 2q

∫

|2q |ξ |τ ′|−1|≥1/2
e−δ̃|ξ |T ∑

k≤|α|
|hk(−δ̃, τ ′, ξ

|ξ | )| dτ ′

� 2qe−δ̃T/2
∫

R

1

1 + (τ ′)2
dτ ′ � 2qe−δ̃T/2.

Consequently we obtain from (5.14) that

‖Gr
2,q(t)‖L1 � 2qe−δ̃2q t/2 � 2q

1 + (2q t)4
.

This finally yields for t ≥ 1

‖Gr
2(t)‖L1 ≤

∑

q≤0

‖Gr
2,q(t)‖L1 �

∑

2q≤1/t

2q +
1

t4
∑

1/t≤2q≤0

1

23q
� 1

t
+
t3

t4
� 1

t
.

This ends the proof. ��
Let us turn to Gr

1.

Lemma 5.3. Under the assumptions of Proposition 5.3, we have uniformly for t ≥ 1

‖Gr
1‖L∞ � 1

td+2
, ‖Gr

1‖L1 � 1

t2
.

Proof. In this regime of low frequencies for |ξ | ≤ δ, |τ | ≤ ε1, and γ = −δ̃|ξ |, we have
that

∣
∣
∣
∣

z2

z2 + 1

mKE

z2 + 1 − mKE
(−δ̃|ξ |, τ, ξ)

∣
∣
∣
∣ � |z|2

∣
∣
∣
∣
∣

mKE (−δ̃|ξ |, τ, ξ)

z2 + 1 − mKE (−δ̃|ξ |, τ, ξ)

∣
∣
∣
∣
∣
.
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By setting again τ = |ξ |τ ′, and by using that mKE is homogeneous of degree zero, we
obtain that

|Gr
1(t, x)| �

∫

|ξ |≤δ

e−δ̃|ξ |t |ξ |3
∫

|τ ′|≤ε1/|ξ |
|z′|2

∣
∣
∣
∣
∣

mKE (−δ̃, τ ′, ξ
|ξ | )

|ξ |2(z′)2 + 1 − mKE (−δ̃, τ ′, ξ
|ξ | )

∣
∣
∣
∣
∣
dτ ′

where z′ = −δ̃ + iτ ′. By using Proposition 4.2 iii), in particular (4.15), we know that
∣
∣
∣
∣|ξ |2(z′)2 + 1 − mKE (−δ̃, τ ′, ξ

|ξ | )
∣
∣
∣
∣

is bounded from below by a positive constant since |z′| ≥ δ̃ and hence, obtain that

|Gr
1(t, x)| �

∫

|ξ |≤δ

e−δ̃|ξ |t |ξ |3
∫

|τ ′|≤ε1/|ξ |
|z′|2

∣
∣
∣
∣mKE (−δ̃, τ ′, ξ

|ξ | )
∣
∣
∣
∣ dτ ′.

As in (5.12), we have
∣
∣
∣
∣mKE

(

−δ̃, τ ′, ξ

|ξ |
)∣

∣
∣
∣ � 1

1 + (τ ′)2
.

This yields in particular that |z′|2
∣
∣
∣mKE (−δ̃, τ ′, ξ

|ξ | )
∣
∣
∣ is uniformly bounded for τ ′ ∈ R.

Therefore, we obtain that

|Gr
1(t, x)| �

∫

|ξ |≤δ

e−δ̃|ξ |t |ξ |3
∫

|τ ′|≤ε1/|ξ |
dτ ′ dξ � 1

td+2
.

To estimate the L1 norm, we argue as in the proof of Lemma 5.2, writing

Gr
1 =

∑

q≤0

Gr
1,q , Gr

1,q(t, x) = 2qdGr
1,q(T, X),

Gr
1,q(T, X) =

∫

Rd
ei X ·ξ Jξ,1,q(T )χ

(
2qξ

δ

)

φ (ξ) dξ, T = 2q t, X = 2q x,

Jξ,1,q(T ) =
∫

|τ |≤ε1

e−δ̃|ξ |T e
iτT
2q

z2

z2 + 1

× mKE

(z2 + 1 − mKE )
(−δ̃2q |ξ |, τ, 2qξ) dτ, (5.15)

where the integral in ξ is supported on the annulus 1/4 ≤ |ξ | ≤ 4. We use again that
since 2q ≤ 1, we have the estimate

‖G1,q(T, ·)‖L1 �
∑

|α|≤d+1

‖∂α
ξ Jξ,1,q‖L∞ .

