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HYDRODYNAMIC LIMIT OF 3DIMENSIONAL EVOLUTIONARY
BOLTZMANN EQUATION IN CONVEX DOMAINS*

LEI WUT AND ZHIMENG OUYANGH

Abstract. This is the second half of our work on the hydrodynamic limit (the first half [L. Wu
and Z. Ouyang, manuscript] focuses on the stationary problem). We consider the 3D evolutionary
Boltzmann equation in convex domains with diffusive-reflection boundary condition. We rigorously
derive the unsteady incompressible Navier—Stokes—Fourier system and justify the asymptotic con-
vergence as the Knudsen number ¢ shrinks to zero. The proof is based on an innovative remainder
estimate and an intricate analysis of boundary layers with geometric correction.

Key words. boundary layer, remainder estimates, geometric correction
AMS subject classifications. 82C40, 35Q20

DOI. 10.1137/20M1375735

1. Introduction.

1.1. Problem presentation. We consider the evolutionary Boltzmann equa-
tion in a three-dimensional smooth convex domain Q > z = (21, 22, x3) with velocity
v = (v1,v2,v3) € R3. The density function F°(¢,x,v) satisfies

20,3 +ev - V¥ = QF5, 3] in Ry x Q x R3,
(1.1) 3°(0,z,v) = F5(z,v) in QxR
§°(t, xo,v) = PE[§°](t,x0,v) for t € Ry, xp € 0N, and v-n(zg) <0,

where n(z¢) is the unit outward normal vector at .

The Knudsen number ¢ characterizes the average distance a particle might travel
between two collisions, and we assume 0 < ¢ << 1. Intuitively, as € — 0, the collisions
occur more and more frequently and the overall behaviors of this particle system get
closer and closer to that of the fluids.

In this paper, we assume that @ is the hard-sphere collision operator (see [15,
Chapter 1] and the following subsections), and in the diffusive-reflection boundary
condition

(1.2) Pe[F)(¢t, xo, v) := pg (¢, mo,v)/ F°(t, 2o, u) |u - n(zg)| du.

u-n(xzg)>0

It describes that the particles are absorbed by the boundary and then reemitted based
on a boundary Maxwellian pj.
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Boundary assumption: The boundary Maxwellian,

£ e 2
5 (t, o) exp (_ lv ;91;b§t,$0)| > 7
277(95(?5,%0)) bt x0)

is a perturbation of the standard Maxwellian

2
(1.4) u(v) = %exp <_U2|> .

We assume that both pj and p satisfies the normalization condition

(1.3) g (t, wo,v) =

(1.5) / E (8, 20, 0) |0 - (o) dw = / 1(v) [o - n(zo)| dv = 1.
v-n(zo)>0 . (:Eo)>0

In addition, we require that the particles are only reflected on 92 without in-flow or
out-flow, i.e.,

(1.6) /RS 15 (t, 20, v) (v - n(zo))dv = / 1(v) (v - n(xo))dv = 0.

R3

We also assume that (pf, uf, 05) € C3(RT x 9€) can be expanded into a power series
with respect to ¢,

o0 o)
(1.7) pi(t, o) =1+ Zekp@k(t,xo), ug(t, zo) =0+ Zakub,k(t,aro),
k=1 k=1
9§(t,x0) =1+ ka9b7k(t7$0>7
k=1

ie., (pi,ui,@i) is a perturbation of (1,0,1). Naturally, we know pp k, up k, 01 € C®.
Hence, we may also expand the boundary Maxwellian pj into a power series with
respect to ¢,

(1'8) /‘li(tvx()vv) = M(U) +:u%<v) (Z Ekuk(taxmv))
k=1

with p; € C3. In particular, we have

1

2
v|" =3
(1.9) pa(t, wo,v) := p2(v) (pb,1(t, xo) + up1(t, o) - v + Op 1 (2, »’80)7‘ | 5 )

We further assume that

£ __ a £ __
(1.10) ot (0)” '”b”’ * ‘K (v)" '(“b“)’ < Cye
2 2

for any 0 < o < i and 3 < ¥ < ¥ with some given large 9. Here Cy, Kg > 0

are constants and Cy > 0 is sufficiently small. This indicates that the boundary
Maxwellian pj is very close to the global Maxwellian ;1 and its time derivative is also
very small.
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2510 LEI WU AND ZHIMENG OUYANG

Based on (1.5), (1.6), and (1.8), we know
(1.11) / uk(t,wmv)u%(v) |v-n(zo)|dv=0 for k>1,
R3

/ e (t, 20, V)
vn(20)S0

Remark 1.1. In particular for k£ = 1, we know up; - n = 0. In fluid mechanics,
this corresponds to a nonpenetration boundary condition.

N

(v)|v-n(xo)|dv=0 for k>1.

Initial assumption: We assume that the initial data §y > 0 are a perturbation of
the standard Maxwellian

(1.12) Fo(@,v) = u(v) + p2 (V) fol(w,v) = p(v) + 42 (V) Y ¥ for(x, v).
k=1
We assume that fo € C3(€) for any v and satisfies

(1.13) //QX]R3 u%(v)fo(x,v)dvdx =0,

which means that fox € C3(Q) for any v and

(1.14) // u%(v)fo)k(aj,v)dvdx =0 for k>1.
QxR3
In particular, we assume that the initial data fo1 € N, ie.,
1 ) — 3
(1.15) foalz,v):= p= (V)| poa(2) +uoa(2) v+ 6o (2)—

for some smooth function (pg1,u0,1,600,1) satisfying the Boussinesq relation pg 1 +
0o,1 = constant.

Remark 1.2. The assumption on fy 1 is designed to simplify the discussion of
the initial layer and highlight the boundary effects. For example, if §j is a local
Maxwellian like 47 in (1.3), then this requirement is naturally verified.

Also, we assume the smallness of initial perturbation
(1.16) (1+ v} zell’ fo| < Cye

for any 0 < p < % and 3 < 9 < 1y. Here the constant Cy > 0 is sufficiently small.

Compatibility assumption: Also, the initial and boundary data satisfy the com-
patibility conditions at ¢ = 0 and xy € 9

(1.17)
1k (0,0,v) =0,  Opug(0,x0,v) =0 for k> 1,
for(x0,v) = pog(zo)u®,  Vafor(o,v) =0, V2for(o,v) =0 for k> 1.

Remark 1.3. Roughly speaking, the compatibility conditions require that up ~ u
and §5 ~ Cu at (0, zg,v), i.e., the initial data and boundary data do not have severe
variations at the intersection point. They are designed to simplify the interaction of
the initial layer and boundary layer.
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We may directly check that the solution §° satisfies the mass conservation

(1.18)
//QX]R3 5 (t, z,v)dvdz = //QX]R3 Fo(z,v)dvdz = //Qst p(v)dvdz = V27 Q).

We intend to study the behavior of §° as € — 0.

1.2. Perturbation equation. We rewrite the solution §° as a perturbation of
the standard Maxwellian

(1.19) (2, v) :H(U)JFH%(U)fE(t:IvU)

(1.18) implies that f€ satisfies the conservation law

(1.20) / /Q . Fe(t, 2z, v)p (v)doda = 0,

and the equation

€20, f¢ +ev - Vufe + L[fe] =T[f5, f¢] in Ry x Q x R3,
(1.21) { £2(0,2,0) = folz,v) in QxR3,

fe(t, zo,v) = PE[fe] (¢, z0,v) for t € R4, x9 € IN,and v -n(xg) <0,
where
(1.22) L[] = —2u‘%Q[u7u%fﬂ» LLfe, f7) = u‘%Q[/ﬁfE,u%fa},
and

(128) PLF)(t 0, 0) 1= it o, H ) [ o WS (170, - m(ao)] d

+ 173 @) (15 (8 70,0) = p(w)).

Hence, in order to study ¢, it suffices to consider f€.

1.3. Linearized Boltzmann operator. To clarify, we specify the hard-sphere
collision operator @ in (1.1) and (1.21),

(1.24) QIF,G] == /]R /S g(w, [ — v)) (F(u*)G(v*) - F(u)G(v))dwdu
with
(1.25) wo=utw((v—u) - w), v i=v—w((v—u)w),

and the hard-sphere collision kernel
(1.26) q(w, [u—v]) ==go |w - (v—u)

for a positive constant qq.
Based on [15, Chapter 3], the linearized Boltzmann operator L is

(1.27) LIf] = =207 2Q[p, pu? f] := v(v) f — K[f],

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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v(v) = /]11{3 /S2 q(w, |u — v])p(u)dwdu = 72¢ ((2 lv| + |v1|) /Ovl e dz + e|”2>,

KIf(0) = Kalfl(0) = K lfl(0) = [ bl o)

Kl[f ) [ o= ot 0 flo)dwds = [ (o) (),

R3

f /]R /S w, [u— ) %(u)(u%(v*)ﬂu*)+u%(u*)f(v*))dwdu
= /]R3 ko (u,v) f(u)du

for some kernels

(1.32) E(u,v) = ka(u,v) — k1 (u,v),
1 1
(1.33) ki (1, v) = 7qo |u — v] exp (— 5’ =5 |v|2>,
2mqo Lo L = o)
1.34 k = S PP St i L WV
(134) ) = 2oy (o -

In particular, £ is self-adjoint in L?(R3) and the null space A is a five-dimensional
space spanned by the orthonormal basis

1 ] — 3
(1.35) 12910, 5 .

We denote N1 as the orthogonal complement of ' in L?(R?).

1.4. Main result. Let (-, -) be the standard L? inner product for v € R3. Define
the LP and L> norms in R3:

(1.36) lf(t 2)], == (/R3 |f(t,z,v)|pdv)P, |f(t,x)| == esssup|f(t,z,v)|.

vER3
Furthermore, we define the L? and L* norms in © x R3:

(1.37)

7@ (// txvv’dvdx) Ol = esssup |£(t3,0)].
RS (,0)EQXRS

Moreover, we define the LP and L® norms in Ry x  x R3:

(1.38)
1
|||f,,:=( / // |f<x,v>|pdvdx), Il = esssup  |f(ta0).
Ry QxR3 (t,z,v)ERy XQXR3
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Define the weighted L? norms

(139) 1S, = | s 1@l = o], =[]
Denote the Japanese bracket by
(1.40) () = (1 + |v|2>%
Define the weighted L*° norm for g, > 0:
(1.41) 70820, 3= es331p (e |1tz 0)] ),
15 Ollciog = esssup ()7 e |12 o)),
Il = esssup (@) |t 2,0)] ).

(t,z,v)ERy xQXR3

In (1.1) and (1.21), based on the flow direction, we can divide the boundary v :=
{(x0,v) : 29 € 0N,v € R3} into the in-flow boundary v_, the out-flow boundary ~, ,
and the grazing set vo:

(1.42) v— = {(zo,v) : g € 0Q, v-n(zxg) < 0},
(1.43) v+ = {(zo,v) : g € 0, v-n(xg) > 0},
(1.44) Yo := {(x0,v) : zo € 0N, v-n(zx) = 0}.

It is easy to see v = y4 Uy_ U~p. In particular, the boundary condition is only given
on Ry x y_.

Define dy = |v - n|dwdv on v for the surface measure w. Define the LP and L
norms on the boundary:

1
(1.45)  f®Il,, = (// f(t, @) d7> v F @Il o0 = esssup [f(t,z, )]
¥ (z,v)ey
Define the LP and L* norms on the boundary with time:
1
(1.46) JIfIl,, = ( [ If(t,x,v)lpdv) s = esssup ()],
R4 ~ (tyz,w)ERY Xy

Also, define the weighted L°° norm for p,9 > 0:

(1.47) 1F O] o gy = 555D (<v>19 e [1(t,2,0) )

(zv)€Y

9 )|2
ANl oo = esssup (<v> ool If(t,m:v)l)

(t,x,v)ER L X~

The similar notation also applies to 4. In all the above notation, we can replace R
by [0,¢] or even [s,t], and it can be understood from the context without confusion.
Now we are ready to state our main theorem.
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THEOREM 1.1. For given puj and §j satisfying the assumptions in section 1.1,
there exists a unique positive solution §¢ = pu + /ﬁf8 > 0 to the evolutionary Boltz-
mann equation (1.1). In particular, f¢ satisfies (1.21) with (1.20), and fulfils that for
0<o< i and 3 < 9 < Uy, there exists K > 0, such that

(149 fle* (= =P, 5%
oo, V,0

2
<P+u-v+0|v|2 3)

in which (p,u,0) satisfies the unsteady Navier—Stokes—Fourier system

for any 0 < § << 1, where

[N

(1.49) F=pu

Ou+u-Vau—y1Azu+ Viep =0,
(1.50) Ve -u=0,

010 +u -V 0 —vA0 =0
with initial and boundary data

(1.51)
p(0,z) = po1, u(0,2)=wug1, 0(0,2)=0p1,

(1.52)

p(t,z0) = pya(t,wo) + M(t,z0), u(t,zo) = up1(t,w0), O(t,20) = Op1(, o).

Here 1 > 0 and 2 > 0 are some constants, M (t,xq) is a function chosen such that
the Boussinesq relation

(1.53) Valp+6) =0,

and the conservation law (1.20) hold for all time t.

Remark 1.4. The Boussinesq relation implies that p(t,x) + 0(t,z) = C(t) for
some time-dependent function C(t) in the whole domain §2. However, at each t, the
boundary data pp 1(t,z0) and 6y 1(¢,z¢) do not necessarily have the same sum at
different xo. Hence, M (t, xz() is designed to fill this gap. Note that we are still free
to choose the C(t) (i.e., M still has one dimension of freedom at each t) and it is
eventually determined by the conservation law (1.20).

Remark 1.5. From the above theorem, we know f° ~ eF is of order O(eg). The
difference f€ —eF =o(e) as ¢ — 0.

Remark 1.6. The case pp1(t,z0) = 0, up1(t,zo) = 0, and Oy 1(t,z9) # 0 is
called the nonisothermal model, which represents a system that only has heat transfer
through the boundary but has no particle exchange and no work done between the
environment and the system. Based on the above theorem, the hydrodynamic limit
is an unsteady Navier—Stokes—Fourier system with nonslip boundary condition. This
provides a rigorous derivation of this important fluid model.

Remark 1.7. In the smallness assumption (1.10), if Ky = 0, then the main theo-
rem still holds with K = 0. Exponential decay in time is not necessary.

Remark 1.8. Our proof of the main theorem relies on the assumptions in section
1.1. To remove these technical requirements will be a main topic of our future research.
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1.5. History and motivation.

1.5.1. Previous results. The hydrodynamic limit is central to connecting the
kinetic theory and fluid mechanics. It provides rigorous derivation of fluid equations
(like Euler equations or Navier—Stokes equations, etc.) from the kinetic equations
(like Boltzmann equations, Landau equations, etc.). As an integrated step to tackle
the well-known Hilbert’s sixth problem, since the early 20th century, these types
of problems have been extensively studied in many different settings: stationary or
evolutionary, linear or nonlinear, strong solution or weak solution, etc.

The early result [26] by Hilbert dates back to 1916, using the so-called Hilbert’s
expansion, i.e., an expansion of the density function §° as a power series of the
Knudsen number e.

The general theory of initial-boundary-value problems for hydrodynamic limits
was first developed by Grad [18], and then extended by Sone [34, 35, 36] and Sone and
Aoki [39], for both the evolutionary and stationary equations. The classical books by
Sone [37, 38] provide a comprehensive summary of previous results and give a complete
analysis of such approaches. However, the results in [37, 38] are only formal and lack
rigorous justifications.

