
DOI reference number:10.18293/SEKE2021-052 

A Collaborative Forensic Framework for Detecting 

Advanced Persistent Threats  
 

Weifeng Xu  

Forensic Science: Cyber Investigations 

University of Baltimore 

Baltimore, USA 

wxu@ubalt.edu 

 

Jie Yan 

Department of Computer Science 

Bowie State University 

Bowie, USA 

jyan@bowiestate.edu 

 

Daryl Stone 

Department of Technology and Security 

Bowie State University 

Bowie, USA 

dstone@bowiestate.edu 

Abstract—An advanced persistent threat (APT) is one type of 

cybercrime that steals valuable information over an extended 

period through malicious activities. The paper proposes a 

collaborative framework to systematically detect APTs by 

analyzing the Cyber Forensic Evidence (CFE) collected from a 

System Under Investigation (SUI). It is a post-compromise 

analysis based on Forensic-Evidence-Driven Finite State Machines 

(FED-FSM) modeled from an SUI.  A FED-FSM extends an FSM 

by defining a set of forensic evidence patterns as guided conditions 

that trigger the state changes of FSM. The approach consists of 

three tasks (1) collecting shared CFE and formalizing patterns of 

CFE, (2) modeling the security status of an SUI in a FED-FSM, 

and (3) building a Threat Activity Detection Engine to match the 

observed CFE from SUI logs with the CFE patterns in the FED-

FSM. An empirical study shows the framework can be used to 

detect malicious activities of Poison Ivy, which utilizes a remote 

access tool to control computers. 

Keywords—advanced persistent threat, Structured Threat 

Information Expression, finite state machine, threat detection, 

ATT&CK framework, digital forensics 

I. INTRODUCTION 

An advanced persistent threat (APT) is one of the 
cybercrimes, which typically refers to a state-sponsored hacking 
group and cyberattacks associated with the group. APT 
strategizes its way to infiltrate an organization’s network and 
exfiltrates valuable information. For example, one common 
attack executed by APTs is to place custom malicious code on 
one or multiple computers for specific stealth tasks. Various 
approaches have been proposed to study and detect APT 
activities, either through scanning signatures of malicious code 
[1] [2] [3] or analyzing evidence that malicious programs are left 
on systems or networks activity logs [4] [5]. A common issue of 
these approaches is that they act alone during the whole 
investigation process: they set their environments, collect 
evidence, observe patterns, and make conclusions based on their 
judgments. It is hard for the cybersecurity community to recreate 
their environments, verify their observations, and reuse their 
observation results. MITRE [6][7] has proposed an Intelligence-
sharing-based approach to fight against cybercrimes with 
collaborative efforts. It developed a concept called shared Cyber 
Threat Intelligence (CTI) to facilitate knowledge sharing. For 
example, Figure 1 shows a shared scenario which consists of two 
predefined objects indicator and malware. The figure means that 
a cybercrime investigator has reported that he/she has found 

malware, named Poison Ivy (PIVY). PIVY is a remote access 
tool used by many APTs and cybercriminals for information 
infiltration. To support his/her findings, the investigator attaches 
the hash code of the malware to the indicator object, which 
defines the possible threat patterns of malware, e.g., the SHA 
hash code of the PIVY executable file.  

 

Figure 1. A simple indicator uses a file hash to indicate the presence 

of Poison Ivy  

Shared CTI sounds promising for collaborative threat 
detection and therefore, has attracted much attention in 
cybersecurity communities. However, there are major 
challenges to apply them directly in practice due to: (1) Current 
CTI framework does not support presentable CTI in terms of 
forensic investigations. Detecting APT threats is the process of 
investigating cybercrimes with supporting digital evidence. A 
presentable shared CTI has to describe how threat evidence is 
acquired, preserved, identified, and validated to meet the 
requirements of the law, (2) the lack of a systematical approach 
to discover digital forensic evidence for a System Under 
Investigation (SUI). Current CTI only describes the evidence 
and the patterns of threat evidence using Indicator, it doesn’t 
provide practical guidelines of how evidence can be extracted 
for a given SUI, and (3) Current CTI cannot describe the 
dynamical behaviors of an APT. Current CTI is a threat data 
model, which only describes static objects. To detect APTs, a 
dynamical model is needed to describe the known behaviors of 
APTs so that the model can be used for matching a given SUI.  

