

# 1                   Cellular thermometry considerations for probing 2                   biochemical pathways

3                   Manjunath C. Rajagopal<sup>1</sup> and Sanjiv Sinha<sup>1\*</sup>.

4                   <sup>1</sup>*Department of Mechanical Science and Engineering,*

5                   *University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.*

## 6                   ABSTRACT

7                   Extracellular thermometry has previously been used to probe cancer metabolism and  
8                   thermoregulation, with measured temperature changes of  $\sim$ 1-2 K in tissues, consistent with  
9                   theoretical predictions. In contrast, previous intracellular thermometry studies remain disputed due  
10                  to reports of  $>1$  K intracellular temperature rises over 5 min or more that are inconsistent with  
11                  theory. Thus, the origins of such anomalous temperature rises remain unclear. An improved  
12                  quantitative understanding of intracellular thermometry is necessary to provide a clearer  
13                  perspective for future measurements. Here, we develop a generalizable framework for modeling  
14                  cellular heat diffusion over a range of subcellular-to-tissue length scales. Our model shows that  
15                  local intracellular temperature changes reach measurable limits ( $> 0.1$  K) only when exogenously  
16                  stimulated. On the other hand, extracellular temperatures can be measurable ( $> 0.1$  K) in tissues  
17                  even from endogenous biochemical pathways. Using these insights, we provide a comprehensive  
18                  approach to choosing an appropriate cellular thermometry technique by analyzing thermogenic  
19                  reactions of different heat rates and time constants across length scales ranging from sub-cellular  
20                  to tissues. Our work provides clarity on cellular heat diffusion modeling and on the required  
21                  thermometry approach for probing thermogenic biochemical pathways.

## 22                   SIGNIFICANCE

23                   Temperature is a fundamental thermodynamic property that can serve as a probe of biochemical  
24                  reactions. Recently, intracellular thermometry has gained attention since it could provide  
25                  unprecedented insights into subcellular metabolic pathways. In this work, we numerically show  
26                  that the intracellular temperature changes reach typical measurable limits of 0.1 K only if  
27                  externally stimulated. This is in stark contrast to certain previous experimental reports of  $> 1$  K  
28                  change in subcellular organelles under endogenous conditions. Using a heat diffusion model that  
29                  accounts for thermal interfacial resistances in the cellular milieu, we provide guidelines on  
30                  choosing the right thermometry technique for a given type of biochemical reaction. In addition,  
31                  we show that the commonly used effective thermal conductivity parameter may fail to capture the  
32                  true temperature distribution, especially if the thermal interfacial resistances dominate the overall  
33                  heat diffusion.

34

35 **INTRODUCTION**

36 Biochemical reactions are often accompanied by enthalpy changes, resulting in local  
37 temperature changes. This renders temperature a physiological parameter of interest that can  
38 provide insights into biochemical pathways. For instance, extracellular thermometry has the  
39 potential to detect cancer [1] and thyroid-related diseases [2], and for understanding multiple  
40 metabolic pathways [3]–[6]. Such extracellular temperature changes originate in part from  
41 intracellular metabolic reactions. Hence, there has been a growing interest in intracellular  
42 thermometry [7]–[10] to probe sub-cellular metabolic pathways. However, studies using  
43 intracellular thermometry have been widely debated due to disagreements with theoretical  
44 predictions and potential measurement issues. For instance, previous studies [7], [11]–[17] report  
45 localized intracellular temperature rise  $> 1$  K for 5 min or more, which exceeds theoretically  
46 predicted temperature changes [18]–[21] by several orders of magnitude. In some studies [7], [11]–  
47 [14], [16], such intracellular temperature rises were never reported to go back to room  
48 temperatures, arising questions on the theoretical plausibility [9], [18] of such results and their  
49 measurement credibility. Potential measurement issues have been identified in certain  
50 fluorescence-based thermometry techniques and are widely discussed in other recent reports [18],  
51 [22]–[25]. On the other hand, the theoretical predictions of typical intracellular temperature  
52 changes remain disputed [18]–[21], [26]. Baffou et al [18], [19] estimated that the typical  
53 intracellular temperature changes don't exceed  $10^{-5}$  K. Critics [9], [20], [21] have pointed out  
54 incorrect assumptions of heat source, cell thermal conductivity, and length scale of heat sources.  
55 Nonetheless, previous attempts [18]–[21], [26] to understand sub-cellular heat diffusion have been  
56 unable to explain the experimentally observed intracellular temperature changes [7], [11]–[16]. In  
57 contrast, at tissue length-scales, bioheat transport models [27], [28] with blood perfusion  
58 assumptions were previously used to predict the tissue-scale temperature changes, which are in  
59 good agreement with experimental results [4], [6], [27], [29]. Unlike tissue scale heat diffusion,  
60 sub-cellular heat diffusion modeling is less explored, and previous approaches to these two length-  
61 scales seem disconnected from each other. Therefore, there is a need for a unified approach to  
62 modeling heat diffusion in biological cells spanning length scales ranging from sub-cellular to  
63 tissues.

