
DOI reference number:10.18293/SEKE2021-052

A Collaborative Forensic Framework for Detecting

Advanced Persistent Threats

Weifeng Xu

Forensic Science: Cyber Investigations

University of Baltimore

Baltimore, USA

wxu@ubalt.edu

Jie Yan

Department of Computer Science

Bowie State University

Bowie, USA

jyan@bowiestate.edu

Daryl Stone

Department of Technology and Security

Bowie State University

Bowie, USA

dstone@bowiestate.edu

Abstract—An advanced persistent threat (APT) is one type of

cybercrime that steals valuable information over an extended

period through malicious activities. The paper proposes a

collaborative framework to systematically detect APTs by

analyzing the Cyber Forensic Evidence (CFE) collected from a

System Under Investigation (SUI). It is a post-compromise

analysis based on Forensic-Evidence-Driven Finite State Machines

(FED-FSM) modeled from an SUI. A FED-FSM extends an FSM

by defining a set of forensic evidence patterns as guided conditions

that trigger the state changes of FSM. The approach consists of

three tasks (1) collecting shared CFE and formalizing patterns of

CFE, (2) modeling the security status of an SUI in a FED-FSM,

and (3) building a Threat Activity Detection Engine to match the

observed CFE from SUI logs with the CFE patterns in the FED-

FSM. An empirical study shows the framework can be used to

detect malicious activities of Poison Ivy, which utilizes a remote

access tool to control computers.

Keywords—advanced persistent threat, Structured Threat

Information Expression, finite state machine, threat detection,

ATT&CK framework, digital forensics

I. INTRODUCTION

An advanced persistent threat (APT) is one of the
cybercrimes, which typically refers to a state-sponsored hacking
group and cyberattacks associated with the group. APT
strategizes its way to infiltrate an organization’s network and
exfiltrates valuable information. For example, one common
attack executed by APTs is to place custom malicious code on
one or multiple computers for specific stealth tasks. Various
approaches have been proposed to study and detect APT
activities, either through scanning signatures of malicious code
[1] [2] [3] or analyzing evidence that malicious programs are left
on systems or networks activity logs [4] [5]. A common issue of
these approaches is that they act alone during the whole
investigation process: they set their environments, collect
evidence, observe patterns, and make conclusions based on their
judgments. It is hard for the cybersecurity community to recreate
their environments, verify their observations, and reuse their
observation results. MITRE [6][7] has proposed an Intelligence-
sharing-based approach to fight against cybercrimes with
collaborative efforts. It developed a concept called shared Cyber
Threat Intelligence (CTI) to facilitate knowledge sharing. For
example, Figure 1 shows a shared scenario which consists of two
predefined objects indicator and malware. The figure means that
a cybercrime investigator has reported that he/she has found

malware, named Poison Ivy (PIVY). PIVY is a remote access
tool used by many APTs and cybercriminals for information
infiltration. To support his/her findings, the investigator attaches
the hash code of the malware to the indicator object, which
defines the possible threat patterns of malware, e.g., the SHA
hash code of the PIVY executable file.

Figure 1. A simple indicator uses a file hash to indicate the presence

of Poison Ivy

Shared CTI sounds promising for collaborative threat
detection and therefore, has attracted much attention in
cybersecurity communities. However, there are major
challenges to apply them directly in practice due to: (1) Current
CTI framework does not support presentable CTI in terms of
forensic investigations. Detecting APT threats is the process of
investigating cybercrimes with supporting digital evidence. A
presentable shared CTI has to describe how threat evidence is
acquired, preserved, identified, and validated to meet the
requirements of the law, (2) the lack of a systematical approach
to discover digital forensic evidence for a System Under
Investigation (SUI). Current CTI only describes the evidence
and the patterns of threat evidence using Indicator, it doesn’t
provide practical guidelines of how evidence can be extracted
for a given SUI, and (3) Current CTI cannot describe the
dynamical behaviors of an APT. Current CTI is a threat data
model, which only describes static objects. To detect APTs, a
dynamical model is needed to describe the known behaviors of
APTs so that the model can be used for matching a given SUI.