From the same estimates as above, we obtain that for 1/4 ≤ |ξ | ≤ 4,

|∂α
ξ Jξ,1,q(T )| �

∫

|τ |≤ε1

|z|2e−δ̃|ξ |T ∑

k≤|α|
2qk |hk(−δ̃2q |ξ |, τ, 2qξ)| dτ
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where hk is positively homogeneous of degree −k. Arguing exactly as in the proof of
Lemma 5.2, we get

|∂α
ξ Jξ,2,q (T )| � 23q

∫

τ ′|≤ε1/(2q |ξ |)
e−δ̃|ξ |T ∑

k≤|α|
(1 + (τ ′)2)|hk(−δ̃, τ ′, ξ

|ξ | )| dτ ′ � 22qe−δ̃T/2.

We can then conclude as in the proof of the previous lemma by summing over the dyadic
blocks. The proof is complete. ��

It remains to estimate Gr
3.

Lemma 5.4. Under the assumptions of Proposition 5.3, δ can be chosen small enough
so that uniformly for t ≥ 1

‖Gr
3‖L∞ � 1

td+1
, ‖Gr

3‖L1 � 1

t
.

Proof. We are now integrating on ||τ | − 1| ≤ 1/2. We shall decompose Jξ,3 from (5.8)
as

Jξ,3 = Jξ,3,0 +
∑

1≤k≤N

Jξ,3,k

where

Jξ,3,0 =
∫

||τ |−1|≤ε3|ξ |
e−δ̃|ξ |t eiτ t z2

z2 + 1

mKE

(z2 + 1 − mKE )
(z, ξ) dτ

and for 1 ≤ k ≤ N ,

Jξ,3,k =
∫

2kε3|ξ |≤||τ |−1|≤2k+1ε3|ξ |
e−δ̃|ξ |t eiτ t z2

z2 + 1

mKE

(z2 + 1 − mKE )
(z, ξ) dτ,

where ε3 is given by v) of Proposition 4.2, and N is such that 2N+1ε3|ξ | ≤ 1
2 .

Let us first estimate Jξ,3,0. We shall focus on the estimates close to τ = 1 (and call
the corresponding term J+ξ,3,0), the ones close to τ = −1 can be obtained from the same
arguments. We set

J+ξ,3,0 =
∫

|τ−1|≤ε3|ξ |
e−δ̃|ξ |t eiτ t z2

z2 + 1

mKE

(z2 + 1 − mKE )
(z, ξ) dτ, z = −δ̃|ξ | + iτ.

We first set τ = 1 + |ξ |τ ′ so that

J+ξ,3,0 = |ξ |
∫

|τ ′|≤ε3

e|ξ |zt ei t (i + |ξ |z)2
2i |ξ |z + |ξ |2z2

mKE (i + |ξ |z, ξ)

|ξ | f+(z, |ξ |, ω)
dτ ′,

where we have set z = (z − i)/|ξ | = −δ̃ + iτ ′ and ω = ξ/|ξ | so that τ ′ = Im z and f+
is defined in (4.22). As in (4.21), we can write

mKE (i + |ξ |z, ξ) = r2

(i + rz)2
(3Hμω · ω + r2m2(i + rz, r, ω)), r = |ξ |,

therefore, we have

|mKE (i + |ξ |z, ξ)| � |ξ |2.
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Moreover, since

f+(z, r, ω) = 2iz + rz2 − r

(i + rz)2
(3Hμω · ω + r2m2(i + rz, r, ω)),

we observe that for Re z = −δ̃ = −δ
3
2 and r ≤ δ (see again the proof of Lemma 5.1),

we have for δ small enough that

| f+(z, r, ω)| � 1.