On a large time scale ~ 7!, the diffusion effects dominate and the formal deriva-
tion reveals that the Boltzmann solution is close to that of the incompressible Navier—
Stokes—Fourier system. A lot of works for R™ or T™ domains have been presented,
e.g., Golse and Saint-Raymond [17], Bardos, Golse, and Levermore [2, 3, 4], Bardos
and Ukai [5], Briant [6], Briant, Merino-Aceituno, and Mouhot [7], Gallagher and
Tristani [14], Guo [19], for either smooth solutions or renormalized solutions.

For other time scales and models, due to the huge number, it is almost impossible
to give a complete list of all the related publications. Reader may refer to Golse
and Saint-Raymond [16], Saint-Raymond [32], Masmoudi and Saint-Raymond [31],
Masi, Esposito, and Lebowitz [30], Guo [19], Guo and Jang [21], Guo, Jang, and
Jiang [22, 23] and the references therein. It is also worth noting that the book by
Saint-Raymond [33] and the references therein provide a nice summary of the progress.

Due to its physical significance, the study of the kinetic equation in bounded
domains has attracted a lot of attention recently. In the case e =1 and uj = p, Guo
[20] justifies the global well-posedness and decay of the Boltzmann equation under
various boundary conditions. In particular, for specular boundary, Guo [20] requires
analyticity of the domain, which is removed by Kim and Lee [28, 27]. Esposito et al.
[10] handles the case when € = 1 and 4§ is an O(1) small perturbation of p. The idea is
also adapted to treat the Vlasov—Poisson—Boltzmann system in Cao, Kim, and Lee [8].

For the hydrodynamic limits € — 0 in bounded domains, the geometry of the
domain will play a key role in the analysis. We refer to Esposito, Lebowitz, and
Marra [13], Esposito et al. [11], Esposito, Guo, and Marra [12], Arkeryd et al. [1],
Wu [42, 44] and the references therein.

Note that the boundary layer plays a significant role in proving the asymptotic
convergence in the L sense. If instead we consider LP convergence for 1 < p < oo
which is technically easier, then the boundary layer is of order 7 due to rescaling,
which is negligible compared with the interior solution as ¢ — 0. As far as we are aware
of, at this stage the best result of hydrodynamic limits for the three-dimensional (3D)
evolutionary problem in bounded domains is [11], which justifies the L? convergence
without boundary layer analysis. As for the stationary problem, the best result is our
paper [46], which justifies the L>° convergence with a detailed discussion of boundary
layers.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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In this paper, we will fill the last piece and focus on the 3D evolutionary problem
with L*° convergence.

1.5.2. Asymptotic analysis. For the evolutionary Boltzmann equation where
the state of gas is close to a uniform state at rest, the expansion of the perturbation
f© = Of(e) consists of three parts: the interior solution fZ which is based on a
hierarchy of linearized Boltzmann equations and satisfies a steady Navier—Stokes—
Fourier system, the initial layer fj which is based on a nonlocal ODE and decays
rapidly when it is away from ¢ = 0, and the boundary layer fi, which is based on a
half-space kinetic equation and decays rapidly when it is away from the boundary.

The justification of hydrodynamic limits usually involves two steps: well-posedness
of expansion and remainder estimates:

e Step 1: Expanding f, = Y o e¥Fy, f5 =Y o, e¥Fp, and 5 =Y oo, 8.,
as power series of ¢ and proving the coefficients Fj, Fi, and Fj are well-
defined. This is doable by inserting the above expansion ansatz into the
Boltzmann equation and comparing the order of ¢ to get a hierarchy of equa-
tions for Fy, Fi, and .%. Traditionally, the estimates of interior solutions
Fy and initial layers Fj are relatively straightforward. On the other hand,
boundary layers .%#; satisfy one-dimensional half-space problems which lose
some key structures of the original equations. The well-posedness of bound-
ary layer equations is sometimes extremely difficult to prove and it is possible
that they are actually ill-posed (e.g., certain types of Prandtl layers).

e Step 2: Proving that R = f* —eF) —eF; —e%#1 = o(e) as € — 0. Ideally, this
should be done just by expanding to the leading-order level Fy, Fi, and .%;.
However, in singular perturbation problems, the estimates of the remainder
R usually involve negative powers of €, which requires expansion to higher-
order terms Fy and Zx for N > 2 in order to provide sufficient power of ¢.
In other words, we define R = f€ — Z]kvzl eFFy, — Z]kvzl ek Fi, — Z]kvzl ek Fye
for N > 2 instead of R = f¢ —eF| —eF; — % to get a better estimate of R.

1.6. Methodology. The geometric effects in boundary layer analysis have been
observed for a long time (see [13]). Inspired by [9], a new formulation of boundary
layer based on the Milne problem with geometric correction was proposed in [45]
to study a simple kinetic model—neutron transport equations, in a two-dimensional
(2D) plate domain. The key component of the proof is the L well-posedness and
decay of the boundary layer equation. Furthermore, through a careful discussion of
the weighted W1> regularity and quasi-W 2 regularity, such results were extended
in [24, 25, 43, 41] to treat more general 2D/3D domains and boundary conditions.

The neutron transport equation is a linear equation with homogeneous collision
kernels. In contrast, the Boltzmann equation poses more technical complications due
to the higher dimension of null space and more singular collision kernels. As far as we
are aware of, the best result for the Boltzmann boundary layer is the weighted W1 >
regularity obtained in our paper [46].

1.6.1. Upshots of the paper. While the sister paper [46] contains a complete
analysis of the well-posedness and regularity of the boundary layer equation, in this
paper, we will focus on the remainder estimates. This is equivalent to considering
the linearized Boltzmann equation with diffusive boundary. The first such result
was proposed in [20] by a novel L? — L framework, and the argument is improved
n [10]. Such a method is further adapted to treat hydrodynamic limits to form the
L?—L%— L™ framework in [11] for the Boltzmann equation and [24, 41] for the neutron
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transport equation. All of these frameworks have both stationary and evolutionary
versions.

The major difficulty of our paper lies in the fact that the remainder estimates
of the evolutionary problem are much worse compared to the stationary problem in
[44, 46]. Neither the L? — L® nor L? — L% — L™ framework provides sufficient control
of the remainder R,.

To be more specific, the validity of our main theorem requires e'
for the remainder R.. The stationary remainder estimate reads

+9 convergence

(1.54) IRl oo (ermsy S 2 1186 + good terms,

L8 (QxR3)
where Rj is the stationary remainder and Ss = (v -V, + e 1L)[R,] ~ &3. Also, the
main contribution of S,—the boundary layer term contains a rescaling 1 ~ ¢~ for
normal distance 9 which provides additional £¢ under LS norm. Eventually, we get
|1Rs|| foe S £7% xe3t% =3 convergence. However, for the evolutionary problem, the
L? — L™ framework (as in [42]) justifies

_z
(1.55) ||Re||L<X>(]R+><Q><]R3) Se? ||S€(t)||L2(Q><R3) + good terms,

where S,(t) = (€0; + v - Vu + e 1L)[R.(t)] ~ €3 and we only obtain an extra ez
from the boundary layer rescaling under the L? norm. Hence, we have || R.|| e S

72 x 372 = £ ~ 1 which is far from closing the proof. On the other hand, the
L? — L5 — L* framework (as in [11]) justifies

_s
(1.56) [Rell 1o (axray S €77 [1Sell L2 (xrsy + good terms.

Hence, we have ||Re|| e S £7% x £372 = ¢ which is still not enough. Unfortunately,
the strategy in [41] for the neutron transport equation also will not work for our case.
In [41], the proof requires the coercivity bound

(1.57) (LIR],R2) 2 (1 - P)[Re]|[{s .

which is absent in the Boltzmann equation.

In summary, we have to develop new ideas to tackle this difficulty. Our strat-
egy mainly includes two steps, and we need to make significant modifications and
improvements in both the remainder estimates and boundary layer construction.

First, we introduce a modified L? — L% — L> boostrap framework. This is rooted
in the nonlinear energy method and we use an intricate energy-dissipation structure
to bound both the instantaneous and accumulative R, with mutual dependence. In
detail, we justify L? bounds of R, and 8;R. with a nonstandard energy method and
prove the L® bound of R, (t) with a fresh kernel estimate with interpolation argument.
To be more specific, we show that

(1.58)
HReHLoc(R+ X QXR3) S e 2 ( ||Se(t)HLg(Q><R3) + ||atS€HL2(R+><Q><R3) ) + good terms.
Next, our central idea is to smartly utilize the “good” stationary remainder esti-
mates. We design the highest-order boundary layer in a rather unusual way. Specif-

ically, we reformulate the e-Milne problem with geometric correction, such that it
recovers the stationary equation as in [46]. This allows us to use the stationary
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remainder estimate (1.54) to control boundary layers, leaving several nontrivial re-
mainder terms which can be delicately handled. In this fashion, we get

5
(159) ||Se(t)||L%(Q><]R3) + H@SeHLQ(Rerngg) 5 E3+6 .

4 . .
Hence, we get the same €3 convergence as in the stationary case.

1.6.2. Notation and convention. Throughout this paper, C' > 0 denotes a
constant that only depends on the domain €2, but does not depend on the data or .
It is referred to as universal and can change from one inequality to another. When
we write C'(2), it means a certain positive constant depending on the quantity z. We
write a < b to denote a < Cb.

This paper is organized as follows: in section 2, we perform the asymptotic ex-
pansion and matching procedure; in section 3, we record the main theorems proved
in [46] on the well-posedness and regularity of the boundary layer equation, i.e., the
e-Milne problem with geometric correction; in sections 4 and 5, we study the remain-
der estimates for both the stationary and evolutionary equations; finally, in section 6,
we prove the main theorem.

2. Asymptotic expansion.

2.1. Interior expansion. We define the interior expansion

3
(21) fii(taxav) :Z€ka(t,(E,’U).
k=1
Plugging it into (1.21) and comparing the orders of e, we obtain
(2.2) L[F1] =0,
(23) E[FQ] Z—’U'VxFl —|—F[F1,F1},
(24) £[F3] = —8,5F1 —v- Vng + QF[Fl,FQ]

The analysis of F} solvability is standard and well known. Note that the null space
N of the operator L is spanned by

2
1 v["—3
(25) w2 {11'01;”271]37 | 2 } = {@07@11@27@37@4}'

Then L[f] = S is solvable if and only if S € N, the orthogonal complement of N
in L2(R?). In the spirit of [37, Chapter 4] and [38, Chapter 3], similar to stationary
problems in [46, section 2.1], each F}, consists of three parts:

(2.6) Fy(t,z,v) == Ap(t,z,v) + Bi(t, z,v) + Ci(t, z,v).

4
e Principal contribution Ay := Z Ap.ipi € N, where the coefficients Ay, ; must

=0
be determined at each order k£ independently.
4

e Connecting contribution By := ZBk,i%‘ € N, where the coefficients By, ;
i=0
depend on Ag for 1 < s < k— 1. In other words, By, is accumulative informa-
tion from previous orders and thus is not independent. This term is present
due to the nonlinearity in T'.
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e Orthogonal contribution Cy € N'* satisfying
k—1
(2.7) L[Ck] = 0 Fy—z — v - VoFr1 + > T[F;, Fr_il,
i=1
which can be uniquely determined. Similar to By, here CY} is also accumula-

tive information from previous orders and thus is not independent.
All in all, we will focus on how to determine Aj. Traditionally, we write

2
(2.8) Akzu% (pk—Fuk'U—Fok('Uz 3)),

where the coefficients py, ug, and 0y represent density, velocity, and temperature on
the macroscopic scale. In particular, (pg, uk, ) ) satisfies as follows:

(2.3) implies

(2.9) p1— (p1+01) =0,
(2.10) Vap1 =0,
(2.11) V- up =0;

(2.4) implies

(2.12) p2 — (p2 + 02+ p101) =0,
(2.13) Orur +uq - Vaur — 11Agzug + Veps =0,
( ) 001 +uy - V301 — Y2 A0 =0,
(2.15) Vg -ug +uy - Vypr = 0.
Here p; and ps represent the pressure, v; and 7, are constants. The higher-order
expansion produces more complicated fluid equations, which can be found in [37,
Chapter 4]. If the interior solution F} cannot satisfy the initial and boundary con-

ditions, then we have to introduce initial layer Fj and boundary layer .%; to handle
the gap.

2.2. Initial-layer expansion (temporal substitution). We define the
rescaled time variable 7 by making the scaling transform 7 = E%, which implies

% = E%%. Then, under the substitution ¢ — 7, (1.21) is transformed into
(2.16)

0 f% +ev- Vo f + LIfF] = T[f%, /9] in Ry x Q xRS,
500, 2,v) = fo(x,v) in QxR3,

fe(r,xo,v) = Pe[fe)(1,20,v) for T € Ry, zo€ I, and v-n(xg) <O0.
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We define the initial layer expansion,

4
(217) fﬁ(T,iL’,U) = ngfk(T,$7U),
k=1

where Fj, can be determined by comparing the order of e via plugging (2.17) into
(2.16). Thus, we have

(2.18)
0, F1 + LIF1] =0,

(2.19)
0-Fo + ﬁ[}—z] = —v-V,F1 + F[./.'.h./.'ﬂ -+ 2F[F1,]'-1],

(2.20)
0, F3 + ,C[}—g] =—v-V,F2+ QF[.Fl,.FQ] + 2F[F17]:2] + 2F[F2,f1],

(2.21)
O, Fs + LIFs] = —v - Vo Fz + 20 F1, Fs) + D[ Fa, Fo] + 2TU[F1, Fa] + 2T [F3, Fi]

+ 2T'[Fy, Fa).

2.3. Boundary layer expansion. This is very similar to the stationary prob-
lem in [46, section 2.2]. We need to introduce several geometric substitutions.

1. In a neighborhood of zy € 002 define an orthogonal curvilinear coordinates
system (¢1, t2) such that at g the coordinate lines coincide with the principal
directions. Let 91 be the normal distance to the boundary. Then (M, 1, t2)
forms a local orthogonal coordinate system.

Assume 0f2 is parameterized by r = 7(t1,t2). Denote P; = |0;r| for i = 1,2.
Then define the two orthogonal unit tangential vectors

61’/‘ (927‘
2.22 = = =
( ) S1 P, y 62 P,

Also, the outward unit normal vector is

o1 X Oar
2.23 ni=————=2¢ X ¢.
( ) ‘817‘ X 827“| ot o2
Let x1 and ko denote two principal curvatures and R; and Ry two radii of
principal curvatures.
2. We also decompose the velocity into normal and tangential directions

-V N = /[),'7’
(2.24) —v-q = v,
—V - Q2 = U¢.
Denote v = (vy), Vg, Vy).
3. Define the scaled variable n = %, which implies % = %a%.
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Under these substitutions (z,v) — (1, t1,t2,0), (1.21) is transformed into

(2.25)
afe € 5 0f° 5 0f* afe
2 5 - e ~J
SO o an  Ri—en ( ¢3v — Ut 8v¢> Ry —em ( "D, Ovy, _Unte Oy
€ 0117 - Oar ey 4 O121 - Oar U
Plpg Pl(t’:‘lﬁll?’]—l) T P2 8/4227’]—1
. 3 3227’ . 817‘ 3121" 817’
PP, \ Py(ekan — 1)v P1 (ekin—1) v
V¢ 8f5 Uy afg : 3
[, — [, C— LIfe]l =T fe. f¢ R Ox R
(Pl(smn 1) Oy Pa(ekan — 1) Oug +LIf] 75, fe] in Ry x @ xR,
f8(07n7517b27n):fo(naLh[’Q?U) in QXR37
fe(t,0,1,t2,0) = P[f%](¢,0,t1,t2,0) for v, > 0.