The paper demonstrates a framework to detect APTs
imposed on an SUI over time using Forensic-Evidence-Driven
Finite state machines (FED-FSM). The approach first enhances
CTI to Cyber Forensic Intelligence (CFI) and enables indicator
objects to capture the properties of digital forensic evidence. The
enhanced indicator object is called Cyber Forensic Evidence
(CFE) object. We then propose a systematic approach to extract
CFE-objects from an SUI and specify the SUI as a collection of
CFE objects. Finally, we model the SUI in a FED-FSM with
CFE objects as the model’s guided conditions. We build a Threat
Activity Detection Engine (TADE) to detect APTs that impose
on the SUI by comparing the observed CFE objects with the

CFE objects defined in FED-FSM. The contribution of the paper
includes: (1) the formalization of CFE by leveraging ATT&CK
knowledge model [6][7] (2) inferring dynamical behaviors of an
APT using FED-FSM, and (3) designing a scalable threat-
activity detection framework for detecting real-world APTs
systematically.

The rest of the paper is outlined as follows: Sections II and
III describe the difference between CTI and CFE and how CEF
can be discovered systematically. Section IV shows the
proposed architecture for detecting APT activities. Section V
formally defines FED-FSM. Section VI describes an empirical
study. Section VII summarizes the related work. Finally, Section
VIII concludes this paper.

II. SHARED-CYBER THREAT INTELLIGENCE AND CYBER

FORENSIC EVIDENCE

Intelligence-sharing is a critical strategy for cybersecurity
defenders because it allows them to avoid the missteps of their
peers within the security community and to deploy proven
defensive measures. To systematically and effectively share
security Intelligence, research groups [6][7] have realized that
cybersecurity-related terminologies, measurements, and
standards need to be defined to understand the security and share
CTI. For example, to better understand security problems,
MITRE has created an ATT&CK framework to document
common Tactics, Techniques, and Procedures (TTP) based on
real-world observations of adversaries’ operations against
computer networks. To share CTI, OASIS CTI technical
committee [8] has developed Structured Threat Information
Expression (STIX) to formalize CTI and enable interoperable
sharing of CTI across organizational, technology, and
geographic boundaries. STIX is considered a de facto standard
for many industries and organizations [9]. Figure 2 shows a
shareable CTI expressed in STIX objects based on Fireeye's

Poison Ivy (PIVY) Report [10]. Colored icons in the figure
represent various types of objects defined in STIX. Each STIX
object defines various attributes to specify the object. For
example, the indicator object shown in Figure 1 has two
attributes, the type of indicator, e.g., malware activity, and the
pattern of the indicator, i.e., the hash code of the malware file.
Note that the PIVY data model shown in Figure 2 primarily
relies on 25 indicator objects (i.e., blue circles with fingerprint
symbols) to represent suspicious or malicious cyber activities.
These indicators are spread out all over the model and there are
no pre-defined semantic relations among them.

We extend shared CTI to CFE to align with the general

process model of digital forensic investigation, including

evidence collection, analysis, interpretation, and validation.

Figure 3 shows the CFE object extends the Indicator object in

CTI. The hollow arrow represents the extended relationship and

the solid diamonds indicate collection tool, media, investigator,

etc. are components of forensic evidence object. We use CFE

object and its components to answer the questions related to the

legal aspects of digital forensics [11] [12]:

• Where is forensic evidence collected, e.g., memory or

disks? It can be addressed by Collection Tool and Media

objects, which are used to describe the source of the

evidence and how evidence is extracted and stored.

• Who does collect the evidence? When did a person

access the original digital evidence? Is the person

forensically competent? This information can be

addressed by an investigator object.

• How does the analysis carry out? How to interpret the

results? A solid forensic evidence analysis should be

based on math and science. Besides the pattern match

method defined in the Indicator object, we propose the

Identification objects in CFE to record other methods

Figure 2. A threat data model based on Fireeye's PIVY report

and algorithms used for evidence analysis and

explanation. For example, evidence patterns or new

evidence can be discovered by artificial intelligence

(AI).

• Most importantly, how the above process and results are

validated? Why should courts trust the process and

results? For example, upon seizing digital evidence,

action should not change that evidence. We propose

Preservation and Interpretation objects to validate the

authenticity of evidence and explain the. For example,

if evidence patterns or new evidence is discovered by

artificial intelligence (AI), then explainable AI

algorithms may show investigators and courts how

much they can trust evidence.

Figure 3. CFE object extends Indicator object in CTI

III. CYBER FORENSIC EVIDENCE DISCOVERY

We propose a systematic approach to search for possible
CFE for an SUI. The main idea of the approach is based on the
fact that all CFE is generated by software and hardware of the
SUI that was used by cybercriminals. Figure 4 shows a bottom-
up layered architecture to discover CFE. Layer one represents
any cybercrimes involving computing-related devices. Layer
two is called a forensic evidence generator layer. It represents a
computing-related device used by cybercriminals and is
considered a forensic evidence generator. All system
components of the device, such as software and hardware, will
either generate CFE or store generated CFE. Layers three and
four classify CFE objects in a tree-like structure. In the structure,
all CFE is the root of the CFE tree, layer three represent CFE
categories, and layer four contains all CFE objects. The first
level of layer three has three types of CEF, including
application-generated CFE, operating system (OS)-generated
CFE, and hardware-generated CFE.