The paper demonstrates a framework to detect APTs 
imposed on an SUI over time using Forensic-Evidence-Driven 
Finite state machines (FED-FSM). The approach first enhances 
CTI to Cyber Forensic Intelligence (CFI) and enables indicator 
objects to capture the properties of digital forensic evidence. The 
enhanced indicator object is called Cyber Forensic Evidence 
(CFE) object. We then propose a systematic approach to extract 
CFE-objects from an SUI and specify the SUI as a collection of 
CFE objects. Finally, we model the SUI in a FED-FSM with 
CFE objects as the model’s guided conditions. We build a Threat 
Activity Detection Engine (TADE) to detect APTs that impose 
on the SUI by comparing the observed CFE objects with the 



CFE objects defined in FED-FSM. The contribution of the paper 
includes: (1) the formalization of CFE by leveraging ATT&CK 
knowledge model [6][7] (2) inferring dynamical behaviors of an 
APT using FED-FSM, and (3) designing a scalable threat-
activity detection framework for detecting real-world APTs 
systematically.  

The rest of the paper is outlined as follows: Sections II and 
III describe the difference between CTI and CFE and how CEF 
can be discovered systematically. Section IV shows the 
proposed architecture for detecting APT activities. Section V 
formally defines FED-FSM. Section VI describes an empirical 
study. Section VII summarizes the related work. Finally, Section 
VIII concludes this paper. 

II. SHARED-CYBER THREAT INTELLIGENCE AND CYBER 

FORENSIC EVIDENCE 

Intelligence-sharing is a critical strategy for cybersecurity 
defenders because it allows them to avoid the missteps of their 
peers within the security community and to deploy proven 
defensive measures. To systematically and effectively share 
security Intelligence, research groups [6][7] have realized that 
cybersecurity-related terminologies, measurements, and 
standards need to be defined to understand the security and share 
CTI. For example, to better understand security problems, 
MITRE has created an ATT&CK framework to document 
common Tactics, Techniques, and Procedures (TTP) based on 
real-world observations of adversaries’ operations against 
computer networks. To share CTI, OASIS CTI technical 
committee [8] has developed Structured Threat Information 
Expression (STIX) to formalize CTI and enable interoperable 
sharing of CTI across organizational, technology, and 
geographic boundaries. STIX is considered a de facto standard 
for many industries and organizations [9]. Figure 2 shows a 
shareable CTI expressed in STIX objects based on Fireeye's 

Poison Ivy (PIVY) Report [10]. Colored icons in the figure 
represent various types of objects defined in STIX. Each STIX 
object defines various attributes to specify the object. For 
example, the indicator object shown in Figure 1 has two 
attributes, the type of indicator, e.g., malware activity, and the 
pattern of the indicator, i.e., the hash code of the malware file. 
Note that the PIVY data model shown in Figure 2 primarily 
relies on 25 indicator objects (i.e., blue circles with fingerprint 
symbols) to represent suspicious or malicious cyber activities. 
These indicators are spread out all over the model and there are 
no pre-defined semantic relations among them. 

We extend shared CTI to CFE to align with the general 

process model of digital forensic investigation, including 

evidence collection, analysis, interpretation, and validation. 

Figure 3 shows the CFE object extends the Indicator object in 

CTI. The hollow arrow represents the extended relationship and 

the solid diamonds indicate collection tool, media, investigator, 

etc. are components of forensic evidence object. We use CFE 

object and its components to answer the questions related to the 

legal aspects of digital forensics [11] [12]: 

• Where is forensic evidence collected, e.g., memory or 

disks? It can be addressed by Collection Tool and Media 

objects, which are used to describe the source of the 

evidence and how evidence is extracted and stored. 