Here and in what follows, the estimates may depend on the constants δ and ε3, which are
sufficiently small, but fixed, by Proposition 4.2 and Lemma 5.1 (reminding the choice
(5.6)). By using that, taking δ sufficiently small if necessary,

∣
∣
∣2i |ξ |z + |ξ |2z2

∣
∣
∣ � |ξ |,

this yields,

|J+ξ,3,0| � |ξ |e−δ̃|ξ |t .

The same arguments apply for J−
ξ,3,0. We thus have

|Jξ,3,0| � |ξ |e−δ̃|ξ |t . (5.16)

Let us now estimate Jξ,3,k . Thanks to iv) of Proposition 4.2, we have

|z2 + 1 − mKE | � 2kε3|ξ |. (5.17)

As above, the estimate

|mKE | � |ξ |2,
still holds, and since 1

2 ≥ ||τ | − 1| ≥ 2kε3|ξ |, we also have
1

|z2 + 1| � 1

2kε3|ξ | ,

therefore, we obtain that

|Jξ,3,k | � e−δ̃|ξ |t 2k

22k
|ξ | � e−δ̃|ξ |t |ξ | 1

2k
. (5.18)

By combining, (5.16) and (5.18), we thus obtain

|Jξ,3(t, x)| � e−δ̃|ξ |t |ξ |
∑

k≥0

1

2k
� e−δ̃|ξ |t |ξ |.

From the definition of Gr
3 (see (5.9), (5.8)), we finally obtain

|Gr
3(t, x)| � 1

td+1
.
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To estimate the L1 norm, we argue again as in the proof of Lemma 5.2, writing

Gr
3 =

∑

q≤0

Gr
3,q , Gr

3,q(t, x) = 2qdGr
3,q(T, X),

Gr
3,q(T, X) =

∫

Rd
ei X ·ξ Jξ,3(T )χ

(
2qξ

δ

)

φ (ξ) dξ, T = 2q t, X = 2q x,

Jξ,3,q(T ) =
∫

||τ |−1|≤1/2
e−δ̃|ξ |T e

iτT
2q

z2

z2 + 1

mKE

(z2 + 1 − mKE )
(−δ̃2q |ξ |, τ, 2qξ) dτ,

(5.19)

where the integral in ξ is in the annulus 1/4 ≤ |ξ | ≤ 4. To estimate Jξ,3,q(T ), we focus
again on the vicinity of 1 and call the corresponding contribution J+ξ,3,q(T ). We now use
the same decomposition as before for the estimate of the L∞ norm, which yields

J+ξ,3,q(T ) =
∑

0≤k≤N

J+ξ,3,q,k(T )

=
∑

0≤k≤N

∫

2k+q |ξ |ε3≤|τ−1|≤ε3|ξ |2k+1+q
e−δ̃|ξ |T e

iτT
2q

z2

z2 + 1

× mKE

(z2 + 1 − mKE )

(
−δ̃2q |ξ |, τ, 2qξ

)
dτ.

Let us estimate ‖∂α
ξ J+ξ,3,q(T )‖L∞ for |α| ≤ d + 1.

By (4.21), we have that for 1/4 ≤ |ξ | ≤ 4, 2k+q |ξ |ε3 ≤ |τ − 1| ≤ ε3|ξ |2k+1+q or
|τ − 1| ≤ ε322+q for k = 0,

mKE (−δ̃2q |ξ |, τ, 2qξ) = 22q

(−δ̃2q |ξ | + iτ)2

(
3Hμξ · ξ + |ξ |4m2(−δ̃2q |ξ |, τ, 2qξ)

)

and hence for |τ − 1| ≤ 1/2 and |ξ | ≤ δ, we get
∣
∣
∣
∣∂

β
ξ

(
mKE

g
(−δ̃2q |ξ |, τ, 2qξ)

)∣
∣
∣
∣ �

∑

�≤|β|+1

22q+q(�−1)

∣
∣
∣g

(
−δ̃2q |ξ |, τ, 2qξ

)∣
∣
∣
�
,

where we have set

g(−δ̃2q |ξ |, τ, 2qξ) = (z2 + 1 − mKE )(−δ̃2q |ξ |, τ, 2qξ).

