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Abstract: We study the linearized Vlasov—Poisson system around suitably stable homo-
geneous equilibria on RY x R? (for any d > 1) and establish dispersive L>° decay
estimates in the physical space.

1. Introduction

This work is concerned with the Vlasov—Poisson system on R? x R? ford > 1:
Wf+v-Vif+E-Vo,f =0, (x,v) e R x R?,
E:VXA;I(,O—I), ,o(t,x):/Rdf(t,x,v)dv, (1.1)
fli=0 = fo.

where f (resp. E) describes the distribution function of negatively charged particles (resp.

the electric field) in a plasma with a fixed uniform background of ions. We are interested

in the long time behavior of the solutions to (1.1) around homogeneous equilibria, i.e.
non-negative distribution functions p(v) satisfying

/ u)dv =1. (1.2)
R4

To this end, we consider solutions of the form f(z, x, v) = pu(v) + f(¢, x, v) and specif-
ically focus on the linearized equations:

Wf+v-Vif+E -Vou=0, (x,v)eR!xRY,
E=V.A{'p, p(t,X)=/ f@, x,v)dv, (1.3)
Rd

fli=0 = fo.
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Our goal is to establish decay in time for the density p of the solution to (1.3). To
this purpose, we will require that p satisfies some appropriate conditions of stabil-
ity. This problem can be seen as a first step towards the understanding of relaxation
properties around stable homogeneous equilibria (i.e. Landau Damping) for the full
Vlasov—Poisson system (1.1) on the whole space.

Landau Damping was studied in the breakthrough paper [17] by Mouhot and Villani
in the case of T¢ x RY (see also [3] and very recently [14] and also [8,9] for related
models). All these works are based on a linear mechanism called phase mixing, which
is specific to the free transport operator d; + v - V, on the torus; furthermore they
require perturbations of Gevrey or analytic regularity to handle the non-linear problem,
in order to avoid resonances referred to as plasma echoes. For what concerns the whole
space, an important contribution is due to Bedrossian, Masmoudi and Mouhot who
considered in [4] the screened Vlasov—Poisson system, which corresponds to a low
frequency (or equivalently, long range) regularization of the Coulomb potential, resulting
in the equation

E=V.(1-A)""p

for the electric field. They relied on dispersive properties of the free transport operator
d; + v - V, on the whole space in the Fourier side to prove decay in finite regularity
for the full non-linear system in dimensions d > 3 (with a strategy inspired by [3,17]).
In [15] we have very recently revisited this problem with another approach, namely by
developing dispersive L*° linearized estimates in the physical space, which allowed us
to use a Lagrangian strategy in the spirit of [2] for the non-linear problem (see also [18]).
In particular, [15] shows that in the screened case, in all dimensions, the linear decay in
the physical space is the same as for free transport, up to a logarithmic correction.

One expects the situation to be radically different for the unscreened Coulomb
case (1.3), as evidenced in the pioneering works by Glassey and Schaeffer [12,13]. In
particular [12,13] prove that in dimension d = 1, when u is a Maxwellian, the L? norm
of the density of the solution to (1.3) cannot in general decay faster than 1/(log)'3/2
(whereas for free transport it decays like 1/7'/%). Furthermore, [12,13] provide decay
estimates, highlighting the influence of the rate of decay of u at infinity:

e when p is a Maxwellian, p decays logarithmically fast in L? and L norm.

e When p decays at most polynomially fast, p decays polynomially fast in L? and
L norm (with a rate that cannot be better than 1/2 and gets worse when p decays
faster).

e On the other hand when p is compactly supported, they show that the L? norm of
the density may not decay at all.

In this work, we shall consider a general class of analytic homogeneous equilibria
(that includes Maxwellian and power laws for example). Quantitatively, we assume that
there exist Ryp > 0 and C¢y > O so that for all polynomials P of degree less than or equal
to ag, withay :=d + 8,

|Fs () @) + | Fup(P(0) V) (€)] < Coe BBl wg e RY. (1.4)

where we use F, to denote the Fourier transform.
Following [4,17], one could expect that a relevant notion of stability is the one in the
sense of Penrose, that would correspond to asking that there is k > 0 such that

inf
y>0, 7eR, £cR4

+00 _ . lé
1—/ e (V“”SW-}](VUM)(ES)ds > K. (1.5)
0
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However, as we will soon observe, though relevant in the torus case, this condition can
never be satisfied on the whole space. This is because of a low frequency (in space)
singularity (i.e. for small values of |£|), which is the reason why the decay that can be
obtained in the screened case should not be expected here. This explains (most of) the
results of [12,13]: their strategy is based on a cut-off argument around the singularity,
which accounts for why the rate of decay of w matters in their result. We shall show that
despite this singularity, with a relevant notion of stability, a natural and much stronger
decay estimate that depends only on the dimension can be obtained.
A simplified version of our main result is stated in the following theorem.

Theorem 1.1. Let d > 1. Let u be a non-negative radial equilibrium satisfying (1.2)
and (1.4), of the form u(v) = F (‘vl ) with F'(s) < 0, Vs > 0. Consider the density
p(t, x) of the solution of (1.3). Then we can decompose

p(t,x) = pR(t, %)+ p3 (t, x) + p5 (1, x),

where for all t > 2, we have
< _° g
EAOIEES I foll s, + 1 foll 1 poe

and fork =0, 1,

log ¢

d
St+k—1

S (1YY folly, + 10 foll gz ) -

0<I<k

GRS
t

Remark 1.1. All the assumptions, in particular, F’ < 0, are satisfied when u is a
Maxwellian equilibrium or a power law pu(v) = cdm, with m sufficiently large.
Remark 1.2. The rate of decay of u does not play any role in this result.

Remark 1.3. Observe that we do not state any decay in L? and therefore this is not in
contradiction with [12,13].

Remark 1.4. Contrary to the screened case, we do not have Vf p to decay faster than p;
this is due to the singular part p3 .

In Theorem 1.1 (and in the more general version Theorem 2.1 below), we have only
stated L°° type dispersive estimates. Nevertheless, we shall provide a much more precise
description of the structure of p® and ,oi in the following. By using by now standard
interpolation estimates, we could deduce from them Strichartz estimates for example
[7,11]. We observe that the regular part p® enjoys the same decay estimates as the
solution of the linearized screened Vlasov—Poisson system obtained in [15] which are
themselves similar to the ones of the free transport up to the logarithmic factor. Precisely,

R— 5@, x)+GR %, S, x)

where the kernel GR (¢, x) decays as in the screened case (see Theorem 3.1, below), and
S(t, x) denotes the density associated to the free transport dynamics:

S@t) = / fo(x — v, v)dv.
R4
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On the other hand, the singular part pi is precisely due to a singularity at the frequency
& = 0, T = =£1 in the dispersion relation. It can be seen as the solution to a dispersive
partial differential equation. Indeed, we shall show that p3 is under the form

05, x) = G5 % S(t, x),

with the kernel G5 being under the form

GiL(1,x) = /R PO AL @) dt

where Ay is a smooth amplitude that is compactly supported for small |£|. The phase
Z1(£) is such that Re Z1(§) < 0, in addition, £ +— Re Z (&) vanishes at £ = 0
and is very flat (and gets flatter when p decays faster) so that only a very weak decay
connected to the rate of decay of x can be obtained from this piece of information. This
accounts for the decay results of [12,13]. Here we shall use that the imaginary part of

the phase is non-degenerate so that the decay rate =% can be obtained from a stationary
phase analysis. A significant part of the analysis of the paper will be to perform a careful
analysis of the singularity of the dispersion relation at t = 1, £ = 0 and to justify that
it gives rise to the above singular term.

Finally, by well-known dispersive estimates on the density associated to free transport
(see e.g. [2]), we have

1
IO S Wollzy, ISOIe < Z 1ol 121,
’ (1.6)

1 1
IVSOI < 1V foliy,« IVSOles S 1V follpyrgse 1= 1.

The stated estimates on the regular and singular part of the density follow from bounds
on the corresponding kernels and the above dispersive bounds on S(¢, x). See Sect. 7.

2. Statement of the Theorem with General Assumptions on the Equilibrium

As a matter of fact, Theorem 1.1 is a special case of a more general result, allowing for
a wider class of homogeneous equilibria (not necessarily radial) that satisfy a series of
assumptions, which we now present.