• Who does collect the evidence? When did a person 

access the original digital evidence? Is the person 

forensically competent? This information can be 

addressed by an investigator object. 

• How does the analysis carry out? How to interpret the 

results? A solid forensic evidence analysis should be 

based on math and science. Besides the pattern match 

method defined in the Indicator object, we propose the 

Identification objects in CFE to record other methods 

 
Figure 2. A threat data model based on Fireeye's PIVY report 

 

 
 



and algorithms used for evidence analysis and 

explanation. For example, evidence patterns or new 

evidence can be discovered by artificial intelligence 

(AI). 

• Most importantly, how the above process and results are 

validated? Why should courts trust the process and 

results? For example, upon seizing digital evidence, 

action should not change that evidence. We propose 

Preservation and Interpretation objects to validate the 

authenticity of evidence and explain the. For example, 

if evidence patterns or new evidence is discovered by 

artificial intelligence (AI), then explainable AI 

algorithms may show investigators and courts how 

much they can trust evidence. 

 

 

Figure 3. CFE object extends Indicator object in CTI 

III. CYBER FORENSIC EVIDENCE DISCOVERY 

We propose a systematic approach to search for possible 
CFE for an SUI. The main idea of the approach is based on the 
fact that all CFE is generated by software and hardware of the 
SUI that was used by cybercriminals. Figure 4 shows a bottom-
up layered architecture to discover CFE. Layer one represents 
any cybercrimes involving computing-related devices. Layer 
two is called a forensic evidence generator layer. It represents a 
computing-related device used by cybercriminals and is 
considered a forensic evidence generator. All system 
components of the device, such as software and hardware, will 
either generate CFE or store generated CFE. Layers three and 
four classify CFE objects in a tree-like structure. In the structure, 
all CFE is the root of the CFE tree, layer three represent CFE 
categories, and layer four contains all CFE objects. The first 
level of layer three has three types of CEF, including 
application-generated CFE, operating system (OS)-generated 
CFE, and hardware-generated CFE.  

The application-generated CFE has two sub-types, the 
application function-generated CFE and application non-
function-generated CFE. From the software engineering 
perspective, an application is developed based on two types of 
requirements, functional and non-functional requirements. A 
functional requirement is a description of the service that the 
software must offer. It defines a function of a system or its 

component, where a function is described as a specification of 
behavior between outputs and inputs [13]. Non-functional 
requirements are often referred to as "quality attributes" of a 
system, including usability requirements, security requirements, 
reliability requirements, etc. For example, an online chatting 
application that is built from functional requirements will 
generate CFE objects related to the chat functions, such as chat 
text messages, images, audio, and videos. To meet the usability 
requirements, the online chat application may cache credentials 
in cookie or memory and the cookie is considered a classic CEF 
object. The security requirements may save the private key of 
the application in a folder. The key is a CFE too. These identified 
CFE objects are in layer four. Similarly, OS-generated CFO also 
can be classified into two sub-categories, OS-function and non-
function generated CFE objects. A typical operating system has 
three main functions: (1) manage the computer's resources, such 
as the Central processing unit (CPU), memory, and disk drives, 
(2) provide a user interface, and (3) execute and provide services 
for applications software. The non-functional features of an OS 
can also have usability, security, reliability requirements, etc. 
Note that layer three can be further refined to form sub-types as 
needed. 