Consequently, by using (5.17) which gives for |ξ | ≥ 1/4

|g(−δ̃2q |ξ |, τ, 2qξ)| � 2k+q ,

we obtain that
∣
∣
∣
∣∂

β
ξ

(
mKE

g
(−δ̃2q |ξ |, τ, 2qξ)

)∣
∣
∣
∣ � 2q

2k
.

In a similar way, we have uniformly in q,
∣
∣
∣
∣
∣
∂

β
ξ

(
(−δ̃2q |ξ | + iτ)2

(−δ̃2q |ξ | + iτ)2 + 1

)∣
∣
∣
∣
∣
� 1

2k+q
.
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Therefore, we obtain that for |α| ≤ d + 1.

‖∂α
ξ J+ξ,3,q(T )‖L∞ � 2k+q

22k
e−δ̃T/2 ≤ 2q

2k
e−δ̃T/2.

The same estimate holds for J−
ξ,3,q(T ). By summing over k ≥ 0, we get that

‖Gr
3,q(T )‖L1 � 2qe−δ̃T/2

and we finally obtain the claimed estimate of ‖Gr
3(t)‖L1 by summing over q ≤ 0 as in

the proof of Lemma 5.2. ��

5.3. End of the proof of Proposition 5.3. It suffices to recall the expression (5.9) and to
gather the estimates of Lemma 5.3, Lemma 5.2 and Lemma 5.4 (taking δ small enough).

��

5.3.1. Low frequency estimates: singular part We shall now study GS± defined in (5.5),
which corresponds to the dispersive part.

Proposition 5.4. Assuming (1.2), (1.4), (2.1) and (2.2), δ can be chosen small enough
so that

‖GS±(t)‖L2 ≤ C, ‖GS±(t)‖L∞ ≤ C

t
d
2

, ∀t ≥ 1 (5.20)

where C depends on at most d + 1 derivatives of the amplitude a± and d + 2 derivatives
of the phase Z±. We also have the more precise structure

GS±(t) ∗x · = e±i t H S±(t, D) (5.21)

where the operator H S±(t, D) is such that for every k ≥ 0,

∂kt H
S±(t, D) = HS

±,k(t, D)χ(D)�k, (5.22)

and HS
±,k(t, D) also satisfy the estimates

‖HS
±,k(t, D)‖L2→L2 ≤ C, ‖HS

±,k(t, D)‖L1→L∞ ≤ C

t
d
2

, ∀t ≥ 1. (5.23)

Proof. We focus on the study of GS
+, the analysis of G

S− being similar. The estimate for
the L2 norm is just a consequence of the fact that the inverse Fourier transform is an
isometry. We recall

GS
+(t, x) =

∫

Rd
eZ+(r,ω)t+i x ·ξa+(r, ω)χ

(
ξ

δ

)

dξ.

Since we assume that (2.2) holds, we can use Lemma 4.2, from which we deduce that
Z+ is a smooth function of the ξ variable in B(0, 10δ) so that we actually have

GS
+(t, x) =

∫

Rd
eZ+(ξ)t+i x ·ξa+(ξ)χ

(
ξ

δ

)

dξ
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where the the amplitude

a+(ξ) = Z+(ξ)2

2Z+(ξ) − ∂zmK E (Z+(ξ), ξ)

is also a smooth function of ξ .
To get the decay estimate in L∞, we shall use that the imaginary part of Z+ described

in Lemma 4.2 provides dispersive properties. Since we have almost no information on
the real part of Z+ (besides the fact that it is non-negative), we shall use a robust version
of the stationary phase. By using Lemma 4.2, we can write

GS
+(t, x) =: eit H S

+ (t, x) = eit I (t, X), X = x/t

where

HS
+ (t, x) = I (t, X) =

∫

Rd
eit�X (ξ)a+(ξ)χ

(
ξ

δ

)

dξ (5.24)

with the phase given by

�X (ξ) = |ξ |2�+(ξ) + X · ξ = �r
X (ξ) + i� i

X (ξ).

Note that � i
X ≥ 0 and

D2
ξ �

r
X (0) = 2CμId .