SYMMETRY ASSUMPTIONS. For all monomials P of odd degree k < oy — 1, we require
that

/ P)u(v)dv =0. 2.1
R4
We shall also ask that for all p € N\ {0} such that2p < g — 1,
ac). Ve eR’, / & -0 u)dv=CLIEP". 2.2)
R4
Observe that (2.1) is in particular satisfied when p is even and (2.2) when u is radial;
however both can also be satisfied assuming (many) algebraic identities on integrals of

1 against polynomials. For most of the arguments, we shall only need (2.1) and we will
emphasize precisely where the additional assumption (2.2) is needed in the paper.
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STABILITY ASSUMPTIONS. Two stability assumptions are required.
Assumption (H1). We shall first ask for the stability condition: for every & # 0

inf
y>0,7eR

- f " s % Fo(Vop)(Es) ds| > 0, (2.3)
0

which is a weaker non-quantitative version of (1.5)

In order to tame the effect of the singularity at £ = 0, we shall require another
Penrose stability condition. To this end, let us introduce

+o0 in .
myE(z,n) = —/ e rHis e Do mmF (Vo) (ns)ds, z =y +it.
0
k,l

Forn € S9! thanks to (1.4), we observe that m g is holomorphic in Re z > —Ry.
Assumption (H2). For every € S?~!, there is only one zero of z — 1 — mgg(z, 1)
on Re z = 0 which is z = 0. Moreover it satisfies

d.mge0,m) =0, Zmgp0,7) #0, Vnesih (2.4)

This condition can be interpreted as a kind of Penrose stability condition for the so-called
kinetic Euler equation, which is a singular Vlasov equation arising in the quasineutral
limit of the Vlasov—Poisson system and in Brenier’s incompressible optimal transport
[5,6].

We are finally in position to state the main result of the paper.

Theorem 2.1. Assume that (1.2), (1.4), (2.1), (2.2), (HI) and (H2) are satisfied. Then
the conclusions of Theorem 1.1 hold.

Remark 2.1. The assumption (H2) can be replaced by

Assumption (H2’). For every n € S9! there is no zero of z > 1 — mgg(z,n) on
Re z = 0. The proof of Theorem 2.1 gets slightly simplified in that case. However we
have decided to focus on (H2) as (H2’) is never satisfied for radial equilibria.

Theorem 1.1 follows from Theorem 2.1 once that we have checked that the radial
equilibria u = F(Jv|?>/2) that we consider satisfy all required assumptions:

e we have already seen that (2.1) and (2.2) are satisfied when u is radial.

e As seen from [17, Proposition 2.1 and Remark 2.2], the assumption (H1) is verified
for radial equilibria in any dimension assuming that F’ < 0.

e Finally the assumption (H2) is also satisfied if F/ < 0. We postpone the proof of
this result to an appendix, see Sect. 8.

The rest of the paper is dedicated to the proof of Theorem 2.1.

3. Reduction to Kernel Estimates

We study the linear equation

t
p(t, x) =/ /d —[VXA;Ip](s,x —(t —5)v) - Vyu()dvuds +S(t,x), t=>0,
0 JR
(3.1
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with § being a given source term (see later, we can rewrite (1.3) under this form by
integrating along the characteristics of the free transport). In what follows, we extend
p and S by zero for t < 0 so that the Eq. (3.1) is satisfied for + € R. First, taking the
Fourier transform in space of (3.1) in space, we get
t e l.‘;:
Fe(p)(1.§) = / /R L& T )6, 8) - Vanv) dvds + Fe($)(1.8)
—00

e
_ f %fx(p)(&é)'fv(vvﬂ)@(f — $))ds + Fo(S)(t,8)

in which F;, F, denotes the Fourier transform in x, v, respectively. Next, for y > 0, we
take the Fourier transform in time of the above identity and note that the integral term
is a convolution in time, yielding

Fp) (T, §) = myp(y, 1, )F (€ p)(x,€) + Fe V' $)(x, 8),

where F denotes the Fourier transform in time and space and myp(y, 7, &) is the
corresponding Fourier symbol defined by

+00 X lf;:
myp(y. 7, 8) = f I F LT E) ds, (3.2)
0
This leads to
ot x) =S + (.eyf (f—lm”’—(’”")» 4 S=S+GH. S,  (33)
1 —myp(y,-)
where we have set
Gt,x) = / prrvittgive VP TE) (3.4)
RXR“’ 1 _mVP(V»Tv“;:)

The aim of the remaining will be to estimate the kernel G. Note that the definition of
the kernel G depends on y, but that in regions where the integrand is an holomorphic
function of z = y +it it actually does not depend on y since we can appropriately change
the integration contour, via the Cauchy formula, without changing G. In particular, by
taking the limit y — +oo, we get that G|;o = 0.

Precisely, in this paper, we shall prove:

Theorem 3.1. For t < 1, we have the estimate

1
IGOIL> S a1 16Ol St

Moreover, assuming (1.2), (1.4), (2.1), (2.2), (HI1), (H2), we can write fort > 1,

G(t,x) = GR(t,x) + G3 (1, x) + G5 (1, x) (3.5)
where
1
IGE O S g NG Ol S 50 V=1
and

|-

IGE I~ S —, IGLMN2 S Ye> L

[SEY

t
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In the decomposition (3.5), the oscillatory kernels ch (t, x) account for the residue of
the integral (3.4) at the poles z = Z4 (§) computed in Lemma 4.2, which is only present
for small £. The precise description of the kernels is given explicitly in Lemma 5.1, and
they can be seen as the kernel of the propagator of a dispersive PDE, see Proposition
5.4. The regular part of G (z, x) is given by

GR ’ :/ ix-E (/ 7t myp(z,§) d)d
0 R"e Rez=—(§|§|e 1 —myp(z,§) <) s

for some well-chosen small enough constant § > 0. See Sect. 5.

4. Properties of the Symbol my p

For (y,7,&) e RxR x R4, we define the symbol my p(y, t, &) as in (3.2). In addition,
we introduce

mys(y. 7. 8) = /O O i L (V) (Es) ds, @.1)

mrE(y, T ) = - fo e_(yﬂr)sé?'ZSkEI}—v(UkUIVUIL)(fS)dS- (4.2)
k,l

Remark 4.1. As already mentioned, m g g is the symbol associated to the Kinetic Euler
equation. It turns out that the symbol my p is the one associated to the so-called Viasov—
Benney equation (see e.g. [1]) which is another singular Vlasov equation that shows up
in the quasineutral limit of the Vlasov—Poisson system [16].

Let us define Qz, = A N Cg, where,

1
A= {(%LE)GR”M, 5 <lrl+Irl+l <2},

CR() = !(V» tvé) € Rd+29 5 7& 0’ Yy > _RO|$|} .

4.1. Estimates of myp. The following is an adaptation of Lemma 2.2 in [15]. We get
stronger properties due to the regularity assumption (1.4) and the symmetry assump-
tion (2.1).

Proposition 4.1. Assuming (1.2), (1.4) and (2.1), we have the following properties. For
every (v, 7,§) € Cr,,

1
myp(y,7,8) = ?MVB(% 7,§),

&

myp(y,7,6) = — —mge(y,1,§)) (4.3)

(y+ir)2(1

The symbols myp(y, t,&) andmg g (y, t, &) are for & # 0 holomorphic with respect to
the variable 7 =y +it in y > —Rg|&|. Moreover, they are positively homogeneous of
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degree zero and mypg, mgg € €* -2 (CRy/2)- Quantitatively, there exists C > 0 such
that

00l mys(y. 1. &) + 1920 mke(y. 7. 6)|

< W’ Via| +[B] <ag —2, Y(y,7,§) € Cry2, 4.4)

where we use 9, = 9, — i0r.

Remark 4.2. In the following, we shall often abuse notations and write the symbols as
functions of (y, 7, &) or (z, §) depending on what is most convenient.

Proof. Let us first observe that thanks to (1.4), my p, mgg and my p are well-defined
in Cg, and holomorphic in z for £ 7 0 and Re z > —Ry|£|. Let us prove (4.3). The first
relation is trivial. For the second one, by two successive integrations by parts in s, we
obtain

1 +00 ) ;
myp(y, 7, ) /O ervivs 15 3y (Fo(Vop)(€s)) ds

Yy +it €12
1 +00 _ . ZE
_ (y+it)s °5 42
- /0 e s 0 (RS E) ds
T

+m ER ds (Fo (Vo) (§5)) ls=0-

Since by (1.2),

0F (Fuy(Vop)(Es)) = — Zékélfv(vkvlvvl/«)(és)» é% 05 (Fu(Vyp)(€9)) ls=0 = —1,
k1

we finally get (4.3). The degree zero homogeneity property comes from a straightforward
change of variable. It remains to prove (4.4). We first give the proof for myp.
Since we have

+00
mvare6) = [T s ar
0
we get by using (1.4), that

+00
lmyp(y,t,6)| < C / |gle RoEI2 g1 < €, Y(y,1,8) € Crypa-
0

We now estimate the derivatives in Qg /2; let us first handle the case when |§| > 4—1‘.
Thanks to (1.4), we also have that

+00
9% my s (. 1. 8| S / (1)1 1¥181 g |~ Roléle/2 g
0
and therefore, for |§] > 4—{ and || + | 8| < ag, we obtain

1
0ol mys(y T OIS L (. 1.6) € Qropa. Il = 5. 4.5)
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Let us next consider the case |£| < }‘, in which we make use of the fact that |z]| is

positively bounded from below, recalling (y, 7, §) € A. Integrating by parts again, we
getforeveryn =2, ..., aq4,

"1 1
myp(r,T.6) =) PO+ SR T 6) (4.6)
k=2 "

where
P = () like - F (v V) @ : 65,

Ru(y, 7, 8) = /0 . e~ UMD (1, 8) dt,
ra(t, &) = (=D"i"E - F (v®"Vyu) (18) : €%,

with the definition

E-FOVu)(@) €% = Y kg & F )y - 000 Q).