 

 

Figure 4. A systematical approach to discover digital forensic 

evidence for a system under the investigations 

The hardware-generated CFE is different from the software-
generated CFE, including the application- and OS-generated 
CFE. It contains three sub-types of CEF related to the hardware 
components of commuting devices, CPU-generated CFE, hard 
drive-generated CFE, and memory-generated CFE. Memory 
forensics is a vital form of cyber investigation that allows an 
investigator to identify unauthorized and even malicious activity 
on a target computer or server. This is usually achieved by 
running special software, known as a memory dump, which 
captures the current state of the system's memory as a snapshot 
file. The memory-generated CFE presents some special states in 
memory dumps. There are two types of memory-generated CFE, 
volatile memory generated CFE and non-volatile memory 
generated CFE. Volatility Framework [14], a volatile memory 
extraction utility framework, can extract many CFE objects, 
such as clipboard, cmdline, and iehistory. The non-volatile 



memory CFE refers to firmware generated CFE.  Firmware is a 
specific class of computer software that provides low-level 
control for a device's specific hardware. Typical firmware CFE 
objects include Basic Input/Output System (BIOS), hard driver, 
and routers and firewall firmware. These CFE objects are in 
level four and the leaves of layer three. 

Formally, we can model the relations between cybercrimes 
and their associated CFE. 

• All committed cybercrimes C in layer one is a 
collection of crime C= {c1, c2, …, cn}, where each 
cybercrime ci  𝜖 𝐶 and 1 ≤ i ≤ n. 

• All CFE objects E in layer four is a collection of CFE 
E = {e1, e2, …, en} , where ei  𝜖 𝐸 and 1 ≤ i ≤ n. 

• CFE generated from a crime c under the investigations 
is a set of CFE object V = g(c) ⸦ E where g is a CFE 
generation function, which represents how the crime c 
is committed.   

 

IV. AN ARCHITECTURE FOR DETECTING APT CYBERCRIME 

ACTIVITIES 

Figure 5 shows the architecture of detecting APT 
cybercrimes. The architecture has three main components 
shown inside of the dashed rectangle: a CFE model repository, 
a FED-FSM model repository, and a TADE. The system takes 
shared APT CFI, SUIs, and observable CFE objects from the 
SUI as inputs to infer possible malicious activities.  

 
 

Figure 5. The architecture for detecting APT Crime activities with 

FED-FSM 

A. A CFE Model Repository 

A CFE model repository is a collection of sharable CFI from 
APTs expressed in JSON. Each CFE model consists of a list of 

CFE objects. Formally, let define c = PIVY and g is the function 
that generates all the CEF objects, i.e., V = g(c) = {PIVY file, IP 
address, Running process,…}. PIVY file is a CFE object, which 
refers to the existence of the malware file itself (i.e., the static 
executable file). The IP address refers to the IP address of 
attackers, i.e., the client of PIVY is a CFE object because 
attackers need to communicate with the PIVY server. Also, the 
running process is another CFE object that indicates PIVY is 
running on victims’ devices. 

The following JSON file defines the PIVY file CFE object. 
The CFE object defines CFE attributes that are associated with 
a threat activity. These attributes include the CFE type, id, name, 
pattern, etc. Patterns are designed to assert suspicious or 
malicious cyber activities. Specifically, patterns use observable 
objects and their attributes to describe forensic evidence that is 
associated with known malicious activities. For example, the 
pattern [file: name = 'Poison_Ivy_2.3.2.exe'] is to 

assert the existence of the PIVY file. Logic operations can be 
applied to multiple observable objects as well. For example, in 
addition to asserting the existence of the specific file, the 
following pattern can check the identity of the file (e.g., an SHA-
256 hash) with the logical operator AND, [file: name = 
'Poison_Ivy_2.3.2.exe' AND file: hashes='SHA-

256' = '…e9f5']. Note that STIX defines a cyber-

observable object dictionary. Indicators containing cyber 
observable objects can be collected from threat data model 
repositories available publicly or created to support the 
flexibility of the framework.  
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# Poison Ivy file CFE object in JSON 
{ 
"type": "CFE-file obect", 
"id": "PIVY-CFE-file-1", 
"created": "2014-02-20T09:16:08.989Z", 
"modified": "2014-02-20T09:16:08.989Z", 
"name": "PIVY 2.3.2", 
"description": "Assert the exists of  
                PIVY process.", 
"labels": "malicious-activity", 
"pattern":"[file:name= 
                'Poison_Ivy_2.3.2.exe']" 
} 

 

Figure 6. Code Snippet of a CFE object in PIVY 

B. A FED-FSM Model Repository 

A FED-FSM model repository contains a collection of FED-
FSM models. The main design idea of the repository is that (1) 
FED-FSM models in the repository describe potential APT 
activities imposed on SUIs and (2) any CFI we have observed in 
SUIs to infer and monitor the potential APT activities in terms 
of FED-FSM models can be used. 

