Downloaded 05/10/22 to 132.174.254.159 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. MATH. ANAL. © 2022 Society for Industrial and Applied Mathematics
Vol. 54, No. 1, pp. 940-953

PLASMA ECHOES NEAR STABLE PENROSE DATA*

EMMANUEL GRENIER!, TOAN T. NGUYEN?, AND IGOR RODNIANSKI$

Abstract. In this paper we construct particular solutions to the classical Vlasov—Poisson system
near stable Penrose initial data on T X R that are a combination of elementary waves with arbitrarily
high frequencies. These waves mutually interact giving birth, eventually, to an infinite cascade of
echoes of smaller and smaller amplitude. The echo solutions do not belong to the analytic or Gevrey
classes studied by Mouhot and Villani but do, nonetheless, exhibit damping phenomena for large
times.
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1. Introduction. In the physical literature, the large time behavior of a plasma
modeled by the classical Vlasov—Poisson system is characterized by

e Landau damping. Decay of the electric field for large times.

e Plasma echoes. An elementary wave, arising as a free transport of initial data
of the form ef(v)e*1#+Mv  will generate an electric field of order e that
is localized near the critical time 71 = n;/k; and decays® for larger times.
When two elementary waves ¢ f;(v)etki*+™iv ith arbitrarily large frequen-
cies k;,mj, j = 1,2 and the associated critical times 7; = 7, /k;, interact, a
third wave of the same form is created. The electric field of this third wave is
localized but of order €2, near the “echo time” 7 = (1, +12)/(k1 + k2), which
could be long after the first two waves have died away. The phenomenon is
often referred to as an “echo” [3].

From the discussion above, an echo is of a higher order (¢2) in amplitude. The
created wave again interacts with the other two waves, creating higher order waves
and higher order echoes and so on. That is, starting from two waves, an infinite
number of waves, of smaller and smaller amplitudes, appear, with an infinite number
of echoes of smaller and smaller amplitudes.

In this context, the fundamental question is to understand the described heuristic
picture and analyze large time nonlinear behavior of such an infinite cascade. While
the linear Landau damping was discovered and fully understood by Landau [6], the
nonlinear analogue has been largely elusive. However, important progress has been
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Ipolynomially or exponentially small, depending on the regularity of fi(v).
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made by Mouhot and Villani in their celebrated work [5], where the problem was
solved in the case of analytic or Gevrey data. Their proof has then been simplified in
[2]. The damping for data with finite Sobolev regularity remains largely open due to
plasma echoes [3] and high frequency instabilities [1, 8], while it is known to be false
for data with very low regularity [7].

In the companion paper [4], we give an elementary proof of the nonlinear Landau
damping for analytic and Gevrey data [5, 2]. In this paper, we construct an exact
solution of the classical Vlasov—Poisson system, starting form an infinite number of
elementary waves of amplitude €. Provided that e is sufficiently small and each wave
has an analytic regularity, we are able to track all the interactions and to construct
solutions which display an infinite number of echoes, which are of a smaller and
smaller amplitude as time evolves. The associated electric field decays for large times,
and therefore Landau damping holds for such data. As we are allowed to take the
frequencies of each elementary wave to be arbitrarily large, the solutions do not belong
to the class of analytic or Gevrey solutions constructed in [5, 2].

Precisely, we consider the following classical Vlasov—Poisson system?

(1.1) Ouf + 09y f + EOy f + Edyu = 0, azE:p:/fdv
R
on the torus T x R for small initial data f°(x,v) satisfying

(1.2) /T Rfo(sc,v) dadv = 0.