We define the boundary layer expansion as follows:
3
(226) fﬁl(a n,yL1,L2, U) = Z Skyk(tv nL1,L2, U)7
k=1

where %, can be defined by comparing the order of ¢ via plugging (2.26) into (2.25).
Thus, in a neighborhood of the boundary, we have

(2.27)
0.%1 5 2 0.%1 0.%1 5 9 60/’1 0.%1
Un on R1 —en (% vy Une Ovg ) Ry —en (vw vy U Dy ) + LA =0,
(2.28)
8:@2 I 2 892 8?2 13 2 69‘2 8?2 o
Uy on B <v¢ a0, VpVg a0, ) g (vw a0, UnUsp 0, ) + L[F]| = Za,
0F 091 0% 09
h 71 =7 |F1, F
where 43 1 |: 1,71, 8U¢ ) 8U¢ ) aLl ) 8L2 as
(2.29)
1 8117” . 827' 812?" . 827' 2 &?1
Zy = 2I'[Fy, F INE 22
! [ ! 1} + [ ! 1] + P1P2 (Pl(Elﬁl’I] — 1)U¢U¢, * PQ(E/QQ’I] — 1)% 8U¢
1 Ooor - O O1or - 0 0F 0.F
4 227 - 01T Vsvy + 127 - O1T vi 1 n Vg 1
PPy \ Py(ekan — 1) Pi(erkin—1) Ovy  Pi(ekin—1) 0u
’Uw 89’1

M Py(eran —1) Oug
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However, we define %3 in a completely different fashion. Let .73 satisfy

(2 30) . 83“3 _ 3 1)2 83‘\3 o 83\3 _ 3 U2 aﬁg o 834\3
’ TOn  Ri—en\ ®ov, "7 0u, Ry —en\ ¥ Ov, T oy,
€ 0117 - Oor B O127 - Oar .2 0F5
PP\ Pi(erin—1) i Py(ekan — 1) v 0vg
B € 8227"817" Vv + 8127“'817‘ 1)2 83‘5
Plpg P2(€K277 — 1) T P1(€I€1?’] — 1) ¢ 6’U¢
Vg 0.F3 Uy 0.73
_ L[F3] = Z
6(Pl(s,kem —1) ou + Py(ekon — 1) Oig + L7 2
where
(231) ZQ = 2]:‘[:7651,(9\2] + QF[Fl,gg] + 2F[F27f1]
+ 1 (9117" . (927’ Dty + 6127" . 827” ’U2 8352
PP\ Pi(erkin—1) i Py(ekan — 1) v O0vg
+ 1 8227’ . 817” Vv + alzT . 817” v2 5:?2
Plpg P2(€l€277 — 1) T P1(€I€1?’] — 1) ¢ 6’U¢
V¢ 892 (%7 83\2

+ P1(6/€177 — ].) 8L1 + PQ(SHQ?? — 1) 6L2 '

Obviously, (2.30) actually contains all terms in (2.25) except the time derivative, so
it is essentially

(232) Ev - VN% + E[gg] = ZQ.

Hence, we will resort to the well-posedness and decay theory of the linearized station-
ary problem instead of that of the half-space boundary layer equation (the so-called
e-Milne problem with geometric correction).

2.4. Initial condition expansion. The bridge between the interior solution
and initial layer is the initial condition. Plugging the combined expansion from (2.1)
and (2.17),

3 4
(2.33) fe~ Z Eka + Z Ek]:k,
k=1 k=1
into the initial condition (1.21), and comparing the order of £, we obtain
(2.34) Fi+Fi = foa,
(2.35) Fy + Fo> = fo,
(2.36) Fs+ F3 = fos.

Since we do not expand the interior solution f;, to higher order, we simply require
the initial condition such that F, decays to zero as 7 — oo.
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2.5. Boundary condition expansion. The bridge between the interior solu-
tion and boundary layer is the boundary condition. Define

1

3 Plfltron) =) [ o G

Plugging the combined expansion from (2.1) and (2.26),
3 2
(2.38) fe~ Zaka + Zekﬁk,
k=1 k=1

into the boundary condition (1.21) and (1.23), and comparing the order of e, we obtain

(2.39)

Fy + % = PlFyL + 1] + pa(zo, v),

(2.40)

Fy+ F = PIFs + P+ (0, v)/ 13 W) (Fi+21) [ - (o) du + pa(z0, v).
u-n(zo)>0

For F3 and %3, since the boundary layer .#3 is defined differently, we can assign the
stronger version

(241) F3 + ﬁg = 'P[Fg + ﬁg] + 572 (,U,Z e E[L%[L1>,LL71P[F1 + yﬂ
+et (ui - u)u‘lP[F2 + 7]
+e3u2 (ui —p—eptp — s%éuz).

2.6. Matching procedure. Define the length of boundary layer L = ez, Also,
denote Z[vy, vy, Vy| = (—vy, Vg, Uy).

Step 1: Construction of Fy, Fi, and .%;.
A direct computation reveals that F; = Ay + B1+C1, where By = C; = 0. Define

2
v|” =3
(2.42) Fy = pt <p1+ul'v+91| |2 >7
where (p1,u1,07) satisfies the Navier—Stokes—Fourier system

Our +uy - Vaur — y1Azur + Vapy =0,
(2.43) Vo uy =0,
01 +u1 - Vb — 720,01 =0

with the initial condition
(2.44) p1(0,2) = po1(x), u1(0,2) =wuoa(x), 61(0,2)=0o1(z),
and the boundary condition

(2.45)
p1(t,wo) = ppa(t,xo) + Mi(t,w0), wi(t,zo) =upa(t,x0), O1(t,z0) = Op1(t, z0).
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Here M, (t,xp) is such that the Boussinesq relation
(246) Vx(pl + 91) =0

is satisfied. Note that the above requirement means that for fixed ¢, M; still has one
dimension of freedom. It is eventually fully determined by enforcing the conservation
law

(2.47) // Fi(t, x,v),u%(v)dvdx =0.
QxR3
Then based on the compatibility condition of p; which is
(2.48) / 12 (W) (£, 20, u) |u - n(zo)| du = 0,
u-n(zo)>0

we naturally obtain P[F}] = M;u?, which means
(249) F1 = P[Fl] + u1 on o0.

Therefore, compared with (2.39), it is not necessary to introduce the boundary layer
at this order and we simply take .%; = 0. Also, the interior solution can already
satisfy the initial data, so it is not necessary to introduce the initial layer at this order
and we simply take F; = 0.

Step 2: Construction of Fy, Fo, and F,.
Define Fy, = As+ By +C5, where By and Cs can be uniquely determined following
previous analysis in section 2.1 and [46, section 2.1}, and

2
-3
(250) A2 = /L% (pg + U9 "U+92|v‘ 5 > s

satisfying a linear fluid-type equation provided F} is known. Now F5 does not satisfy
(2.40) alone, so we have to introduce the boundary layer. Let %5 satisfy the e-Milne
problem with geometric correction

(2.51)

v 8?2 _ 3 ’Ugayg o 892 _ 3 ’U2 892 o 8?2
TOn  Ri—en\ ®ov, "7 ou, Ry—en\ Y ov, "' ouv,
+L[F3] =0,
yz(t,o, Ll,L27U) = h(t,LhLQ,,U) — iL(t,Ll,LQ,,U) for Uy > 0,
EZ(t7L7L17L277U) = 92(t7LaLlaL2a 7‘@“’])

with the in-flow boundary data
(252) h(t, L1, L2, t)) = Mlﬂl(ta Zo, ’U) + ‘LLQ(t, o, ’U) - ((BQ + 02) - P[BQ + CQ}) .

Based on Theorems 3.2 and 3.4, there exists a unique

(2.53) h(t,t1,t2,0) =

[N

4
Z Dk(tv L1, LQ)ekv
k=0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/03/22 to 131.179.222.24 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

HYDRODYNAMIC LIMIT OF 3D BOLTZMANN EQUATION 2525

such that (2.51) is well-posed and the solution decays exponentially fast to zero (here
e, with k = 0,1,2,3,4 form a basis of null space N/ of £). In particular, D; = 0.
Then we further require that As satisfies the boundary condition
(2.54) As(t, 0, v) = h(t, 11, 12,0) + Ma(t, o) (v).

Here z( corresponds to (1, t2) and v corresponds to v, based on substitution in section
2.3. Here, the constant Ms(t, zo) is chosen to enforce the Boussinesq relation

(2.55) p2 — (p2 + 02 + p161) = 0,

where ps is the pressure solved from (2.43) and it is determined up to a time-dependent
function. Similar to the construction of Fi, due to (1.20), we can choose M, to satisfy
the conservation law

(2.56) // (Fy + Fy + Fo)(t, z,v)p (v)dvda = 0.
QxR3

We can verify that such construction satisfies the boundary condition (2.40) as in [46,
section 2.5].
Also, the initial layer is no longer zero at this order. It satisfies

O0yF2 + ﬁ[}—z] =0,
(2.57)

.FQ(O, x, ’U) = (BQ + CQ)(O, x, ’U) — F2.00,
where F3 o (z,v) € N is chosen based on Theorem 6.4 such that
(2.58) lim Fy(r,z,v) =0.

T—00
Then we further require that Ao satisfies the initial condition
(2.59) As(0,2,v) = Fo oo(x, v).

Step 3: Construction of F3, F3, and .%3.
This is almost the same as in Step 2. Define F3 = A3 + B3 + C3, where B3 and
C3 can be uniquely determined following previous analysis, and

2
-3
(2.60) As :,u% (,03 +ug - v+ 03 [v] 5 ) ,

satisfying a linear fluid-type equation provided F; and F5 are known. In particular,
since the boundary layer at this order is defined in a trickier way, we simply define
the boundary condition

(2.61) A3 (t, o, U) =0.

On the other hand, define the boundary layer %3 by

(2 62) v 83‘\3 _ 3 ’U2 8?3 o &?3 _ 3 U2 63\3 o 83‘\3
’ T om Ri—en\ ' ? vy, e vy Ry—en\ 'Y vy, Y vy,

€ 8111" . 627’ 6127" . 627’ 2 8353
2. —
(2.63) PPy (Pl(smn — 1)v¢v¢ + Py(eran — 1)Uw Ovg

g (9227’ . 817" 8127“ . 817“ 9 6?3
2.64) —
(2.64) PP <P2(5f<3277 - 1)%% - Py(er1n — 1)% vy

Vg 0.F3 Uy 073

2.65) — L|F3 =7
( ) 6(P1(5/$177 —1) 0u + Py(ekon — 1) Oug + L7 ’
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where
1 8117‘ . 827" 3127’ . 327’ 2 &9‘2
2.66 7 = 21'[Fy, b
( ) [ b 2] + P1P2 (Pl(f;'ﬁl’r] — 1)’0(1)1)1/ + PQ(EHQ’I? — 1)% 8v¢,
+ 1 8227" . 817“ Vv + 812’/' . 817“ /02 6372
P1P2 PQ(&‘I{QT] — 1) T Pl({-:l{l’/] — 1) ¢ 8U¢

+ (%) &?2 + Uy 0352
Pi(erin—1) duy Py(ekon — 1) Oug

This is essentially,
(267) ev - VyFs + L[g\g] =Z.
The boundary condition is taken as

(2.68)
Fy = PIFs| + 72 (4 — p— epdin )i PR + 1)+ 67 (1 — ) PR + Tl

e PuTE (ui — et — 62/ﬁuz) - ((33 + C3) — P[Bs + Os}>.
Also, the initial layer satisfies

80}'3 + L[.Fg] = —v-V,F2+ QF[Fl,]:Q],
(2.69)
fg(O,l’,U) = (Bg + Cg)(O,l’,U) — ]:3700,

where F3 o (z,v) € N is chosen based on Theorem 6.4 such that

(2.70) lim F3(r,z,v) = 0.

T—>00

Then we further require that As satisfies the initial condition
(271) A3(Oaxav) = ‘F3,OO($’,U)'
In a similar fashion, we can define Fy

Oy F4 + ﬁ[fd =—v-V,F3+ 2F[F1,f3] + 2F[F3,]:1] + 2F[F2,f2],
(2.72)
]:4(0,58, U) = *.7:47007

where Fy o (z,v) € N is chosen based on Theorem 6.4 such that

(2.73) lim Fy(r,z,v) = 0.

T—r 00

3. Well-posedness and regularity of boundary layers. This section has
been well studied in [46, sections 3 and 4], so we just present the formulation and
notation, and record the main theorems without giving detailed proofs.
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3.1. Well-posedness and decay. In this subsection, we will study the well-
posedness and decay of the e-Milne problem with geometric correction. Let the null

2
space N of the operator £ be spanned by ué{l,vn,v¢,v¢, n|2_3} = {eg,e1,€2,€3,€4}.

Given data h(v) and S(n,v), we intend to find
~ 4 ~
(31) ]’L(U) = Z D;e; € N
i=0

with Dl = 0 and the other Di are constants such that the e-Milne problem with
geometric correction for G(n,v) in the domain (n,v) € [0, L] x R? as

(3.2)
L9 e (p06 OGN e (.06 9G
"On Ry —en ¢8U77 " ¢8v¢ Ry —en ﬂ’av,, K wavw

G(0,0) = h(v) — h(v) for v, >0,
G(L,v) = G(L, Z[v]),

>+q@:a

is well-posed, and G decays exponentially fast to zero as i becomes larger and larger.
Here Z[v] = (—vy,vg,vy) and L = e~2. For simplicity, we temporarily ignore the
dependence of ¢1,t9, but our estimates are uniform in these variables. Also, the
estimates and decaying rate should be uniform in e.

In this section, we introduce some special notation to describe the norms for
(n,0) € [0, L] x R3. Define the L? norms as follows:

(33) |N2:<ALAJﬂm®F®wO%

Define the weighted L* norms as follows:

(3.4) 1flos, = esssup (<u>%g°'2 |f<n,u>|),

(n,0)€[0,L]xR3

Here, we require 0 < p < i and ¥ > 3.
Since the boundary data h(v) are only defined on v, > 0, we naturally extend the
above definitions to this half-domain as follows:

(3.5) |h|ooﬂ97@ = sup ((n>’9 eolvl? |h(v)] )

vy >0
Throughout this section, we assume

(3.6) Ploso S 1, [leF7S] p, S1

00,9,0 ~

for some constant K > 0 uniform in .

_ THEOREM 3.1 (L? well-posedness of G). Assume (3.6) holds. Then there exists
h € N such that there exists a unique solution G(n,v) to the e-Milne problem with
geometric correction (3.2) satisfying

(3.7) 1911, < 1.
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THEOREM 3.2 (L? decay). Assume (3.6) holds. Then there exists 0 < Ko < K
such that the solution g(n,v) to (3.2) satisfying

(3.8) e"eng]|, < 1.

THEOREM 3.3 (L™ well-posedness of G). Assume (3.6) holds. Then there ex-
ists a unique solution G(n,v) to the e-Milne problem with geometric correction (3.2)
satisfying for o > 0 and integer 9 > 3,

(39) ||g||oo,’t9,g Sx 1.

THEOREM 3.4 (L decay). Assume (3.6) holds. Then there ezists 0 < Ko < K
such that the solution g(n,v) to (3.2) satisfying for 0 > 0 and ¥ > 3,

(3.10) |e"ng|| <1

00,9,0 ™~

3.2. Regularity estimates. Now we begin to study the regularity of the so-
lution G to (3.2). In this subsection, denote the boundary data p = h — h. Besides
(3.6), throughout this section, we further require the regularity bound that for ¢ > 0
and ¥ > 3

(3.11) Vobloowo S 1, |70, + [|e®"V, S| <1

00,79,0 00,9,0 "~

Define a weight function

R1—€T] 2 R2_€77 2 ?
(3.12) C(n;n)=<(vg+vé+vi)—( ) )’Ui—( 7 v?p .

It is easy to see that the closer a point (7; vy, ve, vy ) is to the grazing set (n; vy, ve, vy) =
(0;0,v4,vy), the smaller ¢ is. In particular, at the grazing set, ¢(0;0,v4,vy) = 0.