We can take δ small enough so that

D2
ξ �

r
X (ξ) ≥ 1

2
CμId ≥ c0 > 0 (5.25)

for |ξ | ≤ 10δ and hence that for every ξ1, ξ2 ∈ B(0, 10δ),

|∇�r
X (ξ1) − ∇�r

X (ξ2)| ≥ c̃0|ξ1 − ξ2|, (5.26)

where the lower bound is independent of X . We will rely on the approach of Lemma 3.1
of [10] by checking that the imaginary part is harmless. We use the operator

L(u) = 1

i(1 + t |∇�X |2)
d∑

j=1

∂ j�X∂ j u +
1

(1 + t |∇�X |2)u

(where | · | denotes in this context the hermitian norm of C
d ), which satisfies by con-

struction

L(eit�X ) = eit�X (5.27)

and has a formal adjoint L̃ (i.e.
∫

Rd Luv = ∫

Rd uL̃v, ∀u, v ∈ C∞
c ) given by

L̃(u) = −
d∑

j=1

∂ j�X

i(1 + t |∇�X |2)∂ j u +
(

−
d∑

j=1

∂2j�X

i(1 + t |∇�X |2)

+
d∑

j=1

2t∂ j�X Re(∇�X · ∇∂ j�X )

i(1 + t |∇�X |2)2
)
u
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+
1

(1 + t |∇�X |2)u.

Using (5.27) repeatedly, we thus get that

|I (t, X)| �
∫

Rd

∣
∣
∣(̃L)N

(
a+(·)χ

( ·
δ

))∣
∣
∣ dξ,

for any integer N ≥ 1. We can then check that we get as in the proof of Lemma 3.1 in
[10] that

(̃L)N =
∑

|α|≤N

a(N )
α ∂α

where the coefficients a(N )
α satisfy on the support of the amplitude the estimate

|a(N )
α | ≤ C(�N+1)

1

〈t 12 ∇�X 〉N
with

�k = sup
ξ∈B(0,5δ)

sup
2≤|α|≤k

|∂α�X |.

Note that since �k involves only derivatives of order larger than 2 of �X , this quantity
is independent of X . Then, by choosing N = d + 1, we get

|I (t, X)| � C(�N+1, AN )

∫

B(0,δ)

1

〈t 12 ∇�X 〉N
dξ

with AN = sup|α|≤N ‖∂αa+‖L∞(B(0,δ). To conclude, we just use that
∫

B(0,δ)

1

〈t 12 ∇�X 〉N
dξ ≤

∫

B(0,δ)

1

〈t 12 ∇�r
X 〉N

dξ.

We finally observe that by (5.25), (5.26), the map ξ 
→ ∇�r
X is a diffeomorphism on

B(0, δ) and we can thus use the change of variables η = ∇�r
X and apply the bound

from below of the Jacobian provided by (5.25) to get

|I (t, X)| � C(�N+1, AN )

∫

Rd

1

(1 + t |η|2)N/2 dη � C(�N+1, AN )
1

t
d
2

.

This yields (5.20).
To get (5.22), it suffices to notice that each time we take a time derivative of HS±

(see (5.24)), we multiply the amplitude by i |ξ |2�+(ξ). Since �+ is smooth the new
amplitude has the same properties as before. The expression (5.21) follows by switching
from kernels to operators. The proof is finally complete. ��

6. Proof of Theorem 3.1

We use (5.1), take δ small enough so that to apply Lemma 5.1 and the estimates of
Proposition 5.3 and Proposition 5.4, and finally apply Proposition 5.2. Theorem 3.1
follows, with the “regular” part of the kernel given by

GR = GH + Gr .
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7. Proof of Theorem 2.1

From the method of characteristics, if f (t, x, v) solves (1.3), then ρ(t, x) =∫

Rd f (t, x, v) dv solves (3.1) and hence (3.3) with the source S(t, x) being the den-
sity associated to free transport:

S(t, x) =
∫

Rd
f0(x − vt, v) dv

which satisfies the dispersive estimates (1.6). We then decompose

ρ(t, x) = ρR(t, x) + ρS
+ (t, x) + ρS−(t, x)

where ρR(t, x) (resp. ρS± ) solves

ρR = S + GR ∗t,x S, ρS± = GS± ∗t,x S.