In (1.1), pu(v) is a stable Penrose equilibrium. Precisely, we require that u(v) is such
that
e u(v) is real analytic and satisfies

(1.3) [(0)2u(n)| + |(n)] < Coe™ .

e u(v) satisfies the Penrose stability condition, namely,

(1.4) ‘1 + / e 7i(kt) dt| > ko > 0.

inf
k€ZA\{0};RA>0 0

The condition is to ensure that the linearized system of (1.1) (obtained by
dropping the nonlinear term Ed, f) is solvable. It holds for a variety of equi-
libria including the Gaussian p(v) = e~1v*/2, In three or higher dimensions,
the condition is valid for any positive and radially symmetric equilibria [5].
We consider the initial data which are a sum of highly oscillatory simple modes
of the form

(1.5) 1z, v) = Z 5f,8’,7(v)eiK’”+iL"”

(k,n)ELXZL

for arbitary parameters K and L and for small €. In view of (1.2), we take f,g’n(v) =0
for k = 0. We stress that f© is rapidly oscillating in « and v when K, L are sufficiently

2obtained from the standard Vlasov—Poisson equations
8 f +v0.f + Eouf =0, 8IE:p:/fdv—1
R

by writing f = f + u.
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large. In particular, since K, L are allowed to be arbitrarily large, the initial data is
of order €(K, L)* in Sobolev spaces W (T x R), which is also arbitrarily large for
any s > 0.

Our main result asserts that Landau damping holds for data of the form (1.5).
Precisely, we prove the following.

THEOREM 1.1. Let Ay, Cy > 0, and K, L be arbitrary so that
(1.6) L < CyK.
Assume that (1.3)—(1.4) hold. Then, for sufficiently small € independent of K, L and
for any initial data of the form (1.5) with the analytic coefficients f,gm (v) satisfying®
(L.7) [FRn0)] < emoln ),

uniformly in k,n,n’, there exists a unique global solution to the Vlasov—Poisson system
(1.1). In addition, the solution can be written in the form

(1.8) flt,z,v) = Z  frmn(t, U)eiKszri(Lankt)v’
(k,m,p) ELXZXN*

where the coefficients fi np(t,v) are analytic in v and satisfy
(1.9) | Frnp(tnf)| < CFe ot g > 0,

uniformly in k,n,p,n’, for some universal constant Cy that is independent of K, L,
and e—in particular, the associated electric field

iKkx

xr 0

E(t,z) = S Pt Kkt — L)
(k,n,p) ELXZXN*

exponentially fast in any Sobolev spaces W4, s >0 and ¢ > 1, as t — oo.

We note that the results easily generalize to higher dimensions. Condition L <
Co K, coupled with the assumptions on the (k,n) dependence of the initial data, imply
that the “echos” occur at times which are, essentially, uniformly bounded.

Finally, we note that the parameters K, L are allowed to arbitrary (satisfying
(1.6)), which in particular includes the analytic data studied by Mouhot and Villani
[5] as a special case for K =1 and L = 0.

2. Linear theory. In this section, we recall the linear Landau damping theory
developed in the companion paper [4]. Precisely, let k& € Z, and let p(t) satisfy

(2.1) pt) + / (t — $)7(k(t - ))p(s) ds = S(1)

with a source term §(t) Taking the Laplace transform of (2.1) in time, we get
~ LISV

2.2 LIpW|N) = ———F——,

(2:2) [PIOIA) 1+ Ltu(k)](N)

where L[F(t)](A) denotes the usual Laplace transform of F'(¢). The Penrose stability
condition (1.4) ensures that the symbol 1 + L[tfi(kt)](A) never vanishes.
We then have the following.

3We use the notation (z1,..,zn) = /1 + :p% +--- 4 z2. Depending on the context, we also use

~ to denote the Fourier transform in x, v or both.
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PROPOSITION 2.1. Assume that (1.3)—(1.4) hold. Then, the solution p(t) to (2.1)
erists and satisfies

(2.3) A(t) = 8(6) + /0 Gilt — 5)8(s) ds,

where |G (t)] < Cre~ Ikt for some positive constants 6, Ch.