The application-generated CFE has two sub-types, the
application function-generated CFE and application non-
function-generated CFE. From the software engineering
perspective, an application is developed based on two types of
requirements, functional and non-functional requirements. A
functional requirement is a description of the service that the
software must offer. It defines a function of a system or its

component, where a function is described as a specification of
behavior between outputs and inputs [13]. Non-functional
requirements are often referred to as "quality attributes" of a
system, including usability requirements, security requirements,
reliability requirements, etc. For example, an online chatting
application that is built from functional requirements will
generate CFE objects related to the chat functions, such as chat
text messages, images, audio, and videos. To meet the usability
requirements, the online chat application may cache credentials
in cookie or memory and the cookie is considered a classic CEF
object. The security requirements may save the private key of
the application in a folder. The key is a CFE too. These identified
CFE objects are in layer four. Similarly, OS-generated CFO also
can be classified into two sub-categories, OS-function and non-
function generated CFE objects. A typical operating system has
three main functions: (1) manage the computer's resources, such
as the Central processing unit (CPU), memory, and disk drives,
(2) provide a user interface, and (3) execute and provide services
for applications software. The non-functional features of an OS
can also have usability, security, reliability requirements, etc.
Note that layer three can be further refined to form sub-types as
needed.

Figure 4. A systematical approach to discover digital forensic

evidence for a system under the investigations

The hardware-generated CFE is different from the software-
generated CFE, including the application- and OS-generated
CFE. It contains three sub-types of CEF related to the hardware
components of commuting devices, CPU-generated CFE, hard
drive-generated CFE, and memory-generated CFE. Memory
forensics is a vital form of cyber investigation that allows an
investigator to identify unauthorized and even malicious activity
on a target computer or server. This is usually achieved by
running special software, known as a memory dump, which
captures the current state of the system's memory as a snapshot
file. The memory-generated CFE presents some special states in
memory dumps. There are two types of memory-generated CFE,
volatile memory generated CFE and non-volatile memory
generated CFE. Volatility Framework [14], a volatile memory
extraction utility framework, can extract many CFE objects,
such as clipboard, cmdline, and iehistory. The non-volatile

memory CFE refers to firmware generated CFE. Firmware is a
specific class of computer software that provides low-level
control for a device's specific hardware. Typical firmware CFE
objects include Basic Input/Output System (BIOS), hard driver,
and routers and firewall firmware. These CFE objects are in
level four and the leaves of layer three.

Formally, we can model the relations between cybercrimes
and their associated CFE.

• All committed cybercrimes C in layer one is a
collection of crime C= {c1, c2, …, cn}, where each
cybercrime ci 𝜖 𝐶 and 1 ≤ i ≤ n.

• All CFE objects E in layer four is a collection of CFE
E = {e1, e2, …, en} , where ei 𝜖 𝐸 and 1 ≤ i ≤ n.

• CFE generated from a crime c under the investigations
is a set of CFE object V = g(c) ⸦ E where g is a CFE
generation function, which represents how the crime c
is committed.

IV. AN ARCHITECTURE FOR DETECTING APT CYBERCRIME

ACTIVITIES

Figure 5 shows the architecture of detecting APT
cybercrimes. The architecture has three main components
shown inside of the dashed rectangle: a CFE model repository,
a FED-FSM model repository, and a TADE. The system takes
shared APT CFI, SUIs, and observable CFE objects from the
SUI as inputs to infer possible malicious activities.

Figure 5. The architecture for detecting APT Crime activities with

FED-FSM

A. A CFE Model Repository

A CFE model repository is a collection of sharable CFI from
APTs expressed in JSON. Each CFE model consists of a list of

CFE objects. Formally, let define c = PIVY and g is the function
that generates all the CEF objects, i.e., V = g(c) = {PIVY file, IP
address, Running process,…}. PIVY file is a CFE object, which
refers to the existence of the malware file itself (i.e., the static
executable file). The IP address refers to the IP address of
attackers, i.e., the client of PIVY is a CFE object because
attackers need to communicate with the PIVY server. Also, the
running process is another CFE object that indicates PIVY is
running on victims’ devices.

