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PLASMA ECHOES NEAR STABLE PENROSE DATA\ast 

EMMANUEL GRENIER\dagger , TOAN T. NGUYEN\ddagger , AND IGOR RODNIANSKI\S 

Abstract. In this paper we construct particular solutions to the classical Vlasov--Poisson system
near stable Penrose initial data on \BbbT \times \BbbR that are a combination of elementary waves with arbitrarily
high frequencies. These waves mutually interact giving birth, eventually, to an infinite cascade of
echoes of smaller and smaller amplitude. The echo solutions do not belong to the analytic or Gevrey
classes studied by Mouhot and Villani but do, nonetheless, exhibit damping phenomena for large
times.
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1. Introduction. In the physical literature, the large time behavior of a plasma
modeled by the classical Vlasov--Poisson system is characterized by

\bullet Landau damping. Decay of the electric field for large times.
\bullet Plasma echoes. An elementary wave, arising as a free transport of initial data

of the form \varepsilon f1(v)e
ik1x+i\eta 1v, will generate an electric field of order \epsilon that

is localized near the critical time \tau 1 = \eta 1/k1 and decays1 for larger times.
When two elementary waves \varepsilon fj(v)e

ikjx+i\eta jv, with arbitrarily large frequen-
cies kj , \eta j , j = 1, 2 and the associated critical times \tau j = \eta j/kj , interact, a
third wave of the same form is created. The electric field of this third wave is
localized but of order \epsilon 2, near the ``echo time"" \tau = (\eta 1+ \eta 2)/(k1+ k2), which
could be long after the first two waves have died away. The phenomenon is
often referred to as an ``echo"" [3].

From the discussion above, an echo is of a higher order (\varepsilon 2) in amplitude. The
created wave again interacts with the other two waves, creating higher order waves
and higher order echoes and so on. That is, starting from two waves, an infinite
number of waves, of smaller and smaller amplitudes, appear, with an infinite number
of echoes of smaller and smaller amplitudes.

In this context, the fundamental question is to understand the described heuristic
picture and analyze large time nonlinear behavior of such an infinite cascade. While
the linear Landau damping was discovered and fully understood by Landau [6], the
nonlinear analogue has been largely elusive. However, important progress has been
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1polynomially or exponentially small, depending on the regularity of f1(v).
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PLASMA ECHOES NEAR STABLE PENROSE DATA 941

made by Mouhot and Villani in their celebrated work [5], where the problem was
solved in the case of analytic or Gevrey data. Their proof has then been simplified in
[2]. The damping for data with finite Sobolev regularity remains largely open due to
plasma echoes [3] and high frequency instabilities [1, 8], while it is known to be false
for data with very low regularity [7].

In the companion paper [4], we give an elementary proof of the nonlinear Landau
damping for analytic and Gevrey data [5, 2]. In this paper, we construct an exact
solution of the classical Vlasov--Poisson system, starting form an infinite number of
elementary waves of amplitude \varepsilon . Provided that \epsilon is sufficiently small and each wave
has an analytic regularity, we are able to track all the interactions and to construct
solutions which display an infinite number of echoes, which are of a smaller and
smaller amplitude as time evolves. The associated electric field decays for large times,
and therefore Landau damping holds for such data. As we are allowed to take the
frequencies of each elementary wave to be arbitrarily large, the solutions do not belong
to the class of analytic or Gevrey solutions constructed in [5, 2].

Precisely, we consider the following classical Vlasov--Poisson system2

(1.1) \partial tf + v\partial xf + E\partial vf + E\partial v\mu = 0, \partial xE = \rho =

\int 
\BbbR 
f dv

on the torus \BbbT \times \BbbR for small initial data f0(x, v) satisfying

(1.2)

\int \int 
\BbbT \times \BbbR 

f0(x, v) dxdv = 0.

In (1.1), \mu (v) is a stable Penrose equilibrium. Precisely, we require that \mu (v) is such
that

\bullet \mu (v) is real analytic and satisfies

(1.3) | \widehat \langle v\rangle 2\mu (\eta )| + | \widehat \mu (\eta )| \leq C0e
 - \theta 0| \eta | .

\bullet \mu (v) satisfies the Penrose stability condition, namely,

(1.4) inf
k\in \BbbZ d\setminus \{ 0\} ;\Re \lambda \geq 0

\bigm| \bigm| \bigm| 1 + \int \infty 

0

e - \lambda tt\widehat \mu (kt) dt\bigm| \bigm| \bigm| \geq \kappa 0 > 0.

The condition is to ensure that the linearized system of (1.1) (obtained by
dropping the nonlinear term E\partial vf) is solvable. It holds for a variety of equi-

libria including the Gaussian \mu (v) = e - | v| 2/2. In three or higher dimensions,
the condition is valid for any positive and radially symmetric equilibria [5].

We consider the initial data which are a sum of highly oscillatory simple modes
of the form

(1.5) f0(x, v) =
\sum 

(k,\eta )\in \BbbZ \times \BbbZ 

\varepsilon f0
k,\eta (v)e

iKkx+iL\eta v

for arbitary parameters K and L and for small \epsilon . In view of (1.2), we take f0
k,\eta (v) = 0

for k = 0. We stress that f0 is rapidly oscillating in x and v when K,L are sufficiently

2obtained from the standard Vlasov--Poisson equations

\partial t \~f + v\partial x \~f + E\partial v \~f = 0, \partial xE = \rho =

\int 
\BbbR 

\~f dv  - 1

by writing \~f = f + \mu .
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942 EMMANUEL GRENIER, TOAN T. NGUYEN, AND IGOR RODNIANSKI

large. In particular, since K,L are allowed to be arbitrarily large, the initial data is
of order \epsilon \langle K,L\rangle s in Sobolev spaces W s,\infty (\BbbT \times \BbbR ), which is also arbitrarily large for
any s > 0.

Our main result asserts that Landau damping holds for data of the form (1.5).
Precisely, we prove the following.