Proof. From (2.2), we can write
(24) LK) = LISIN) + GrNLS]),

where we denote

Ltu(k)}(A)

(2.5) Gr(\) := T LhR )

The integral formulation (2.3) thus follows, where G (t) is the inverse Laplace trans-

form of Gj (). It remains to prove the estimate on Gy (t). First, we note by definition
that

LIk () = /0 e Mea(kt) dt.

Thus, the Penrose condition (1.4) ensures that the denominator 1+ L[tfi(kt)](\) never
vanishes for ®A > 0. Furthermore, using (1.3), we in fact have

(2.6) LRIV < Co / e~ PN ye—00lkt] gy < Oy 1]~
0
for R\ > —061]k| and for any 61 < 6y. On the other hand, for R\ = —0; |k|, integrating

by parts in time, we get

S 2 _ 52) (et
ciml) = [ I ) a

© i(0)
= — (M — 0} (tri(kt)) dt — —~—2—
| e - otk a - 5
for any constant My, # A. Taking My = 26, |k|, we have

L ﬁ k AN < C 76%90‘“' k| + |k 2 folkt| d 700
t t t t+

| [ ( )]( )| 0/0 9%|k|2+|%)\|2(| | | ‘ )6 9%|k|2—|—|3)\|2’
which gives

(2.7) L[taEIN)] < Cr(1+ [k + [SA) 7

for any A on the line {RA = —0;|k|}. This proves that L[ti(kt)](A) is analytic in
{RX\ > —064]k|} for any 6, < 6.

We next prove that there is a positive 67 < 0y so that @k()\) is analytic in {*A >
—01|k|} and the estimate (2.7) also holds for G()), possibly with a different constant
Ci. Indeed, the estimate (2.7) shows that there are ko, 7o so that [L[tfi(kt)](N)] < 3
for all |k| > ko and A > —04 |k| or for R\ = —04|k| and |SA| > 79. While for |SA| < 79
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and |k| < ko, since the Penrose condition (1.4) holds for R\ = 0, there is a small
positive constant 6, so that

(2.8) 1+ LA > 3o

for RN\ = —0;]k| (recalling that 1 < |k| < kg). Combining, we have that 1 +
L[tr(kt)](A) is bounded below away from zero on {RA > —6,|k|} for all k € Z.
The estimates on Gy (A) thus follows from those on L[t7i(kt)]()).

By definition, we have

1 / At
=— MGr(N) dX
20 J {Ra=s0} W

for some large positive constant vo. Since Gi()) is analytic in {RA > —6;|k|}, and
thus we can apply the Cauchy theory to deform the complex contour of integration
from {R\ = 7o} into {RA = —0;|k|}, on which both estimates (2.7) and (2.8) hold.
Therefore,

Gr(t)

Gr(®)] < Cl/ e ML 4 K% + |SA2) 7! dA < Cre ML
{RA=—0.1]k|}

The proposition follows. ]
3. Construction.

3.1. Setup. Let us first detail the construction of the profiles fy , , in the infinite
series (1.8). Indeed, we formally plug the Ansatz (1.8) to the Vlasov—Poisson system
(1.1) with the corresponding electric field

R iKkx
(3.1) Etz)= Y & funpt, Kkt - L”)Q'Tk
(k,n,p) ELXZXN* L

and match the terms of order €”. At each step we consider the term FEJ,f of (1.1)
as a source term for the linear Vlasov—Poisson near the equilibrium p. This yields,
for each (k,n,p) € Z x Z x N*, the following linearized equation for f , ,(t,v) and

Ekﬂm(t)v
(3.2) Ot femp + Ek7n7p€_i(Ln_Kkt)vavM = Nin,ps
in which

e For p =1, we take fi,1(0,v) = f,gm(v) and Ny 1 =0.
e For p > 2, we take fi, ,(0,v) =0 and

_ —i(Lm —Kkit)v 1
Ninp(t,v) = E e By a1 (1)
(k1,m1,k2,m2,p1,p2) €Ak, 3,p

X [au + i(lﬂh - Kk?t)]sz,nz P2 (t7 U)’

where Ay, ,, , denotes the set of sextets in Z x Z x N*:

Apynp = {kl +he=k nm+n=mn p1+p2 =p}~
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The electric field is defined by R
Ekm,O(t) =0
and for p > 0, by a direct computation,

. 1 1 ~
(3.3) Ekm,p(t) = mpkmm(t) = mfkmm(ta Kkt — L77)~

As a consequence of the assumption (1.2) on the initial data, we will prove in the next
sections that Ey , ,(t) = 0 for all n and p. Note that taking the Fourier transform of
(1.8) in = and v, we have

(3.4) Kk )= > e fonplt,n — Ly+ Kkt)
(n,p) EZXN*

~

and f(t,k',n') =0 for k' & KZ.
It remains to derive estimates on the Fourier transform f , ,(t,n’) of each func-
tions fi,,p(t,v) in order to ensure the convergence of the infinite series (3.4).

3.2. Resolution using Penrose’s kernel. We begin by converting (3.2) to an
integral equation.

LEMMA 3.1. Let finp(t,v) be constructed as indicated above. Set

t
(3.5) Senalterl) = Fenp @)+ [ (oo} ds
Then, there holds

o~ o~ t o~ —_—

Jrmp®:n') = Skpp(tn’) — / By np(8)0upu(n' + Ly — Kks) ds.

0
In addition,
o~ t o~
(3.6) Pronp(t) = Sk.np(t, Kkt — Ln) + / Gi(t — 8)Sk.np(s, Kks — Ln) ds,
0

where |Gy(t)] < Coe= 0ol Kk

Proof. Integrating (3.2) in time, we obtain

t
oo (t0) = — / By (s)e 1E K5 10) ds + Sy
0

where .
Sk77]7p(t7 U) = f’fﬂl»P(Ov U) + / Nkvnvp(s’ U) dS.
0

Taking the Fourier transform yields the expression for fk’,,’p(h 7). In particular, using
(3.3), we have

t
Pr.np(t) + / (t = $)I(Ek(t = 8))Pkn.p(s) ds = Sknp(t, Kkt — Ln).
0

Using the linear theory developed in Proposition 2.1, the lemma follows. 0
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'3.3. Inductive estimates. In this section, we shall inductively derive estimates
on frnp(t,n'). In what follows, we fix Ao > 0 and K, L to be arbitrarily large so that

(3.7) L<K.

Then, we have the following.

PROPOSITION 3.2. Let o > 1 be fized. There is some universal constant Cy so

that
(3.8) |.]/c;€,n,p(ta77/)| < Cge—hp(tﬂk,n,pm%<k>—1’
(3.9) Pk p(£)] < Che™ Mol Rmp En= k) (1) =0

uniformly in k, n, p, ', and t > 0, where \,(t) is defined by
(3.10) Ap(t) =Xo+ () +p°

for some 0 < § < 1. In addition, poyp(t) =0 for all n and p.

Note that all the estimates are uniform in the large parameters K and L. The
following subsections are devoted to the proof of this proposition, which will be done
by induction on p > 1.

3.4. Estimates for p = 1. We first estimate §k’n’p(t,n’) for p = 1. By con-
struction, Ny, 1 = 0, and thus we have

Skt (t.1) = Frna (0.0) = JR, ().
By assumption on the initial data f&n(v) =01in (1.5), we have §0,n71(ta n') =0, and

S0 P0,5,1(t) = 0 due to the representation (3.6). We now consider k # 0. Using the
assumption (1.7) in (3.6), we obtain

¢
1Pk, 1 (0)] < |Skom,1(t, Kkt — Ln)| + / |Gk (t — 5)Skm,1(s, Kks — Ln)| ds
0

t
< o~ PolkmLn—Kkt) | Co/ o= 00| K k(t=5)| ,—2xo (k. Ln—Kks) g
0
Using Ao < 6p/4 and the triangle inequality, we bound
¢~ 00| Kh(t—s)] g=2Xo| Ln—Khs| < o=2Xo|Ln—Kkt|
Hence,

t
) - - - — _1 e
Bt (£)] < e~ 2otk Ln=Kkt) | 0 o=2Xo(kLn Kkt}/ o 300 Kk(t=3)| g
0
< C’OG*QAO(k,n,Lank:t).