LEMMA 3.5 (weight function in e-Milne problem). Let ¢ be defined as in (3.12).
We have

(313)11%— c UQﬁ—vvﬁ S 112%—1)11ﬁ =
’ "on  Ryi—en\ ®ov, " ¢av¢ Ry —en\ Yov, " w(’“)vd, B
THEOREM 3.6. Assume (3.6) and (3.11) hold. For Ky > 0 sufficiently small, we
have

89 K 8g 8
(3.14) s [ e O
877 00,9,0 a”n 00,9,0
(3.15) eKonyga—g + eKO"V(:a—g ’ <1.
a% 00,9,0 a’Uw 00,9,0

COROLLARY 3.7. Assume (3.6) and (3.11) hold. We have

Konvi%

eK"”vi 09
vy,

< In(e)[*.
00,9,0

(3.16) elle +e€

00,9,0

Un
THEOREM 3.8. Assume (3.6) and (3.11) hold. We have

eKOTI%

oG
Kon
(3.17) He — %

< 8
o S (o)l

00,79,0

S |

00,9,0
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THEOREM 3.9. Assume (3.6) and (3.11) hold. We have
oG g

3v¢ 00,9,0 avw Hoo,ﬁ,g

Remark 3.1. Theorem 3.6, Corollary 3.7, Theorems 3.8 and 3.9 provide bounds
of all kinds of normal and velocity derivatives. However, note that the g—g estimate
must be accompanied by the weight ¢ since it may have a singularity near the grazing
set. Similarly, the ngn estimate should be with either ¢ or e. On the other hand, 2

’ Oy )
ng’ and aaig can avoid the introduction of ¢ or ¢, since they do not directly interact
* vy

with the grazing set.

(3.18) eKony < n(e)®, |[e%omn < [In(e)[®.

4. Stationary remainder estimates. Our analysis of boundary layers relies
on the study of the linearized stationary Boltzmann equation

n ev-Vuf + L[f] = S(z,v) in QxR3,

(1) { f(xo,v) = P[fl(zo,v) + h(xg,v) for xo € 0N and v-n <0,
where

(42) Plf1(wo,v) = p2(v) | flao,0)u (v)dy.

Y+
The data S and h satisfy the compatibility condition

(4.3) //Q - S(x,v)p? (v)dodz + h(z, v)pu? (v)dy = 0.

It is easy to see that if f is a solution to (4.1), then f + Cu% is also a solution for
arbitrary C' € R. Hence, to guarantee uniqueness, the solution should satisfy the
normalization condition

(1.4) Il DT

This problem has been well studied in [44, section 4], so we will only present the
main theorems.

W=

(v)dvdx = 0.

LEMMA 4.1 (time-independent Green’s identity).  Assume f(z,v), g(z,v) €
L>(Q xR?) and v -V, f, v-Vug € L?(Q x R?) with f, g € L?(~). Then

(4.5) //MRZ ((v-me)g+ (v-ng)f>dwdv = /7+ fgdy — /A fgdy.

Proof. See [10, Lemma 2.2] for the proof. 0

LEMMA 4.2. For Boltzmann collision operator k, we have

1 g e
(6) ol € (ol + o Yo

Proof. See [20, Lemma 3] for the proof. O

LEMMA 4.3. Let 0 < p < i and ¥ > 0. Then for § > 0 sufficiently small and any
v € R3,

¥ olvl? 1
(47) [ o 5 g
R3 <u> eolu <U>
Proof. See [20, Lemma 3] for the proof. d
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4.1. L?™ estimates.

LEMMA 4.4. The solution f(x,v) to (4.1) satisfies

(4.8) elPfllgm S el =PIfN,, am + 1T =P)fIly + ll(T=P) £l

1
+ Hu 25H2 +elhlly -

THEOREM 4.5. The solution f(x,v) to (4.1) satisfies the estimate

(4.9

==

10 =P,z + 2 0T~ B, + 1B S 0P (171, o0 + 15110

[N

3

1 1y 1 1
+ 5 IPISI 2, + <[ 2= PISY|| + 101, g+ 2 -
4.2. L°° estimates.

THEOREM 4.6. Assume (4.3) and (4.4) hold. The solution f(xz,v) to (4.1) satis-
fies for ¥ >0 (md0§9<i,

(410) ||fHoo,19,g + ||foy+,oo,g,'L9
1 _1 —1
S IS e, + |l A= BISI, + [0S

1 1
+ = Hth,,% + pE—— Il 2+ 1Pl 000 -

Remark 4.1. Inserting Theorem 4.6 into Theorem 4.5, we actually have

(1.11) T NA=P), 2+ 2 N =B, + WP

<SPS, + < [o @ B)(S]||, + 8]

2m—

00,9,0

1
Rl + WAl 1AL o 00 -

5. Evolutionary remainder estimates. We consider the linearized evolution-
ary Boltzmann equation

e20;f +ev-Vuf + L[f] =S, z,v) in Ry x Q xR3,
(5.1) f0,2,v) = z(z,v) in QxR3,
f(t,zo,v) = P[f](t, o, v) + h(t, z0,v) on Ry X vy_,

where

Nl

62 Pl =) [ ) o)l du

The data z, S, and h satisfy the additional requirement
(5.3) // 2(z, v)u% (v)dvdz =0,
QxR3
// S(t,x,v)/ﬁ(v)dvdx —|—/ h(t,x,v)u%(v)dv =0.
QxR3

y_
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Then we can easily derive
(5.4) // ft, x, v),u%(v)dvdx =0.
QxR3

Our analysis is based on the ideas in [10], [20], [42], and [44]. In particular, we will
invoke the results of the stationary problem in the previous section. Since proof of
the well-posedness of (5.1) is standard, we will focus on the a priori estimates here.

5.1. Preliminaries. We first introduce the well-known micro-macro decompo-
sition. Define P as the orthogonal projection onto the null space of L:

(v) (af(t,x) +v-by(t,z) + ol =3

N

(55 Plf]:=u

5 cf(t,a:)> eEN,

where ayf, b¢, and cy are coefficients. When there is no confusion, we will simply write
a, b, c. Definitely, £ [P[f]} = 0. Then the operator I — IP is naturally

(5.6) (I=P)[f]:= f = P[f],

which satisfies (I — P)[f] € N4, i, L[f] = £ [(H _P) [f]] .

LEMMA 5.1. The linearized collision operator L = vI — K defined in (1.27) is
self-adjoint in L?. It satisfies

(5.7) (v) Sv(v) S (v),
(5.3) LU (4 2) = (=P £[ @ =PI ) (8 2),
(5.9) (= P)[f(t,2)]l; S (LI (o) SIT=P)[f ()]l
Proof. These are standard properties of £. See [15, Chapter 3] and [20, Lemma
3. d
LEMMA 5.2. For 0 < § << 1, define the near-grazing set of v+,
(5.10) vy = {(a:,v) €y n(z)-v| < or |v| > % or |v| < 6}.
Then
t t
a0 [ |t <c@ (s + [ (1 ot o0 v11L) )
Proof. See [10, Lemma 2.1] with a standard time rescaling argument. O

LEMMA 5.3 (time-dependent Green’s identity). Assume f(t,z,v), g(t,z,v) €
L2(Ry x QX R3) and O,f +v-Vuf, Og+v-Vaeg € L*(Ry x Q x R3) with f, g €
L?(Ry x 7). Then for almost all s,t € R,

(5.12) /: //M@ <atf+v‘vmf)g+(8tg+v'vmg)f>

-/ REH yl [rowr+ [ s~ [ st

Proof. See [10, Lemma 2.2] for the proof. d
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5.2. L? estimates.

LEMMA 5.4. Assume (5.3) and (5.4) hold. The solution f(t,x,v) to the equation
(5.1) satisfies
(5.13) ellPfIly S e 1 £ @), + el = P)AIl,, o+ I1T—B) Al
1 3
+[[v2s||, + Bzl + il

Proof. Apply Green’s identity in Lemma 5.3 to (5.1). Then for any ¢ € L?(R x
Q x R3) satisfying €01 +v -V, € L2(Ry x Q x R?) and ¢ € L2(Ry x ), we have

(514) E/Ot/wfwdv—s/otfvfwd7—€/0t//mw(v-vzw)f
= [ [ saw-e [[ saworse [ sono
el ol ]

The proof follows the same idea as in the proof of the stationary version (see Lemma
4.4) and [44, Lemma 4.3] with m = 1. Actually, we use almost the same test function
P~ /ﬁv - V¢ to estimate a, b, and ¢, where ¢ satisfies proper elliptic equations.
Hence, we will omit the details and only present the main result. Compared with the
stationary estimate, the new terms only show up on the right-hand side of (5.14).
Using Holder’s inequality, we know

t
a5 | [ ] sew| S @sILowll, < 20110l
In a similar fashion, we have
6100 |2 [ rau| S LU Isol, £ S0LIT00],
s [ 0w SOOI, $ 11260,

Step 1: Estimates of c.
We choose the test function

(5.18) b =ve =) (B = 5c) (v: Vaoe(t,2).

where for fixed ¢,

(5.19)

—Ayde = c(t,x) in Q,
¢ =0 on 09,

and constant 5. € R is determined as in the proof of [44, Lemma 4.3]. Based on the
standard elliptic estimates (see [29]), we have

(5.20) 16e®ll 200y S el 220y
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Eventually, we have
(5.21)
2
5||C||L2([o,t}xs2)

S (nml =Pl + || 28], + el =P, +sh|||7,2) el 2 0.0
Te? <|||f|||zatvx¢c|||2 IOl lle®)l 2 oy + ||z||2||c<o>||wm>~

Step 2: Estimates of b.
We further divide this step into several substeps:

Substep 2.1: Estimates of (8i8jAz1bj>bi fori,j =1,2,3.
Let b = (b1, ba, b3). We choose the test functions for 7,5 = 1,2,3,

1

(5.22) Y =pij=p2 () (v — Buij) 0idnj,

where

(5.23) { —Ag¢p; = bj(t,z) in €,

(bb,j =0 on 6(2,

and constant £, ; € R is determined as in the proof of [44, Lemma 4.3]. Eventually,
we obtain

)
t
/ (aiajAglbj>b,-
0 JQ

S <|||<H =Pl + || E8||, + el =P, . + s|||h|||7,2) 18020,

(5.24

3

+e? <|||f|||2atvx¢b,j”|2 HIF Ol MO 20y + ||Z||2||b(0)|L2(Q))'

Substep 2.2: Estimates of &-&Amlbj)bj for i # j.
Notice that the ¢ = j case is included in Substep 2.1. We choose the test function

(5.25) Y =pij = (2 (v) o] vv; 0y ; for i # j.

Eventually, we obtain

)
t
/ <8281A11b3> bj
0 JQ

S <|||<H =)l + || 28|, + el =P, . + e|||h|||7,2) 18,0

(5.26

3

+e? <|||f|||2atvw¢b,j”|2 HIFOlNOO 20y + ||Z||2||b(0)|L2(Q)>'
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Substep 2.3: Synthesis.
Summarizing (5.24) and (5.26), we may sum up over j = 1,2, 3 to obtain, for any
i=1,2,3,

(5.27)

2
E||bz‘||L2([o,t]xQ)

S <|||<H =Pl + [ 28|, + el =P, . + s|||h|||7,2) 18200

3
+e’ <|||f|||2 Y 18:Vadu,5lly + L Ol 16 2 (g + Izzllb(O)le(Q))»

j=1
which further implies
(5.28)

2
ellbllzz o,

S (|||<H = B)Ifll, + || 25|, + el =P, . + s|||h|||7,2) 18122 0.0x22

3
+e’ <|||f|||2 D 18:9a6n,5lly + LF ON 10 2y + |22||b(0)|m<m)-

j=1

Step 3: Estimates of a.
We choose the test function

(5.29) b=t =p}) (1o = Ba) (v: Vatalt,2),
where

—Ayde = a(t,x) in Q,

5.30
(5:30) 9%a =0 on 09,
on

and constant 3, € R is determined as in the proof of [44, Lemma 4.3]. Eventually, we
get

(5.31)
2
5||a||L2([o,t]xQ)

S (|||<H =PIl + || 25|, + el =PiAl,, +e|h|||7_,2) lall o)

+e <|||f|||23tVz¢a|||2 17Dl Nal®ll 220y + IIleglla(O)lle(m)-

Step 4: First synthesis.
Collecting (5.21), (5.31), and (5.31), we deduce

(5.32)

elPLAIN (mol =Pl + |2, + el =P, +e|h|||7,2> IPLAII,

3
+e2 I £l (IIIatstﬁalllg + > 118:Vaulll, + |||atvx¢c|||2>

=1
2 2
+EXF @5 + %zl
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In order to close the proof, we must bound [[|0; Vi ¢alll5, [|0: Vs ;5. and (|0 Ve[,
Apply Green’s identity in Lemma 4.1 to (5.1). Then for any ¢ € L?(2 x R?)
independent of time ¢ satisfying v - V¢ € L?(Q x R?) and ¢ € L?(y), we have

(5.33)

//Qst OuS ) =~ 5/ | fEdy €/L F(t)pdy + 5//QXR3(U VL) £(1)
B s

Step 5: Estimate of 9;V ...
For fixed t, taking ¢ = 1 [vl? 738@)6( t), using integration by parts, we have

(5.34)

//QX]R3 O f(t)y = —¢ //Qst O f(t) l ‘ 6t¢c = /Otc )0spe(t)

_ _52‘/§2Azat¢c(t)at¢C(t) = 62/Q|8tvz¢c<t)|
= [0:V26e(t)][72(0

Following a similar argument as in Steps 1-3, we have

(5.35) 10: Vel S bl 2 0.xe + <NA= PN + 25|

Step 6: Estimate of 0;V ¢y ;.
For fixed ¢, taking ¢ = —,u%vjat(bb,j (t), using integration by parts, we have

536
// B f (b = e // O f (D) 0,006, (1) = — / Dron; (1)eho5 (1)
IxR3 OxR3

S /Q Auin s ()0B4(1) = = /Q 00V (1)

2
= Hatvm¢b,j||L2(Q)-
Following a similar argument as in Steps 1-3, we have

(5.37)
210V 90l S ellallao.man + Ellell oy + @ =P + ||l 5] .

Step 7: Estimate of 9;V T(j)a
For fixed t, taking ¢ = —,u28t¢>a( using integration by parts, we have

5 38 // 8f = —€ // 3t 28t¢a = —€ / ata 6t¢a )
QxR3 QxR3

_ g2 / Asduda(t)Brba(t) = / 10,V s ba (1) 2

= 20 Vaba ()] 720
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Following a similar argument as in Steps 1-3, we have
_1
(5.39) 2110:Vaally S Moz oy + |35

Step 8: Second synthesis.
Inserting (5.35), (5.37), and (5.39) into (5.32), we have

(5.40)
<lIPL I s(m(ﬂ =)l + |28, + el = PA, . + ehmw) IIPLAIIl,

+ |||f|||2(e|w]2 +ell@- B, + \Hu—%SH)Q) + <2013 + €213

Applying Cauchy’s inequality, we have
(5:41) el < oD + 21 I3 + el =PI, o + %lll(]I —B)[ /Il
2| el + <tim_
Hence, absorbing 0(1)5H|IP’[f]\H§ into the left-hand side, we have
(5.42) BN, S 2 1@y + el =P, 2 + 1T =)l
+|lr2s||, + Bzl + el

This completes our proof. ]

THEOREM 5.5. Assume (5.3) and (5.4) hold. The solution f(t,z,v) to (5.1) sat-
isfies

(5.43) 1)l + Qnu ~P){flll, 2+ A= BIAN, + IS,

SISl + [l 2 a=misi||, + Ziail,_ + 1l

Proof.
Step 1: Energy estimate.
Multiplying f on both sides of (5.1) and applying Green’s identity in Lemma 5.3

imply
(5.44)

CUOR+ AR, - SIP il [ [ et =See [ [ s
2 202 2 -2 0 JOxR3 2 2 0 Jaxrs '
Direct computation reveals that

3 9
G45) SR, 2 SIPUI+AIE,

t
£ 2 9 2 € 2
SIAIE, = SUPLAIE o = S0el o+ [ [ iy

y—
t
= SNA=PUANE, = 503 +e [ [ wPis

1
Z el =PI, 2 — Elllhllli,,z —*nllPAll, 2

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/03/22 to 131.179.222.24 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

HYDRODYNAMIC LIMIT OF 3D BOLTZMANN EQUATION 2537

where 0 < 7 << 1 will be determined later. On the other hand, based on Lemma 5.1,
we know

(5.46) L[ senzna-mis.