Traditional FSM is a well-studied mathematical model of 
computation, and these mathematical models are suitable for 
process automation. Unlike static threat data models for CTI 
sharing, which only describe static threat information, FSM is 
commonly used for capturing dynamical behaviors of 
synchronous sequential machines or software systems, and it has 
been utilized for detecting security vulnerabilities 
[15][16][17][18]. A state in FSM models is a description of the 
status of a system. An FSM model often contains a list of its 



states and one initial state. A state of an FSM model can change 
from one state to another in response to some activities or 
external events. Such a change is called a transition.  

However, traditional FSM models cannot be used for SUI 
threat detection directly because their transitions, such as 
attacking or threat activities, are unknown or unpredictable for 
threat analysis. Without knowing these threat activities, it will 
be very challenging for analysts to monitor and understand the 
status of SUI and to detect threat activities. To address the issue, 
we extend FSM by only allowing FSM states to change in 
response to forensic evidence left by APTs and patterned CFE 
objects. These CFE objects are from the CFE model repository. 
The status of a FED-FSM model is inferred by CFE objects 
instead of triggered by unknown threat activities. The formal 
definition of FED-FSM is discussed in the next section for 
process automation.  

C. A Threat Activity Detection Engine 

TADE shown in Figure 7 is another key component of the 
APT detection system. TADE consists of three different data 
types and threat activity detecting algorithms. These data types 
include CFE, cyber observed data, and sightings. The idea of the 
TADE is to use algorithms to infer the existence of malicious 
based on observed forensic evidence CFE extracted from an SUI 
and shared CFE fed on other cybersecurity intelligence 
resources, such as Anomali [19]. 

 

 
Figure 7. The APT activity detection engine (TADE) for detecting 

threat activities using CFE (e.g., Indicator), Cyber observed data, 

and Sightings 

The detection engine has defined the following major 
functions: 

• Collecting evidence logs. The log files include APT 
activity forensic evidence collected from files, disks, 
networking, and host system events as well as processes 
and signature strings in memory (Figure 4). 

• Preprocessing logs. Logs will be cleaned, checked, 
organized, integrated, and stored in an evidence data 
repository or in memory for better performance.  

• Formalizing observed evidence data. Similarly, the 
observed evidence data collected from an SUI will be 
specified in supporting STIX Domain Objects (SDO), 
named Observed Object or Observed CFE objects. Note 
that while CFE objects represent intelligence assertions 
behind attacks, raw observed information helps 
formulate the basis behind this intelligence, the 
observed CFE objects convey information that was 
observed on systems and networks. Multiple observed 
CFE objects can be used for crosschecking evidence and 
therefore increase the confidence of inferring results.  
The following code snippet shows an observed CFE file 
object, including its name, size, hash codes, etc.  
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# An observed file object in PIVY  
{ 
“type": "observed CEF Object", 
"id": "observed-data--1", 
… 
"objects": { 
   "0": { 
      "type": "file", 
      "hashes": { 
        "MD5": "CF7AB60B7948232C4 
                47F284FC695A868", 
        "SHA-256": "6cd85b478066 
                     … 
                479d8f9f198be9f5" 
       }, 
       "name":   "Poison_Ivy_2.3.2 
                            .exe", 
       "size": 54824 
       } 
}  

 

Figure 8. Code Snippet of an observed file object in PIVY 

• Determining threats. To detect a threat activity, we first 
use the STIX Relationship Object (SRO), i.e., Sighting 
object, to report observations of both CFE objects and 
observed CFE objects. Sighting objects use two 
references to capture: what indicator was sighted (i.e., 
sighting_of_ref) and what was seen on an SUI, 

(i.e., observed_data_ref). SROs are also specified 

in JSON to facilitate the threat detection automation 
process. Based on information collected by Sighting 
objects, various detecting algorithms can be used for 
determining whether threat activities exist by using 
patterns in CFE objects against observed data attributes.  