Theorem 1.1. Let \lambda 0, C0 > 0, and K,L be arbitrary so that

(1.6) L \leq C0K.

Assume that (1.3)--(1.4) hold. Then, for sufficiently small \epsilon independent of K,L and
for any initial data of the form (1.5) with the analytic coefficients f0

k,\eta (v) satisfying
3

(1.7) | \widehat f0
k,\eta (\eta 

\prime )| \leq e - 2\lambda 0\langle k,\eta ,\eta \prime \rangle ,

uniformly in k, \eta , \eta \prime , there exists a unique global solution to the Vlasov--Poisson system
(1.1). In addition, the solution can be written in the form

(1.8) f(t, x, v) =
\sum 

(k,\eta ,p)\in \BbbZ \times \BbbZ \times \BbbN  \star 

\varepsilon pfk,\eta ,p(t, v)e
iKkx+i(L\eta  - Kkt)v,

where the coefficients fk,\eta ,p(t, v) are analytic in v and satisfy

(1.9) | \widehat fk,\eta ,p(t, \eta \prime )| \leq Cp
1e

 - \lambda 0\langle k,\eta ,p,\eta \prime \rangle , t \geq 0,

uniformly in k, \eta , p, \eta \prime , for some universal constant C1 that is independent of K,L,
and \epsilon ---in particular, the associated electric field

E(t, x) =
\sum 

(k,\eta ,p)\in \BbbZ \times \BbbZ \times \BbbN  \star 

\varepsilon p \widehat fk,\eta ,p(t,Kkt - L\eta )
eiKkx

iKk
 - \rightarrow 0

exponentially fast in any Sobolev spaces W s,q, s \geq 0 and q \geq 1, as t \rightarrow \infty .

We note that the results easily generalize to higher dimensions. Condition L \leq 
C0K, coupled with the assumptions on the (k, \eta ) dependence of the initial data, imply
that the ``echos"" occur at times which are, essentially, uniformly bounded.

Finally, we note that the parameters K,L are allowed to arbitrary (satisfying
(1.6)), which in particular includes the analytic data studied by Mouhot and Villani
[5] as a special case for K = 1 and L = 0.

2. Linear theory. In this section, we recall the linear Landau damping theory
developed in the companion paper [4]. Precisely, let k \in \BbbZ , and let \widehat \rho (t) satisfy
(2.1) \widehat \rho (t) + \int t

0

(t - s)\widehat \mu (k(t - s))\widehat \rho (s) ds = \widehat S(t)
with a source term \widehat S(t). Taking the Laplace transform of (2.1) in time, we get

(2.2) \scrL [\widehat \rho (t)](\lambda ) = \scrL [\widehat S(t)](\lambda )
1 + \scrL [t\widehat \mu (kt)](\lambda ) ,

where \scrL [F (t)](\lambda ) denotes the usual Laplace transform of F (t). The Penrose stability
condition (1.4) ensures that the symbol 1 + \scrL [t\widehat \mu (kt)](\lambda ) never vanishes.

We then have the following.

3We use the notation \langle x1, .., xn\rangle =
\sqrt{} 

1 + x2
1 + \cdot \cdot \cdot + x2

n. Depending on the context, we also use\widehat to denote the Fourier transform in x, v or both.
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Proposition 2.1. Assume that (1.3)--(1.4) hold. Then, the solution \widehat \rho (t) to (2.1)
exists and satisfies

(2.3) \widehat \rho (t) = \widehat S(t) + \int t

0

Gk(t - s)\widehat S(s) ds,
where | Gk(t)| \leq C1e

 - \theta 1| kt| for some positive constants \theta 1, C1.

Proof. From (2.2), we can write

(2.4) \scrL [\widehat \rho ](\lambda ) = \scrL [\widehat S](\lambda ) + \widetilde Gk(\lambda )\scrL [\widehat S](\lambda ),
where we denote

(2.5) \widetilde Gk(\lambda ) :=  - \scrL [t\widehat \mu (kt)](\lambda )
1 + \scrL [t\widehat \mu (kt)](\lambda ) .

The integral formulation (2.3) thus follows, where Gk(t) is the inverse Laplace trans-

form of \widetilde Gk(\lambda ). It remains to prove the estimate on Gk(t). First, we note by definition
that

\scrL [t\widehat \mu (kt)](\lambda ) = \int \infty 

0

e - \lambda tt\widehat \mu (kt) dt.
Thus, the Penrose condition (1.4) ensures that the denominator 1+\scrL [t\widehat \mu (kt)](\lambda ) never
vanishes for \Re \lambda \geq 0. Furthermore, using (1.3), we in fact have

(2.6) | \scrL [t\widehat \mu (kt)](\lambda )| \leq C0

\int \infty 

0

e - \Re \lambda tte - \theta 0| kt| dt \leq C1| k|  - 2

for \Re \lambda \geq  - \theta 1| k| and for any \theta 1 < \theta 0. On the other hand, for \Re \lambda =  - \theta 1| k| , integrating
by parts in time, we get

\scrL [t\widehat \mu (kt)](\lambda ) = \int \infty 

0

(M2
k  - \partial 2

t )(e
 - \lambda t)

M2
k  - \lambda 2

t\widehat \mu (kt) dt
=

\int \infty 

0

e - \lambda t

M2
k  - \lambda 2

(M2
k  - \partial 2

t )(t\widehat \mu (kt)) dt - \widehat \mu (0)
M2

k  - \lambda 2

for any constant Mk \not = \lambda . Taking Mk = 2\theta 1| k| , we have

| \scrL [t\widehat \mu (kt)](\lambda )| \leq C0

\int \infty 

0

e
1
2 \theta 0| kt| 

\theta 21| k| 2 + | \Im \lambda | 2
(| k| + | k| 2t)e - \theta 0| kt| dt+

C0

\theta 21| k| 2 + | \Im \lambda | 2
,

which gives

(2.7) | \scrL [t\widehat \mu (kt)](\lambda )| \leq C1(1 + | k| 2 + | \Im \lambda | 2) - 1

for any \lambda on the line \{ \Re \lambda =  - \theta 1| k| \} . This proves that \scrL [t\widehat \mu (kt)](\lambda ) is analytic in
\{ \Re \lambda \geq  - \theta 1| k| \} for any \theta 1 < \theta 0.