The following JSON file defines the PIVY file CFE object.
The CFE object defines CFE attributes that are associated with
a threat activity. These attributes include the CFE type, id, name,
pattern, etc. Patterns are designed to assert suspicious or
malicious cyber activities. Specifically, patterns use observable
objects and their attributes to describe forensic evidence that is
associated with known malicious activities. For example, the
pattern [file: name = 'Poison_Ivy_2.3.2.exe'] is to

assert the existence of the PIVY file. Logic operations can be
applied to multiple observable objects as well. For example, in
addition to asserting the existence of the specific file, the
following pattern can check the identity of the file (e.g., an SHA-
256 hash) with the logical operator AND, [file: name =
'Poison_Ivy_2.3.2.exe' AND file: hashes='SHA-

256' = '…e9f5']. Note that STIX defines a cyber-

observable object dictionary. Indicators containing cyber
observable objects can be collected from threat data model
repositories available publicly or created to support the
flexibility of the framework.

1
2
3
4
5
6
7
8
9
10
11
12

Poison Ivy file CFE object in JSON
{
"type": "CFE-file obect",
"id": "PIVY-CFE-file-1",
"created": "2014-02-20T09:16:08.989Z",
"modified": "2014-02-20T09:16:08.989Z",
"name": "PIVY 2.3.2",
"description": "Assert the exists of
 PIVY process.",
"labels": "malicious-activity",
"pattern":"[file:name=
 'Poison_Ivy_2.3.2.exe']"
}

Figure 6. Code Snippet of a CFE object in PIVY

B. A FED-FSM Model Repository

A FED-FSM model repository contains a collection of FED-
FSM models. The main design idea of the repository is that (1)
FED-FSM models in the repository describe potential APT
activities imposed on SUIs and (2) any CFI we have observed in
SUIs to infer and monitor the potential APT activities in terms
of FED-FSM models can be used.

Traditional FSM is a well-studied mathematical model of
computation, and these mathematical models are suitable for
process automation. Unlike static threat data models for CTI
sharing, which only describe static threat information, FSM is
commonly used for capturing dynamical behaviors of
synchronous sequential machines or software systems, and it has
been utilized for detecting security vulnerabilities
[15][16][17][18]. A state in FSM models is a description of the
status of a system. An FSM model often contains a list of its

states and one initial state. A state of an FSM model can change
from one state to another in response to some activities or
external events. Such a change is called a transition.

However, traditional FSM models cannot be used for SUI
threat detection directly because their transitions, such as
attacking or threat activities, are unknown or unpredictable for
threat analysis. Without knowing these threat activities, it will
be very challenging for analysts to monitor and understand the
status of SUI and to detect threat activities. To address the issue,
we extend FSM by only allowing FSM states to change in
response to forensic evidence left by APTs and patterned CFE
objects. These CFE objects are from the CFE model repository.
The status of a FED-FSM model is inferred by CFE objects
instead of triggered by unknown threat activities. The formal
definition of FED-FSM is discussed in the next section for
process automation.

C. A Threat Activity Detection Engine

TADE shown in Figure 7 is another key component of the
APT detection system. TADE consists of three different data
types and threat activity detecting algorithms. These data types
include CFE, cyber observed data, and sightings. The idea of the
TADE is to use algorithms to infer the existence of malicious
based on observed forensic evidence CFE extracted from an SUI
and shared CFE fed on other cybersecurity intelligence
resources, such as Anomali [19].

Figure 7. The APT activity detection engine (TADE) for detecting

threat activities using CFE (e.g., Indicator), Cyber observed data,

and Sightings

The detection engine has defined the following major
functions:

• Collecting evidence logs. The log files include APT
activity forensic evidence collected from files, disks,
networking, and host system events as well as processes
and signature strings in memory (Figure 4).

• Preprocessing logs. Logs will be cleaned, checked,
organized, integrated, and stored in an evidence data
repository or in memory for better performance.

• Formalizing observed evidence data. Similarly, the
observed evidence data collected from an SUI will be
specified in supporting STIX Domain Objects (SDO),
named Observed Object or Observed CFE objects. Note
that while CFE objects represent intelligence assertions
behind attacks, raw observed information helps
formulate the basis behind this intelligence, the
observed CFE objects convey information that was
observed on systems and networks. Multiple observed
CFE objects can be used for crosschecking evidence and
therefore increase the confidence of inferring results.
The following code snippet shows an observed CFE file
object, including its name, size, hash codes, etc.