 

V. FORENSIC-EVIDENCE-DRIVEN FSM MODEL  

A FED-FSM model extends an FSM model by integrating a 
CFE model into the FSM model. Specifically, transitions of an 
FSM are determined by threat indicators specified by CFE 
objects. Formally, a FED-FSM model is defined as a tuple <S, 
T, F, I, L, 𝜑, s0>, where the elements of the tuple are defined as 
follows: 

1) S is a set of states of an SUI. 
2) T is a set of transitions of an SUI. 
3) F is a finite set of arcs from one transition to another, 

i.e., 𝐹 ⊆ 𝑆 × 𝑆. 
4) I is a set of threat indicators specified by CFE objects. 
5) L is a threat indicators-selecting function on T and I, i.e., 𝐿(𝑡, 𝐼) ⊆ 𝐼 and 𝑡 ∈ 𝑇. 
6) 𝜑 is a guard function on T and L. The guard condition 

of transition t, 𝜑(𝑡, 𝐿), is a first-order logical formula, 
which can be evaluated as true or false. The element of 
the formula is a list of STIX patterns that represent CFE 
objects. 

7) s0  is an initial state. It is often defined as Secure, i.e., s0 

= Secure and s0  ∈ 𝑇. 

Figure 9 shows two states (i.e., Secure and Penetrated) and 
one transition of the PIVY FED-FSM model based on Fireeye's 
PIVY report [10]. The state Secure is an initial state and it 



indicates a system has not been compromised. Penetrated state 
indicates malicious code that has been successfully executed on 
an SUI by an attacker. The tuple t = (Secure, Penetrated) is a 
transition. The threat indicator-selecting function 𝐿(𝑡, 𝐼) selects 
a CFE object with a process ID, e.g., observed-data—2, from I, 
where I represents all available CFE objects in the CFE model 
repository. The guard function 𝜑(𝑡, 𝐿) on the transition t defines 
the pattern formally, i.e., 

[ pattern":"[process:name= 
                myPoisonIvy_HK’]" ] 

 

TADE will use the pattern to evaluate observed CEF objects 
collected from an SUI and return true if the pattern matches 
observed CEF objects or false if it doesn’t. The Boolean value 
determines whether the current state will change from Secure to 
Penetrated.  

 

Figure 9. Two states and one transition from Poison Ivy FED-FSM 

model  

FED-FSM models can also be expressed in Amazon States 
Language (ASL) in JSON format [20]. The following code 
snippet shows two states, Secure and Penetrated, as well 

as the lambda pseudo function (called resource), 

DetectProcess, for determining whether a threat exists in 

an SUI. 
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{ 
 "Comment": "A partial code snippet of 
             Poison Ivey FED-FSM model  
             in ASL", 
 "StartAt": "Secure", 
    "States": { 
      "Secure": {  
        "Type": "Task", 
        "Resource": "DetectProcess", 
        "Next": “Pentrated”  

  }, 
      “Penetrated”: {…} 
  } 
}; 
 
# DetectProcess lambda pseudo  
# function as a transition 
exports.handler =  
   function(event, context) { 
       context.succeed( 
            indicator.match( 
                observedData)); 
}; 

 

VI. EMPIRICAL STUDY 

The empirical study demonstrates the use of the framework 
to detect an APT that utilizes a customized PIVY against an SUI. 
We describe the following three artifacts related to the case 
study.  