JoJ1s-Jk
Note that & is a homogeneous polynomial of degree k. Thanks to (1.4), we have
(2, )] S 151"+ e ROl
More generally, we have for all |8] < n,
(0 a1, )] < (5117l Rolel,

Consequently, applying derivatives to the expansion (4.6) and using the above esti-
mates with n = oy, we get for |£] < }1 and (y,1,§) € Qgy/2 (which in particular

implies that |z| > }T),
+00
ofmyn(y T 1S 1 [ delggee el gy
0
+00
< 1+/ sl @at1=1B1—lal = Ros/2
~ 0
Thus, we get for || + |8] < ay,

1
ol myp(y. T OIS 1 (. 1.6) € Quopa, 6] < 7

This, together with (4.5), concludes the proof of the estimates for my g on Qg,/2; we
finally obtain (4.4) for my p by degree zero homogeneity.

Let us now prove the estimates for mg g on 2g,/2. The same argument as above
applies for || > 1/4. Thus it suffices to study |§] < 1/4. As before, we can integrate
by parts to get that

| 1
miE(z, &) =Y TAEO+ SR ) (4.7)

k=2
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where
o nkk 5 ®k+1 . @+
Q) = (DN i¥ g F (O V) @ 165,
REEGone = [ e an,
0
3

r,{(E(t, é:) — (—1)n+lin 3 f<v®n+2vvu) (tg) . §®n+2'

&2

In this case, we need to study more carefully the structure of this expansion since the
function & ® & /|£|? multiplied by a polynomial of £ is not necessarily a smooth function
of £. We first observe that if k is odd, we have

Q(§) =0, V&

Indeed, we can integrate by parts and use that

/ v®k,u(v) dv=20
R4

if k is odd thanks to the symmetry assumption (2.1). We thus have the expansion

[

mmz,s):Z 7 Q&) + S R (7. 7. ©). (4.8)

p= 1

Moreover, we have

§
Q) = (D" 5 F (5210, 0) 0) < 92
- (_ )p |€:|2 Z é]o E./’2p+| %};d vjl e vj2p+1 anO/J/(v) dv'
JOseees ]2p+]
Integrating by parts, we observe thatif ji, ..., j2p+1 are all different from jy, the integral

vanishes, therefore, after relabelling, we get that

Qop(€) = (— 1)1’“(2p+1>|§|2 > G En Ei /R Vi Uy k() dv

J0sJ2s J2p+1

= (—1)P+1(2p +1) Z éjz e 'Ej2p+l AAW Vjp oo - Uj2p+1/’L(v) dv

J2seesJ2pil

= (=) @2p+1) / & - v)*Pu(v) dv.
Rd

We have thus obtained that Q;,, is a polynomial in £ and hence a smooth function of
&. We can then get from the expansion (4.8) and similar estimates as for my p that the
derivatives with respect to z and & of order less than oy — 2 are uniformly bounded for
|&] < 1/4. Finally, the estimate (4.4) follows by using the degree zero homogeneity.

0
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In the proof of Proposition 4.1, we have obtained a refined asymptotic expansion of
mk g, for which we have relied on the symmetry assumption (2.1). We gather this very

useful statement in the following lemma.

Lemma 4.1. Assuming (1.2), (1.4) and (2.1), we have the following expansion of mg g

foralll < %2 ):

!
1 1
miE§) = —55QpE) + 7 Rubi (v, 7. 8),
p=1

Q&) = (=) 2p + DES?P / ) v®?P 11 (v) dv
R
= (=D @2p+1) f (& - v)* () dv,
Rd

+00
REE(z,6) = /0 e~ HOLKE (1 &) dr, rKE (1, €)

_ (_1)1+1& ~7-"(v®21+zvvu) (18) : 93

where the remainder satisfies uniformly for (v, ©,§) € Cg,, the estimate
020L REE (2. 6) < 161 PL o418 < 21+ 1.
In particular, we get

0u6) = -3¢ & H,= [ vevuw .
R
Under the additional symmetry assumption (2.2), we have
Q2p(§) = (=D 2p+DIEPPPC]
where
ch = / v (v) dv.
R4

In particular, we have

1
Cu=C)= i A;{d [v]? w(v) dv.

As a consequence of Proposition 4.1, we obtain estimates for my p.

4.9)

(4.10)

@.11)

4.12)

(4.13)

Corollary 4.1. The symbol my p(y, 7, &) for & # 0 is holomorphic with respect to the
variable 7 = y +it inRe z > —Ry|&|. Moreover, it is positively homogeneous of degree

—2andmyp € €% % Ro/2)- Quantitatively, there exists C > 0 such that

C
1099 myp(y, 1.8)) < ——————,
7% (y, 7, &)[2+el+Al

Vie| + 18|l <aq =2, Y(y,7,&) € Cryo-

(4.14)
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Proof. The factthatmy p is positively homogeneous of degree —2 follows from a change
of variable in the definition (3.2). To get (4.14), it thus suffices to prove that my p and
its derivatives are uniformly bounded in g,/>. This follows from (4.3) and (4.4) in
Proposition 4.1 by using the relation

1
mVP(Vﬂ T, E) = @mVB(% T, E)

for |&] > 1/4 and

mVP(yv T,E) = _mKE(J/vTvE))

_(y+it)2(l
for|§| < 1/4. O

4.2. Zeroes of 1 — myp. In this section we give a sharp description of the zeros of
1 —myp. As we shall see, they are localized in the region |y | < &3]&|, |t £ 1| < &3]&]
and |&| < g3 for some small 3. Using the implicit function theorem, we are able to
describe them by smooth curves.

Proposition 4.2. Assuming that (1.2), (1.4) and (2.1) hold, we have the following prop-
erties:

(i) There exists M > O such that for every (y,t,&) € Cry2 and |(y, 7, &)| = M, we
have

1
1 —myp(y,7,86) = >
(i1) Assuming (H1), for every § > 0, there exists cs > 0 and Rs € (0, Ry/2] such that
forevery (v, T, &) € Cg, with || > 8, we have

[ —myp(y,t,8)| > cs.

(iii) Assuming (H2), there exists Ry € (0, Ro/2], &1 > 0 and C¢; > 0, cg; > 0 such that
forevery (y,t,&) € Cg, and |y| < €1|€], |(, §)| < &1, we have

e T8 | e 124l = mgp(z£)] = oy min(L, [2P),
l—mVP(yv T’E)

z =&z (4.15)
(iv) There exists €2 € (0, min(Ry/2,¢e1)], Ao > 1, such that for every ¢ € (0, &3],
for every A > Ao and for every (y,t,&) € Cg,, with |§| < &, |y| < €l&|, and
It =11 = Aclgl, L = [t = e,
there holds
I1—myp(y.7.6)| = Aceils]/4. (4.16)

(v) Assuming (HI1), there exists 3 > 0, &3 € (0, min(Ry/2, €2)] such that for every
& # 0, the zeros of 1 —myp(y, t,§) with [§] < &3, |y| < &3l§], |I7] — 1| < &3/§]
are given by two €' curves

Zi(r,w) =i +rIL(r,w) +irTe(r, )

where € = rw, o € S971, Ty <0, T+(0,w) =0, 3,T+(0, w) =0, T+.(r,w) < 0
forr # 0 and T+ is real with T.(0, w) = 0, 9,7L(0, w) # O.
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Proof. Let us start with i). To this end, we can apply Corollary 4.1. This entails that

C
myp(y,t,8)| < I Y(y,1,&) € Cry2

T, &)

and hence

1
1 —myp(y,7,8)| = 3
if |(y, 7, &)| is sufficiently large.
Letus prove ii). By using i), the estimate is true if we have in addition |(y, 7, §)| > M,
it thus suffices to consider the case that |£] > § and |(y, 7, &)| < M. By (H1) and by
compactness, we get that