64 Here, we first reexamine the validity of the commonly used effective thermal conductivity  
65 ( $k_{eff}$ ) approximation at cellular length-scales. Typically, in a cellular milieu, the spatial variations  
66 in thermal conductivity ( $k$ ) are approximated as an effective thermal conductivity,  $k_{eff}$ , which is  
67 often reported as the thermal conductivity itself. Resistance to heat diffusion not only stems from  
68 the intrinsic material resistance, but also due to dissimilar material interfaces (Kapitza resistance,  
69  $R''_{TIR}$ ) which often results in a discontinuous temperature jump across the interface [30]. The  
70 cellular milieu is home to numerous dissimilar interfaces from biomolecular complexes such as  
71 proteins, cytoskeleton components, organelles, etc. that are suspended in the cytosol. Such  
72 biomolecular complexes with hydrophobic- or hydrophilic-water interfaces can result in  $R''_{TIR}$  of  
73  $\sim 10^{-8}$  to  $10^{-7}$  K.m<sup>2</sup>W<sup>-1</sup> [31]–[34] at a length-scale of  $\sim 50$  nm. When interfaces dominate the overall  
74 thermal resistance, an effective thermal conductivity may no longer model heat diffusion behavior  
75 well. While the validity of  $k_{eff}$  has been questioned before [20], [26], this aspect has never been

76 explored in detail. Here, we show that the effective thermal conductivity can become length-  
77 dependent if the interfacial resistances dominate, especially at cellular length-scales. We then  
78 incorporate the interfacial resistances in our model to calculate the expected temperature changes  
79 across sub-cellular to tissue length-scales. Our model helps to understand the typically expected  
80 temperature changes and consequently the thermometry requirements for thermogenic reactions  
81 of different timescales and heat rates. Overall, our work provides a cellular heat diffusion model  
82 and the cellular thermometry requirements, which are vital for applications such as nanoparticle  
83 heating of cryopreserved tissues [35], [36], thermal ablation of tumor cells [37]–[39],  
84 thermometry-based bioenergetics studies [9], [40]–[42], etc.

85 This paper is organized as follows. The Methods section discusses the cellular heat  
86 diffusion model, where we incorporate a cuboidal resistance network to capture the interfacial  
87 resistances of biomolecular complexes. We validate our resistance network and the heat diffusion  
88 model by comparing the results against the commonly used effective thermal conductivity  
89 approximation. Using the validated heat diffusion model, we first discuss the typical endogenous  
90 temperature changes at sub-cellular and tissue length-scales. We then highlight the implications of  
91 the expected temperature changes in choosing a thermometry technique.

92

## 93 METHODS

### 94 Cellular heat diffusion model

95 Cells contain a variety of biomolecular complexes ranging from proteins and nucleic acids  
96 to membranes and cytoskeleton to organelles such as lysosomes and mitochondria. Due to  
97 collisions with other macromolecular compounds in the cytosol, molecular diffusion in the cytosol  
98 has been estimated to be four times smaller than pure water [43]. The diffusion of heat, on the  
99 other hand, has been relatively unexplored at sub-cellular length-scales [18]–[21], [26].

100 Heat transport in the cellular milieu can be assumed to be diffusive in nature, since the  
101 molecular mean free path in liquids is much smaller than 1 nm. However, the subcellular region  
102 contains biomolecular complexes that result in numerous dissimilar interfaces, where the diffusion  
103 approximation is no longer valid [44]–[46]. One of the commonly used techniques to model the  
104 thermal interfacial resistance at dissimilar surfaces is molecular dynamic (MD) simulations [47]–  
105 [52]. For instance, studies using non-equilibrium MD simulations have captured the effects of  
106 interface topography [53], curvature [52], size, bonding energy [49], etc. on the thermal interfacial  
107 resistance. On the other hand, continuum models such as finite element methods (FEM)  
108 approximate the temperature discontinuity across dissimilar interfaces using the interfacial  
109 resistance as an input parameter [48], [54]. Typically, the thermal interfacial resistances are either  
110 measured experimentally [33], [54] or calculated from MD simulations [48], [53]. MD based  
111 simulations are usually limited to confined domains of few  $\text{nm}^2$ – $\mu\text{m}^2$  and are also limited by the  
112 computational capacity to be able to model an entire cell. To this end, in this work, we model the  
113 heat transport in cells and tissues using finite element methods through COMSOL Multiphysics  
114 software. While FEM cannot intrinsically estimate the thermal interfacial resistances, we instead

115 investigate heat transport for a range of possible interfacial resistances for the biomolecular  
116 complexes. We discuss the range of values for the interfacial resistance shortly.