1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

An observed file object in PIVY
{
“type": "observed CEF Object",
"id": "observed-data--1",
…
"objects": {
 "0": {
 "type": "file",
 "hashes": {
 "MD5": "CF7AB60B7948232C4
 47F284FC695A868",
 "SHA-256": "6cd85b478066
 …
 479d8f9f198be9f5"
 },
 "name": "Poison_Ivy_2.3.2
 .exe",
 "size": 54824
 }
}

Figure 8. Code Snippet of an observed file object in PIVY

• Determining threats. To detect a threat activity, we first
use the STIX Relationship Object (SRO), i.e., Sighting
object, to report observations of both CFE objects and
observed CFE objects. Sighting objects use two
references to capture: what indicator was sighted (i.e.,
sighting_of_ref) and what was seen on an SUI,

(i.e., observed_data_ref). SROs are also specified

in JSON to facilitate the threat detection automation
process. Based on information collected by Sighting
objects, various detecting algorithms can be used for
determining whether threat activities exist by using
patterns in CFE objects against observed data attributes.

V. FORENSIC-EVIDENCE-DRIVEN FSM MODEL

A FED-FSM model extends an FSM model by integrating a
CFE model into the FSM model. Specifically, transitions of an
FSM are determined by threat indicators specified by CFE
objects. Formally, a FED-FSM model is defined as a tuple <S,
T, F, I, L, 𝜑, s0>, where the elements of the tuple are defined as
follows:

1) S is a set of states of an SUI.
2) T is a set of transitions of an SUI.
3) F is a finite set of arcs from one transition to another,

i.e., 𝐹 ⊆ 𝑆 × 𝑆.
4) I is a set of threat indicators specified by CFE objects.
5) L is a threat indicators-selecting function on T and I, i.e., 𝐿(𝑡, 𝐼) ⊆ 𝐼 and 𝑡 ∈ 𝑇.
6) 𝜑 is a guard function on T and L. The guard condition

of transition t, 𝜑(𝑡, 𝐿), is a first-order logical formula,
which can be evaluated as true or false. The element of
the formula is a list of STIX patterns that represent CFE
objects.

7) s0 is an initial state. It is often defined as Secure, i.e., s0

= Secure and s0 ∈ 𝑇.

Figure 9 shows two states (i.e., Secure and Penetrated) and
one transition of the PIVY FED-FSM model based on Fireeye's
PIVY report [10]. The state Secure is an initial state and it

indicates a system has not been compromised. Penetrated state
indicates malicious code that has been successfully executed on
an SUI by an attacker. The tuple t = (Secure, Penetrated) is a
transition. The threat indicator-selecting function 𝐿(𝑡, 𝐼) selects
a CFE object with a process ID, e.g., observed-data—2, from I,
where I represents all available CFE objects in the CFE model
repository. The guard function 𝜑(𝑡, 𝐿) on the transition t defines
the pattern formally, i.e.,

[pattern":"[process:name=
 myPoisonIvy_HK’]"]

TADE will use the pattern to evaluate observed CEF objects
collected from an SUI and return true if the pattern matches
observed CEF objects or false if it doesn’t. The Boolean value
determines whether the current state will change from Secure to
Penetrated.

Figure 9. Two states and one transition from Poison Ivy FED-FSM

model

FED-FSM models can also be expressed in Amazon States
Language (ASL) in JSON format [20]. The following code
snippet shows two states, Secure and Penetrated, as well

as the lambda pseudo function (called resource),

DetectProcess, for determining whether a threat exists in

an SUI.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21

{
 "Comment": "A partial code snippet of
 Poison Ivey FED-FSM model
 in ASL",
 "StartAt": "Secure",
 "States": {
 "Secure": {
 "Type": "Task",
 "Resource": "DetectProcess",
 "Next": “Pentrated”

 },
 “Penetrated”: {…}
 }
};

DetectProcess lambda pseudo
function as a transition
exports.handler =
 function(event, context) {
 context.succeed(
 indicator.match(
 observedData));
};

VI. EMPIRICAL STUDY

The empirical study demonstrates the use of the framework
to detect an APT that utilizes a customized PIVY against an SUI.
We describe the following three artifacts related to the case
study.