Note fromTheorem3.1 thatGR satisfies the same estimates as the kernel of the linearized
screened Vlasov–Poisson system (see Theorem 2.1 in [15]). Therefore, we obtain the
same result as in Corollary 2.1 in [15]:

‖ρR(t)‖L1 + td‖ρR(t)‖L∞ � log(1 + t)
(
‖ f0‖L1

x,v
+ ‖ f0‖L1

x L
∞
v

)
, ∀t ≥ 1,

and we shall thus focus on the singular part ρS±. We analyse the + case, the other one
being similar.

The basic estimate consists in writing, thanks to (5.20) in Proposition 5.4,

‖ρS
+ (t)‖L∞ �

∫ t
2

0

1

(t − s)
d
2

‖S(s)‖L1 ds +
∫ t

t
2

‖S(s)‖L2 ds � 1

t
d
2 −1

, ∀t ≥ 1,

which does not decay for d = 1, 2. Assuming additionally that 〈v〉∇x f0 ∈
L1
x,v, 〈v〉∇x f0 ∈ L1

x L
∞
v , we can improve this estimate by using the refined formula

(5.21). We have

GS
+ ∗t,x S =

∫ t

0
ei(t−s)HS

+ (t − s, D)S(s) ds.

By using that i∂sei(t−s) = ei(t−s), we can integrate by parts in time to get

GS
+ ∗t,x S = i(HS

+ (0, D)S(t) − HS
+ (t, D)S(0))

+i
∫ t

0
ei(t−s)∂t H

S
+ (t − s, D)S(s) ds − i

∫ t

0
ei(t−s)HS

+ (t − s, D)∂s S(s) ds.

To estimate

�1(t) = i(HS
+ (0, D)S(t) − HS

+ (t, D)S(0)),

we can use (5.23) and (1.6). This yields

‖�1(t)‖L∞ � 1

t
d
2

‖ f0‖L1
x,v

.
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For

�2(t) = i
∫ t

0
ei(t−s)∂t H

S
+ (t − s, D)S(s) ds − i

∫ t

0
ei(t−s)HS

+ (t − s, D)∂s S(s) ds,

we can rely on (5.22) (since χ(D) is a Fourier multiplier with compactly supported
symbol, we shall use that χ(D)� can be bounded by χ(D)|∇|). This entails

‖�2(t)‖L∞ �
∫ t

2

0

1

(t − s)
d
2

(‖∇S(s)‖L1 + ‖∂t S‖L1) ds

+
∫ t

t
2

(‖∇S(s)‖L2 + ‖∂t S(s)‖L2) ds.

We therefore need to study decay estimates for ∂t S in L1 and L2. To this end, observe
that

∂t S(t, x) = −∇ · J (t, x)

with

J (t, x) =
∫

Rd
v f l(t, x, v) dv

where f l(t, x, v) solves the free transport equation

∂t f
l + v · ∇x f

l = 0

with initial data f0.
As for (1.6), we get that

‖∇ J (t)‖L∞ � 1

t
‖〈v〉∇v f0‖L1

x,v
, ‖∇ J (t)‖L∞ � 1

td+1
‖〈v〉∇v f0‖L1

x L
∞
v

,

which yield

‖∂t S(t)‖L∞ � 1

td+1
‖〈v〉∇v f0‖L1

x,v
, ‖∂t S(t)‖L1 � 1

t
‖〈v〉∇v f0‖L1

x
,

‖∂t S(t)‖L2 � 1

t
d
2 +1

(
‖〈v〉∇v f0‖L1

x,v
+ ‖〈v〉∇v f0‖L1

x L
∞
v

)
.

Using also (1.6), we deduce

‖�2(t)‖L∞ �
(

1

t
d
2

∫ t/2

0

1

〈s〉 ds +
∫ t

t
2

1

s
d
2 +1

ds

)
(
‖〈v〉∇v f0‖L1

x,v
+ ‖〈v〉∇v f0‖L1

x L
∞
v

)

� log(1 + t)

t
d
2

(
‖〈v〉∇v f0‖L1

x,v
+ ‖〈v〉∇v f0‖L1

x L
∞
v

)
.