117 We model heat flow using the transient heat diffusion equation,

$$\nabla \cdot (k \nabla T) + \dot{Q}''' = \rho C_p \frac{\partial T}{\partial t} \quad (1)$$

118

119 where,  $T$  is the temperature,  $\dot{Q}'''$  is the volumetric heat generation rate,  $\rho$  is the density,  $C_p$  is the  
120 specific heat,  $k$  is the thermal conductivity. Equation (1) is valid for diffusive heat transport across  
121 a range of sub-cellular to tissue length-scales. However, at sub-cellular length-scales, the material  
122 properties  $k$ ,  $\rho$ , and  $C_p$  are a strong function of the spatial location due to the suspended  
123 biomolecular complexes. Under steady-state conditions, the spatial variations of  $\rho$  and  $C_p$  can be  
124 ignored. In a typical experimental measurement, the spatial variations in  $k$  and the effects of  
125 additional interfacial resistances are approximated by an effective thermal conductivity,  $k_{eff}$ ,  
126 which is often reported as the thermal conductivity itself. Previous work [18]–[21], [26] typically  
127 used experimentally measured  $k_{eff}$  in a simplified version of Equation (1) to model the cellular  
128 heat diffusion and for predicting the expected temperature changes. Instead, in this work, we  
129 explicitly model the thermal interfacial resistance ( $R''_{TIR}$ ) of biomolecular complexes by  
130 introducing a temperature discontinuity at their surface, given by,

131

$$\Delta T = \frac{R''_{TIR} \dot{Q}}{A} \quad (2)$$

132

133 where,  $\dot{Q}$  is the rate of heat flow, and  $A$  is the surface area of the biomolecular complex.

134 Typical biomolecular complexes such as proteins are suspended in the cytosol with the  
135 hydrophilic side chains exposed to saline, while the hydrophobic chains are curled inside. Such  
136 hydrophilic-water interfaces are expected to have thermal interfacial resistance ( $R''_{TIR}$ ) of  $\sim 10^{-8}$   
137  $\text{K} \cdot \text{m}^2 \text{W}^{-1}$  [31], [32]. For a hydrophobic-water interface, the interface resistance is typically higher  
138 and is  $\sim 2 \times 10^{-8} \text{ K} \cdot \text{m}^2 \text{W}^{-1}$  [33]. Highly hydrophobic materials such as carbon nanotubes have a  
139 thermal interfacial resistance of  $\sim 2 \times 10^{-7} \text{ K} \cdot \text{m}^2 \text{W}^{-1}$  with water [34]. Such interfacial resistances can  
140 produce a considerable temperature change. For instance, if 1 nW of heat flows across a protein  
141 chain of 50 nm width with  $R''_{TIR} \sim 10^{-7} \text{ K} \cdot \text{m}^2 \text{W}^{-1}$ , the temperature change can be as high as  $\sim 20 \text{ mK}$   
142 across a length of 100 nm. Further, when the interfacial resistances dominate the overall resistance  
143 to heat diffusion, the effective thermal conductivity ( $k_{eff}$ ) would be less than that of proteins  
144 ( $k_p \sim 0.1\text{--}0.2 \text{ W m}^{-1} \text{ K}^{-1}$ ). This can happen at sub-cellular length-scales and has recently been  
145 observed in an intracellular effective thermal conductivity measurement [55], which reported a  
146  $k_{eff} \sim 0.07\text{--}0.13 \text{ W m}^{-1} \text{ K}^{-1}$ . To accurately capture the heat diffusion at sub-cellular length-scales,  
147 Equation (2) must be used as a boundary condition at the surfaces of biomolecular complexes  
148 while solving Equation (1). Moreover, the topology of the biomolecular complexes must be

149 established to be able to model the interfacial resistances. Therefore, in the following section, we  
 150 introduce a generalized cubical topology for the biomolecular complexes.