To complete the proof of (3.9) for p = 1, we need to check the decay in time. Indeed,
using the triangle inequality

|Kkt| < |[Kkt — Ln| + |Ln|

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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and the fact that K > 1 and L < K, we have
(3.11) |kt| < K~ Kkt — Ln| + LK ‘9| < |Kkt — Ln| + |n|.

This proves that

|ﬁk,n,1(t)‘ < Coe—)\g(k,n,Ln—Kkt>e—Ag(kt>’

which proves (3.9) for p = 1, since k # 0. To estimate (3.8), we use Lemma 3.1 to
estimate

t
[Frna (60| < 1Sk (8 1)l +/ |Ern.1(s)0upi(n' + Ly — Kks)| ds
0

< e~ 2Xo (k")

t
+ Co<Kk'>71 / 67)‘0<k’77’L777KkS>6700|T],+L777Kk3‘ <S>7J ds
0

< 6—2)\g<k,17,17/) _’_CO<K]€>—16—)\0(/€777777/>
< C«O<k,>—1e—>\0(1f,77,77l>7

where we used the exponential decay of the electric field, proven above, to insert an
extra factor (s)~7 with o > 1. This proves Proposition 3.2 for p = 1.

3.5. Estimates on Ekm,p In this section, we shall prove the estimates (3.9)
on Ej, np for p>1, under the inductive assumption that the estimates (3.8)—(3.9) on

I o, and Ej, .n,p hold for all p; < p—1. In particular, Ey n1,p1 (£) = 0. Precisely, we
prove the following lemma.

LEMMA 3.3. Let P > 1. Assume that (3.8)—(3.9) hold true for any k, n, and
p < P —1. Then (3.9) is true for any k, n, and p = P, with py, p(t) = 0.

In view of Lemma 3.1, we first prove the following.

LEMMA 3.4. Under the assumption of Lemma 3.3, there holds
| Skt Kkt — Li)| < Ce e Okmpo b=k 4y =
where Sk, p is defined as in (3.5).
Proof of Lemma 3.3 using Lemma 3.4. By Lemma 3.1, we have

¢
(3.12) Pienp(t) = Sknp(t, Kkt — L) + / Gr(t — 8)Skn,p(s, Kkt — Ln) ds,
0

where |Gy (t)] < Coe~%KF Using Lemma 3.4, we have
Prnp(t)] < Cge—kp(t)%m,p,Ln—ka =

t
s / ¢~ 00l k(1=5)| =Xy () kmp. Ln—KCks) () =0 1.
0

Using A, (t) < Ap(s) < 160, we have

e~ 3001 Kk(t—s)| o= Ap(s)(kin.p, Ln—Kks)  =Ap(D)|Kk(t—s)| ;= Ap(t)(k.n.p,Ln—Kks)

< e~ e (O (kmp, L —Kkt)
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On the other hand, since k # 0, we easily bound
t
/ 67%00|Kk(t75)\<8>7o ds < C0<t>7a.
0
The desired estimates on pg,, () follow. |

Proof of Lemma 3.4. By construction, for p > 1, ﬁ7n7p(0,77') = 0, and thus we
have

t
Sknp(t,1') :/ Ninp(s,1') ds,
0
where the nonlinear interaction ﬁk7n7p(s, n') is computed by

Nkﬂ?ﬁv(svn/) =1 Z By (3)[77/ + Ln — Kks]sz,na,m(svﬂl + L — Kkys).