A. Case Study Environment Setting  

The case study is conducted in a VirtualBox with two 
Windows virtual machines (VMs) and one security onion 
(https://securityonionsolutions.com/) Linux VM. One Windows 
VM acts as a PIVY client and another one acts as a PIVY server. 
The security onion is to monitor network traffics among three 
VMs. The client that is controlled by an attacker is configured 
on the attacker’s machine. It will accept the server’s connection 
and act as a command and control center of the server. The 
server or payload is created by the attacker using Poison Ivy 
2.3.2 and then distributed to one victim’s machine. Once the 
victim executes the payload, the payload will infect its machine 
and connect to the computer running the PIVY Client. Malicious 
activities, including internal reconnaissance and data exfiltration 
[21], will be carried out after the victim’s machine has been 
infected. The environment setting instructions for the empirical 
study can be accessed at GitHub [22]. Figure 10 shows the PIVY 
client and a victim’s machine that has been infected by a PIVY 
server. The PIVY client is listening on its port 3460. 

 
Figure 10. A PIVY client is listening on its port 3460 

B. PIVY FED-FSM Model 

Figure 11 shows the PIVY FED-FSM model of an SUI. 
Besides the two aforementioned states, Secure and Penetrated, 
the FED-FSM model has two states: Explored and Exfiltrated. 
The state Explored indicates an SUI has been explored by 
attackers to gain a better understanding of the environment for 
future actions. The state Exfiltrated indicates the SUI has an 
unauthorized movement of data.   

 
Figure 11. A Poison Ivey FED-FSM model of an SUI  

The model has three types of guard functions on ten 
transitions. Each guard function contains multiple comparison 
expressions. For example, the guard function 𝜑3 indicates that 
at any state except Secure, the destination state will be 
Exfiltrated if both comparison expressions c8 and c9 are 
evaluated as true.  

Table 1 lists ten representative comparison expressions used 
in the model for matching possible threat evidence collected 
from logs. The types of evidence include file, directory, process, 
Windows registry, IP address, and network traffic.  



Table 1. Ten comparison expressions used in the FED-FSM 
model 

I

D 

Comparison Expressions  Matches 

c
1 

file: name = 
‘myPoisonIvy_HK.exe’ 

the name of 
PIVY Sever 

c
2 

file: name MATCHES 
‘BG.bat.lnk’ 

a created file 

c
3 

Directory: path LIKE 
‘c:\\Windows\\%\\dfed’ 

a created 
folder 

c
4 

Process: name = 
‘myPoisonIvy_HK’ 

a running 
process 

c
5 

win-registry-key: key = 
‘^HKEY_LOCAL_MACHINE\\S
OFTWARE\\Microsoft\\ 
Windows\\CurrentVersion
\\Run\\ 
myPoisonIvy_autorun’ 

a created 
registry key 
for auto run 

c
6 

ipv4-addr: 
value=’10.0.2.12’ 

an IP address 

c
7 

ipv4-addr: 
value=’10.0.2.12/24’ 

a subset of IP 
address 

c
8 

network-
traffic:dst_ref.value = 
'10.0.2.12' 

network traffic 
to IP 
‘10.0.2.12' 

c
9 

network-
traffic:dst_port = 
‘3460' 

network traffic 
to port '3460’ 

 
Note that (1) the nine observable objects are a subset of 102 

objects described on the PIVY report [10] and Trend Micro [23]. 
(2) The empirical study uses lightweight command-line tools 
(CLT) to collect observable data. These tools include netstat, 
Windows Management Interface Command (wmic), 
PowerShell, Logparser, and Sysinternals Utilities. For 
demonstration, Figure 12 shows the observable evidence 
detected on the Windows registry, which indicates PIVY has 
created a registry key for autorun, which maintains the 
persistence of threats. 