We next prove that there is a positive \theta 1 < \theta 0 so that \widetilde Gk(\lambda ) is analytic in \{ \Re \lambda \geq 
 - \theta 1| k| \} and the estimate (2.7) also holds for \widetilde Gk(\lambda ), possibly with a different constant
C1. Indeed, the estimate (2.7) shows that there are k0, \tau 0 so that | \scrL [t\widehat \mu (kt)](\lambda )| \leq 1

2
for all | k| \geq k0 and \lambda \geq  - \theta 1| k| or for \Re \lambda =  - \theta 1| k| and | \Im \lambda | \geq \tau 0. While for | \Im \lambda | \leq \tau 0
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944 EMMANUEL GRENIER, TOAN T. NGUYEN, AND IGOR RODNIANSKI

and | k| \leq k0, since the Penrose condition (1.4) holds for \Re \lambda = 0, there is a small
positive constant \theta 1 so that

(2.8) | 1 + \scrL [t\widehat \mu (kt)](\lambda )| \geq 1

2
\kappa 0

for \Re \lambda =  - \theta 1| k| (recalling that 1 \leq | k| \leq k0). Combining, we have that 1 +
\scrL [t\widehat \mu (kt)](\lambda ) is bounded below away from zero on \{ \Re \lambda \geq  - \theta 1| k| \} for all k \in \BbbZ .
The estimates on \widetilde Gk(\lambda ) thus follows from those on \scrL [t\widehat \mu (kt)](\lambda ).

By definition, we have

Gk(t) =
1

2\pi i

\int 
\{ \Re \lambda =\gamma 0\} 

e\lambda t \widetilde Gk(\lambda ) d\lambda 

for some large positive constant \gamma 0. Since \widetilde Gk(\lambda ) is analytic in \{ \Re \lambda \geq  - \theta 1| k| \} , and
thus we can apply the Cauchy theory to deform the complex contour of integration
from \{ \Re \lambda = \gamma 0\} into \{ \Re \lambda =  - \theta 1| k| \} , on which both estimates (2.7) and (2.8) hold.
Therefore,

| Gk(t)| \leq C1

\int 
\{ \Re \lambda = - \theta 1| k| \} 

e - \theta 1| kt| (1 + | k| 2 + | \Im \lambda | 2) - 1 d\lambda \leq C1e
 - \theta 1| kt| .

The proposition follows.

3. Construction.

3.1. Setup. Let us first detail the construction of the profiles fk,\eta ,p in the infinite
series (1.8). Indeed, we formally plug the Ansatz (1.8) to the Vlasov--Poisson system
(1.1) with the corresponding electric field

(3.1) E(t, x) =
\sum 

(k,\eta ,p)\in \BbbZ \times \BbbZ \times \BbbN  \star 

\varepsilon p \widehat fk,\eta ,p(t,Kkt - L\eta )
eiKkx

iKk

and match the terms of order \epsilon p. At each step we consider the term E\partial vf of (1.1)
as a source term for the linear Vlasov--Poisson near the equilibrium \mu . This yields,
for each (k, \eta , p) \in \BbbZ \times \BbbZ \times \BbbN  \star , the following linearized equation for fk,\eta ,p(t, v) and\widehat Ek,\eta ,p(t),

(3.2) \partial tfk,\eta ,p + \widehat Ek,\eta ,pe
 - i(L\eta  - Kkt)v\partial v\mu = Nk,\eta ,p,

in which
\bullet For p = 1, we take fk,\eta ,1(0, v) = f0

k,\eta (v) and Nk,\eta ,1 = 0.
\bullet For p \geq 2, we take fk,\eta ,p(0, v) = 0 and

Nk,\eta ,p(t, v) =
\sum 

(k1,\eta 1,k2,\eta 2,p1,p2)\in Ak,\eta ,p

e - i(L\eta 1 - Kk1t)v \widehat Ek1,\eta 1,p1
(t)

\times [\partial v + i(L\eta 2  - Kk2t)]fk2,\eta 2,p2
(t, v),

where Ak,\eta ,p denotes the set of sextets in \BbbZ \times \BbbZ \times \BbbN  \star :

Ak,\eta ,p :=
\Bigl\{ 
k1 + k2 = k, \eta 1 + \eta 2 = \eta , p1 + p2 = p

\Bigr\} 
.
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The electric field is defined by \widehat Ek,\eta ,0(t) = 0

and for p > 0, by a direct computation,

(3.3) \widehat Ek,\eta ,p(t) =
1

iKk
\widehat \rho k,\eta ,p(t) = 1

iKk
\widehat fk,\eta ,p(t,Kkt - L\eta ).

As a consequence of the assumption (1.2) on the initial data, we will prove in the next

sections that \widehat E0,\eta ,p(t) = 0 for all \eta and p. Note that taking the Fourier transform of
(1.8) in x and v, we have

(3.4) \widehat f(t,Kk, \eta \prime ) =
\sum 

(\eta ,p)\in \BbbZ \times \BbbN  \star 

\varepsilon p \widehat fk,\eta ,p(t, \eta \prime  - L\eta +Kkt)

and \widehat f(t, k\prime , \eta \prime ) = 0 for k\prime \not \in K\BbbZ .
It remains to derive estimates on the Fourier transform \widehat fk,\eta ,p(t, \eta \prime ) of each func-

tions fk,\eta ,p(t, v) in order to ensure the convergence of the infinite series (3.4).

3.2. Resolution using Penrose's kernel. We begin by converting (3.2) to an
integral equation.

Lemma 3.1. Let fk,\eta ,p(t, v) be constructed as indicated above. Set

(3.5) \widehat Sk,\eta ,p(t, \eta 
\prime ) = \widehat fk,\eta ,p(0, \eta \prime ) + \int t

0

\widehat Nk,\eta ,p(s, \eta 
\prime ) ds.