Ak,n,p

Note that by induction, Eomhm (t) = 0, and so the above summation is for k; # 0. In
addition, observe that at n’ = Kkt— Ln, Nk’n’p(s, Kkt— Ln) has a prefactor Kk(t—s),
which vanishes at k& = 0. Hence, by construction (3.12), po.,»(t) = 0 for any 7, p.
Therefore, in what follows, we focus on k,k; # 0. By induction, for p;,ps < p—1,
we have

| By (D] < CFt e Aoa Ol K8 | feey |7 (1) =,
[ Frasmapa (8, 1)] < C2e 2Ok 2200 (1) =1,

Hence, recalling the definition of Ay, , ,, we have

t
‘Sk,n,p(tvn/)‘ ch Z |Kk‘1|_1<]€2>_1/ e—>\p1(S)<k177717p17L771—Kk/13><s>—(7
0

Ak,n,p

x o + Ly — Kk:s|e_>‘1’2 (8)(k2m2,p2.m' +Lm—Kkis) o

It is crucial to note that \,(¢) is strictly decreasing in both p and t. We will use
this monotonicity in order to gain time decay in the estimates. Using k = ki + ko,
n =mn1 + 12, and p = p; + p2, we note that

e—Am(S)(klﬂllyPhLm—Kle)e—)\pz(S)<k2,712,P2771/+L711—Kk18)
—Xp(t){k,m,p,m")
< Chopr 008, 1) Crhippy 1(8,8) Cley pyy 2(8, 1) e )

where the factors Cy y p,j(5,t) are defined by

—d ) ’
- —t k,n,p,
Crpparo(s,t) =€ (e A npn>’

(313) Clanapap(5,8) = €= =0~ kromwm, b =K1,
Ck,n,p,n’,2(3a t):

each of which is smaller than one. These factors may be seen as gains coming from
the monotonicity of A, (¢). Combining and noting |k| < 2(k1)(k2), we thus obtain

e—(Pgé—P75)<k2,772,P27?7/+L?71—K’ﬂS)
)

t
| St )] < Cfe A OEnPm) (K ) =1 N 7 /0 0" + L — Kks|

Ak,n.p

X Crnpy 008, 8)Chenp 1(8,8) Ch o py 2(8, 1) (8) ™7 ds.

(3.14)
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Evaluating at ' = Kkt — Ln, we get

t
|Sknp(t, Kkt — Ln)| < CPe=Ar®)km.pLn—Kkt) Z (t—s)
(3.15) i Jo

X Crnp.0Cknp1Chonp2(s,t)(s) "7 ds
with Crnpj = Crmpay (s, t) for n’ = Kkt — Ln. The lemma thus follows from the
following claim:

t

(3.16) Z / (t = 5)Chn.p.0Crimp1 Chomp2(5, 1) ()77 ds < Co(t) 7.

Ak,n,p 0

Let us first bound the factors Cj ; p (s, 1).

LEMMA 3.5. Setting Crypj = Crnpa.i(s,t) asin (3.13) for ' = Kkt — Ly, we

have

5 -5
Ck,n,p,O(S,t)Sefe"(s -t )(k,ﬂ,p,kt)’

s s ‘
Ckﬂ%p;l(&t) < 6—90(111 -p )<1€17”117;l11,/€15>7
Cropp2(s;t) < e 00(pz "=~ °) (k2 12.p2 Kt —k1s)
for some positive constant .

Proof. Recalling the inequality (3.11), |kt| < |Kkt — Ln| + ||, we have
Cruypi(s,t) = e~ (7 = e p = Kk
< = (87 =t ) (km.p) /2= (s™° =t~ ) (. Ln— K kt) /2

< e~ 00(s —t=°)(kn.p,kt)

— 9

provided 6y is small enough. The bounds on Cy,p1(s,t) and Ck,p2(s,t) are
similar. d

Let us now prove the claim (3.16). To estimate the time integral, we consider two
cases: p1 < p/2 and pa < p/2.