151 **A generalized resistance network**

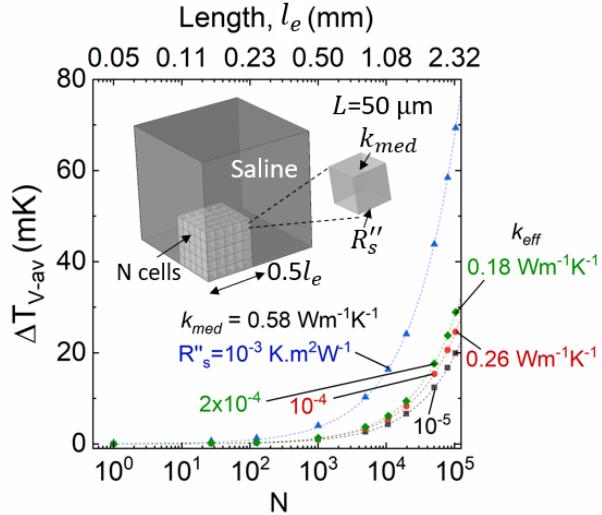
152 Figure 1a shows a partial picture of the cellular components across a  $\sim 0.1 \mu\text{m}^2$  area near  
 153 the cell wall [56]. The cytoskeleton components such as actin, intermediate filaments, and  
 154 microtubules are roughly 6 nm, 10 nm, 25 nm in diameter [57]. A steady-state heat diffusion across  
 155 this subcellular space is subjected to a thermal resistance from the medium ( $t/k_{med}$ ), the intrinsic  
 156 resistance of proteins in the filaments ( $t/k_p$ ) and the interfacial resistances of the filaments ( $R''_{TIR}$ ),  
 157 where  $t$  is the corresponding thickness. The thermal resistance network in the cellular environment  
 158 can be visualized as numerous pockets of polyhedrons (filled with water) surrounded by protein  
 159 chains. This can be approximated as cuboidal pockets of medium surrounded by surfaces of protein  
 160 with a lumped resistance  $R''_S$ , as shown schematically in Figure 1b. The validity and impact of this  
 161 approximation are discussed later, but we first explain the physical meaning of this lumped  
 162 resistance  $R''_S$ . The resistance  $R''_S$  can be assumed to be a lumped representation of all the  
 163 intracellular components and their interfacial resistances. A mathematical representation of  $R''_S$  is:  
 164

$$R''_S \approx A \sum_i \frac{t_i}{k_{p_i} A_i} + \frac{R''_{TIR_i}}{A_i} - \frac{t_i}{k_{med} A_i} \quad (3)$$

165  
 166



167  
 168 Figure 1 a) Schematic of typical cytoskeleton components in a roughly  $0.1 \mu\text{m}^2$  area near the cell wall.  
 169  $k_{eff}$  is the effective thermal conductivity of all the components shown here. If  $k_p > k_{eff}$ , the thermal  
 170 interfacial resistance ( $R''_{TIR}$ ) dominate the  $k_{eff}$ . b) A simplified representation of the thermal resistance  
 171 network. The medium is assumed to have a thermal conductivity of  $k_{med}$ , surrounded by surfaces on all  
 172 sides with a resistance of  $R''_S$  ( $\text{K} \cdot \text{m}^2 \text{W}^{-1}$ ).


173  
 174  
 175 where,  $t_i$  is the thickness of a lipid/protein/organelle  $i$  with a thermal conductivity  $k_{p_i}$ ,  
 176 effective surface area  $A_i$ , with an interfacial resistance  $R''_{TIR_i}$ , and  $A$  is the surface area of the  
 177 individual unit ( $\sim L^2$ ) along which  $R''_S$  is borne (Figure 1b). The last term in Eqn. (3) accounts for

178 the reduction in the medium's resistance due to displacement of the medium by the material  $i$ . Any  
179 advection thermal resistance can also be a part of Eqn. (3). We henceforth call this resistance  $R''_s$   
180 as the equivalent thermal resistance at a length-scale  $L$ , since from Eqn. (3) we can see that  $R''_s$  is  
181 a strong function of the length-scale  $\sim At_i/A_i$ . At a length-scale of  $L \sim 50$  nm,  $R''_s$  is representative  
182 of the resistances from protein chains, whereas, at a length-scale  $L \sim 50$   $\mu\text{m}$ ,  $R''_s$  represents all the  
183 proteins in the cell as an equivalent lumped resistance at the cell-wall. Thus,  $R''_s$  can be higher at  
184 50  $\mu\text{m}$  than at 50 nm. We now discuss the implications of a cuboidal resistance network  
185 approximation. Unless stated otherwise, we assume in this work that the pockets are filled with a  
186 medium, whose  $k_{med} = 0.58 \text{ Wm}^{-1}\text{K}^{-1}$ , corresponding to the thermal conductivity of water. The  
187 real picture could be better represented by a  $k_{med}$  that is  $< 0.58 \text{ Wm}^{-1}\text{K}^{-1}$ , due to the dispersed  
188 proteins and ions, and  $R''_s$  could be  $\sum_i R_{TIR_i}$  instead of Eqn. (3). However, since an accurate spatial  
189 distribution of  $k_{med}$  and  $R''_{TIR}$  is not available for a heterogeneous cellular environment, we assume  
190 that all the additional resistances are lumped along the surface as  $R''_s$  (Eqn. (3)). Further, we assume  
191 a rectilinear topology (cuboid) for the unit cell of the resistance network as shown in Figure 1b.  
192 The real topology could be complex (with entangled resistance network and high interfacial  
193 resistances) or simpler (with a homogenous dispersion of proteins and low interfacial resistance).  
194 Our cuboidal resistance network may not be a unique representation, but we show in this work that  
195 it serves well as a general example to understand the cellular heat diffusion picture.  
196