Inserting (5.45) and (5.46) into (5.44), we have

(541 SOl +ell =PI, o+ IlT— P
1 t
SRR, o + 2l + LIRS+ [ [ s
Step 2: |||P[f]|||—y+2

Multiplying f on both sides of (5.1), we have

(5.45) )+ Vel = 2 (- FLlf] + £5).

Taking the absolute value and integrating (5.48) over [0,t] x Q x R?, using Lemma

5.1, we deduce
t
f e s))
0 JOxR3

On the other hand, applying Lemma 5.2 to f2, for near-grazing set v, we have

(5.50)
s £S5 = M Lnas #2110 < €@ Ell2HL + 171+ o) + o Va()]])
= () (ellells + 1115 + llean(F*) +v- V)], )

t
0@ (el + W3+ Sna-miag+ 2| [ [ rs]).

(5.49) 0:(f) +v - Va (], S é

@mmmﬁ+

We can rewrite P[f](t, 2o, v) = y(t,z)p2 (v). Then for § small, we deduce
(5.51)

Pl [ f et ([ ket as

! ( / t /8 ) y@,x)f) ( / G |U-n<x>dv> = SIPLAIE, -

where we utilize the bounds that

(5.52) / o HE @ S

Y]

(5.53) / 1) [v - n(a)| dv < 6.
[v|<§ or |v|>6—1
Therefore, from (5.51) and the fact

(5.54) |||7D[17\W‘5f””7+,2 S |H17\’Yéf|H'y+,2 S H|1’Y\'r‘5fH|%2’
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we conclude

(5.55) PG, 2 S P AL, o S e L o

Considering (5.50), we have

1
(5.56) IIPLAIE. 5 SC() (snzni A+ 2= B)LANE + st
QxR3
For fixed 0 < 6 << 1 and using f = P[f] + (I — P)[f], we obtain
1
(557 PG, 2 S ell=llz + IPLAI + Zlia@-P L1113 + ‘
QxR3

Step 3: Synthesis.
Plugging (5.57) into (5.47) with e sufficiently small to absorb |||(I — P) [f]|||§ into
the left-hand side, we obtain

(5:58) )5 +ell@ = PN, 2 + T =PI < ne®IPLAIE + %11z

1 ; ‘/t/ ’
+ =k + S|
o+ [

We square on both sides of (5.13) to obtain

1 2
(5:59) IBIAIIE S 17O + M= PYAI, o+ 1A= BANE + |||
+e¥llzll3 + 2RI

Multiplying a small constant on both sides of (5.59) and adding to (5.58) with 7 suffi-

ciently small to absorb 2[|(1 = P)[f][I3, o, I (T = P)[fIII5 €[/ (£)II5 and ne2{[P{f]]13
into the left-hand side, we obtain

(5.60) ENFOII3 + el (1 =PI, 2 + T =B + NI

[ sl

< 2 20,12 il
SUMIE . + 2003 + s +

Applying Cauchy’s inequality, we have

(5.61) I-P)[f

QxR3 ‘

S o(WIIT-P)LA + ]Hu*f(Hm[S]]HZ
+o(IPLAIE + 5 IPLS3

Inserting (5.61) into (5.60) to absorb o(1)|||(I — P)[f]|||§ and 0(1)62|||P[f]|||§ into the
left-hand side, we obtain

(5.62) EN@)5 +ell@ =PI, 2 + 1T =B + 2P

< SIPLSUE + [[o- 2= Bis|| -+ WallE_ , + <=1

QxR3 ‘ QxR3 ‘

Hence, our desired result naturally follows. 0
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COROLLARY 5.6. Since (5.1) is a linear equation, taking the time derivative on
both sides, we know O f satisfies

528t(8tf) +ev- Vw(atf) + /J[@tf] = 8tS(t,x,v) m RJr x €) X R?’,

1 1 1 .
(563) atf(ovxav) = —?L[Z(.’E,U)] - gv : VIZ(J:’U) + gS(O,x,U) in QX RSa

O f (t, o, v) = PO f1(t, x0,v) + OLh(t, x0,v) on Ry X v_,

where we solve the initial data 0y f(0,x,v) from (5.1). Then applying Lemma 5.5 to
(5.63), we obtain

(5.64)  o:f()lly + é\ll(l = P)oSllll,, 2 + EIIIG1 = P)[O: A1, + [IPL8: £1ll,

<1
~ 22

SIS + [l - s, + Zanl,_s + vl

1 1
+ <l Vazlly + 51O

5.3. L?>™ estimates. Throughout this section, we need 3 < m < 3. Let o(1)
denote a sufficiently small constant.

LEMMA 5.7. Assume (5.3) and (5.4) hold. The solution f(t,z,v) to (5.1) satisfies

(5.65)
elPLf Ollzpm S e X =P DI, 2 + 1T =P)FB]2 + el (T = P)[f ()]l

+ Hu—%S(t)HQ +e R, am + 2100 (E)],.

Yy

Proof. This is very similar to the proof of Lemma 5.4 and the stationary version
(see Lemma 4.4) and [44, Lemma 4.3]. We apply Green’s identity to (5.1) and choose
particular test functions to control a, b, and c¢. However, there is no simple way to get
around the 9,V ¢ terms as in Steps 5—7 of the proof of Lemma 5.4. Here, we resort
to stationary techniques, i.e., to use a time-independent Green’s identity instead of
time-dependent one.

Apply Green’s identity in Lemma 4.1 to (5.1). Then for any 9 (¢) € L*(Q x R?)
satisfying v - V,(t) € L2(2 x R3) and (¢) € L?(7y), we have

6560 < [[ sopwn—c [[ sovwn -] (o-0m)0

:_//QXRSlp(t)ﬂ[(]I—IP)[f](t)} +//Qst SE)(t) — & //MRS Duf (1) (t).

Then except from —62ffﬂxR38tf(t)¢(t), this is exactly the same as the stationary
estimates in Lemma 4.4, so we just mimick the proof there and that of Lemma 5.4,
and point out the major differences. In particular, we always use the bound

(5.67)

2 2
) //QR o <f>w<t>\ S N0 Ol ()l
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Step 1: Estimates of c.
We choose the test function

(5.68) v(t) = velt) = 3 @) ([of = Bc) (v- Vaoelt2)),

where

—Apo(t) = cle/* 7 (t,2) in Q,
(5.69)
¢.(t) =0 on 09,

and constant S, € R is determined as in the proof of [44, Lemma 4.3]. Based on the
standard elliptic estimates in [29], we have

G10) o)l .

< e

2m—1
P, S et 3ty

2m
L2m—T (Q)

Hence, by the Sobolev embedding theorem, we know

2m—1
(5.71) 1e(®)lly < el @y S 10l 2 2m; o) S le®lz2m @),
2m—1
672 10eOlyr sz g S ||¢c<t>||wz,%(m < el -

Also, for 1 < m < 3, using the Sobolev embedding theorem and trace estimates, we
have

(573)  1926e)] o,y o S 1Va6c(0) < IVase®)l s

1 _2m 2m
W 2m 2m—1 (5Q2) 2m—T ()

S llge(®)ll

2 1
Ol

W2’27211,W—11(Q) N H
Eventually, we have

(5.74)
elle®llpamqy S e lX=P)FDI,, am + 1T =P)FDIll, + el T=P)f O]l 31

|l Esw)|, +e M@, s + N0,

Step 2: Estimates of b.

We further divide this step into several substeps:

Substep 2.1: Estimates of (9;0;A;(b; |bj\2m72))bi fori,7=1,2,3.
Let b = (b1, ba, b3). We choose the test functions for ¢,5 = 1,2, 3,

(5.75) U(t) = Ypi(t) = M%(U) (0 = Buyirj) Oj b,
where
Apy () = b; |b;P" 2 (t,x) in Q,

(5.76)
¢b7j(t) =0 on 39,
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and constant (5, ,; € R is determined as in the proof of [44, Lemma 4.3]. We can
recover the elliptic estimates and trace estimates. Eventually, we have

(5.77)
) -1 . . 2m—2 .
/Q (alajAw (b] 1b,] ))b

S IbOIZE @) (E 1A =P)FDIl, 2 + 1T =P O]l + el T=P)f )]l

€

+ |l Esw)|, +e )

e 21050, ).

Substep 2.2: Estimates of (8i8iA;1 (bj |b; 772 ))bj for i # j.

Notice that the i = j case is included in Substep 2.1. We choose the test function
(5.78) G(t) = Ppi(t) = p () o] viv;Bichy; for i # j.
Eventually, we have

(5.79)

/Q (@@‘A;l (bg‘ b [ ))bj

< 16020y ( 1@ =P, 10+ 1A= B)FON, +ll (T = PO

3

+ Hf%S(t)HQ +e ()]

s 2100,

Substep 2.3: Synthesis.
Summarizing (5.77) and (5.79), we may sum up over j = 1,2, 3 to obtain, for any
i=1,2,3,

(580)  llbi(t)] 70y S D)7 5 ey ( 1@ = PO, 20 + 1T RO,
el T B) Ol

n HV‘%S@‘L +e ()l

TY->

am + 52||€)tf(t) |2) )

which further implies

(5.81)
ello(®)ll pam(qy S e l(X=P)FDI,, am + 1T =P)FD1ll, + el (T=P)S O]l 31m

+ Hy—%S(t)HQ +e @)l am + 210 B,

Step 3: Estimates of a.
We choose the test function

(5.82) () = ba(t) = pt (0) (Jof = Ba) (v Vada(t,2),
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where
1
—A,do(t) =a |a|2m*2 (t,z) — /@ |a\2n%2 (t,r)dz in Q,
(5.83) . 2 Ja
222 =0 on 09,
on

and constant 3, € R is determined as in the proof of [44, Lemma 4.3]. We can recover
the elliptic estimates and trace estimates. Eventually, we have

(5.84)
la(®)ll on gy S € N0 = PIFB, s + 1A= PO, + T =PI Oayn
+ [ Es@, + e In@, s +210S D)

Step 4: Synthesis.
Collecting (5.74), (5.81), and (5.84), we deduce

(5.85)
elPLf g S €M =P)FDII, 2z + T =P)F )]l + el[(T=P)[F )],

+ HVTS(t)H2 +e R, am + O], a

THEOREM 5.8. Assume (5.3) and (5.4) hold. The solution f(t,z,v) to (5.1) sat-
isfies

(5.86)

- PO, 2+ < II(]I = B)FOIIL + P D]l 20,

€3
+ i;III(1 =P, 2 + é\ll(]I =P[O, + P[0 Sl

3

<o(1 )62m(||f( >||W+||f<t>|| )+%|\P[s<tm|

+ Lt a-Biswl], + s IPosil, + H\v—ml— oS, + IO,

1
+ 1Bl + g|||ath|||y_,2 + el + 2l Vazlly + SISO

Proof.

Step 1: Energy estimate.

Multiplying f on both sides of (5.1) and using similar estimates as in the proof
of Lemma 5.5, the stationary energy structure implies

(5.87)
e = PFONIE, o + 10~ PO
Sw PO+ In0I o+ | [ swse] +

We square on both sides of (5.65) to obtain
(5.88)

ENPLF Ollam S I =PIF@IN, am + 1T =S @5 + T~ B)FD)]l5,,

1 2
+ [ Es@) + 2 IRWIE. s+l O

/Q . f(t)atf(t)’ -

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/03/22 to 131.179.222.24 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

HYDRODYNAMIC LIMIT OF 3D BOLTZMANN EQUATION 2543

Holder’s inequality implies

(5.89) IPLF @Ml S PLF Mg -

Multiplying a small constant on both sides of (5.88) and adding to (5.87) with 7
sufficiently small to absorb 77£2|||}P’[f(t)]|||§7 and |H(]I—IP’)[f(t)]|||§ into the left-hand
side, we obtain

(5.90)
=PI, o+ 1T = P)F@I + IR,
<= PYFOIIE, s+ N~ RO + 10O + o250

[ swso|ve|[ rwas)|

am and 2|||(I — P) [f(t)]|||§m on the right-

2RI ap + RO 5+

Now we have to handle £2|||(1 — P)[f(#)]
hand side.

I, 22

Step 2: Interpolation argument.
By an interpolation estimate and Young’s inequality, we have

(5.91)

1= PN, s < 10— PIF@IZE, 10— PO
=(6i9||<1— ) (1 - )[f(tmjé%gi)

£ 4m?2

< (czr 10 - PS0) )m

£ 4m?2

3

+o (5 Ja- Pl )"

< s 10 =PI, o + 0D (1= PYFO,
< 55 10 = PO, o + 0D (1= PYFE,

Similarly, we have

(5.92)
I = B)F O]y < 1T = YOI~ B ONET

- (Signw _BO)IF ("fn T P)[f(tnno?)

£ 2m?2

m

3m—3

< (€3713||(]I—IP)[f(t)}|2’h)m+o(1) EE IRyl ) ™

2m

< A= B) D)l + oD (T - B)F )]

£ 2m
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We need this extra 2= for the convenience of the L™ estimate. Then we know for
sufficiently small € and % <m <3,

(5.93)
SN0 = PO, £ 5 | A-PIFOIIE, 5 +o(D)e> (1= PYFWIIE, o

S ol =PI, 5+ oM ™ IF )2, o

Similarly, we have
(5.94) @ -B)f D)5, S > T - P15 +o(L)eX =T - B)[FR)]II%,
S oI~ P)[f D)3 + o(L)e> = || F(1)1%

Inserting (5.93) and (5.94) into (5.90), and absorbing o(1)e ||(1 — P)[f(¢ )]|| i 2 and
o(1)|(I - P) [f(t)]||§ into the left-hand side, we obtain

(5.95)
el =PSB, 2+ 1A= B)FOI + PO,

< o2 (IO, o HIFOIZ )+ 10 O3 + [0+ B2 s
[ swsolve| [ rwas|

Step 3: Synthesis.
We can decompose

(5.96) /msf (t)S(t //Qst //Q><R3 I-P)[fO)NI - P)[S®)]-

Holder’s inequality and Cauchy’s inequality imply

+ IR OI3_ 5 +

con [ ® - S(O] < [P IPIS@ 2. S oW IBFOIE
+ LIRS e,

and

598

// (L= B O]~ B)[S(0) £ o(1) (1~ BN + [~ - Bs )|
QxR3

2

Inserting (5.97) and (5.98) into (5.96) and further (5.90), absorbing o(1)e2||P[f] (t)||§m
and o(1) [[(T —P)[f(¢)] Hi into the left-hand side, we get

(5.99)
el =PI, o, + I~ BONE + B D13,
<o (IO, o+ IFOIL) + 10 O3 + S IPIS O 0,

| f(t)atfu)\ .

v am + [[h(t )H»y 2 +é?