[I —myp(y,T,8)| = 2c;5

for some cs > 0if y > 0. By continuity, the inequality without the factor 2 remains true
for y = —«|&| for @ < ¢ with ¢ > 0 small enough.
To prove iii), we observe that by Proposition 4.1, we can write
myp 1 1 —mgEg 1 —mgEg

BT —— - . (4.17)
l—myp 121+Zl2(1—mKE) 22+1—mgEg

By degree zero homogeneity of mg g, we canset 2 = z/|&|,n = &/|&| , withZ = y +iT
and |7| < &1, |T| < &1/|€|. This yields

my p 1l —mgg(Z,n)
— (2,6 = s .
1 —myp £z + 1 —mgEg(Z,n)

By using (4.9), we have that uniformly for |y| < Rp/2 and n € sa-1,

Imge(z,n)] =0.

lim
|T|—+00

Therefore, for |7| > M sufficiently large

1 —mge@ | =

N =

and hence for €1 sufficiently small, we get

B 5 - 1
EP22 + 1 —mgp, TI)‘ = ‘Z2+ 1 —mgEg(Z, ?7)‘ > T

As a consequence, we conclude that ‘lmi
—myp

In a similar way, forevery ¢ > 0if & < |T| < M, 1 —mgpg(it, n) does not vanish
thanks to (H2). By compactness and continuity this remains true uniformly for y suffi-
ciently small and € SY~!. In this regime, we thus also get ||§ 222+ 1 —mgrG, 17)|
is uniformly strictly positive and also that 12%\’; — is bounded.

Consequently there only remains to study the vicinity of Z = 0. From (H2), we have
that

is bounded.

1 —mgpG,n) =ami+0F), (4.18)
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where by compactness, infge-1 |az(n)| > ¢; > 0 for some ¢y > 0. In particular, we find
that

51222 + 1 —mgp((Z,0) = (a2(n) — €D+ 0(F)

and hence that for ¢; and hence |£| sufficiently small,
222 = Cs =2
§P2 + 1 —mxp G| = SIE

This also yields that 1’_"% is uniformly bounded thanks to (4.17)—(4.18).
Next, we prove iv). We use again that

L=myp(y.7.6) = y+int e (L =mgp(r,0.6).  (@419)

1
(y +it)? ((
This yields, as |r|2 < 1/8%,

2
L=myp(r o)l = 2 | +i0)?+ (= mke(y. 7. ).

We shall need the behavior of mgg(y, 7, &) close to § = 0. By using the expansion
(4.9) for I = 1, we obtain that in this regime, for some C > 0,

C 2
Imge(y.t.8)| = =181,
€]
therefore, we obtain that for &; sufficiently small

(v 4102+ (L= mgp(y, 7. 9)|
> |y +i(c = Dlly +i(@+ Dl = Imxs(r, 7, 6)]

C 2 C
>t —1|r+1] - S[€* = <§A——2>8|5|. (4.20)
€] €]

We thus find (4.16) for g5 sufficiently small and A > A sufficiently large.
We finally prove v). We use again (4.19), we have to study the zeros of

8z, 8) =22 +1 —mgp(y, 1, ).

Writing z = +i +r3, § = ro, with |3| small, we get by using Lemma 4.1 and the
expansion (4.9) that

1

&)= R2irs+rit - —————
8.6 = H2irs +1°’ = s

(3Hua) cwrt+ r4m2(:|:i +r3, 1, a))) ,
4.21)

where m> is a smooth function of its arguments. We can thus set

8(z,8) =rf+G. 1 ),
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where

FiGorw) = £2i3 +r3% — (3Hﬁw~w+r%nﬂii+r@r¢@).

;
(Fi +73)?

(4.22)
It thus suffices to study the zeros of fi for |3| sufficiently small, » > O close to zero.
We would like to use the implicit function theorem, nevertheless, since r = 0 is on the
boundary of the domain of definition of f, we shall first look for a smooth extension of
S+ for small negative r. We can use again the expansion (4.9) in Lemma 4.1 to observe

that 2m, can be expanded as a polynomial in 7 with even powers plus a remainder of
order O(r?"). Consequently, we choose an extension by setting

ma (3,7, ©) = rimy(Fi +|rl3, Ir], ®),

then m is a €' function of its arguments for |3] < Ro/2, |r| < 1/2, w € S¢~!, which
moreover satisfies

mx(3,0,0) = 09,m+(3,0, w) =0. (4.23)
Let us set

FiG3,r,w) = :bZi3+r32 — (3Hua)-a)+mi(3,r, a)))

r
(£i +73)?

and observe that F isa%6’!, C valued function of its arguments for |3| < Ro/2,|r| < 1/2,
® € S9! that coincides with fx if r > 0. Therefore it suffices to study the zeros of F.
For every w € s-1, using (4.23), F+ (0,0, ®) = 0 and

D;F+(0,0, ) = £2i

is invertible (as a linear map from R? to R?). Therefore by the implicit function theorem,
for every w € S9=1 there exists a vicinity of (0, 0, ) such that the zeros of Fy are
given by a ¢! curve. By compactness, we can then find &3 such that for every |r| < &3,
I3 < &3, andw € S9! the zeros of Fy (-, r, ) are described by a curve 3 = Wi (r, w)
such that W (0, w) = 0. Since by using again (4.23), we have

0, F+(0,r,0) =3H,0 - # 0,
and we also obtain that
0, W10, w) = :I:i%HMa) -.
This yields v). Note that
0, I'+(0,w) =0, 0,710, w) = :E%Hua) cw.

The fact that we necessarily have "1 (r, w) < 0 for r > 0 is a consequence of (H1). O

In the above proof, we have used the implicit function theorem in polar coordinates
in order to describe the zeros of z2 + 1 — mg g in the region |y| < &3|&|, |t £ 1| < &3]/§]
and |£| < e3. Nevertheless, it will be useful to get that Z4 (r, ) are actually smooth
functions of & under the additional symmetry assumption (2.2).
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Lemma 4.2. Assuming (1.2), (1.4), (2.1), (2.2) and (H1), there exists €3 > 0 such that
forevery & # 0, the zeros of 1 —my p or equivalently 0fz2 + 1 —mgp with|y| < e3l§|,
|T + 1| < e3]&] and |&| < 3 are given by two smooth curves of class €%** under the
form

Zi(§) = +i +ilEPDL(8)

where

3
®+(0) = £-Cy €R, Im &2 >0.

Proof. By using the notations of the proof of Proposition 4.2 v), since W4 is ¢! and
Wi (0, w) = 0, we can set Wi (r, w) = r Wi (r, w) and thanks to (4.22), we see that for
r # 0, Wa(r, w) is a zero of f1 (3, r, w) where

fi(g, r,w) = £2i3+ r252 - 3Hw- o+ rima(+i + r25, r, a))) .

(Fi +r23)? (

Moreover, thanks to (2.2), we have that
Hyw-0=Cy

is independent of @ and that by using Lemma 4.1 and in particular the expansion (4.9)

and (4.13), we infer that r*m, (&i + 23, r, ) has an expansion in terms of polynomials

of 72 of valuation larger than two plus a high order remainder of the form (4.11). We

can therefore write

r2ma (i + 123, 7, @) = ma(3, £)

where m 4 is a smooth function of its arguments such that m+ (3,0) = 0, D;m+(3,0) =
0. We can thus write fi as a smooth function of &:

frG, &) = £2i3+ [£°5 — (3C, +m+(3,6)).

(i +1£1%3)?
Moreover, we observe that

.3 .3
fr&E3iCu.0)=0. D fe(EZiCy.0) = £2i

Consequently, from the implicit function theorem we find that W (r, w) is a smooth
function of £ that we still denote by W4 (&). This yields

- - 3
Zi(r,w) = [EPWe(E), W (0) = £5iCy,

which concludes the proof of the lemma. O
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5. Kernel Estimates

5.1. Short time estimates. We start with short time estimates, which require little
assumption on K.

Proposition 5.1. Assuming (1.4), there exists C > 0 such that for every t € (0, 1],
1
GOl = Ct, 1GO)]Le < Cld_*l.