A. Case Study Environment Setting

The case study is conducted in a VirtualBox with two
Windows virtual machines (VMs) and one security onion
(https://securityonionsolutions.com/) Linux VM. One Windows
VM acts as a PIVY client and another one acts as a PIVY server.
The security onion is to monitor network traffics among three
VMs. The client that is controlled by an attacker is configured
on the attacker’s machine. It will accept the server’s connection
and act as a command and control center of the server. The
server or payload is created by the attacker using Poison Ivy
2.3.2 and then distributed to one victim’s machine. Once the
victim executes the payload, the payload will infect its machine
and connect to the computer running the PIVY Client. Malicious
activities, including internal reconnaissance and data exfiltration
[21], will be carried out after the victim’s machine has been
infected. The environment setting instructions for the empirical
study can be accessed at GitHub [22]. Figure 10 shows the PIVY
client and a victim’s machine that has been infected by a PIVY
server. The PIVY client is listening on its port 3460.

Figure 10. A PIVY client is listening on its port 3460

B. PIVY FED-FSM Model

Figure 11 shows the PIVY FED-FSM model of an SUI.
Besides the two aforementioned states, Secure and Penetrated,
the FED-FSM model has two states: Explored and Exfiltrated.
The state Explored indicates an SUI has been explored by
attackers to gain a better understanding of the environment for
future actions. The state Exfiltrated indicates the SUI has an
unauthorized movement of data.

Figure 11. A Poison Ivey FED-FSM model of an SUI

The model has three types of guard functions on ten
transitions. Each guard function contains multiple comparison
expressions. For example, the guard function 𝜑3 indicates that
at any state except Secure, the destination state will be
Exfiltrated if both comparison expressions c8 and c9 are
evaluated as true.

Table 1 lists ten representative comparison expressions used
in the model for matching possible threat evidence collected
from logs. The types of evidence include file, directory, process,
Windows registry, IP address, and network traffic.

Table 1. Ten comparison expressions used in the FED-FSM
model

I

D

Comparison Expressions Matches

c
1

file: name =
‘myPoisonIvy_HK.exe’

the name of
PIVY Sever

c
2

file: name MATCHES
‘BG.bat.lnk’

a created file

c
3

Directory: path LIKE
‘c:\\Windows\\%\\dfed’

a created
folder

c
4

Process: name =
‘myPoisonIvy_HK’

a running
process

c
5

win-registry-key: key =
‘^HKEY_LOCAL_MACHINE\\S
OFTWARE\\Microsoft\\
Windows\\CurrentVersion
\\Run\\
myPoisonIvy_autorun’

a created
registry key
for auto run

c
6

ipv4-addr:
value=’10.0.2.12’

an IP address

c
7

ipv4-addr:
value=’10.0.2.12/24’

a subset of IP
address

c
8

network-
traffic:dst_ref.value =
'10.0.2.12'

network traffic
to IP
‘10.0.2.12'

c
9

network-
traffic:dst_port =
‘3460'

network traffic
to port '3460’

Note that (1) the nine observable objects are a subset of 102

objects described on the PIVY report [10] and Trend Micro [23].
(2) The empirical study uses lightweight command-line tools
(CLT) to collect observable data. These tools include netstat,
Windows Management Interface Command (wmic),
PowerShell, Logparser, and Sysinternals Utilities. For
demonstration, Figure 12 shows the observable evidence
detected on the Windows registry, which indicates PIVY has
created a registry key for autorun, which maintains the
persistence of threats.

Figure 12. Observable evidence showing on Windows registry

C. Framework Deployment Diagram

The deployment diagram for detecting APTs is shown in
Figure 13, which describes the system components after
implementation. To facilitate the discus, we have added two
teams in the diagram. A red team (red icon on the figure) is an
independent group that challenges an organization to improve
its effectiveness by assuming an adversarial role or point of
view. The red team will: (1) Simulate APTs. Set up a controlled
environment, e.g., using virtual machines, to simulate attacking
scenarios, e.g., APT uses Poison Ivy. (2) Set up a Trusted
Automated Exchange of Intelligence Information (TAXII)
server [9]. It stores PIVY data models in a local repository [24].
(3) Serialize and de-serialize STIX JSON content using a TAXII
client and Python APIs [25]. A blue team (black icon on the
figure) is a group of individuals who perform an analysis of
information systems to ensure the security of SUIs. Specifically,
the blue team sets up a FED-FSM server to host FED-FSM

execution frameworks, an observable data server to collect logs
from an SUI and a TAXII/FED-FSM client [26] that executes
the TADE and visualizes FED-FSM models. The empirical
study adopts a Python framework for developing and running
FSM-based workflows on AWS Lambda [27]. The framework
provides a means to check a state machine's logic and monitor
executions.