+ e ta-misol) + 2 imw)e
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Now we handle the most difficult term:

(5.100) ¢&*

[ 10as0] £ 1O @l £ o101 + Has 0l

Here 0(1)52Hf(t)||3 can be absorbed into the left-hand side of (5.99). Then we resort
to (5.64) to tackle £2(|d, f(t)||3:

(5.101) 1A O5 + el = PYDAIIE, o + I =P)BAI + PO

< Lip@s + |l ta -S| + olE , + vzl
~ g2 tolll2 ‘V i ‘2 il 2 T 2 172l

2 1 2
Fllo- Vel + SISO

Multiplying a small constant on (5.99) and adding it to (5.101) to absorb £2||0; f () ||§,
we have

(5.102)
(L= P)FWIIE, o + 1A= PO + PO,
+ el = PO, o + I =PRI + < IP0: A1
S oW (W2, oo + 17D
+ S IPSEN s, + v a-BISOI|] + Ie@SIE+ || - Blos]||

+ RIS am + IR o + 1A, + 2||VZ||2+||v Vaozls + 2IIS(O)IIQ-

Then our desired result follows. 0

Remark 5.1. Roughly speaking, Theorem 5.8 justifies that in order to bound in-
stantaneously f in L?™, we need the accumulative bound for f and 0, f in L2.

5.4. L*° estimates. Now we begin to consider the mild formulation. When
tracking the solution backward along the characteristics, once it hits the in-flow
boundary or initial time, it either terminates (when hitting the initial time) or is
diffusively reflected (when hitting the boundary). Following this idea, we may de-
fine the backward stochastic cycles, with multiple hitting times and out-flow inte-
grals.

DEFINITION 5.9 (hitting time and position). For any (t,z,v) € Ry x Q x R3 with
(z,v) ¢ 0, define the backward hitting time

(5.103) ty(t,z,v) :=inf{s > 0:x —esv ¢ Q or t=¢e’s}.
Also, define the hitting position
(5.104) xp = x — etp(z, v)v.
Note that =, € 2 means the characteristic already hit the initial time, and z;, €

0f) means the characteristic hits the boundary, so it can be reflected and continue
moving.
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DEFINITION 5.10 (stochastic cycle). For any (t,z,v) € Ry x Q x R3 with (z,v) ¢
Yo, let (to, o, v0) = (t,x,v). Define the first stochastic triple

(5.105) (t1,z1,v1) := (t — €2tb(ﬂc0,v0),xb(w0,vo),v1>

for some vy satisfying vy - n(x1) > 0.
Inductively, assume we know the kth stochastic triple (tx, x, vi) with ty, > 0 (i.e.,
xp € Q). Define the (k + 1)th stochastic triple

(5.106) (tht 1 Thg1, Vkg1) == (tk - €2tb(17k,vk),Jfk(Ik,Uk),Uk+1)

for some vi41 satisfying vgi1 - n(Tr41) > 0.

Remark 5.2. Roughly speaking, this definition describes one characteristic line
with reflection (alternatively the so-called stochastic cycle), starting from (t, 2, vg) €
v+, then tracking back to (tgr1,%rs1,vk) € {0} x © x R® which will terminate, or
(tgs1, Tr1,vk) € (0,00) x v_, diffusively reflected to (tg+1,Tk+1,Vk+1) € Y+, and
beginning a new cycle. tj is the actual time the characteristic moves backward. Note
that we are free to choose any vg-n(zy) > 0, so a different sequence {vy } 72, represents
different stochastic cycles.

DEFINITION 5.11 (diffusive reflection integral). Let Vi, = {v € R? : v-n(xy) > 0},

so the stochastic cycle must satisfy v, € V. Let the iterated integral for k > 2 be
defined as

k—1
(5.107) / I1 do; ::/ (/ dak_1>~~d01,
v j=1 Vi Vi—1

where doj == p(v;) |v; - n(x;)| dv; is a probability measure.

We define a weight function scaled with parameter £ for 0 < o < i and ¥ > 0,

(5.108) wv) == <U>q9 celvl?

and

(5.109) B(v) = 1 _ 3 oli-o)ll?
u(@)w(v) (14 0p)

LEMMA 5.12. For Ty > 0 sufficiently large, there exists constants C1,Cy > 0
5 _
independent of Ty, such that for k = C1T, and (z,v) € xQ x R3,

k-1 1 CQTO%
(5.110) /H’?*lv. 1{t7tk(m,v,:§ ..... vem1) Toy H do; < (2) .
j=1"7 ]:1

Proof. This is a rescaled version of [10, Lemma 4.1]. Since our hitting time in
(5.103) is rescaled with e, we should rescale back in the statement of the lemma. 0O

Remark 5.3. Roughly speaking, Lemma 5.12 states that even though we have the
freedom to choose vy, in each stochastic cycle, in the long run, the accumulative time
will not be too small. After enough reflections ~ k, most characteristics have the
accumulative time that will exceed any set threshold Tj.
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THEOREM 5.13. Assume (5.3) and (5.4) hold. The solution f(t,z,v) to (5.1)
satisfies for ¥ >0 and 0 < o < %,

(5.111)

|||f|Hoo,q97g + |||fm7+7oo7g719

1
<
< g POl g +

vHI-RSO, + S IPRSII,

1 1 _1 1
+EHV Fa-Pais]|| +llv Sl + i IO, s

1 1
+E||h(t)||y,,2+EH\@MHV,,Q*‘H\h|||7,,oo,g,19

1 1 1
+E||VZ||2+EHU'V12H2+ ||Z||oc,19,g+ﬁ||s(o)”2'
Proof.

Step 1: Mild formulation.
Denote the weighted solution

(5.112) g(t, z,v) == w(v) f(t, z,v),

and the weighted nonlocal operator

(5.113) Kulg)(v) = w(@)K [£] (v) = / ey (v, 0)g(w)du,
where

(5.114) Fuo(o) (v, 1) == K(v, 1) ZEZ;

Multiplying w on both sides of (5.1), we have
€20,9 +ev-Vag +vg = Ky(t,z,v) +w(v)S(t,z,v) in Ry x Q x R3,

z,v) =w(v)z(z,v) in 3
(5.115) 9(0,z,v) =w(v)z(z,v) in QxR

g(t, z0,v) = w(v)p? (v) / w(u)g(t, zo, u)du + wh(t, zo,v)
n>0
for xzo € 02 and v~7l”1L<O,

We introduce the indicator function 1y, —gy which implies the characteristic hits the
initial time and 1y, -0y which implies the characteristic hits the boundary. We can
rewrite the solution of (5.1) along the characteristics by Duhamel’s principle as

(5.116)

g(t,x,v) = (1{t1O}w(v)z(xl,v)e_”(”)ﬁl + 1{t1>0}w(v)h(t1,x1,v)e_”(”) e2l>

2

+ / w(v)S(t —e%s,x — esv, v) e V(s ds

0
(=

2
+ / Koyw)lg] (t —e2s,x — esv, v)e*”(”)sds
0

ty

efl/(’U) t:

2
+~7/ g(t1, z1,v1)w(v1)do,
w(v) Vi
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where the last term refers to P[f]. We may further rewrite the last term using (5.116)
along the stochastic cycle by applying Duhamel’s principle k times as

(5.117)

t—tq

g(t,x,v) = (1{tk0}w(v)z(x1,v) —v(v) 2t + 1 sopw(v )h(tl,xl,v)e_”(”) s )

t—t

e2
+ / w(v)S(t —e?s,x — esv, v) e vy
0

+/ Kywlg (t—{—: S, & — €SV v) —v()s s

—p(v)iEh k-1
+ efi / (Gz[t,x, v] + Hg[tw,v])ﬁz(w)
w(v) e, v,

(5.118)  Gylt,w,v] == 1y, —oyw(ve)z(zer1,ve) + L, soyw(ve)R(teyr, oy, ve)

e—l/(v)t;;l k
+ —— / g(tk,ifk,vk <
w(v) bV H

Jj=1

where

T / (w(w)s<tz — e2s, 3y — esvy, z;g>e’/(1w)é>’)ds7
0

te—teqr

=2
(5119) Hg[t,l’/[}] = / (Kw(w)[g] <tl - 5287.%5 - Esvz,W)e”(W)s)ds.
0

Step 2: Estimates of source terms, initial terms, and boundary terms.

We set k = CTO% for Ty defined in Lemma 5.12. Consider all terms in (5.117)
related to h and S.
Since t; < t, we have

(5:120)  [Lygpu(o)z(@n e F 4 Ly sow(o)h(t, e v)e

< lwzllo + [llwPlll,
Also,

(5.121)

t—t
2

t—ty

< |||I/71wS|||OO ‘/0 - V(v)eﬂ’(”)sds

€

w(v)S(t — %5, — esv, v) e vy

<[l sl
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Then we turn to terms defined in Gy of (5.118). Noting that + < 1, we know

(5.122)

—v(v) gt k-l —t; 4

e ) < Z/ l{tHl:o}w(W) i1, v0)@ <He V(UJ)J gt d )
U}(’U) =1 Hﬁ:l J j=1

< C’T“sz”

o0?

k—1 k—1
S Jlwzl| o Z/e w(vg Hdaj S wz|| o Z/ w(ve)doy
=171z Vs =17V

and
(5.123)
eiu(v):;l e, : —p(v;) YL
TZ/ . L,y >0y w(o)h(tesr, megr,ve)d(ve) [ [[ ™™= do;
wiv {=1 j=1Vi j=1
k— ¢
S lhotll, | / o) [ do,
= =1
k—
S llwhlll,_ o Z/ i(v)doy| < CT [llwhlll.,_
o=
Similarly,
(5.124)

te—tega
=2

’ <w(w)5(t(g — &2, my — esvy, vg)ey(”‘)s>dsw(vg)
V; J0

e—y(v) ts k-1
d)(v) Z /He

=1 j=1"3

£
£
u(v;)
X H e J €2 dO’j

j=1
k-1 fe~tet1 _ L
< |||V—1w5|||OO Z/ / 2 V(w)eu(vz)(s,tzgziﬂ)ds w(vy) H daj>
=1 7/ITj=1 Vs |0 j=1

SOt [l
Collecting all terms in (5.120), (5.121), (5.122), (5.123), and (5.124), we have

(5.125)
initial term and boundary term contribution < CTOi <||wz||oo + [[[whlll., Oo)

S llwzllo + lllwhll,
and

(5.126) source term contribution < C’TO% H|1/*1wSH|OO S |HV*1wSH‘OO
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Step 3: Estimates of multiple reflection.
We focus on the last term in (5.117), which can be decomposed based on accu-
mulative time #g41:

(5.127)
e*l’(v)t;tl / ( ﬁ (
oo 9(te, Th, vp)D ( —v(v;) dO’ )
w(v) S Vi i} J
71/(11)"_2”1 i
e £
S |l—= 1,64, t —v(vy) d
| w(v) /Hfl v, {’Eékg%}g( Ky Tl U )W <He J]>
*V(’U)t_;l k t —t
e €
* ~7/ 1. g(tk,xk,’l)k Uk < e —v(v;) d0>
w(v) LY (k> J];[l ;
=Ji+ Jo.

Based on Lemma 5.12, we have

5.128 J1 < |lg OO/ 1,t—t, _m </ w(vg dok)< da)
1) n sl [ teen ([ 14,

1 CgTOZ
Sl |, Leseeny (Hda]) s(3) ol
j=1

On the other hand, when ¢, is large, the exponential terms become extremely small,
so we obtain

(5.129)
t—t k=1 ti—tit1
JQ ,S |||g|||oc e_”(”) 521 / 1, T, </ UNJ(Uk)d(Tk)< e—u(vj) : sQJ d0'>
H_’;;ij { sZk >-L} Vi ]1;[1 J
< —V(U)t;tl —u(vj) < ,%
< gl e /H o, b (He doj) <e 2ol

Summarizing (5.128) and (5.129), we get for § arbitrarily small
(5.130) multiple reflection term contribution S é||g|| .
Step 4: Estimates of K, terms.

So far, the only remaining terms in (5.117) are related to K,,. We focus on
(5.131)

t—t

T2
/ Koy l9l (t — 25,0 — esv, v)e*”(”)sds < H’Kw(v)[g] (t —e2s,x — esv, v) H’
0 o0

Denote T(s;t,x,v) :=t —e%s and X (s;t,z,v) := 2 — e(t; — s)v. Define the back-time
stochastic cycle from (T, X,v’) as (¢, ] v) with (5,2, v)) = (T, X,v"). Then we

can rewrite K, along the stochastlc cycie as (5.117):
(5.132)

’Kw(v)[g} (t — s, — e(t, — s)v,v)’ = !Kw(v)[g}(T, X, v)|
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\ / kw(w(v,v’)g(T, X, )do!

< k(o) (v, v B O] (T — &% X — 5rv',v/)e_”(vl)rdrdv/
R3
efy<u’>T;;’1 k-1 Co [t o
1A —v(v,; ! !/
S T R
R3 H] 1V Jj=1

+ l/ Kuw () (v,v") (initial terms + boundary terms
R3

+ source terms + multiple reflection terms) dv/’
=1+11+1I1.

Using estimates (5.125), (5.126), (5.130) from Steps 2 and 3, and Lemma 4.3, we can
bound 111 directly:

(5.133) I < wzll o + lwhlll,_ o +[[[v~wS]]| , +6llgll
I and I are much more complicated. We may further rewrite I as

(5.134)

I =

k() (v, v )k’w(v/)(v’,v”)g(T —e2r, X —erv, v”)e_”(”l)rdrdv'dv"
RB

]R?)
which will estimated in four cases:
(5.135) I:=11+ Iy + I5 + 1.

Case I: I : [u| > N.
Based on Lemma 4.3, we have

/ / Ew (o) (0,0 ) oy (0, 0" ) d' dv” 5
s Jps | |

A
2|

(5.136)

Hence, we get
1
(5,137 15 ol
Case IL: Ir : |v| < N, [v/| > 2N, or [v'| < 2N, |[v"| > 3N.
Notice this implies either [v/ —v| > N or \U v"”| > N. Hence, either of the

following is correspondingly valid:

(5138) |kw(v) (,07 ’Ul)| ScefaNQ |]€w(v) (’07 v,)| 65‘1]_”/‘27
G130 @] SO 0] T

Based on Lemma 4.3, we know
(5.140) / |kw(v)(v,v’)| oSlo="" g <00,
R3

’ |2
(5.141) / |y (0, 0" 11 A0 <o0.
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Hence, we have
2
(5.142) I S e gl -

Case III: I3 : 0 < r < ¢ and |v] < N, |[v/| < 2N, || < 3N.
In this case, since the integral with respect to r is restricted in a very short
interval, there is a small contribution as

5
/ e "dr
0

Case IV: I, : v > d and |v]| < N, |v'| < 2N, || <3N.

This is the most complicated case. Since kw(v)(vw’ ) has a possible integrable
singularity of Flv’l’ we can introduce the truncated kernel ky (v, v") which is smooth
and has a compactly supported range such that

(5.143) I3 S llglloe < Slllglll -

1

(5.144) sup / [k (v,0") = k(o) (v,0") | dv” < N
[v] <3N J|v'|<3N

Then we can split

(5.145)
kw(v) (U7 U/)kw(v’) (U/a UN) =kn (Uv U/)kN (U/a 1}”) + (kw('u) (U7 U/) —kn (Uv U/)) kw(v’)(vlv UN)
+ (k:w(vf)(v',v") — kN(v/,v”)) kn(v,0").
This means that we further split I, into
(5.146) Iy = 14’1 + 14’2 + 14’3.
Based on (5.144), we have
(5.147) Lo S wlgle 113 S gl
IR N oo’ 39~ N e’}
Therefore, the only remaining term is I, ;. Note that we always have X —erv’ € Q.