## 197 RESULTS

### 198 Revisiting the effective thermal conductivity approximation

199 We revisit the effective thermal conductivity approximation and use it to validate our  
200 cuboidal resistance network model. An effective thermal conductivity,  $k_{eff}$ , approximates the  
201 local thermal resistances such that under a known amount of steady heat ( $Q$ ), the temperature  
202 change ( $\Delta T$ ) can be predicted using a single thermal property,  $k_{eff}$ . The effective thermal  
203 conductivity is a function of the type of heat input (line, surface, or volumetric) [58], and the  
204 location of the temperature measurement. Typically, the measured temperatures can be volume  
205 averaged ( $T_{v-av}$ ), surface average ( $T_{s-av}$ ), volume maximum ( $T_{v-m}$ ), or surface maximum  
206 ( $T_{s-m}$ ). For bio-heat transport studies, especially for thermometry-based bioenergetics studies, a  
207 useful and an often-measured parameter is the average temperature in a volume ( $T_{v-av}$ ). The  $T_{v-av}$   
208 is representative of an average temperature measured using fluorescent dyes, or dispersed  
209 nanoparticles. If the heat input is known (say, endogenous heat source, or laser), the average  
210 temperature change can be used to estimate the local effective thermal conductivity,  $k_{eff}$  [55],  
211 [59]. Thus, in this study, we assume  $k_{eff}$  as the effective (or measured) thermal conductivity  
212 calculated using the volume averaged temperature ( $T_{v-av}$ ) for a known volumetric heat source.  
213 We later discuss how the location of temperature measurement and the type of heat source affect  
214 the effective thermal conductivity  $k_{eff}$ .



215

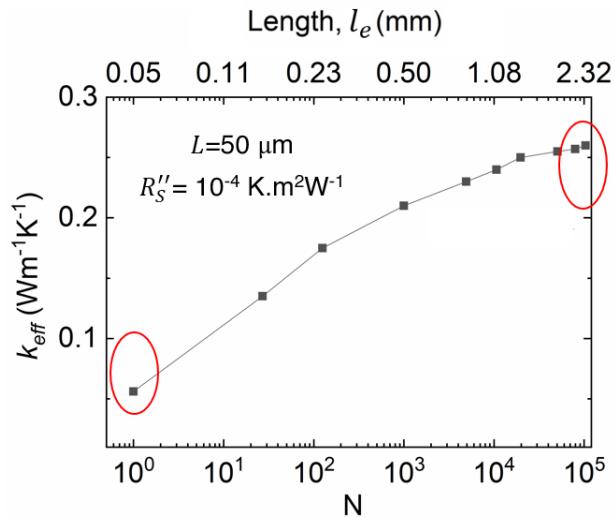
216 Figure 2. Volume averaged temperature change ( $\Delta T_{v-av}$ ) of the stack of cells is plotted against the  
 217 number of cells,  $N$ , in the stack. The total edge length of the stack of cells is given by  $l_e$ , which is  
 218  $\sim (NL)^{0.33}$ , where  $L$  is the length of each cell surrounded by  $R''_s$ . The  $\Delta T_{v-av}$  are shown for 4  
 219 combinations of  $k_{med}$  and  $R''_s$ , as shown inside the graph. For lengths,  $l_e > 1$  mm, the plotted  $\Delta T_{v-av}$  also  
 220 correspond to a stack of cells with an effective thermal conductivity,  $k_{eff}$ , as noted outside the graph  
 221 using the corresponding colors. Each cell is assumed to release heat of 2.5 nW. Only 1/8<sup>th</sup> of the domain  
 222 is shown in the schematic for clarity.

223 Using the above-mentioned definition of effective thermal conductivity,  $k_{eff}$ , we now  
 224 discuss how the cuboidal resistance network's  $k_{eff}$  prediction compare against those that were  
 225 previously measured experimentally. Consider a stack of  $N$  cuboidal cells (Figure 2), representing  
 226 a multi-cellular tissue. Each cell has an edge length,  $L=50$   $\mu$ m, roughly corresponding to an adipose  
 227 cell size [60]. The cells are assumed to be filled with a medium of thermal conductivity  $k_{med}$ ,  
 228 surrounded by an equivalent surface resistance,  $R''_s$ . The stack of cells is surrounded by saline. A  
 229 constant outer surface temperature (20°C) is assumed at the saline far from the tissue. At large  
 230 length scales,  $l_e \gg R''_s k_{med}$ , where  $N \rightarrow \infty$ , the effective (or measured) thermal conductivity of  
 231 the tissue can be analytically approximated as,