Case 1: p; < p/2. In this case, we note that
pi’ —p % > Ospr”
for some positive constant fs. This and the estimate from Lemma 3.5 yield

—s
Ck,n,pJ(S,t) < e 0sp1 (k17n17p17k18>.

Let us further bound the exponent. Using the standard Young’s inequality ab <
a?+ b7, with ¢ =1/(1 —9) and ¢’ = ¢/(q — 1), we have

(3.17) la' =% = (@) |pr |00 < Cs (Ipa|~Ja] + o)

for some constant Cy. Using this with a = (k1, 1, k18), we have

L

k kys)i—o.
C(;< 1,71, 15>

Py (ko pr kas) > o]0+ (a0 (e, s e s) >
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Clearly, we also have pl_‘S(kl, n,p1,k1s) > (p1)'0, recalling p; € N*. This yields

_ 1 5
(318) p16<k17n1ap1;k18> Z 7<k137717p17k15>1_ .
2Cs
Therefore,
(3.19) Crmpa(s,t) < e~ 0pr " (kamprkrs) < O tkmp)' ™0 =05 (kas) "

for some positive constant 65.
On the other hand, we simply bound

Crmpo(s,t) < emPG =) kmpkt) < o=00(s™2=170) ()

noting k # 0. We also bound Cj 5 2(s,t) < 1. Inserting these estimates into (3.16),
we have

t

3 / (t = 5)Chnp0(5:)Choppt (5:8) Ciom (5, £)(5)7 dis

Akm,p
ot
< Z 6*9:;<k11771»p1>170/ (t_8)6—00(5*57t*5)<t>6*93<k18>1—8<$>70' ds
Ak,nvp 0

t
</ ( — s)e=00(s P =)0 =05 (9~ (y=0 g
0

~

in which we used e—%k19)' ™" < 6_9‘“5)175, since k; # 0. It remains to bound the
time integral

t
/ (t — s)e 00l =)0 =03 ™" ()= g < Oy ().
0

Indeed, the estimate is clear for s > ¢/2, using the exponential term e=0()" ™" in the
integrand. On the other hand, for s < t/2, we make use of the fact that s=0 —¢=% >
5t°, yielding again an exponential decaying term

e~ (5T ) < =050

The claim (3.16) follows.

Case 2: py < p/2. Similarly, in this case, we use
Py’ =70 > 051"
for some positive constant 65, which implies
C’k,n,p,z(s,t) < 6795p2_6<k2,7]2,p2,kt7k18>'
Estimating the exponent exactly as done in (3.19), we thus obtain

(3.20) Cronpa(s,t) < e 05(k2,m2 ,P2>1_56705<kt7k13)1_5 )

In the case when |kt — ki1s| > t/2, the above yields an exponential decay term in
(k2,m2,p2,t). The claim (3.16) thus follows.
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It remains to consider the case when |kt — kis| < t/2. It suffices to treat the
case k > 0, the other being similar. In this case, we note that k&; > 0 and s €
[k (k —1/2)t, k7Y (k + 1/2)t]. In particular, as s < ¢, we have k; > k. We treat two
cases k1 = k and k; > k, separately.

Consider first the case when k1 = k # 0. We then have

Ck,n,p,2(3»t) < 6—95(k2,7727p27k(t—3)>175 < 6_06<k27"727p2>1766_96<t—8>17’5,

while we simply bound C , p.o(s,t) <1 and Cipp1(s,t) < 1. Let us now check the
claim (3.16) for this case. We have

t
> /(t—S)Ck,n,p,O(&t)Ck,n,p,l(&t)Ck,n,p,2(87t)<8>_” ds

Akm,p 0
t
. Z 6_06<k27n27p2)1—6/ (t_s)e—e(s(t—s)l—a@)_o ds
Ak,n,p ’

t
5/ e—%95(t—8>1*5<5>—a ds,
0

which is clearly bounded by Co(t)°.
Next, we consider the case when k1 > k > 0. In this case, recalling (3.20), we
have