Hence, we define the change of variable v" — y as y = (y1,¥2,y3) = X — erv’. Then
the Jacobian

d —er 0 0
(5.148) dl, =|| 0 —er 0 | =&%3>c%0
v 0 0 —er

Considering |v],|v'], [v"] < 3N, we know |g| < |f]. Also, since ky is bounded, we
estimate

(5.149)

/
T—ty

52 !
I 5/ / / 1ix—crveq} ’f(T—€2r7 X—erv’, v"){ e "W drdy’ dv”.
0 |[v/|<2N J v |<3N

Using the decomposition f = P[f] + (I — P)[f], (5.148), and Hdlder’s inequality, we
estimate them separately:

(5.150)

’
T—ty

c 1 P T _ 2 X — ron —v(v')r 1y
(X —erv' e} ’ [f1( e’r, erv’,v )| e drdv’dv
0 |v/|<2N J|v|<3N
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’
T—ty

2m—1
&2 2m
S/ (/ / 1{X£rv’€Q}dvldvu>
0 [v/|<2N J|v"|<3N
2m
X </ / 1{X7€TU’€Q} (P[f])
[v'[<2N J]v"|<3N

1
2m

x (T —&*r, X — erv’,v”)e"(”’)’"dv’dv”> e "dr

’
T—ty

- 1 2m ﬁ B
5 /0 (EB(S?’ /| <3N /Q 1{y€Q} (P[f]) (T _ 627‘, y,vu)dydv,,> o—Tdr

1
S == 5w [PLf ()]l
€3m §2m [0,T]

and
(5.151)
1

T—th

e2
/ / / 1ix—crven} ’(H—P)[f](T—E2T7X —erv’,v")|
0 [v/|<2N J v |<3N

_ 7
x e VT Ay’ dv” dr
T—t’l
2

1
. 2
S / (/ / 1{X—€rv/eﬂ}dv/dv”>
0 [v/|<2N J |07 |<3N

2 2
(] Aaven (A=) @ - X e ) e
|[v/|<2N J |v"|<3N
1

Tt}
= 2 3
5/ (%53/ /1{yeﬂ} ((H—P)[f]) (T—EQT,y,’U”)dyd’U“) e "dr
0 € v |<3N JQ
1

S —3 .3 Sup [I(T *]P’)[f(t)]HT
€242 [0,T)

1

Inserting (5.150) and (5.151) into (5.149), we obtain

1 1
(5.152) Iy S ———= s [Plf ()]lla, + 5z sup [I(T=P)[f()]ll,-
€202 [0,1]

g€zm§zm [0,T]

Combined with (5.147), we know

1 1 1
(5153)  Is S ll9llloe + —=—— sup [IPLf (A)]llopn + —55 sup (L= B)[S(D]ll,-
£2m am [0,7] €202 [0,7]

Summarizing all four cases in (5.137), (5.142), (5.143), and (5.153), we obtain
(5.154)

1 SN2 1 1

I< ( +e 0N 4 5) glloo + ——==sup [[P[f ()]llzm, + 5 sup [[(T=P)[f(©)]ll-
N £3m ) 2m [0,¢] €202 [0,4]

Choosing ¢ sufficiently small and then taking N sufficiently large, we have

1 1
(5.155) T < 0llglle + ——= sup [IPLf (D)]llay, + ——5 sup [T = P)[f ()],
E2m 5277» [07t] 5252 [O,t]
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By a similar but tedious computation, we arrive at

1 1
(5.156) I S dllglll + 7SUPHIF’[ (Ol 2m + —5=z sup [[(T—=P)[f(D)]ll,-
m(Szm €202 [0,4

Combined with (5.133), we have

t—ty

=
/ Koy lg] (t — %5,z — esv, v)e*”(“)sds
0

(5.157)

1 1
S Ollglllee + —m—== swp [[PLf (|2, + 55 sup [(T=P)[f ()]l
£3m ) 2m [0,t] €202 [0,¢]

+lwzll o + lwhlll,_ o + [[lv~ wS]]|

All the other terms in (5.117) related to K,, can be estimated in a similar fashion. At
the end of the day, we have

(5.158) K, term contribution
1 1
S Oll9llse + ——= sup [IPLf (D]l + —5=z sup [T = P)S (D]l
gzmzm [0,1] €202 [0,4]

+llwzll oo + lwhlll,_ o+ [[lv~ wS]]|

Step 5: Synthesis.
Summarizing all of above and inserting (5.125), (5.126), (5.130), and (5.158) into
(5.117), we obtain for any (t,z,v) € Ry x Q x R?,

1 1
(5.159) |g(t, z,v)| < dllgllloe + ——= sup [[P[f(D)]ll,,, + 7 sup [[(T=P)[f(®)]]l
7n627n [0,¢] €202 [0,]

+ lwzll o + lwhlll, o + || wS]||,

Taking the supremum over [0,t] X 74 in (5.159), we have

(5.160)
1 1
sup [|g(t)ll, oo S Oll9lloe + —=—= Sup IPLf O)]ll2m + =5 sup [[(T=P)[f @]l
[0,4] Zm (52m [0, £202 [0,t]

+ [Jwz]l o + |||wh||\7,,oo + vl

Based on Theorem 5.8, for % < m < 3, we obtain

161 sup g0, S Sl + o) (s1p IS o+ 500 17 D) + B
[0,1] [0,4] [0,4]

< dllglle + o(1) (50 9@, e +5up (1)) + B,
[0,¢] [0,]

where

(5.162)
Bim < IPISE go +

REm () H = IP2:S]ll,

1 o B
+ el ta-ms, + e tesll + = ||h<t>||7_,4§n
1 1
b IOl < 106l + Il

1 1 1
oz V2l + v - Vezlls + lwzlle + S 1SO0)]lo-
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Absorbing o(1) suppg 4 [|g(?)]| into the left-hand side, we have

V4,00

(5.163) sup 19D+, 00 S llglllo + 0(1) sup lg®)llc + E-

On the other hand, taking the supremum over [0,] x Q x R? in (5.159), we have

(5.164)

1 1
sup [|9(t)ll o < 0ll9lloe + ——== sup IP[f (D] ll2m, + —5 7 sup [(T=P)[fB)]]l,
[0,¢] €2md2m [0,t] €202 [0,1]

+ w2l + lwhll,_ o + [l wS]]],.

Based on Theorem 5.8, we obtain
(5.165) sup [lg9(t)lloe < dlllglloe + 0(1)<Sup lg@l,, o +sup ||g(t)Hoo) +E
[0,¢] [0,¢] [0,]

Absorbing 6[l|g|l., and o(1) supy 4 [|9(¢)|, into the left-hand side, we have

oo

(5.166) sup [|g(t) || < o(1)sup [lg(t)],, « + E-
[0,] [0,]

Inserting (5.163) into (5.166), and absorbing dl||¢||| ., and o(1)|||gl|| ., into the left-hand
side, we get

(5.167) ?u% gl < E-
0,t

Then (5.163) implies

(5.168) ?311? lg@®l,, 0 S E-
t

In summary, we have

(5.169)
1
ol + el o0 S 5 IBSEN 2,
1 1 Y
|l z(ﬂfﬂv)[S(t)}H;T%\HIP’[&SH||2+—€1ﬁ v ia-pas|,
~1ws 1 h(t 1 h(t 1 Oh
+ |||y w |Hoo + = [[A( )||y_,%m + S ROl o+ EIII ihll, o

1 1 1
+ llwhlll,_ o + E“V'Z‘b + EHU “Vazlly + lwzll o + E”S(O)HQ‘

Then our result naturally follows. ]

Remark 5.4. In the above proof, we use the traces [g(t)||., l9(t)]l,, o and

llglll.,, o interchangeably with [|g[l|, to perform absorbing argument. Roughly speak-
ing, we track the solution using a mild formulation, so it is always continuous along
the characteristics, which covers the whole domain Ry x Q x R3, so |[||g|l| i 00 Wil
control all the rest. To be more precise, it actually relies on Ukai’s trace theorem
in [40], which says that for transport operator 9; + v - V, such traces are always

well-defined and controllable.
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Remark 5.5 (exponential decay). Define f = eXotf. Then f satisfies
e20,f +ev-Vaof + L[f] = 2Kof + eFotS(t,z,v) in Ry x Q x R3,
(5.170) f(0,2,v) = z(z,v) in QxR3,
f(t, xo,v) = PLf](t, z0,v) + e5oh(t,z0,v) on Ry x v_,

where

(5.171) PLf(t, z0,v) = p2 (v) / ( )>0u%(u)f<t,xo,u) - n(zo)| du.

-

The extra term is e2Kof. Thanks to €2, based on L? and L™ energy estimates in
Lemma 5.5 and Theorem 5.8, for K small, we can absorb this term into the left-hand
side. Therefore, we can recover all estimates as in Theorem 5.13.

6. Hydrodynamic limit.

6.1. Nonlinear estimates.

LEMMA 6.1. The nonlinear term T defined in (1.22) satisfies T[f, g] € N'*. Also,
f0r0§Q<i and 9 >0,

(6.1) P13l < (sup lg(@, )1
(62) ||V71F[f? g]||oo,’l9,g 5 ||fHoo7197g| gHoo7197Q'
Proof. See [46, Lemma 6.1] for the proof. O

6.2. Perturbed remainder estimates. We consider the perturbed evolution-
ary Boltzmann equation

(6.3)
526tf+511 : vxf+£[.f] = F[f’g] +€3F[fvf] +S(t7$7v) in Ry xQx RB;

f(0,7,v) = z(x,v) in QxR3,

f(t,x(),’l)) = P[f](ter?’U) + (:U’i - M)M_lp[f] + h(t7$0,’l}>
for 2o € 90 and v-n <O0.

Assume that a priori
(6.4) 190 0.5 + 19e8 .0 + 12 £l . = (D)

THEOREM 6.2. Assume (5.3) and (5.4) hold. The solution f(t,z,v) to the equa-
tion (6.3) satisfies

(6.5)
i [0 =PI,z + = 1T, + IOl
17Ol + L= P)Al,, 2+ 2N =B, + WP,

+ = PBAN,, o+ 2T~ PRAN, + PR,
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< o (1701, 0 + 17 O]c) + IPISOI 2o, + < |2 X - PYS O

2

+ ISl + 2|l a-mysi||, + e, + <[l a - s,

1 1 1 1
1RO, s+ 2 IO, o+ WAL o+ 2196k, o + =5 w2l
1 1
+ <l Vazlly + 5 1SO)

Proof. Since the perturbed term T'[f, g], T[f, f] € N+, we apply Theorem 5.8 to
(6.3) to obtain

(6.6)
E% (L =P)fOI,, 2+ = ||(H =P)FOIL + 1P O]y,

+ Ei%m(l =~ P)uflll, 2+ 2T~ BB, + IIPRAN,

< o1)en ( 176y e + 1Dl + S IPISOI 2,

+ 2 ra-misol, + SIPEsil + 2 [Jra -S|, + 1nol,_

1 1 1 1 1
+ 2 1Bl + ZN0:hll,_ o + vzl + <llo- Tazll, + 15O

v ol + 2ol
+ et ], + Zflev-tarte s
65 = ma PUON, e+ 2 1665 — e PUO)]

Y52

1 1
21— e PN+ S ITL O + 5 €T1 A,
Also, based on Lemma 5.5, we have the L? estimate

(6.7)

15Ol + 3L =PI, 2+ ZIE= P, + P
sgénmm[ My + |[[o=2 @ =wist||, + Z0all,_ + =1,
2|lrrtnan]|, + 2l rres A, + 2l - me AL,

Step 1: Bulk perturbation terms.
Using Lemma 6.1 and (6.4), we have

68) < [viris. g0, S o)

A1), S oW IPLF@II, +o(1) [T =PI,

2
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Note that direct computation reveals that

(6.9) IPLFOlgm 2 IPLFOIIL

so inserting (6.8) into (6.6), we can absorb o(1) ||P[f(¢)]||, and o(1)||[(I—P)[f(¢)]]l,
into the left-hand side (LHS). On the other hand, Using Lemma 6.1 and (6.4), we
have

(6.10) émy*%atr[f,g]HL SO(I)H

|, o]

Véatfmi

Then o(1) Hu%f’L can be handled by L? estimates and 0(1)‘ 1/%8tfH2 can be absorbed
into the LHS. Similarly,

(6.11) %Hs “3Tf, f] H st?’f(t)Hoo,ﬂ,g‘ ”%f(t)‘

(6.12) éMé%—iMRﬁﬂm2§gm§me@g o],

Both of them can be absorbed into the LHS of (6.6). A similar argument justifies the
absorbing in (6.7)

Vi), S ov)

sad], o0

)

Step 2: Boundary perturbation terms.
On the other hand, due to (1.10), we know

(6.13) (5 = W P, s S oWellF O, o0 »

Y—:73

which can be combined with the corresponding term on the right-hand side of (6.6).
Also,

(6.14) 2016~ P, o) PO,

(6.15) 65 = e PO, S oIIPRANL_

Note that both of them involve P[f], which has been controlled by the proof of
Theorem 5.5 (Step 2). Hence, adding (6.7) to (6.6) and absorbing all new terms into
the LHS, we can close the proof. 0

THEOREM 6.3. Assume (5.3) and (5.4) hold. The solution f(t,z,v) to (6.3) sat-
isfies for 9 >0 and 0 < p < %,

(6.16)
[ T
1 1 _
S <o SO o, + o | A= RIS, + o IS,
1 _1 _1
+;;%Muzm—mmm{k%¢nm@1m e |t IR
_ 1 1
+ |HV S]] g+ = 1RO, 2 + e [h(t )||7_ 2 T ﬁlllh\llv_,z

o 10kl IRl o 00 + gz P2 la + - Vezlls

1

Hlela o+ o 1S
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Proof. Since we already have bounds for f in L?™ as in Theorem 6.2, following
the proof of Theorem 5.13, we obtain
(6.17)

|||fH|oo,19,g + |||f|||'y+,oo,g,19

1 _1 1
S o IPISOlgo, +F‘” HL-BSO)], + o IPISIL
1 1 1
il pis], ek wnsi, +ilta-pias,
_ 1 1
+l ls|||oo,ﬁ7g+€2—%||h<t>||%%+ e Ot g
1 1
+ gz ol 2+|||h\H»y o0 T V2le + g llo- Vazll
T lzlloo.0.0 T g ISOl + [T gl o, + %71 Al 0,
+ || (1 — ) ‘IP[ley_m,Q,W
Using Lemma 6.1 and (6.4), we have
(6.18) =1l o 9,0 S MM, 191000, S 0D F o0,
619 (1T A ey S I ol s S 0Dl

Inserting (6.18) into (6.17), we can absorb o(1)[/f||, » , into the LHS. Also, using
(1.10), we have

(620) ”| 717) H| _,00,0,0 N )|||f|||'y+,oo 0,9"
Inserting (6.20) into (6.17) and absorbing o(1)|[[f[ll.,, ., into the LHS, we obtain
the desired result. |

6.3. Analysis of asymptotic expansion.

6.3.1. Analysis of initial layers. We first prove a theorem about the well-
posedness and decay of the initial layer equation.

THEOREM 6.4. For equation

aTg+£[g] = S(’T,’U) mn R+ X Rgv
(6.21)

9(0,v) = 2(v)
with
(6.22) |Z|oo,19,g SL ||eKOtS||oo 9,0 ~ S

there exists a unique solution g(T,v) and a function go. € N satisfying
(6'23) |900| S HeKOT g — 900)”00719,9 SL

Proof. This is very similar to the analysis of the e-Milne problem with geometric
correction as [46, bection 3], but much simpler. We decompose g = r + ¢, where

re Ntandg= Z qx(7)r(v) € N. Then using the same L? — L™ estimates as [46,
k=0
section 3], we can get the desired result. 0
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With this theorem in hand, based on the analysis in section 2.6, we know F; = 0
and JFo, F3, F4 are well-defined.