Then, there holds

\widehat fk,\eta ,p(t, \eta \prime ) = \widehat Sk,\eta ,p(t, \eta 
\prime ) - 

\int t

0

\widehat Ek,\eta ,p(s)\widehat \partial v\mu (\eta \prime + L\eta  - Kks) ds.

In addition,

(3.6) \widehat \rho k,\eta ,p(t) = \widehat Sk,\eta ,p(t,Kkt - L\eta ) +

\int t

0

Gk(t - s)\widehat Sk,\eta ,p(s,Kks - L\eta ) ds,

where | Gk(t)| \leq C0e
 - \theta 0| Kkt| .

Proof. Integrating (3.2) in time, we obtain

fk,\eta ,p(t, v) =  - 
\int t

0

\widehat Ek,\eta ,p(s)e
 - i(L\eta  - Kks)v\partial v\mu (v) ds+ Sk,\eta ,p,

where

Sk,\eta ,p(t, v) = fk,\eta ,p(0, v) +

\int t

0

Nk,\eta ,p(s, v) ds.

Taking the Fourier transform yields the expression for \widehat fk,\eta ,p(t, \eta \prime ). In particular, using
(3.3), we have

\widehat \rho k,\eta ,p(t) + \int t

0

(t - s)\widehat \mu (Kk(t - s))\widehat \rho k,\eta ,p(s) ds = \widehat Sk,\eta ,p(t,Kkt - L\eta ).

Using the linear theory developed in Proposition 2.1, the lemma follows.
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3.3. Inductive estimates. In this section, we shall inductively derive estimates
on \widehat fk,\eta ,p(t, \eta \prime ). In what follows, we fix \lambda 0 > 0 and K,L to be arbitrarily large so that

(3.7) L \lesssim K.

Then, we have the following.

Proposition 3.2. Let \sigma > 1 be fixed. There is some universal constant C0 so
that

(3.8) | \widehat fk,\eta ,p(t, \eta \prime )| \leq Cp
0e

 - \lambda p(t)\langle k,\eta ,p,\eta \prime \rangle \langle k\rangle  - 1,

(3.9) | \widehat \rho k,\eta ,p(t)| \leq Cp
0e

 - \lambda p(t)\langle k,\eta ,p,L\eta  - Kkt\rangle \langle t\rangle  - \sigma ,

uniformly in k, \eta , p, \eta \prime , and t \geq 0, where \lambda p(t) is defined by

(3.10) \lambda p(t) = \lambda 0 + \langle t\rangle  - \delta + p - \delta 

for some 0 < \delta \ll 1. In addition, \widehat \rho 0,\eta ,p(t) = 0 for all \eta and p.

Note that all the estimates are uniform in the large parameters K and L. The
following subsections are devoted to the proof of this proposition, which will be done
by induction on p \geq 1.

3.4. Estimates for \bfitp = 1. We first estimate \widehat Sk,\eta ,p(t, \eta 
\prime ) for p = 1. By con-

struction, Nk,\eta ,1 = 0, and thus we have

\widehat Sk,\eta ,1(t, \eta 
\prime ) = \widehat fk,\eta ,1(0, \eta \prime ) = \widehat f0

k,\eta (\eta 
\prime ).

By assumption on the initial data f0
0,\eta (v) = 0 in (1.5), we have \widehat S0,\eta ,1(t, \eta 

\prime ) = 0, and
so \widehat \rho 0,\eta ,1(t) = 0 due to the representation (3.6). We now consider k \not = 0. Using the
assumption (1.7) in (3.6), we obtain

| \widehat \rho k,\eta ,1(t)| \leq | \widehat Sk,\eta ,1(t,Kkt - L\eta )| +
\int t

0

| Gk(t - s)\widehat Sk,\eta ,1(s,Kks - L\eta )| ds

\leq e - 2\lambda 0\langle k,\eta ,L\eta  - Kkt\rangle + C0

\int t

0

e - \theta 0| Kk(t - s)| e - 2\lambda 0\langle k,\eta ,L\eta  - Kks\rangle ds.

Using \lambda 0 \leq \theta 0/4 and the triangle inequality, we bound

e - 
1
2 \theta 0| Kk(t - s)| e - 2\lambda 0| L\eta  - Kks| \leq e - 2\lambda 0| L\eta  - Kkt| .

Hence,

| \widehat \rho k,\eta ,1(t)| \leq e - 2\lambda 0\langle k,\eta ,L\eta  - Kkt\rangle + C0e
 - 2\lambda 0\langle k,\eta ,L\eta  - Kkt\rangle 

\int t

0

e - 
1
2 \theta 0| Kk(t - s)| ds.

\leq C0e
 - 2\lambda 0\langle k,\eta ,L\eta  - Kkt\rangle .

To complete the proof of (3.9) for p = 1, we need to check the decay in time. Indeed,
using the triangle inequality

| Kkt| \leq | Kkt - L\eta | + | L\eta | 
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and the fact that K \geq 1 and L \lesssim K, we have

(3.11) | kt| \leq K - 1| Kkt - L\eta | + LK - 1| \eta | \leq | Kkt - L\eta | + | \eta | .

This proves that

| \widehat \rho k,\eta ,1(t)| \leq C0e
 - \lambda 0\langle k,\eta ,L\eta  - Kkt\rangle e - \lambda 0\langle kt\rangle ,

which proves (3.9) for p = 1, since k \not = 0. To estimate (3.8), we use Lemma 3.1 to
estimate

| \widehat fk,\eta ,1(t, \eta \prime )| \leq | \widehat Sk,\eta ,1(t, \eta 
\prime )| +

\int t

0

| \widehat Ek,\eta ,1(s)\widehat \partial v\mu (\eta \prime + L\eta  - Kks)| ds

\leq e - 2\lambda 0\langle k,\eta ,\eta \prime \rangle 

+ C0\langle Kk\rangle  - 1

\int t

0

e - \lambda 0\langle k,\eta ,L\eta  - Kks\rangle e - \theta 0| \eta \prime +L\eta  - Kks| \langle s\rangle  - \sigma ds

\leq e - 2\lambda 0\langle k,\eta ,\eta \prime \rangle + C0\langle Kk\rangle  - 1e - \lambda 0\langle k,\eta ,\eta \prime \rangle 

\leq C0\langle k\rangle  - 1e - \lambda 0\langle k,\eta ,\eta \prime \rangle ,

where we used the exponential decay of the electric field, proven above, to insert an
extra factor \langle s\rangle  - \sigma with \sigma > 1. This proves Proposition 3.2 for p = 1.