 
 

Figure 12. Observable evidence showing on Windows registry 

C. Framework Deployment Diagram  

The deployment diagram for detecting APTs is shown in 
Figure 13, which describes the system components after 
implementation. To facilitate the discus, we have added two 
teams in the diagram. A red team (red icon on the figure) is an 
independent group that challenges an organization to improve 
its effectiveness by assuming an adversarial role or point of 
view. The red team will: (1) Simulate APTs. Set up a controlled 
environment, e.g., using virtual machines, to simulate attacking 
scenarios, e.g., APT uses Poison Ivy. (2) Set up a Trusted 
Automated Exchange of Intelligence Information (TAXII) 
server [9]. It stores PIVY data models in a local repository [24]. 
(3) Serialize and de-serialize STIX JSON content using a TAXII 
client and Python APIs [25]. A blue team (black icon on the 
figure) is a group of individuals who perform an analysis of 
information systems to ensure the security of SUIs. Specifically, 
the blue team sets up a FED-FSM server to host FED-FSM 

execution frameworks, an observable data server to collect logs 
from an SUI and a TAXII/FED-FSM client [26] that executes 
the TADE and visualizes FED-FSM models. The empirical 
study adopts a Python framework for developing and running 
FSM-based workflows on AWS Lambda [27]. The framework 
provides a means to check a state machine's logic and monitor 
executions.  

 
 

Figure 13. The deployment diagram for detecting APTs 

VII. RELATED WORK 

There have been many attempts to develop frameworks to 
systematically detect APTs. Bhatt et al. presented a framework 
[28] that models multi-stage attacks in a way that both describes 
the attack methods as well as the anticipated effects of attacks. 
The foundation to model behaviors is by the combination of the 
Intrusion Kill-Chain attack model and defense patterns.  Haq et 
al. [29] described a computerized method in which one or more 
received objects are analyzed by an APT detection center to 
determine if the objects are APTs. The analysis may include the 
extraction of features describing and characterizing features of 
the received objects. The extracted features may be compared 
with features of known APT malware objects and known non-
APT malware objects to determine a classification or probability 
of the received objects being APT malware. Wan et al. proposed 
a network gene-based framework [30] to describe the semantic-
rich network behavior patterns of network applications. It took 
advantage of the latest advances in the fields of protocol reverse 
analysis, cloud computing, and big data processing, with 
automatic analysis and extraction of network genes, and data 
stream computing-based network gene real-time processing. 
Vert et al. [31] applied an advanced state machine engine to the 
analysis of state variables that can detect the presence of APTs 
and other malware. The Finite Angular State Velocity Machine 
(FAST-VM) can model and analyze large amounts of state 
information over a temporal space. The approach can analyze 
and model large amounts of data over time. Friedberg et al. 
applied a kind of black-list approach and only considered actions 
and behavior that match well-known attack patterns and 
signatures of malware traces [32]. They proposed an anomaly 
detection technique that keeps track of system events, their 
dependencies, and occurrences, and thus, the technique can learn 
the normal system behavior over time and report all actions that 
differ from the created system model.  

None of the aforementioned APT detection frameworks are 
practical since they lack the essential characterizations of a 
framework for automation, including the scalability of 



architecture [28][31][32], the formalization attacks of APT 
features [28][29][31], and the diversity of observable objects of 
SUI [30][32]. 

VIII. CONCLUSION 

The paper presents a new formal approach that uses FED-
FSM to detect APTs. The FED-FSM models are driven by real-
world knowledge of adversary tactics and techniques stored in a 
shared repository. Instead of monitoring APTs directly, the 
approach infers the APT's status by analyzing the forensic 
evidence that malicious actors left on digital devices. The 
approach requires us systematically collecting crime activity 
logs, extracting evidence from logs, and formalizing digital 
forensic evidence. Two types of digital forensic evidence are 
defined in the paper, shared CFE objects, and observed CFE 
objects. These two objects are the drive force of FED-FSM. A 
demo program that is implemented in Java can be accessed at 
[33]. Note that the guided conditions of transitions in FED-FSM 
are predefined in FED-FSM using patterns. In future work, we 
are interested in investigating artificial intelligence-based 
approaches to discover patterns from shared CFE objects 
automatically and match patterns with observed CFE objects.  
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