THEOREM 6.5. For Ko > 0 sufficiently small, the initial layer satisfies

(6.24) ||eK°T.7-"2(x)|| <1, ||eK°T.7-"3(x)||

00,9,0 ™~

<1, ||eK°T.7-"4(x)|| <1

00,9,0 ™~ 00,9,0 ™~

In particular, since 0; = £ 29,, we have the time derivative estimate.
THEOREM 6.6. For Ky > 0 sufficiently small, the initial layer satisfies

(6.25)

H o 8}—2 <e

<e7?, HeKOU L}:;t(x)

<e7?, HeKOUL}:;t(x)

’00,19,9 ’00,19,9 ’00,19,9

Note that due to rescaling 7 = E%, the bound for 9;Fj is much worse than Fj.
This is the main reason that we have to expand the initial layer to more orders than
interior solutions and boundary layers. Also, this is why we have to enforce the
compatibility condition (1.17) and let F; vanish.

The space derivative version follows the same fashion.

THEOREM 6.7. For Ky > 0 sufficiently small, the initial layer satisfies

(6.26)

507V, Fa(z) <1, eV, F(a)

0o, ¥,0 ™~

<1, HeKOTVx]i;(x)H S L

00,9,0 "~ 00,9,0 ™~

The above estimates do not involve the spatial integral. Obviously, the x integral
estimates also hold.

6.3.2. Analysis of boundary layers. Based on the analysis in sections 2.6 and
3, we know %, = 0 and %, is well-defined.

THEOREM 6.8. For Ky > 0 sufficiently small, the boundary layer %5 satisfies

(6.27) e " Z2 ()|, S 1
and
(6.28)
Zo (+ Zo(t Fo(l
eKonvnél/aQ()H + HeKon((igZ()H + HeKona{;Q()H 5 |1H(E)‘8 5
n 00,90 L1 0,9,0 L2 00,9,0
T
HGKWVWH + HeK‘mVWH + eKonyajz(t)H 5 |1n(€)|8'
Un 0,9,0 av¢ co,9,0 ({9’0¢ 00,9,0

However, the tricky part is the estimate of %3, which essentially satisfies a sta-
tionary linearized Boltzmann equation

v Vo Ts(t) + LIF3(H)] = Z(t) in Q x RS,

(6.29)
F3(t)(zo,v) = P[F3(t)](x0,v) + b(t) for x9 € 9Q and v-n <0,
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where
(6.30) Z = 9T[F1, Fo) + 2T |Fy, Fo] + 2D [ Fy, F1]
4 1 8117“ . 827’ T 8127" . 827" 1}2 &9’2
P1P2 PI(EKVIW — 1) o PQ(EK/Qn — 1) v 8U¢
+ 1 6227” . 817“ Ve + 8127‘ 817“ 8«?2
PPy \ Py(ekon — 1) Py(ekin — 1) vy,
Vg &?2 (%7 aJQ
+ + ,
Pi(ekin—1) duy Py(ekan — 1) Oug
and

(631)  bi=e2(pij — p— epdyn ) PIR + F] + e (5 — ) u T PIFs + P
+ 5*3#*% (:U’IE) —u— €‘u%ﬂ1 — EQ/L%,liQ) — ((33 + C3) — P[Bg + 03]) .
Based on stationary L2™ estimates in Remark 4.1, we obtain
(6.32)
1 1
) 1 =P)Zs@)ll,, 2 + 1A =B)LFOI, + IPLF5 O]z
1 1 _
—2||P[ (O 2, + =]

2m—1

FI-PZO)|, + 120, + 10O, s

)

+ g 18@)_ 2 + 1] _ o000

8
NTMUH el

where we strongly rely on the rescaling n = % and the exponential decay of Z in 7.
Then using the stationary L°° estimates in Theorem 4.6, we have

(6.33) 1 Z3(D)ll 9,0 T 173Dl 00,0

1 1 _1 —1
S ﬁnmzwn s | A= BZO|, + 20,
1
o IO+ O+ 10O, 0
1 8
< o )P

Note that we lose the decay of .Z3 in 7.
The above is only the instantaneous version. The corresponding accumulative
version for both %, and 0;.%} also hold when taking time decay into consideration.

6.3.3. Analysis of interior solutions. Based on the analysis in matching pro-
cedure, we know F}, are well-defined satisfying corresponding fluid equations.

THEOREM 6.9. For Ky > 0 sufficiently small, the interior solution satisfies

(6.34) ’H< )2 eelvl® py H

2
Lol et e, s

LgngLw L H3Le ™

’H(v) e?"l’ <L

~

LEHLY
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6.3.4. Analysis of initial-boundary interaction. The compatibility condi-
tion (1.17) implies that at the corner points (0, zg,v), (1.21) is naturally satisfied.
Also, we have the simplified expansion at these points:

e By our construction in section 2.6, #; = 0 and F; = 0. Also,

(6.35)  Fi(0,z0,v) = Ai(t,z0,v) + B1(t, x0,v) + Ci(t, xo,v) = po,1(xo)
with
(6.36) Ay (t,z0,v) = po(zo)u? (v), Bi(t,ze,v) =0, Ci(t,zg,v)=0.
In the end, we know

1

(6.37) F1(0,20,v) = Ai(t, 20, v) = po,1(zo)p? (v).

e By our construction in section 2.6, at (t,zo,v), F2 and Fo satisfy triv-
ial equations with zero source term and zero data, so .%3(0,z,v) = 0 and
Fo(t, xg,v) = 0. Also,

(638) F2 (0, Zo, 1)) = A2 (t, Zo, U) + B2 (t, Zo, U) + CQ (t, Zo, ’U) = pO’Q(.TO)
with
(6.39) As(t,xg,v) = ,00,2(:160),11%(1))7 By (t,zg,v) =0, Co(t,zo,v) =0.

Here the space derivative V fo.1(x,v) = 0 plays a key role. In the end, we
know

N

(6.40) F5(0,z0,v) = Aa(t, xo,v) = po,2(zo) 12 (v).

e Based on our construction in section 2.6, we know
(6.41) F5(0,z9,v) = As(t, x0,v) + Bs(t, o, v) + C3(t, o, v).
In particular, have
(6.42) Bs(t,zg,v) =0, Cs(t,zo,v) =0.

Here the space derivative V,, fo 1(z0,v) = V4 fo,2(0,v) = 0 and V2 fo 1 (zo,v)
= 0 play a key role. Also, these space derivatives accompanied with Oy
(t,zp,v) = 0 yield v- V,F2 = 0. Hence, we know Z#3 and F3 satisfy triv-
ial equations with zero source term and zero data, so %3(0,z,v) = 0 and
F5(t, zg,v) = 0. In the end, we know

N

(6.43) F5(0,x0,v) = As(t,z0,v) = pos(zo)p? (v).

e In summary, we have shown that at the corner point (0, zg, v), both the initial
layer and boundary layer are zero up to third order.

6.4. Proof of the main theorem. Now we turn to the proof of the main result,
Theorem 1.1. The asymptotic analysis already reveals that the construction of the
interior solution, initial layer, and boundary layer is valid. Here, we focus on the
remainder estimates. We divide the proof into several steps:
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Step 1: Remainder definitions.
Define the remainder as

(6.44) SR=fF-Q-2- 0,
where
3 3 4
(6.45) Q=) 'R, 2:=) FH, Q=) A
k=1 k=1 k=1

In other words, we have

(6.46) ffF=Q+2+Q+¢<°R.

We write .Z to denote the linearized Boltzmann operator:

(6.47) ZLIf] =20, f +ev-Vaf + L[f].

In studying initial layer in section 2.2, we utilize the equivalent form:
(6.48) ZLf] = 0-f +ev-Vyu+ L]f].

In studying boundary layer in section 2.3, we use another equivalent form:

LU =20f + 05 - ot (5 o)

o R\ %o, 10,
__& (pof _, ., 9
Ry — en wavn K wa’Uw
_ 19 8117“ . 827“ Vv + 8127" . 82’1" ’1}2 ﬁ
P1P2 Pl(snln—l) ¢ PQ(EHQT]*l) v 8U¢
_ e 8227’ . (917‘ Vv (3'127‘ . 817" 1}2 ﬁ
PPy \ Py(ekan —1) s Pi(ekin—1) ¢ Ovy

Y (. S . —
E<P1(5’1177 —1)0u + Py(ekon — 1) @L2> + E[f]

Step 2: Representation of .Z[R)].
Equation (1.21) is actually

(6.49) Ll =T[5, fe,
which means
(6.50) ZLIQ+2+Q+R=T[Q+2+Q+R,Q+ 2+ Q+¢R).

Note that the right-hand side of (6.50), i.e., the nonlinear term can be decomposed
as

(6.51) T[Q+2+Q+&°R,Q+ 2+ Q+*R] =&°T[R,R] + 2¢°T[R,Q + 2 + Q]
+TQR+2+ 9,0+ 2+ Q]
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Then we turn to the LHS of (6.50). The interior contribution is
(6.52) Z1Q] = 20, (5F1 +&2F, + £3F3> +ev-V, (sFl +&2F, + 53F3)
+ L[eFy + % Fy + 3 F3)
=t Vo F3 +e%0,Fy + 50, F3 + T |Fy, Fi] + 2°T[F, F3).

On the other hand, we consider the boundary layer contribution. Since .#; = 0,
Fo and Z3 terms are all included in boundary layer construction except the time
derivatives, we compute

(6.53) L[9)] = £20,.F5 + °0,.F3 + 23T [F, Fo).
Also, since F; = 0, the initial layer contribution

(6.54)
ZL1Q] = %0 - Vo Fy + 263T[Fy, Fo) + 26 T [ Fa, Fo] + 26T [Fy, Fo] + 2T [FY, Fs].

Therefore, inserting (6.51), (6.52), (6.53), and (6.54) into (6.50), we have
(6.55) Z[R] = T[R,R] + 2T[R,Q + 2 + Q] + S1 + So,
where

(656) Sl = —E&v - Vng — aﬁtFQ — 52815F3 — Eatyg — 528ty3 — 62’[} . Vw}'4,
(657) SQ = 6(2F[352,]:2] + 2F[F1, Fg] + 2F[F2, Fg] + 2F[F1,g3]>

+ higher-order T terms up to &*.

Step 3: Representation of R — P[R] and R(0).
The boundary condition of (1.21) is essentially

(6.58) Fo = g PLE A+ R (g — ),
which means

(6.59)
Q+2+ER=PlQ+ 2+ R+ (1 — W)y~ "PlQ+ 2+ 3R] + p~ 2 (1§ — ).

Based on the boundary condition expansion in section 2.6, we have

(6.60) R~ P[R] = H[R] + h,
where

(6.61) H[R|(t, w0, v) = (uf — p)u~ ' P[R]
and

(6.62) h= —<Fu.
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In other words, the only contribution is from the initial layer F, at the corner point.
On the other hand, for initial data,
(6.63) R(0) = z = e F4(0).

In other words, the only contribution is from the initial data of initial layer F4.

Step 4: Remainder estimate.
Equation (6.55), initial condition (6.63), and boundary condition (6.60) form a
system that fits into (6.3):

6.64

| 62@]% +ev-VuR+ LR =T[R,2(Q + 2+ Q) + 3R] + S1(t, z,v) + Sa(t, z,v)
in Ry x Q xR3,

R(0,z,v) = z(z,v) in QxR3,

R(t,z0,v) = P[R](t, z0,v) + H[R](t, x0,v) + h(t,z0,v) for zo € N

and v-n <O0.

Hence, by Theorem 6.3, we have

(6.65)
1B lllos.0,0 + IRl oo
_1 1
s—Egﬁumsmtﬂn%+—gl+% (u - P)[5:0)]], + o IPESII,
1 ~3(I—P)[S P[0, S 1 ~3(I-P)[8,S
|t a-Bisy |, + e @Sl + [ -l

1
[ S o0 + o 151(0) [l + o [PLS2(8)]]] 2

2m

Lo
eltan

- Psa ], + g IRl + o [ - Pisal

1
+ oz Pl +

_1 1
= [t a-pis ||, + 1Sl
1 1
+ o IOl + Il

2m

1 1
o 19200+ — 1RO, s

m

+ Emathmy,g R, oo 00 T EHWHz
1
+ FHU “Vazlly + 112l s 9.0

Step 5: Estimate of Sy.
Using results in section 6.3.3, for the interior contribution S;g := —ev -V, F3 —
eath — 628tF3,

IS15 (O 2, + [0~ 2 Sus @]+ WSaslly + ||~ # 1]

(6.66) +|||atS[s|||2+H‘I/iéatS[s‘Her|H1/715[5||| +||Sls(0)||2§€

00,9,0
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Using results in section 6.3.2, for the boundary layer contribution Spy := —€0; % —
€20, F3, note that [|g(t)||;» < lg(#)||2m for 1 <p < 2m:

(6.67)
IPSBL] 2, S 757 (@), |l 2@ - P)Ss]®)]| S 77 ()P,
Ielsclll S <7 @l (vt - Pisacl, & )"
IPO:SsLlll, S 2 ), |2 @ -P)aSml||, S 27 ().

(6.68)

IS5l p, S @, 1S5LO), S [In(e)[*.
Using results in section 6.3.1, for the initial layer contribution Sy := —&?v - V. Fuy,

note the rescaling 7 = E%:
(6.69) HEMIGIET N S SIEMI0)| IS
IPisiallly S < [|va-Pyisul)|, <<

P10 Srlllly <
(6.70) = S|l <& 180, S

00,9,0 "~

<e, H‘f%(n - P)[atsm]mz <e

Hence, we have

1

6.71) [P  2, S @, [ E-P)S]|, S (o)),
IPLSi]ll, S &2 (), |[v-2@=B)isul]|, $ 2% )P,
ISl S 27 (), |[v-ia-P@asi|| s i),

6.72) 'Sl 0p, ST ), [S1(0)]ly S &' fne) .

Step 6: Estimate of Ss.

It suffices to consider the leading-order term 2eT'[.%5, F2| which contains the most
dangerous initial layer F5. Note that the time derivative estimate is the worst one.
Using nonlinear estimates in Lemma 6.1 and rescaling n = £ and 7 = E%, we have

(6.73) IBS)(O)l gy =0, 020, S <P,
IPiS2lll, =0, ||t a-pys.|, <<%,
IB@eSallly =0, |[[o=*@-B)arsal]|, < 2.

(6.74) Il S]] Se [15200)]l; S ez

00,9,0

Step 7: Estimate of h and z.

For boundary data h = —eF,, we have
(6.75) IR, _ s S, MR@,_ 5 Se Al 5 S €
oehlll,_ o S 1 MRl 00 S &
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For initial data z = —eF4(0), we have

00,79,0 Se

(6.76) lvzly Se llv-Vazll; Se 2]

Step 8: Synthesis.
Summarizing all of the above, we have

(6.77)

1 Rloo9,0 + NI, o000

1 o 1 _L 1 L
S o <51 = |ln(6)|8> s <g2 2 |1n(6)|8> t o (51 e |1n(€)|8)

00,9,0

o
~— ~——
+
™
=
tl=
v
S
/N ~— /0_)\ /N
N
~——
+
N
™
N—
+
m
[\
+
¥
3w
/~
™
o

1 1
+€2+% 5)+€1+% 5)+<5)
8
S Oz |In(e)|

We have shown

(6.78) <717 (o).

3 3 4
— E €ka — E Ekgzk — E €k.7:k
k=1 k=1 k=1

Therefore, we know

00,9,0

(6.79) |fS —eF) — e — F| g2 |In(e)[%.

oo19g~

Since %, = F1 = 0, then we naturally have for F' = F,

(6.80) If—eF| 2= [In(e)[®.

ooﬁgfv

Here % < m < 3, so we may further bound

(6.81) 15 = €F|l .5, S C(8)e5™°

00,%,0 ~

for any 0 < § << 1. The exponential decay in time can be justified in a similar
fashion using Remark 5.5. The positivity of F' follows from a similar argument as in
[11, section 3.8].
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