$$k_{eff} = \frac{L}{R''_s + \frac{L}{k_{med}}} \quad (4)$$

232 We computationally confirm the effective thermal conductivity approximation (Eqn. (4))  
 233 using Figure 2. We use finite element simulations that were validated for interfacial resistance  
 234 modeling in our previous work [40], [54], [61] and for modeling transients in the supplementary  
 235 material. A nominal volumetric heat of 2.5 nW is assumed to be released per cell, which  
 236 corresponds to a typical cell metabolism rate [41], [62]. We plot in Figure 2 the volume-averaged  
 237 temperature change ( $\Delta T_{v-av}$ ) in the cell stack against the number of cells,  $N$ , in the stack.  $\Delta T_{v-av}$   
 238 is plotted for different equivalent resistances,  $R''_s$  from  $10^{-3}$  to  $10^{-5}$   $\text{K.m}^2\text{W}^{-1}$ . We also plot the  
 239 corresponding temperature changes without an equivalent resistance  $R''_s$ , but with an effective

240 thermal conductivity  $k_{eff}$  (0.18 and 0.26  $\text{Wm}^{-1}\text{K}^{-1}$ ), for  $l_e > 1 \text{ mm}$ , as marked outside the graph in  
241 Figure 2. We specifically choose a  $k_{eff}$  of 0.18  $\text{Wm}^{-1}\text{K}^{-1}$  and 0.26  $\text{Wm}^{-1}\text{K}^{-1}$  since previous studies  
242 report the effective thermal conductivity for adipose tissues to be in the range 0.18-0.26  $\text{Wm}^{-1}\text{K}^{-1}$   
243 [28], [63]. From Figure 2, we find that the calculated temperatures ( $\Delta T_{v-av}$ ) using  $k_{eff}$  of 0.18  
244  $\text{Wm}^{-1}\text{K}^{-1}$  and 0.26  $\text{Wm}^{-1}\text{K}^{-1}$  are indistinguishable from the calculated  $\Delta T_{v-av}$  for a cuboidal  
245 resistance network with  $k_{med}=0.58 \text{ Wm}^{-1}\text{K}^{-1}$ ,  $R_s''$  of  $2 \times 10^{-4}$  and  $10^{-4} \text{ K.m}^2\text{W}^{-1}$ , respectively. In  
246 other words, a  $k_{eff}= 0.18-0.26 \text{ Wm}^{-1}\text{K}^{-1}$  that was previously measured for adipose tissues is  
247 equivalent to a tissue made up of cells of  $L=50 \mu\text{m}$  each with a  $k_{med}=0.58 \text{ Wm}^{-1}\text{K}^{-1}$  and  $R_s'' =$   
248  $2 \times 10^{-4} - 10^{-4} \text{ K.m}^2\text{W}^{-1}$ , respectively, as also estimated by Eqn. (4). Thus, the cuboidal resistance  
249 network consisting of  $k_{med}$  and  $R_s''$  can capture the effective thermal conductivity approximation  
250 at tissue length-scales.


251 At sub-cellular length-scales, a recent report [55] measured the thermal conductivity to be  
252  $0.07-0.13 \text{ Wm}^{-1}\text{K}^{-1}$  with a spatial resolution of 200 nm inside a cell. Since the measured  $k_{eff}$  is  
253 less than protein's thermal conductivity,  $k_p$  ( $\sim 0.1-0.2 \text{ Wm}^{-1}\text{K}^{-1}$ ), the interfacial resistances ( $R_{TIR}''$ )  
254 possibly dominated at sub-cellular length-scales. We approximated the cellular heat diffusion  
255 picture to a cuboidal resistance network to explicitly account for the interfacial resistances ( $R_{TIR}''$ ).  
256 Consequently, a low  $k_{eff}$  can be explained using the cubic resistance network if the lumped  
257 resistance  $R_s''$  is in the range  $10^{-7}-10^{-6} \text{ K.m}^2\text{W}^{-1}$  (Figure S2 in supplementary material) at  $L \sim 50 \text{ nm}$ .  
258 Therefore, the cuboidal resistance network can provide a reasonable approximation to the thermal  
259 conductivity across a range of sub-cellular to tissue length-scales.