Proof. We observe that G(¢, x) solves the integral equation

G=K+Kx%,G

K(t,x)=e""F N myp(y, ©. )1, %) = [payg €™ " Smyp(y, v, §) drdé

= _,d;—uu« (%) 1t20~

Therefore, we have the estimate
KOl St

Moreover, as already observed, G vanishes in the past, therefore
t
G(t,x) = K(t,x) +/ K({t—s,) % G(s,-)ds, Vt=>0.
0
This yields

t
GO L1 5”/0 (&t =Gl ds

and hence from the Gronwall inequality, we get that
1GOOI St V<1
We also obtain that

1 5 1 t
IGOlLe S pry +/0 WHG(S)”LI dS+[ (t —IG(s)| L~ ds.
2

This yields for t < 1 that y(r) = r/7||G(1)|| .~ satisfies

t

| 1
v S 1+t [F s s y0) [0 =) ds
o (t—y) [0,7] 5 §

Since
1

t
2 1 2 1
td/ ﬁdé‘:lz\/\ ﬁds:Ctz
0o (=9 o (I—w4=

t 1 1
td_lﬁ (t—s)scF1 ds gzd—lzzﬁ (1 —u)du <12,
2 2

and

we get that for every 7 > 0
sup y(1) <1+ T2+ T2 sup y(1).
[0,7] [0,7]

This yields the result for# € (0, T'], T sufficiently small. We can then iterate the argument
finitely many times in a classical way to get the result for # € (0, 1]. This ends the proof.
0
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5.2. Large time estimates. We shall now focus on estimates for ¢+ > 1. First, observe
that by setting z = y +it, we can write (3.4) as

1 . myp(z,§)
_ 1 ix-& Zl‘L
G(”)—i/u«de (/Rez_ye T=myp@.8) dz>d§'

Let us pick § > 0 to be fixed later. We split G as a high frequency and a low frequency
part:

G@t,x) = GH(t,x)+GE(1, x) (5.1)
where
et e 0 ()
G (t,x)—i/Rde <Rez:ye Tp——— 1—yx 5 dz )d&, (5.2)
=5 [ ([ e (5) )
G (t,x)—l_ Rde Rez:ye l—mVP(Z,E)X 5 dz ) d&. (5.3)

where x € CSO(R") is a nonnegative radial function equal to one for |§] < 1 and
supported in the ball of radius 2. Note that G and G depends on 8. The choice of §
will be carefully performed in order to estimate G*.

5.2.1. High frequency estimates We shall first estimate the high frequency contribution
GH.

Proposition 5.2. Assuming (1.2), (1.4), (2.1) and (HI), for every § > 0, there exist
C > 0and a > 0 such that

IGH )|l < Ce ™, IGH@t)l|lpe < Ce™, V¥t > 1.

Proof. Let us first recall that (I — x) is supported in the zone |§] > § > 0 so that
the argument is very similar to the one used in the torus case in [14] for example. For
& # 0, thanks to the Penrose stability condition (H1) and Corollary 4.1, the function
myp(-,€)/(1 —myp(-, &)) is an holomorphic function in {Rez > 0}. Moreover, by
using ii) of Proposition 4.2, for || > §, it extends as an holomorphic function in
{Rez > —Rs|&|}, where Rs is given by ii) of Proposition 4.2, and we have a positive
uniform estimate from below of |1 — my p|. We can then use the Cauchy formula to get
that for |&] > 6,

/ 4 myp(z,§) <§) _f o myp(z,§) (5)
e ———x | = ) dz = e — x\ <) dz
Rezmy 1—myp(z,6)" \8 Re z=—Rslgl2 1 —myp(z,§)" 8

Indeed, we can apply Corollary (4.1) to get that uniformly for || > § and Rez >
—Rs1§1/2,

[myp(z,8)| S (5.4)

1§12+ 72

so that there is no contribution from infinity. Consequently, we have to estimate

o _ ix-E —Rs|E|t/2 itt myp(—Rsl&l/2,7,§) (_ (é))
6= [t e s (17 (5) ) axte
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By using again (5.4) and ii) of Proposition 4.2, we easily get that

1 1 =
GHans [ MR [ arde g [ ag g e
HE) R €17+ 12 BED) t3

for some & > 0. This yields
IGH (@)L S e, Ve = 1.

For the L' norm, by integrating by parts in £ and applying Corollary 4.1, we obtain in
a similar way that for all multi-indices |B| < d + 1,

IXPGH (1, x) < A+1Bhe @ v > 1.

Therefore, we obtain that

1 _
|GH(Z’X)| = m(l +td+l)€_m, Ve >1

and hence that
IGH @)1 S e, Ve =>1,
withe =@/2. O

5.2.2. Low frequency estimates We shall now estimate the low frequency part G,

Lemma 5.1. Assuming (1.2), (1.4), (2.1), (H1), (H2), for § > 0 small enough, we have
the following decomposition of G*:

GL(t,x) =G (t,x) + G (1, x) + G5 (1, x) (5.5)

where,

G'(t,x)= [ &t (/ a_Mve§) d> <§)d, § =62,
t:0 [Rde Rez:—g\S\e 1 —myp(z,§) °) X\ :

Gi(t,x) = 27-[/ X EEE g () y <§) d
R4 5

Z1(8)?
2Z4(8) — 0mgp(Z+(§),6)’

where the Z 1 (&) are defined as in Lemma 4.2.

ar(§) =

Proof. We now deal with the region |£| < § for § > 0 to be chosen sufficiently small.
For £ # 0, we would like again to use the Cauchy formula to change the integration

contour for
1 )
pelf eomeeo ey,
i JRez=y 1—myp(z,6)" \

Again for y > 0 the function 1 — myp(z, &) does not vanish thanks to (H1) so that
we have to carefully study what happens for negative y with |y | small. We observe that
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thanks to i) and iii) of Proposition 4.2, for |(y, t,&)| < 2¢e; or |(y, 7,&)| > 1/(2¢e1)
(reducing ¢ if necessary), the function 1 — my p does not vanish in Cg, .
‘We shall now choose

0<s<-—2
~ 10Ag

(5.6)

where €3 and A are given by Proposition 4.2 iv) and v). As a consequence, for |§| < 4§,
ly| < 6l&l,if |[t| > 1/e1 or |t| < &1, 1 —my p does not vanish. Then, since § < &3, we
get that for |£] < 6, |y| < 4]&| and |t £ 1| < &3|€], the function 1 — my p has for each
& exactly two zeros described by v) of Proposition 4.2. Moreover, since I'+ (0, w) = 0,
9;'+(0, w) = 0, we have that for [t 1| < §|&], the zeros in —§|§| < y < Oare actually
localized in — C§|£|? < —C|€]® < y < 0 for some C > 0. Therefore, assuming that
§ is sufficiently small, we get in particular that on the line Rez = y = —53 |&], there
is no zero of 1 — myp for [t £ 1] < §|&|, |€] < §. Next, using iv) of Proposition 4.2
since § < &7, we get that for |y| < 8%|E|, [t £ 1] >6|&l,e1 <|t| <1/erand €] <6,
1 — my p does not vanish.

To summarize, we have thus obtained that for each & # 0, || < 8, there are exactly
two zeros of (I — myp) in the region |y| < §|&| and they are described by v) of
Proposition 4.2. Moreover, they are localized in — C8|&|> <y < Oand |t + 1| < e3]£|.
We can thus use the residue formula to write that for & % 0 (note that there is again no
contribution from infinity since the estimate (5.4) is still valid for large 7),

1 myp(z, §) §
=2 a _MVPReS) L (5) g
¢ i/l;ez:—S%Pg‘e 1 —myp(z, §)X<5> :

+27 % < )Zezi(r @)t (Resi(~, 5))
L=myp 1Zsr.0)

where r = |€|, @ = £/|£|. Computing the residue, we obtain

1
27 (Res ( E)) =27 .
Z | Z(r) ; dmyp(Z(§),8)

To get regularity in & close to § = 0, it is convenient to express the residue in terms of
mg . Thanks to (4.3), we have

1
myp =——(—mgg)
z
and hence
2 1
Omyp = Z—3(1 —mgEg)+ Z—zameE.
Since (1 —mgg) = —z% at z = Z+, we can also write
Z4(r, w)?
27 Z (Res ( é)) =2y +(r, )
|Zs(r,0) T 2Z+(r, w) — 0:mkp(Z+(r, ), §)

=27 ) ax(®),
+
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with a4 (§) being defined as in the statement of the lemma. Therefore, we get for each

§#0,

_! a_mve@ &) (E Zo(6)t <§>
=3 /Re st Tmyp©)” (8) d“zﬂ;e =&\ 5

giving the decomposition stated in the lemma, upon integrating in £ € R? and setting

5 = 67 for notational convenience. The last residual term corresponds to the singular
kernel G2 (¢, x), while the first integral term gives the regular part of the kernel G” (z, x).
0

5.2.3. Low frequency estimates: regular part The next step is to estimate G” and Gi
in (5.5). We start with G”.

Proposition 5.3 (Study of G"). Assuming (1.2), (1.4), (2.1) and (H2), § can be chosen
small enough so that uniformly fort > 1