3.5. Estimates on \widehat \bfitE \bfitk ,\bfiteta ,\bfitp . In this section, we shall prove the estimates (3.9)

on \widehat Ek,\eta ,p for p > 1, under the inductive assumption that the estimates (3.8)--(3.9) on\widehat fk,\eta ,p1 and \widehat Ek,\eta ,p1 hold for all p1 \leq p - 1. In particular, \widehat E0,\eta 1,p1(t) = 0. Precisely, we
prove the following lemma.

Lemma 3.3. Let P > 1. Assume that (3.8)--(3.9) hold true for any k, \eta , and
p \leq P  - 1. Then (3.9) is true for any k, \eta , and p = P , with \widehat \rho 0,\eta ,P (t) = 0.

In view of Lemma 3.1, we first prove the following.

Lemma 3.4. Under the assumption of Lemma 3.3, there holds

| \widehat Sk,\eta ,p(t,Kkt - L\eta )| \leq Cp
0e

 - \lambda p(t)\langle k,\eta ,p,L\eta  - Kkt\rangle \langle t\rangle  - \sigma ,

where Sk,\eta ,p is defined as in (3.5).

Proof of Lemma 3.3 using Lemma 3.4. By Lemma 3.1, we have

(3.12) \widehat \rho k,\eta ,p(t) = \widehat Sk,\eta ,p(t,Kkt - L\eta ) +

\int t

0

Gk(t - s)\widehat Sk,\eta ,p(s,Kkt - L\eta ) ds,

where | Gk(t)| \leq C0e
 - \theta 0| Kkt| . Using Lemma 3.4, we have

| \widehat \rho k,\eta ,p(t)| \leq Cp
0e

 - \lambda p(t)\langle k,\eta ,p,L\eta  - Kkt\rangle \langle t\rangle  - \sigma 

+ Cp
0

\int t

0

e - \theta 0| Kk(t - s)| e - \lambda p(s)\langle k,\eta ,p,L\eta  - Kks\rangle \langle s\rangle  - \sigma ds.

Using \lambda p(t) \leq \lambda p(s) \leq 1
2\theta 0, we have

e - 
1
2 \theta 0| Kk(t - s)| e - \lambda p(s)\langle k,\eta ,p,L\eta  - Kks\rangle \leq e - \lambda p(t)| Kk(t - s)| e - \lambda p(t)\langle k,\eta ,p,L\eta  - Kks\rangle 

\leq e - \lambda p(t)\langle k,\eta ,p,L\eta  - Kkt\rangle .
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On the other hand, since k \not = 0, we easily bound\int t

0

e - 
1
2 \theta 0| Kk(t - s)| \langle s\rangle  - \sigma ds \leq C0\langle t\rangle  - \sigma .

The desired estimates on \widehat \rho k,\eta ,p(t) follow.
Proof of Lemma 3.4. By construction, for p > 1, \widehat fk,\eta ,p(0, \eta \prime ) = 0, and thus we

have \widehat Sk,\eta ,p(t, \eta 
\prime ) =

\int t

0

\widehat Nk,\eta ,p(s, \eta 
\prime ) ds,

where the nonlinear interaction \widehat Nk,\eta ,p(s, \eta 
\prime ) is computed by

\widehat Nk,\eta ,p(s, \eta 
\prime ) = i

\sum 
Ak,\eta ,p

\widehat Ek1,\eta 1,p1
(s)[\eta \prime + L\eta  - Kks] \widehat fk2,\eta 2,p2

(s, \eta \prime + L\eta 1  - Kk1s).

Note that by induction, \widehat E0,\eta 1,p1
(t) = 0, and so the above summation is for k1 \not = 0. In

addition, observe that at \eta \prime = Kkt - L\eta , \widehat Nk,\eta ,p(s,Kkt - L\eta ) has a prefactor Kk(t - s),
which vanishes at k = 0. Hence, by construction (3.12), \widehat \rho 0,\eta ,p(t) = 0 for any \eta , p.
Therefore, in what follows, we focus on k, k1 \not = 0. By induction, for p1, p2 \leq p  - 1,
we have

| \widehat Ek1,\eta 1,p1
(t)| \leq Cp1

0 e - \lambda p1 (t)\langle k1,\eta 1,p1,L\eta 1 - Kk1t\rangle | Kk1|  - 1\langle t\rangle  - \sigma ,

| \widehat fk2,\eta 2,p2
(t, \eta \prime )| \leq Cp2

0 e - \lambda p2 (t)\langle k2,\eta 2,p2,\eta 
\prime \rangle \langle k2\rangle  - 1.

Hence, recalling the definition of Ak,\eta ,p, we have

| \widehat Sk,\eta ,p(t, \eta 
\prime )| \leq Cp

0

\sum 
Ak,\eta ,p

| Kk1|  - 1\langle k2\rangle  - 1

\int t

0

e - \lambda p1
(s)\langle k1,\eta 1,p1,L\eta 1 - Kk1s\rangle \langle s\rangle  - \sigma 

\times | \eta \prime + L\eta  - Kks| e - \lambda p2 (s)\langle k2,\eta 2,p2,\eta 
\prime +L\eta 1 - Kk1s\rangle ds.