260

### 261 *Limitations of effective thermal conductivity approximation*

262 The effective thermal conductivity,  $k_{eff}$ , is a function of the length-scale at which it was  
263 estimated (Figure 3), especially if the local thermal interfacial resistances dominate the total  
264 thermal resistance. If the local thermal resistances ( $R_s''$ ) are in the order of  $10^{-4} \text{ K.m}^2\text{W}^{-1}$  at a length-  
265 scale of  $50 \mu\text{m}$ , the effective thermal conductivity is a strong function of the length scale varying  
266 from  $0.05 \text{ Wm}^{-1}\text{K}^{-1}$  to  $0.25 \text{ Wm}^{-1}\text{K}^{-1}$ , over  $50 \mu\text{m}$  to  $2 \text{ mm}$  length-scale. Figure 3 shows that the  
267 effective thermal conductivity can be as low as  $\sim 0.05 \text{ Wm}^{-1}\text{K}^{-1}$  at cellular length-scales ( $< 50 \mu\text{m}$ ),  
268 which is in close agreement with a recent report [55] of intracellular  $k$ :  $0.07-0.13 \text{ Wm}^{-1}\text{K}^{-1}$ . We  
269 mark this experimentally reported thermal conductivity in red circle in Figure 3 at  $N \sim 1$ . Similarly,  
270 for adipose tissues, the thermal conductivity is typically in the range 0.18-0.26  $\text{Wm}^{-1}\text{K}^{-1}$  [28], [63],  
271 which is also highlighted in red in Figure 3 at larger length-scales ( $l_e \sim 2 \text{ mm}$ ). Notably, our  
272 resistance network model can capture the thermal conductivity variation from sub-cellular to tissue  
273 length-scales. The data shown in black line in Figure 3 corresponds to our specific assumption of  
274 a cuboidal topology for the resistance network. In general, the true functional relationship between  
275 effective thermal conductivity and length-scale could be determined by mapping the true topology  
276 of the resistance network in the system. Our cuboidal topology serves as a generalized example to  
277 show that the local interfacial resistances can be responsible for the reduction in effective thermal  
278 conductivity at smaller length-scales.

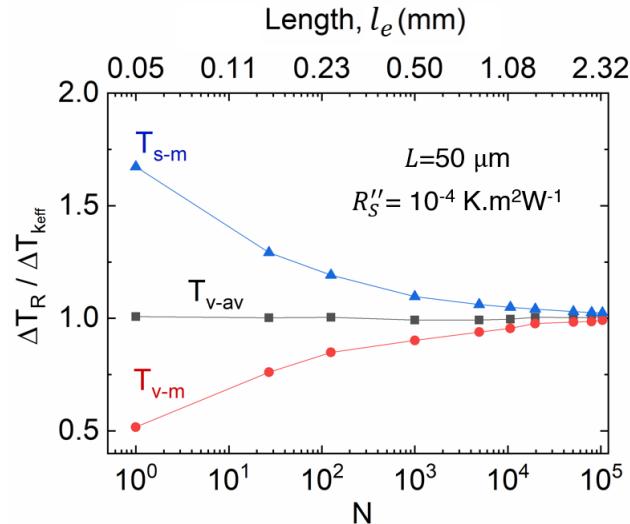
279 The equivalent resistance ( $R''_s$ ) is responsible for reducing the effective thermal  
 280 conductivity at lower length-scales (Figure S2). The value of this resistance  $R''_s$  scales directly with  
 281 the length-scale ( $L$ ), as evident from Eqn. (4). A resistance,  $R''_s$ , of  $\sim 10^{-4}$  K.m<sup>2</sup>W<sup>-1</sup> at a length-scale  
 282  $L=50$   $\mu$ m may seem high; however, it scales down to an equivalent resistance,  $R''_s$  of  $\sim 10^{-7}$  K.m<sup>2</sup>W<sup>-1</sup>  
 283 at a length-scale  $L=50$  nm, where the contribution of  $R''_{TIR_i}$  can no longer be ignored in  $R''_s$ . A  
 284 resistance of  $10^{-7}$  K.m<sup>2</sup>W<sup>-1</sup> is comparable to that of hydrophobic-water interfaces [33], [34]. At  
 285 sub-cellular length scales  $\sim 50$  nm, if the local resistance  $R''_s$  is on the order of  $10^{-7}$  K.m<sup>2</sup>W<sup>-1</sup>,  $k_{eff}$   
 286 can vary from  $0.05$  Wm<sup>-1</sup>K<sup>-1</sup> to  $0.25$  Wm<sup>-1</sup>K<sup>-1</sup> over length scales of  $50$  nm to  $2$   $\mu$ m (Figure 3). The  
 287 interfacial resistance ( $R''_{TIR}$ ) contribution to the lumped resistance  $R''_s$  cannot be ignored at a length-  
 288 scale  $l_e$  where  $R''_s \sim \sum_i R_{TIR_i} \sim l_e/k_p$  could be all in similar orders of magnitude. The exact length-  
 289 scale  $l_e$  at which  $R''_{TIR}$  dominates cannot be known for certain since we do not have any information  
 290 on the TIR of multiple interacting protein chains or organelles.