1
16"~ S = 167 S

1
t

Proof. Let us write that

1 . S ive Mve(z,§) §
Gt x) = + ixg / Slglt give VPR S) g ) (—) d
t:0 i /]Rde ( Re z=—t§|§|e ‘ L —myp(z,§) )7 8 :

/ eix'gfgx <§> d&.
]Rd 8

Thanks to Proposition 4.1, we observe that

myp(§ 1 1—mgpz¥§) __ 1-mkez8)
1—myp(z, &) 21+ 51 —mgez,§) 2+ 1 —mgg(z,§)
22 22 1
R TPy YT
— 1+ Z2 + Z2 MKE
241 @+ (-1
1 22 MKE

- + .
2Z2+1 22+1(2+1—mgE)

We can thus write

I; ! / a1 dz +J
= - e Z )
: [ JRe z=—5jg| 1+2? ¢

1 22 MKE
Je = —,/ e (z,€)dz.
d I JRe z=—3|¢| 22+1 (22+1 — mMKE)

Next, we observe that from the Cauchy formula

1 1
/ €Zl—2 dZ — / eZt de
Re z=—4|¢| l+z Re z=-T 1+z
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for any I' > §|£| and thus, sending T" to +00, we get that

1
/ eZ’—z dz =0.
Re z=—5|¢| l+z

‘We have thus obtained that

G'(t.x) = /R e e x (%) dt,

1 / 7? MKE
Je = — e (z,&)dz. 5.7)
§ I JRe z=—5|¢| 22+1 (Zz+1 — MKE)

We shall use this more convenient form to prove the estimates. We shall further split the
Je term into

2
-3 i Z MEKE
= f e e (z.§)dr
‘ It|<e Z+1(2+1 —mgE)
2
5 i Z m
+f Ol it - . KE (. 8)dr
ltl=er, [lr]-1]=1/2 22+1(z2+ 1 —mkEg)
2
5 i Z m
+/ e—8|§|tel1.'t 5 5 KE (Z,é)d‘[
Itl=e1, llr]—-11<3 22+ 1(z22+1 —mgE)

= Je 1+ Jep + Je 3, (5.8)

where we recall that &1 is defined in iii) of Proposition 4.2 and we decompose accordingly
G" into

G =G +Gy+Gh. (5.9)
In the following three lemmas, we shall provide estimates of Gf ,i=1,2, 3.
Let us start with GS, which is the easiest one.

Lemma 5.2. Under the assumptions of Proposition 5.3, § can be chosen small enough
so that uniformly fort > 1,

1
Gl S 1G5l <~

~ td+1’ ~ t

Proof. By using the same factorization as in (4.20), we observe that uniformly for
|&] <4, ||t| — 1] = 1/2 and y = —§|&|, we can take § small enough so that

2%+ 1 —mgp(=8§], 7, 6)| = kolz® +1] > 0, (5.10)
where k( depends only on § and 1. Moreover, still in the same range of parameters,
1241 =|z+illz—i| > 1+7%, 2> S €7+ 12 (5.11)

Therefore, we get that

- 2 2
|G§<t,x>|§/ oo [ BT (el T 6 drde

|m
I£1< R 1+][t]*
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5/ e—glflf/ me(=51&], 7. &)| deds.
|§1<6 R

We then set T = |£|t’ and use the degree zero homogeneity of mg g to get

Gh, x>|</ *5'5"|s|/ ’W@( 5.0 g)‘dr/ds
HED "]

From Proposition 4.1, we have that ‘mKE (—S, 7/, é_l) ‘ is uniformly bounded for |t/| <

2, while we get from Lemma 4.1

.k 1
MgKE <_87 Tlv |$_| ,S ('L'/)27 |T/| 2 25

and hence

<& 1
s (5 5)| s T 12

This yields

G5 (1, )] </ e oIl |f Ty dTE
BE) )

and hence by finally setting £ = r&, we obtain

G| S -

There remains to estimate the L' norm. To this end, we use an homogeneous
Littlewood—Paley decomposition. We write

g=0
o 2 )
Jeo(1) = / e 0l it 2Z . MKE (=5IE|. 7. £) d.
|t|=e1, ||T|=1]>1/2 z2+1(z2+1—mgpE)
7= —8|E| +iT, (5.13)

where ¢ is supported in the annulus 1/4 < |&| < 4. Changing & for £/29, we get that

G ,(t,x) =291G5 (T, X),

G5 ,(T, X) = / e X5 Jen 4 (T (24—5> ¢ (&) de, T =29t X =29x,
’ R4 )

= P MK E g .
Jen.q(T) = e P et — 5 (—629%, 7, 2%¢) dx,
[T|>el, [|T]=1]>1/2 722+ 1(z°+1—mgEg)

(5.14)
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where now the integral in € is supported on the annulus 1/4 < || < 4. We then observe
that since 29 < 1, we have that

1Gg (T, ) S D 108 e 2.gllze.

lor| <d+1
By using again (5.10), (5.11) and Proposition 4.1, we get that for || < d + 1, and
uniformly for 1/4 < |&] < 4,

10 5. 2.4(T)] S / eI N 00Ky (5291, 7, 278)) d,
[lr|=11=1/2 k<|a|

where hy is positively homogeneous of degree —k. Moreover, by using the expansion
of mg g provided by Lemma 4.1, we also know that for bounded & and |7| > 1/2,

1
|Z2+1] ~ 1+12°

lhi(z, &) <
Therefore, by setting T = 29|& |7/, we obtain that

o deaq () 520 [ TS (=5, 7', 2y de
117 |—11z1/2 k=l €]

< 2qe—3T/2/ —dr 27T,
~ R1+@)2° ™

Consequently we obtain from (5.14) that

- 24
r < nq,—029t)2 « =
1G,lLr S 2% S T¥Qint

This finally yields for z > 1
. . - g1 L1 21
IG5l =D IG, Ol S Y 27+ Y oS-+ 7S
q=0 20<1/t 1/1<24<0
This ends the proof. 0O

Let us turn to G',.

Lemma 5.3. Under the assumptions of Proposition 5.3, we have uniformly fort > 1

1
Gl < Pk Gl < 3
Proof. In this regime of low frequencies for |£] < §, [t| < ej,and y = —S|§|, we have
that
% mKE mg (=8|, 7, §)

(—38|&l, f,é)' < lzf?
E

22+1 22+1 —mg 241 —mgp(=dlg], 7, &) |
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By setting again T = |&|7’, and by using that m g g is homogeneous of degree zero, we
obtain that

5 mye(—8, 7', &)
G (1,01 S / el g / 2/ e |ac
HE |7/ <e1/18] E12)2+ 1 —mkp(=8,7, 1)
where 7/ = —8 + it’. By using Proposition 4.2 iii), in particular (4.15), we know that
"2 §
EP@E) +1 —mge(=3, 7, |§|)

is bounded from below by a positive constant since |z’| > $ and hence, obtain that

|G’ (1, %) </ e Okl g )3 12|
|&]<6 [t/|<e1/|€|

As in (5.12), we have
-, £ 1
_8’ s T < - . 0
‘m“"( ‘ |s|)'” T+ (7))

This yields in particular that |z/|2 ‘mKE(—S, T/, %)‘ is uniformly bounded for 7’ € R.

KE( 5 ‘L’ é|)‘d‘[/

Therefore, we obtain that

< 1
Gieois [ e [ aras s o
) lv/|<e1/I8] 4

To estimate the L' norm, we argue as in the proof of Lemma 5.2, writing

Gi =Y Gi, G, (t.x)=21G] (T.X),
q=0

. q
(T X) = / € g (D (—255) ¢ () ds. T =21 X =2x,
R

2
Je1.4(T) :f —5|5|Te ZqT Z_
|t|<er 2+l

MKE

x—— R (_§20|¢|,7,298) d, (5.15)
(2 +1—mgpg)

where the integral in & is supported on the annulus 1/4 < |£] < 4. We use again that
since 2¢ < 1, we have the estimate

1G1g (T, Mt S Y 108 Jer gl

lor|<d+1

From the same estimates as above, we obtain that for 1/4 < || < 4,

% deng NS [ 2P TS (<5211, 7 28

<
Tl k=la|
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where Ay is positively homogeneous of degree —k. Arguing exactly as in the proof of
Lemma 5.2, we get

|0 Je 2,4 (T)| < 2% / TS (1 () (=3, 7 E)ae 524 TR,

T/ <e1/(2€]) k<ol g

We can then conclude as in the proof of the previous lemma by summing over the dyadic
blocks. The proof is complete. O

It remains to estimate Gg.