It is crucial to note that \lambda p(t) is strictly decreasing in both p and t. We will use
this monotonicity in order to gain time decay in the estimates. Using k = k1 + k2,
\eta = \eta 1 + \eta 2, and p = p1 + p2, we note that

e - \lambda p1
(s)\langle k1,\eta 1,p1,L\eta 1 - Kk1s\rangle e - \lambda p2

(s)\langle k2,\eta 2,p2,\eta 
\prime +L\eta 1 - Kk1s\rangle 

\leq Ck,\eta ,p,\eta \prime ,0(s, t)Ck,\eta ,p,\eta \prime ,1(s, t)Ck,\eta ,p,\eta \prime ,2(s, t)e
 - \lambda p(t)\langle k,\eta ,p,\eta \prime \rangle ,

where the factors Ck,\eta ,p,j(s, t) are defined by

(3.13)

Ck,\eta ,p,\eta \prime ,0(s, t) := e - (s - \delta  - t - \delta )\langle k,\eta ,p,\eta \prime \rangle ,

Ck,\eta ,p,\eta \prime ,1(s, t) := e - (p - \delta 
1  - p - \delta )\langle k1,\eta 1,p1,L\eta 1 - Kk1s\rangle ,

Ck,\eta ,p,\eta \prime ,2(s, t) := e - (p - \delta 
2  - p - \delta )\langle k2,\eta 2,p2,\eta 

\prime +L\eta 1 - Kk1s\rangle ,

each of which is smaller than one. These factors may be seen as gains coming from
the monotonicity of \lambda p(t). Combining and noting | k| \leq 2\langle k1\rangle \langle k2\rangle , we thus obtain

(3.14)
| \widehat Sk,\eta ,p(t, \eta 

\prime )| \leq Cp
0e

 - \lambda p(t)\langle k,\eta ,p,\eta \prime \rangle \langle Kk\rangle  - 1
\sum 

Ak,\eta ,p

\int t

0

| \eta \prime + L\eta  - Kks| 

\times Ck,\eta ,p,\eta \prime ,0(s, t)Ck,\eta ,p,\eta \prime ,1(s, t)Ck,\eta ,p,\eta \prime ,2(s, t)\langle s\rangle  - \sigma ds.
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Evaluating at \eta \prime = Kkt - L\eta , we get

(3.15)
| \widehat Sk,\eta ,p(t,Kkt - L\eta )| \leq Cp

0e
 - \lambda p(t)\langle k,\eta ,p,L\eta  - Kkt\rangle 

\sum 
Ak,\eta ,p

\int t

0

(t - s)

\times Ck,\eta ,p,0Ck,\eta ,p,1Ck,\eta ,p,2(s, t)\langle s\rangle  - \sigma ds

with Ck,\eta ,p,j = Ck,\eta ,p,\eta \prime ,j(s, t) for \eta \prime = Kkt  - L\eta . The lemma thus follows from the
following claim:

(3.16)
\sum 

Ak,\eta ,p

\int t

0

(t - s)Ck,\eta ,p,0Ck,\eta ,p,1Ck,\eta ,p,2(s, t)\langle s\rangle  - \sigma ds \leq C0\langle t\rangle  - \sigma .

Let us first bound the factors Ck,\eta ,p,j(s, t).

Lemma 3.5. Setting Ck,\eta ,p,j = Ck,\eta ,p,\eta \prime ,j(s, t) as in (3.13) for \eta \prime = Kkt - L\eta , we
have

Ck,\eta ,p,0(s, t) \leq e - \theta 0(s
 - \delta  - t - \delta )\langle k,\eta ,p,kt\rangle ,

Ck,\eta ,p,1(s, t) \leq e - \theta 0(p
 - \delta 
1  - p - \delta )\langle k1,\eta 1,p1,k1s\rangle ,

Ck,\eta ,p,2(s, t) \leq e - \theta 0(p
 - \delta 
2  - p - \delta )\langle k2,\eta 2,p2,kt - k1s\rangle 

for some positive constant \theta 0.

Proof. Recalling the inequality (3.11), | kt| \leq | Kkt - L\eta | + | \eta | , we have

Ck,\eta ,p,1(s, t) = e - (s - \delta  - t - \delta )\langle k,\eta ,p,L\eta  - Kkt\rangle 

\leq e - (s - \delta  - t - \delta )\langle k,\eta ,p\rangle /2e - (s - \delta  - t - \delta )\langle \eta ,L\eta  - Kkt\rangle /2

\leq e - \theta 0(s
 - \delta  - t - \delta )\langle k,\eta ,p,kt\rangle ,

provided \theta 0 is small enough. The bounds on Ck,\eta ,p,1(s, t) and Ck,\eta ,p,2(s, t) are
similar.

Let us now prove the claim (3.16). To estimate the time integral, we consider two
cases: p1 \leq p/2 and p2 \leq p/2.

Case 1: p1 \leq p/2. In this case, we note that

p - \delta 
1  - p - \delta \geq \theta \delta p

 - \delta 
1

for some positive constant \theta \delta . This and the estimate from Lemma 3.5 yield

Ck,\eta ,p,1(s, t) \leq e - \theta \delta p
 - \delta 
1 \langle k1,\eta 1,p1,k1s\rangle .

Let us further bound the exponent. Using the standard Young's inequality ab \lesssim 
aq + bq

\prime 
, with q = 1/(1 - \delta ) and q\prime = q/(q  - 1), we have

(3.17) | a| 1 - \delta = (ap - \delta 
1 )1 - \delta | p1| \delta (1 - \delta ) \leq C\delta 

\Bigl( 
| p1|  - \delta | a| + | p1| 1 - \delta 

\Bigr) 
for some constant C\delta . Using this with a = \langle k1, \eta 1, k1s\rangle , we have

p - \delta 
1 \langle k1, \eta 1, p1, k1s\rangle \geq | p1| 1 - \delta + | p1|  - \delta \langle k1, \eta 1, k1s\rangle \geq 

1

C\delta 
\langle k1, \eta 1, k1s\rangle 1 - \delta .
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Clearly, we also have p - \delta 
1 \langle k1, \eta 1, p1, k1s\rangle \geq \langle p1\rangle 1 - \delta , recalling p1 \in \BbbN \ast . This yields

(3.18) p - \delta 
1 \langle k1, \eta 1, p1, k1s\rangle \geq 

1

2C\delta 
\langle k1, \eta 1, p1, k1s\rangle 1 - \delta .