Figure 13. The deployment diagram for detecting APTs

VII. RELATED WORK

There have been many attempts to develop frameworks to
systematically detect APTs. Bhatt et al. presented a framework
[28] that models multi-stage attacks in a way that both describes
the attack methods as well as the anticipated effects of attacks.
The foundation to model behaviors is by the combination of the
Intrusion Kill-Chain attack model and defense patterns. Haq et
al. [29] described a computerized method in which one or more
received objects are analyzed by an APT detection center to
determine if the objects are APTs. The analysis may include the
extraction of features describing and characterizing features of
the received objects. The extracted features may be compared
with features of known APT malware objects and known non-
APT malware objects to determine a classification or probability
of the received objects being APT malware. Wan et al. proposed
a network gene-based framework [30] to describe the semantic-
rich network behavior patterns of network applications. It took
advantage of the latest advances in the fields of protocol reverse
analysis, cloud computing, and big data processing, with
automatic analysis and extraction of network genes, and data
stream computing-based network gene real-time processing.
Vert et al. [31] applied an advanced state machine engine to the
analysis of state variables that can detect the presence of APTs
and other malware. The Finite Angular State Velocity Machine
(FAST-VM) can model and analyze large amounts of state
information over a temporal space. The approach can analyze
and model large amounts of data over time. Friedberg et al.
applied a kind of black-list approach and only considered actions
and behavior that match well-known attack patterns and
signatures of malware traces [32]. They proposed an anomaly
detection technique that keeps track of system events, their
dependencies, and occurrences, and thus, the technique can learn
the normal system behavior over time and report all actions that
differ from the created system model.

None of the aforementioned APT detection frameworks are
practical since they lack the essential characterizations of a
framework for automation, including the scalability of

architecture [28][31][32], the formalization attacks of APT
features [28][29][31], and the diversity of observable objects of
SUI [30][32].

VIII. CONCLUSION

The paper presents a new formal approach that uses FED-
FSM to detect APTs. The FED-FSM models are driven by real-
world knowledge of adversary tactics and techniques stored in a
shared repository. Instead of monitoring APTs directly, the
approach infers the APT's status by analyzing the forensic
evidence that malicious actors left on digital devices. The
approach requires us systematically collecting crime activity
logs, extracting evidence from logs, and formalizing digital
forensic evidence. Two types of digital forensic evidence are
defined in the paper, shared CFE objects, and observed CFE
objects. These two objects are the drive force of FED-FSM. A
demo program that is implemented in Java can be accessed at
[33]. Note that the guided conditions of transitions in FED-FSM
are predefined in FED-FSM using patterns. In future work, we
are interested in investigating artificial intelligence-based
approaches to discover patterns from shared CFE objects
automatically and match patterns with observed CFE objects.

ACKNOWLEDGMENT

The work is supported in part by the National Science
Foundation 1714261, 2039289, and the Office of Justice
Programs 2019-DF-BX-K00.

REFERENCES

[1] R. S. Hoefelmeyer and T. E. Phillips, “System and method for malicious
code detection,” May 9, 2006, US Patent 7,043,757.

[2] P. Szor and P. Ferrie, “Detecting malicious software through process dump
scanning,” Jul. 28 2009, US Patent 7,568,233.

[3] S. Ji, “Computer network malicious code scanner method and apparatus,”
Aug. 2001, US Patent 6,272,641.

[4] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, “Deep
learning for unsupervised insider threat detection in structured
cybersecurity data streams,” in Workshops at the Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[5] C.-H. Hsieh, C.-M. Lai, C.-H. Mao, T.-C. Kao, and K.-C. Lee, “Ad2:
Anomaly detection on active directory log data for insider threat
monitoring,” in 2015 International Carnahan Conference on Security
Technology (ICCST). IEEE, 2015, pp. 287–292.

[6] B. E. Strom, J. A. Battaglia, M. S. Kemmerer, W. Kupersanin, D. P.
Miller, C. Wampler, S. M. Whitley, and R. D. Wolf, “Finding cyber threats
with att&ck-based analytics,” Technical Report MTR170202, MITRE,
Tech. Rep., 2017.

[7] B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pennington,
and C. B. Thomas, “Mitre att&ck: Design and philosophy,” Tech. Rep.,
2018.

[8] “Sharing threat intelligence just got a lot easier,” https://oasis-
open.github.io/cti-documentation/, Dec. 2019.

[9] “Oasis cyber threat intelligence technical committee,” https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=cti, Dec. 2019.

[10] N. M. Bennett, James T. and N. Villeneuve, “Poison ivy: Assessing
damage and extracting intelligence,” FireEye Threat Research Blog, Tech.
Rep., 2013.