This finally yields

‖ρS
+ (t)‖L∞ � log(1 + t)

t
d
2

(
‖〈v〉∇v f0‖L1

x,v
+ ‖〈v〉∇v f0‖L1

x L
∞
v

)

and the proof of Theorem 2.1 is complete.
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8. Appendix: Radial Decreasing Equilibria Satisfy the Stability Assumption (H2)

In this section we shall prove

Proposition 8.1. Let μ satisfy (1.2) and (1.4). If μ(v) = F
( |v|2

2

)
with F ′(s) < 0,

∀s ≥ 0, then (H2) is verified.

Proof. We study the function τ 
→ 1 − mKE (iτ, η) for η ∈ S
d−1. By using (4.9),

we get that mKE (iτ, η) → 0 when |τ | tends to +∞, so that it suffices to study τ 
→
1 − mKE (iτ, η) for bounded τ . We have for γ > 0, |η| = 1,

mKE (z, η) = −
∫ +∞

0
e−(γ+iτ)s iη ·

∑

k,l

ηkηlFv(vkvl∇vμ)(ηs) ds,

= −i
∫ +∞

0

∫

Rd
e−(γ+iτ+iη·v)t (η · v)3F ′

( |v|2
2

)

dvdt.

We then write v = uη + w with w ∈ η⊥ = Hη so that

mKE (z, η) = −i
∫ +∞

0

∫

R

e−(γ+iτ+iu)t u3�′
(
u2

2

)

dudt

where

�(s) =
∫

Hη

F

(

s +
|w|2
2

)

dw. (8.1)

This yields

mKE (z, η) = −
∫

R

τ + u

γ 2 + (τ + u)2
u3�′

(
u2

2

)

du − iγ
∫

R

u3

γ 2 + (τ + u)2
�′

(
u2

2

)

du.

Taking the limit γ → 0 (following e.g. [17, Proof of Prop. 2.1]), we get that

mKE (iτ, η) = −p.v.
∫

R

u3�′
(
u2
2

)

τ + u
du − iπτ 3�′

(
τ 2

2

)

.

We then observe that for bounded τ the imaginary part vanishes only for τ = 0 and in
this case the real part is equal to

−
∫

R

u2�′
(
u2

2

)

du =
∫

R

∫

Rd−1
F

(
u2 + |w|2

2

)

dwdu =
∫

Rd
μdv = 1.

Therefore 1 − mKE (iτ, η) vanishes only for τ = 0.
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Let us now compute ∂zmK E (0, η) and ∂2z mK E (0, η). Following the same lines, we first
get that

∂zmK E (z, η) = i
∫ +∞

0

∫

R

te−(γ+iτ+iu)t u3�′
(
u2

2

)

dudt

=
∫ +∞

0

∫

R

e−(γ+iτ+iu)t∂u

(

u3�′
(
u2

2

))

dudt

and therefore

∂zmK E (z, η) = −i
∫

R

τ + u

γ 2 + (τ + u)2
∂u

(

u3�′
(
u2

2

))

du

+γ

∫

R

1

γ 2 + (τ + u)2
∂u

(

u3�′
(
u2

2

))

du.

Taking the limit γ → 0 as before, we get

∂zmK E (0, η) = −i
∫

R

1

u
∂u

(

u3�′
(
u2

2

))

du.

By integrating by parts as before, this yields

∂zmK E (0, η) = i
∫

R

u�′
(
u2

2

)

du = 0.

Finally, for ∂2z mK E (0, η), we have

∂2z mK E (z, η) = −
∫ +∞

0

∫

R

e−(γ+iτ+iu)t t∂u

(

u3�′
(
u2

2

))

dudt

= i
∫ +∞

0

∫

R

e−(γ+iτ+iu)t t∂2u

(

u3�′
(
u2

2

))

dudt.

This yields as before

∂2z mK E (0, η) = −
∫

R

1

u
∂2u

(

u3�′
(
u2

2

))

du =
∫

R

1

u2
∂u

(

u3�′
(
u2

2

))

du

= 2
∫

R

�′
(
u2

2

)

du.

By using the definition (8.1), we thus get that

∂2z mK E (0, η) = 2
∫

Rd
F ′

( |v|2
2

)

dv �= 0

and the proof of the proposition is complete. ��
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