Therefore,

(3.19) Ck,\eta ,p,1(s, t) \leq e - \theta \delta p
 - \delta 
1 \langle k1,\eta 1,p1,k1s\rangle \leq e - \theta \prime 

\delta \langle k1,\eta 1,p1\rangle 1 - \delta 

e - \theta \prime 
\delta \langle k1s\rangle 1 - \delta 

for some positive constant \theta \prime \delta .
On the other hand, we simply bound

Ck,\eta ,p,0(s, t) \leq e - \theta 0(s
 - \delta  - t - \delta )\langle k,\eta ,p,kt\rangle \leq e - \theta 0(s

 - \delta  - t - \delta )\langle t\rangle ,

noting k \not = 0. We also bound Ck,\eta ,p,2(s, t) \leq 1. Inserting these estimates into (3.16),
we have \sum 

Ak,\eta ,p

\int t

0

(t - s)Ck,\eta ,p,0(s, t)Ck,\eta ,p,1(s, t)Ck,\eta ,p,2(s, t)\langle s\rangle  - \sigma ds

\leq 
\sum 

Ak,\eta ,p

e - \theta \prime 
\delta \langle k1,\eta 1,p1\rangle 1 - \delta 

\int t

0

(t - s)e - \theta 0(s
 - \delta  - t - \delta )\langle t\rangle e - \theta \prime 

\delta \langle k1s\rangle 1 - \delta 

\langle s\rangle  - \sigma ds

\lesssim 
\int t

0

(t - s)e - \theta 0(s
 - \delta  - t - \delta )\langle t\rangle e - \theta \prime 

\delta \langle s\rangle 
1 - \delta 

\langle s\rangle  - \sigma ds,

in which we used e - \theta \prime 
\delta \langle k1s\rangle 1 - \delta \leq e - \theta \prime 

\delta \langle s\rangle 
1 - \delta 

, since k1 \not = 0. It remains to bound the
time integral \int t

0

(t - s)e - \theta 0(s
 - \delta  - t - \delta )\langle t\rangle e - \theta \prime 

\delta \langle s\rangle 
1 - \delta 

\langle s\rangle  - \sigma ds \leq C0\langle t\rangle  - \sigma .

Indeed, the estimate is clear for s \geq t/2, using the exponential term e - \theta \prime 
\delta \langle s\rangle 

1 - \delta 

in the
integrand. On the other hand, for s \leq t/2, we make use of the fact that s - \delta  - t - \delta \geq 
\theta \delta t

 - \delta , yielding again an exponential decaying term

e - (s - \delta  - t - \delta )\langle t\rangle \leq e - \theta \delta \langle t\rangle 1 - \delta 

.

The claim (3.16) follows.

Case 2: p2 \leq p/2. Similarly, in this case, we use

p - \delta 
2  - p - \delta \geq \theta \delta p

 - \delta 
2

for some positive constant \theta \delta , which implies

Ck,\eta ,p,2(s, t) \leq e - \theta \delta p
 - \delta 
2 \langle k2,\eta 2,p2,kt - k1s\rangle .

Estimating the exponent exactly as done in (3.19), we thus obtain

(3.20) Ck,\eta ,p,2(s, t) \leq e - \theta \delta \langle k2,\eta 2,p2\rangle 1 - \delta 

e - \theta \delta \langle kt - k1s\rangle 1 - \delta 

.

In the case when | kt  - k1s| \geq t/2, the above yields an exponential decay term in
(k2, \eta 2, p2, t). The claim (3.16) thus follows.
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It remains to consider the case when | kt  - k1s| \leq t/2. It suffices to treat the
case k > 0, the other being similar. In this case, we note that k1 > 0 and s \in 
[k - 1

1 (k  - 1/2)t, k - 1
1 (k + 1/2)t]. In particular, as s < t, we have k1 \geq k. We treat two

cases k1 = k and k1 > k, separately.
Consider first the case when k1 = k \not = 0. We then have

Ck,\eta ,p,2(s, t) \leq e - \theta \delta \langle k2,\eta 2,p2,k(t - s)\rangle 1 - \delta 

\leq e - \theta \delta \langle k2,\eta 2,p2\rangle 1 - \delta 

e - \theta \delta \langle t - s\rangle 1 - \delta 

,

while we simply bound Ck,\eta ,p,0(s, t) \leq 1 and Ck,\eta ,p,1(s, t) \leq 1. Let us now check the
claim (3.16) for this case. We have

\sum 
Ak,\eta ,p

\int t

0

(t - s)Ck,\eta ,p,0(s, t)Ck,\eta ,p,1(s, t)Ck,\eta ,p,2(s, t)\langle s\rangle  - \sigma ds

\leq 
\sum 

Ak,\eta ,p

e - \theta \delta \langle k2,\eta 2,p2\rangle 1 - \delta 

\int t

0

(t - s)e - \theta \delta \langle t - s\rangle 1 - \delta 

\langle s\rangle  - \sigma ds

\lesssim 
\int t

0

e - 
1
2 \theta \delta \langle t - s\rangle 1 - \delta 

\langle s\rangle  - \sigma ds,

which is clearly bounded by C0\langle t\rangle  - \sigma .
Next, we consider the case when k1 > k > 0. In this case, recalling (3.20), we

have

Ck,\eta ,p,2(s, t) \leq e - \theta \delta \langle k2,\eta 2,p2\rangle 1 - \delta 

,

while we use the following bound on Ck,\eta ,p,0(s, t):

Ck,\eta ,p,0(s, t) \leq e - \theta 0(s
 - \delta  - t - \delta )\langle kt\rangle .