[11] D. J. Ryan and G. Shpantzer, “Legal aspects of digital forensics,” in
Proceedings: Forensics Workshop, 2002.

[12] K. Nance and D. J. Ryan, “Legal aspects of digital forensics: a research
agenda,” in 2011 44th Hawaii International Conference on System
Sciences. IEEE, 2011, pp. 1–6.

[13] R. Fulton and R. Vandermolen, Airborne Electronic Hardware Design
Assurance: A Practitioner’s Guide to RTCA/DO-254. CRC Press, 2017.

[14] V. Foundation, “Volatility framework - volatile memory extraction utility
framework,” Web: https://github.com/volatilityfoundation/volatility, May
2020.

[15] K.-T. Cheng and A. S. Krishnakumar, “Automatic functional test
generation using the extended finite state machine model,” in The 30th
ACM/IEEE Design Automation Conference, 1993.

[16] P. C. Hershey, D. B. Johnson, A. V. Le, S. M. Matyas, J. G. Waclawsky,
and J. D. Wilkins., “Network security system and method using a parallel
finite state machine adaptive active monitor and responder.” U.S. Patent
5,414,833, May 1995.

[17] D. Xu, W. Xu, and M. Tu, “Automated generation of integration test
sequences from logical contracts,” in The 38th International Computer
Software and Applications Conference Workshops (COMPSACW).
Sweden: IEEE, Jul. 2014, pp. 632–637.

[18] D. Xu, W. Xu, M. Kent, L. Thomas, and L. Wang, “An automated test
generation technique for software quality assurance,” IEEE Transactions
on Reliability, vol. 64, no. 1, pp. 247–268, 2015.

[19] Anomali, “Anomali,” Web, Jun. 2020,
https://www.anomali.com/resources/what-are-stix-taxii.

[20] Amazon, “Amazon states language,” https://docs.aws.amazon.com/step-
functions/latest/dg/concepts-amazon-states-language.html, Dec. 2019.

[21] FireEye, “Red team operations (RTO) - FireEye,”
https://www.fireeye.com/content/dam/fireeye-
www/services/pdfs/pf/ms/ds-red-team-operations.pdf, Dec. 2019.

[22] “Poison ivy lab,”
https://github.com/frankwxu/Ubalt/tree/master/EthicalHacking/Labs/Posi
onIvy, Jan. 2020.

[23] TrendMicro, “Poisonivy,” https://www.trendmicro.com/vinfo/us/threat-
encyclopedia/malware/poisonivy, Jan. 2020.

[24] “Oasis TC open repository: Taxii 2 client library written in python,”
https://github.com/oasis-open/cti-taxii-client, Dec. 2019.

[25] “Oasis TC open repository: Python APIs for STIX 2,”
https://github.com/oasis-open/cti-python-stix2, Dec. 2019.

[26] “Oasis TC open repository: Taxii 2 server library written in python,”
https://github.com/oasis-open/cti-taxii-server, Dec. 2019.

[27] “A python framework for developing finite-state machine-based
workflows on AWS lambda.” https://github.com/Workiva/aws-lambda-
fsm-workflows, Dec. 2019.

[28] P. Bhatt, E. T. Yano, and P. M. Gustavsson, “Towards a framework to
detect multi-stage advanced persistent threats attacks,” in 8th IEEE
International Symposium on Service-Oriented System Engineering, SOSE
2014, Oxford, United Kingdom, April 7-11, 2014. IEEE Computer Society,
2014, pp. 390–395.

[29] T. Haq, J. Zhai, and V. K. Pidathala, “Advanced persistent threat (apt)
detection center,” Apr. 18 2017, US Patent 9,628,507.

[30] Y. Wang, Y. Wang, J. Liu, and Z. Huang, “A network gene-based
framework for detecting advanced persistent threats,” in 2014 Ninth
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing. IEEE, 2014, pp. 97–102.

[31] G. Vert, A. L. Claesson-Vert, J. Roberts, and E. Bott, “A technology for
detection of advanced persistent threat in networks and systems using a
finite angular state velocity machine and vector mathematics,” in
Computer and Network Security Essentials. Springer, 2018, pp. 41–64.

[32] I. Friedberg, F. Skopik, G. Settanni, and R. Fiedler, “Combating advanced
persistent threats: From network event correlation to incident detection,”
Computers & Security, vol. 48, pp. 35–57, 2015.

[33] W. Xu, “A FED-FSM implemented in squirrel framework state machine,”
Web, Jun. 2020,
https://github.com/frankwxu/Ubalt/tree/master/Research/APT_FSM.