Lemma 5.4. Under the assumptions of Proposition 5.3, § can be chosen small enough
so that uniformly for t > 1

1

1
1G5l S —pe IG5l £ -

Proof. We are now integrating on ||t| — 1| < 1/2. We shall decompose J¢ 3 from (5.8)
as

Jez=Jes o+ Z Je 3k

I<k<N
where
2
—Slglt jivr 2 MKE
Je 3,0 :/ pOIElt yitt . . . E)dr
llz|—1|<es|é] 2?2+ 1(z2+1 —mgE)
andfor1 <k <N,
2
5 i Z m
J§,3,k :/ e—SIEltetrt - . KE (. £)dr,
2Kez|E|<||T|—1]<2%e3)&| 22+1(2+1 —mgE)

where &3 is given by v) of Proposition 4.2, and N is such that 2V *leslg] < 1

Let us first estimate Jg 3,0. We shall focus on the estimates close to T = 1 (and call
the corresponding term Jg“ 3.0)» the ones close to T = —1 can be obtained from the same
arguments. We set

(S]]

2
-5 i Z MKE 5 .
Jr =/ o0l it . £)dr, 7= —BlE|+ir.
R T 2+1 (2 +1—mgp)

We first set T = 1 + |& |7/ so that

4 G+IE)? meG+1E]3,8)
JT — [&13¢ it dc’
exo =kl 4 EPR ELAG 5. @)

where we have set 3 = (z —i)/|§| = —8 + i1’ and w = &/|£| so that 7/ = Im 3 and f,
is defined in (4.22). Asin (4.21), we can write

’

2

r .
m(3Hua} cw+rtmyGi+r3, ), =l

mge(+1£13,8) =

therefore, we have

Img G+ 185, 6)] S €%
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Moreover, since

f+G,r,w) =2i3+ rgz — GBH,w - +r2m2(i +r3,r,w)),

’
(i +r3)?

we observe that for Re 3 = —§ = —§% and r < § (see again the proof of Lemma 5.1),
we have for § small enough that

|f+Gor o) 2 1.

Here and in what follows, the estimates may depend on the constants § and €3, which are
sufficiently small, but fixed, by Proposition 4.2 and Lemma 5.1 (reminding the choice
(5.6)). By using that, taking § sufficiently small if necessary,

2ilE]5+ 161°5°) 2 151,
this yields,

T30l S gl
The same arguments apply for Je30- We thus have

U 3,00 S 16le D81 (5.16)

Let us now estimate Jg 3 . Thanks to iv) of Proposition 4.2, we have
2+ 1 —mgp| 2 2 ssl€]. (5.17)
As above, the estimate
Imke| S &,

still holds, and since % > [|7] — 1] > 2Fe3]&], we also have

1 < 1 ’
|22 +1] 7~ 2Kes|E|

therefore, we obtain that

e 2 5 1
eaul S e M Sl S e KV gl . (5.18)

By combining, (5.16) and (5.18), we thus obtain

5 1 _ 5
e a(t, 0] S e gLy o < e Elg).
k>0

From the definition of G} (see (5.9), (5.8)), we finally obtain

,
|G3(t’ x)| 5 (Al
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To estimate the L' norm, we argue again as in the proof of Lemma 5.2, writing

§=D Ghg G0 =21G5 (T, X),
q=0

ggq(r, X) = / eiX~5JS’3(T)X <2q_é> ¢ (&) deE, T =21t, X =21x,
' R4 b)

Jeaq(T) = / T MKE (s o, 20g)
o llel—=11<1/2 2+1 2 +1—mgE)

(5.19)

where the integral in £ is in the annulus 1/4 < |&| < 4. To estimate Jg 3 ,(T'), we focus
again on the vicinity of 1 and call the corresponding contribution Jg’ 3q (T). We now use
the same decomposition as before for the estimate of the L°° norm, which yields

FagM = Y Jis04(D
0<k<N

0<k<N

N . 2
/ L
2k+4 | |e3 <|t—1|<es|g[2k+1+a =+l
MKE ( 5
Xx——— (=§29|¢|, 7,24 ) dr.

(z22+1 —mgEg) d d
Let us estimate ||8§‘J§:3’q(T)||Loo for |o| <d + 1.

By (4.21), we have that for 1/4 < |&] < 4, 2K*9|g|e3 < |t — 1| < &3|€|2K*1*9 or

|t — 1] < 322 for k = 0,

~ 229 -
mgp(—82918|, 1,298) = ——————— (3H,& - & + |E* ma(—829|&|, 7, 29€)
kp(=821[6l,.216) = s (3HuE -+ el ma(-5271¢). 7. 216))
and hence for |t — 1| < 1/2 and |&| < §, we get

‘85 <%(—524|s|, z. 2‘?5))‘ sy

£=<[Bl+1

22q+q(l— 1)

g (—5211¢1, 7. 29¢)

)

where we have set
g(=8271§1, 7, 276) = (2> + 1 — mxp)(—82§], 7, 29).
Consequently, by using (5.17) which gives for |£| > 1/4
|g(—=828], 7, 298)| 2 27,

we obtain that

g (MKE, & 24
) _5291E], 7, 28) )| < =
’g( . ( &1, T 5))’N2k

In a similar way, we have uniformly in ¢,

3 (=8291&| +i1)? 1
S\ (=829 +it)2 +1

~ 2k+q "
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Therefore, we obtain that for |o| < d + 1.

2k+q s 24 r
105 JZ 5 4 (Tl S e 0T/2 e 5/2.

The same estimate holds for Je 3, q(T). By summing over k > 0, we get that

1G5, (Dl 1 < 2973772

and we finally obtain the claimed estimate of ||G5(¢)|| 1 by summing over ¢ < 0 as in
the proof of Lemma 5.2. O

5.3. End of the proof of Proposition 5.3. It suffices to recall the expression (5.9) and to
gather the estimates of Lemma 5.3, Lemma 5.2 and Lemma 5.4 (taking § small enough).
O

5.3.1. Low frequency estimates: singular part We shall now study Gi defined in (5.5),
which corresponds to the dispersive part.

Proposition 5.4. Assuming (1.2), (1.4), (2.1) and (2.2), § can be chosen small enough
so that

|

IGL®N2 < C, IGLDee < —, Vi=1 (5.20)

~
[N

where C depends on at most d + 1 derivatives of the amplitude a+ and d +?2 derivatives
of the phase Z 1. We also have the more precise structure

Gi(t)*, - = e Hi(t, D) (5.21)
where the operator Hi (t, D) is such that for every k > 0,
kyyS s k
d Hi(t, D) = Hy ;(t, D)x(D)A", (5.22)

and H i «(t, D) also satisfy the estimates

|

IHE (6. D)llj2p2 < Co HL 4 (8, D) g1 ype < —0 V2= 1. (5.23)

~
[SEY

Proof. We focus on the study of Gf, the analysis of G5 being similar. The estimate for

the L? norm is just a consequence of the fact that the inverse Fourier transform is an
isometry. We recall

G3(1, x) =/ 2Ly w) <§> dé.
]Rd 5

Since we assume that (2.2) holds, we can use Lemma 4.2, from which we deduce that
Z, is a smooth function of the & variable in B(0, 108) so that we actually have

630 = [ POy <§) d
R s
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where the the amplitude

Z. ()

a.(§) = 2Z,(&) — 0,mgp(Z:(§8),8)

is also a smooth function of &.

To get the decay estimate in L°°, we shall use that the imaginary part of Z, described
in Lemma 4.2 provides dispersive properties. Since we have almost no information on
the real part of Z, (besides the fact that it is non-negative), we shall use a robust version
of the stationary phase. By using Lemma 4.2, we can write

G, x) =1 "H>(t,x) =" I(t,X), X =x/t

where

H3(t,x) =1(t, X) =f VX g &)y (§> dé (5.24)
R4 1)

with the phase given by
Wy (€) = [E7Du(E) + X - & = Wy (§) +i Wi ().
Note that \113( > (0 and
DFW(0) = 2C,14.