Since s \in [k - 1
1 (k  - 1/2)t, k - 1

1 (k + 1/2)t] and k1 > k > 0, we bound

s - \delta  - t - \delta \geq 
\Bigl( k\delta 1
(k + 1/2)\delta 

 - 1
\Bigr) 1

t\delta 
\geq \theta \delta t

 - \delta | k|  - 1

for some positive constant \theta \delta independent of k, k1. This proves

Ck,\eta ,p,0(s, t) \leq e - \theta \delta \langle t\rangle 1 - \delta 

.

We also bound Ck,\eta ,p,1(s, t) \leq 1. Combing the estimates into (3.16), we thus have

\sum 
Ak,\eta ,p

\int t

0

(t - s)Ck,\eta ,p,0(s, t)Ck,\eta ,p,1(s, t)Ck,\eta ,p,2(s, t)\langle s\rangle  - \sigma ds

\leq 
\sum 

Ak,\eta ,p

e - \theta \delta \langle k2,\eta 2,p2\rangle 1 - \delta 

\int t

0

(t - s)e - \theta \delta \langle t\rangle 1 - \delta 

\langle s\rangle  - \sigma ds,

which is again bounded by C0\langle t\rangle  - \sigma . The claim (3.16) follows.

3.6. Estimates on \widehat \bfitf \bfitk ,\bfiteta ,\bfitp . In this section, we prove the estimates (3.8) on \widehat fk,\eta ,p:
(3.21) | \widehat fk,\eta ,p(t, \eta \prime )| \leq Cp

0e
 - \lambda p(t)\langle k,\eta ,p,\eta \prime \rangle \langle k\rangle  - 1,
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assuming that the estimates (3.8) on \widehat fk,\eta ,p1
hold for all p1 \leq p - 1 and the estimates

(3.9) on and \widehat Ek,\eta ,p1
hold for all p1 \leq p. This will end the proof of Proposition 3.2.

By Lemma 3.1, we have

\widehat fk,\eta ,p(t, \eta \prime ) = \widehat Sk,\eta ,p(t, \eta 
\prime ) - 

\int t

0

\widehat Ek,\eta ,p(s)\widehat \partial v\mu (\eta \prime + L\eta  - Kks) ds.

Using (3.9) and the analyticity assumption on \mu (v), we get\int t

0

| \widehat Ek,\eta ,p(s)\widehat \partial v\mu (\eta \prime + L\eta  - Kks)| ds

\leq Cp
0 \langle Kk\rangle  - 1

\int t

0

e - \lambda p(s)\langle k,\eta ,p,L\eta  - Kks\rangle e - \theta 0| \eta \prime +L\eta  - Kks| \langle s\rangle  - \sigma ds.

\leq Cp
0 \langle Kk\rangle  - 1e - \lambda p(t)\langle k,\eta ,p,\eta \prime \rangle 

\int t

0

\langle s\rangle  - \sigma ds

\leq Cp
0 \langle k\rangle  - 1e - \lambda p(t)\langle k,\eta ,p,\eta \prime \rangle 

in which we used that \lambda (t) \leq \lambda (s) \leq \theta 0.

It remains to give estimates on \widehat Sk,\eta ,p(t, \eta 
\prime ). Recall from (3.14) that

| \widehat Sk,\eta ,p(t, \eta 
\prime )| \leq Cp

0e
 - \lambda p(t)\langle k,\eta ,p,\eta \prime \rangle \langle Kk\rangle  - 1

\sum 
Ak,\eta ,p

\int t

0

| \eta \prime + L\eta  - Kks| 

\times Ck,\eta ,p,\eta \prime ,0(s, t)Ck,\eta ,p,\eta \prime ,1(s, t)Ck,\eta ,p,\eta \prime ,2(s, t)\langle s\rangle  - \sigma ds,

where the factors Ck,\eta ,p,\eta \prime ,j(s, t) are defined as in (3.13). Since K \geq 1 and L \lesssim K, we
have

K - 1| \eta \prime + L\eta  - Kks| \leq | \eta \prime | + | \eta | + | ks| \lesssim \langle s\rangle \langle k, \eta , p, \eta \prime \rangle .
The claim (3.21) will follow from the following estimates, which we will now prove:

(3.22)
\sum 

Ak,\eta ,p

Ck,\eta ,p,\eta \prime ,1(s, t)Ck,\eta ,p,\eta \prime ,2(s, t) \lesssim 1,

and

(3.23)

\int t

0

e - (s - \delta  - t - \delta )\langle k,\eta ,p,\eta \prime \rangle \langle k, \eta , p, \eta \prime \rangle \langle s\rangle  - \sigma +1 ds \lesssim 1,

uniformly in k, \eta , p, \eta \prime , and t.
Let us start with (3.22). As argued above, we have, for p1 \leq p/2,

Ck,\eta ,p,\eta \prime ,1(s, t) \leq e - \theta \delta p
 - \delta 
1 \langle k1,\eta 1,p1,L\eta 1 - Kk1s\rangle \leq e - \theta \delta \langle k1,\eta 1,p1\rangle 1 - \delta 

.

Similarly, for p2 \leq p/2, we have

Ck,\eta ,p,\eta \prime ,2(s, t) \leq e - \theta \delta p
 - \delta 
2 \langle k2,\eta 2,p2,\eta 

\prime  - L\eta 1+Kk1s\rangle \leq e - \theta \delta \langle k2,\eta 2,p2\rangle 1 - \delta 

.

In both cases, the claim (3.22) follows in view of the definition of Ak,\eta ,p. Finally, we
check (3.23). We have \langle s\rangle  - \sigma +1 \lesssim | d

dss
 - \delta | . Therefore,\int t

0

e - (s - \delta  - t - \delta )\langle k,\eta ,p,\eta \prime \rangle \langle k, \eta , p, \eta \prime \rangle \langle s\rangle  - \sigma +1 ds

\lesssim 
\int t

0

e - (s - \delta  - t - \delta )\langle k,\eta ,p,\eta \prime \rangle \langle k, \eta , p, \eta \prime \rangle | d
ds

s - \delta | ds,

which is bounded. This ends the proof of Proposition 3.2.
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