Cropa(s,t) < 6795““27’727172)1_5,
while we use the following bound on Cj ; p.0(s,t):
Clmpols.1) < 00400

Since s € [k;*(k — 1/2)t, ky ' (k + 1/2)t] and k; > k > 0, we bound

kS 1
-5 _ 46> 1 . > !
5 t ((k:+1/2)5 1>t6 > 05t~k

for some positive constant 5 independent of k, k1. This proves
Clnpo(s,t) < e % mlié-

We also bound C 5, p,1(5,t) < 1. Combing the estimates into (3.16), we thus have

t

Z (t = $)Chopp.0(8,t)Cronp,1 (5, )Chnp2(s,1)(5) "7 ds

Ak.n.p 0
¢
< Z 6—95<k2-,?72wp2>175 / (t — 5)6—95@)175 (s)77 ds,
Ak.n.p 0
which is again bounded by Cy(t) 7. The claim (3.16) follows. 0

3.6. Estimates on fkm,p. In this section, we prove the estimates (3.8) on fkm@:

(3.21) | fromp (1) < Che~ e’} (=1,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/10/22 to 132.174.254.159 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

952 EMMANUEL GRENIER, TOAN T. NGUYEN, AND IGOR RODNIANSKI

assuming that the estimates (3.8) on ﬁwm,l hold for all p; < p—1 and the estimates

(3.9) on and Ek,n,pl hold for all p; < p. This will end the proof of Proposition 3.2.
By Lemma 3.1, we have

t
fk,n,p(tanl) = Skmm(tﬂ?/) - / Ek,n,p(S)auM(U/ + Ln — Kks) ds.
0

Using (3.9) and the analyticity assumption on p(v), we get

t
/ \Brnp($)0on(rf + Ly — Kks)| ds
0

t
< Cg(Kk:)‘l/ e—Ap(S)<km7p7Ln—Kk5>e—eo\n’-s-Ln—KkSI<S>—0 ds.
0
t

SCg<Kk>7lef/\z’(t)<kﬂhp,n'>/ (s)~7 ds
0

< Cg<k>—1e—/\p(t)<km,pm’)
in which we used that \(t) < A\(s) < 6.
It remains to give estimates on Si ,,(t,7’). Recall from (3.14) that

t
| Sk p(t )| < Che A Eme) (R =1 N / ' + Ln — Kks|
Ak,n,p
X Ckm’p,n’,()(sat)chmp,n”l(sat)ck,n,p,n’ﬁ(svt)<5>_a ds,

where the factors Cy y; p.,j (5, 1) are defined as in (3.13). Since K > 1 and L < K, we
have
K= + L = Kks| < [if'| + |nl + [ks| < (s)(k,n,p,71')-

The claim (3.21) will follow from the following estimates, which we will now prove:

(3.22) Z Crmpiy 1(8: 1) Crppy 2(5,1) 1,
Ak,n,p
and
t
(3.23) / e_(sfé_tfsxk’"’p’"/)<k,n,p, ) ()7 ds < 1,
0

uniformly in k,n,p,n’, and t.
Let us start with (3.22). As argued above, we have, for p; < p/2,

_ =6 _ _ 1-5
Crmpmra(st) <e Ospy ° (k1,m1,p1,Lm —Kkys) <e 05 (k1,m1,p1)

Similarly, for ps < p/2, we have

Chmpar2(5,1) < 6—9517;6(kz,nz,pz7n/—Ln1+Kk1S> < o 05 (k2.m2.p2)' %

In both cases, the claim (3.22) follows in view of the definition of Ay , . Finally, we
check (3.23). We have (s)=7F! < |4 57|, Therefore,

t
/ 67(57672&75)(]“”7’1’177/)<k7n’p,7]/><8>70+1 ds
0

t
: / e ) ey o) L0 s,
~ 0 ds

which is bounded. This ends the proof of Proposition 3.2.
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