We can take § small enough so that
1
DUy (§) > 5Cula = c0>0 (5.25)
for |£] < 106§ and hence that for every &1, & € B(0, 106),
VWY (1) — VI (&) = colér — &, (5.26)

where the lower bound is independent of X. We will rely on the approach of Lemma 3.1
of [10] by checking that the imaginary part is harmless. We use the operator

d
_ 1
Lu)= —— Y i Uxdiut ————
@) i(1+t|V\IIX|2)jZI PO vy

(where | - | denotes in this context the hermitian norm of C¢), which satisfies by con-
struction

L(e"¥) = ¢"¥x (5.27)

and has a formal adjoint L (i.e. Jra Luv = [p4 uLv, Yu, v € €>) given by

d T d 2
N . W
L(M)Z_E:La.w.(_E :J—X

i+ 1V ! i+ VW]

d —_— —_—
+Z 2[3]'\1—’)( Re(VWy - Vaj‘l/x)>

i(1+¢t|VWy|?)2

j=1
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1
.
(1+1t]VW¥yx|?)
Using (5.27) repeatedly, we thus get that

16015 [ Y (o ;)] .

for any integer N > 1. We can then check that we get as in the proof of Lemma 3.1 in
[10] that

N = Z alM e

le|=N

where the coefficients a(g,N) satisfy on the support of the amplitude the estimate

1
laM| < C(An+1) ———
(12 VWx)N

with

Ap = sup sup 0% Wx|.
£€B(0,58) 2<|u|<k

Note that since A involves only derivatives of order larger than 2 of Wy, this quantity
is independent of X. Then, by choosing N = d + 1, we get

1
11(t, X)| S C(AN+1, AN) ————dé§
B(.5) (12VWy)V

with Ay = SUP|g|<N 10%a+ll L (B(0,s)- To conclude, we just use that

1 1
[
B(0.5) (t2VWy)N B(0.8) (12 VW )N

We finally observe that by (5.25), (5.26), the map £ > VW4 is a diffeomorphism on
B(0, 8) and we can thus use the change of variables n = VW% and apply the bound
from below of the Jacobian provided by (5.25) to get

1
dn S C(AN+1, AN) -

1(t, X)| < C(Anq1, A .

This yields (5.20).
To get (5.22), it suffices to notice that each time we take a time derivative of Hi

(see (5.24)), we multiply the amplitude by i|& |2lIJ+ (¢). Since W, is smooth the new
amplitude has the same properties as before. The expression (5.21) follows by switching
from kernels to operators. The proof is finally complete. O

6. Proof of Theorem 3.1

We use (5.1), take § small enough so that to apply Lemma 5.1 and the estimates of
Proposition 5.3 and Proposition 5.4, and finally apply Proposition 5.2. Theorem 3.1
follows, with the “regular” part of the kernel given by

GR=G6"+G".
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7. Proof of Theorem 2.1

From the method of characteristics, if f(¢, x,v) solves (1.3), then p(¢,x) =
fRd f(t, x,v)dv solves (3.1) and hence (3.3) with the source S(z, x) being the den-
sity associated to free transport:

S, x) = /Rd fo(x —vt,v)dv
which satisfies the dispersive estimates (1.6). We then decompose
p(t,x) = p"(t, x)+p} (t, x) + p3 (2, x)
where pR(t, x) (resp. p3 ) solves
pR=85+GR% .S, pi=0G5%,S.

Note from Theorem 3.1 that G ¥ satisfies the same estimates as the kernel of the linearized
screened Vlasov—Poisson system (see Theorem 2.1 in [15]). Therefore, we obtain the
same result as in Corollary 2.1 in [15]:

IRl + e pR @)l < log(1 +1) (||fo||L;‘v + ||fo||L;Lgo), Vi > 1,

and we shall thus focus on the singular part p$. We analyse the + case, the other one
being similar.
The basic estimate consists in writing, thanks to (5.20) in Proposition 5.4,

t

2 1 ! 1
II/Of(t)IILoo 5/ —dIIS(S)IIleS+/ IS 2ds S o
0 (t—s)2 3 t2-

vt > 1,

which does not decay for d = 1,2. Assuming additionally that (v)Vifo €
L )1“), (v)Vy fo € LLLS®, we can improve this estimate by using the refined formula
(5.21). We have

G? %0 S = fot I HS (1 — 5, D)S(s) ds.
By using that i 9;¢’ ™) = ¢/~%) we can integrate by parts in time to get
GS %, S =i(HS(0, D)S(t) — H3 (1, D)S(0))
+i /Ot eI HS (1 — 5, D)S(s)ds — i /Ot I HS (1 — 5, D)3 S(s) ds.
To estimate

Ti(t) = i(H} (0, D)S(1) — H}(t, D)S(0)),

we can use (5.23) and (1.6). This yields

1
IS0 < — I ol
t2 ’
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For
¥o(1) =i/ 9 H (1 — s, D)S(s)ds—i/ I HS (1 — 5, D)3, S(s) ds,
0 0

we can rely on (5.22) (since x (D) is a Fourier multiplier with compactly supported
symbol, we shall use that x (D)A can be bounded by x (D)|V|). This entails

L
2

1
22l < / TUVSONLr +10: Sl ds
0 (t—ys)2

t
+ﬁ (IIVSG)Ip2 + 119 S(s)l2) ds.
2
We therefore need to study decay estimates for 9;S in L' and L. To this end, observe
that
9, S(t,x) ==V - J(t, x)
with

J(t,x) =/ vflt, x, v) dv
R4

where f!(t, x, v) solves the free transport equation
afl+v-Vefl=0

with initial data fj.
As for (1.6), we get that

1 1
IVJ(®O)lle S TV follzr - IV @)liL> S 10 Vofollzrree.

which yield
1 1
19: Sl < Ve folley o 1Sl S TV follzy,
1
15Ol S <= (1Yo folly, + 1©)Va foll s ) -
12 '

Using also (1.6), we deduce

1 721 rq
1520l < 7/ —ds+/ |
5 Jo (s) £ og5tl

ds> (109 follzy, + 1) Vo fol e

log(1 +1¢)
< 2 (100 follr, + 10V foll i) -
t2 '

This finally yields

log(1 +1¢)
eSOl $ === (IVafoll oy, + 1)V foll 1z
+4 X, 3

and the proof of Theorem 2.1 is complete.
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8. Appendix: Radial Decreasing Equilibria Satisfy the Stability Assumption (H2)
In this section we shall prove
Proposition 8.1. Ler u satisfy (1.2) and (1.4). If u(v) = F (#) with F'(s) < 0,
Vs > 0, then (H2) is verified.

Proof. We study the function 7 +— 1 — mgg(it,n) for n € S¢~!. By using (4.9),
we get that mgg(it, n) — 0 when || tends to +o00o, so that it suffices to study 7 —
1 —mgEg(it, n) for bounded . We have fory > 0, |n| =1,

+00
myE(z.n) = — / e~ O i N " e Fy (o Vo) (4s) ds,
0

k,l

+00 o 3 |v|2
—i/ / e—(y+lr+m.v)t(n ) F (_) dvdt.
0 R4 2

We then write v = un +w with w € nt* = H,;; so that

+00 o MZ
mgge(z,n) = —i/ / e~ (rHiTHIL, 3 g (—) dudt
o Jr 2

[, r(+5)
d@)= | Fls+—)dw. (8.1)
" 2

n

where

This yields

g / T+u 3 u? du i / u’ o u? J
) =—[| 5————u — ) du—i o Ee — | du.
KERZ R 72+ (T +u)? 2 Vv w2 \2

Taking the limit y — 0 (following e.g. [17, Proof of Prop. 2.1]), we get that
),
. . 35/
mge(it,n) = —p.v.f —>du—int’® (—) .
R T+u 2

We then observe that for bounded t the imaginary part vanishes only for t = 0 and in
this case the real part is equal to

2 2 2
—/ 2o (L du:// F wtwi dwdu =/ ndv = 1.
R 2 R JRA-1 2 Rd

Therefore | — mg g(it, n) vanishes only for t = 0.



On the Linearized Vlasov—Poisson System 1439

Let us now compute d.m g g (0, n) and Bzzm x £(0, ). Following the same lines, we first

get that
+00
0.mgg(z,n) = l/ / te~rHTHIOL, 3 @/ ( 5 ) dudt

+00 o uz
:/ /e*(}’ﬂtﬂu)tau <u3q)/ (_)) dudt
0 R 2
and therefore

T+u u?
0 ) =—i | ———d, (P =))d
M5z 1) l/ﬂw2+<r+u>2“<u <2>>”
1 u?
— (P (L)) au
+V/Ry2+<r+u>2“<“ (2>> “

Taking the limit y — 0 as before, we get

o,mgp0,n) = —i - | ud | — du.
RU 2

By integrating by parts as before, this yields

2
0mgp0,n) = i/ ud’ (u—) du = 0.
R 2
Finally, for azmeE(O, n), we have
+00 o u2
BmeE(z, n) = —/ / 67(y+”+m)[l‘3u ( <?>> dudt
+00 I/t2
— / / 7(y+zr+m)tt82 < CD (_)) dudt.
2
This yields as before

2 1 2 34/ u2 1 3 5/ u2
0;mgg0,n) = — R;BM uwo S5 du = Rﬁau ud ) du
=2/d>/( )du
e \2

By using the definition (8.1), we thus get that

ameE(o,n):zf F’(' o )dv;ﬁO
R4 2

and the proof of the proposition is complete. 0O
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