291

292 Figure 3. Effective thermal conductivity ( $k_{eff}$ ) is a function of the length-scale at which it is measured.  
 293 We find the  $k_{eff}$  at each length scale,  $l_e$ , by matching the volume averaged temperature ( $T_{v-av}$ ) for a  
 294 stack of  $N$  cells with a resistance network of  $k_{med}$  and  $R''_s$  to that of a stack with a  $k_{eff}$ . We assumed a  
 295 constant volumetric heat of dissipation per cell. The region in red corresponds to some of the previous  
 296 experimental data points [28], [55], [63].

297


298 The effective thermal conductivity,  $k_{eff}$ , is also dependent on the type of input heat source  
 299 (volumetric or surface), and the location of the measured temperature. For bioenergetics studies,  
 300 we assumed that a  $k_{eff}$  is typically measured using the average temperature change over a volume  
 301 ( $\Delta T_{v-av}$ ) for a known volumetric heat input,  $Q$ . However, if the length-scale  $l_e$  of effective thermal  
 302 conductivity  $k_{eff}$  measurement is in the order of  $L$ , which is the length-scale of local resistances  
 303 ( $R''_s$ ), the  $k_{eff}$  approximation may fail to capture the true temperature distribution, as shown in  
 304 Figure 4. If  $k_{eff}$  is used, we denote the temperature changes as  $\Delta T_{k_{eff}}$ , calculated using the known  
 305  $k_{eff}$ . Similarly, we denote the temperature changes calculated using the cuboidal resistance

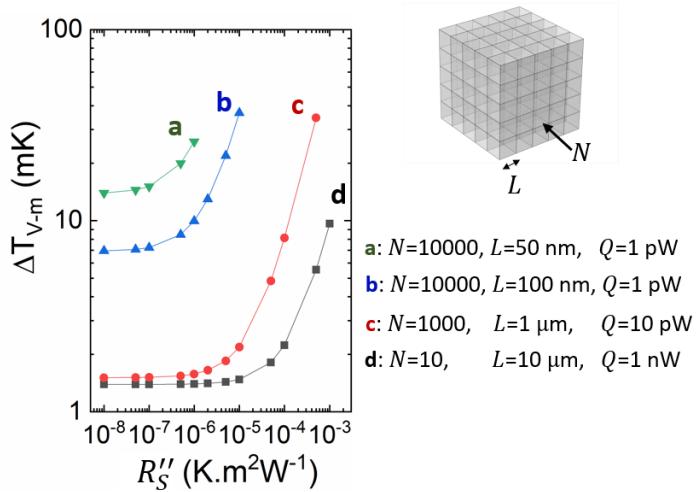
306 network ( $k_{med}$  and  $R''_s$ , Figure 1b) as  $\Delta T_R$ . We find from Figure 4 that if the effective thermal  
 307 conductivity is defined using the average temperature ( $\Delta T_{v-av}$ ), the local surface temperatures  
 308 ( $\Delta T_{s-m}$ ) can be higher by 67%, or the overall maximum temperature ( $\Delta T_{v-m}$ ) can be lower by  
 309 51% in comparison to the true temperature changes ( $\Delta T_R$ ). Only at length-scales  $l_e \gg L$ , as shown  
 310 in Figure 4, an effective thermal conductivity can capture the true temperature distribution.

311 We note here that we assumed the true temperature change to be  $\Delta T_R$  (in Figure 4),  
 312 corresponding to a cuboidal resistance network, which is one of the many possible topologies. The  
 313 real picture could be worse (with entangled resistance network and high interfacial resistances) or  
 314 better (with a homogenous dispersion of proteins, low cell packing density, and low interfacial  
 315 resistance). The former is more likely since it supports the reduction in the effective thermal  
 316 conductivity to values below that of typical proteins (Figure 3).

317 Typical calorimetry techniques [41], [42] for biological cells measure the temperature of  
 318 the surrounding medium to estimate the total heat released from a cell. Such techniques inherently  
 319 assume an effective thermal conductivity for the cell and the surrounding medium during the  
 320 calibration of the thermal resistance of the calorimetry cell using an external heater. We discussed  
 321 in this section that the effective thermal conductivity is a function of the location of the heat source,  
 322 the location of the measured temperature, and the local interface resistance network (Figure 4).  
 323 Since the resistance to heat flow for an external heater may be different in comparison to any  
 324 intracellular heat sources, previously reported calorimetry techniques [41], [42] may not be able  
 325 to capture the true intracellular heat release via externally measured temperatures.

326




327

328 Figure 4. Effective thermal conductivity ( $k_{eff}$ ) may not capture the temperature distribution at smaller  
 329 length-scales. We use the  $k_{eff}$  shown in Figure 3, for this plot. s-m: surface maximum, v-m: volume  
 330 maximum, v-av: volume average.

331

332 **Typical temperature changes**

333 In the previous sections, we developed a cuboidal resistance network that offers a generalizable  
 334 way to model the interfacial resistances. The topology of the resistance network and the absolute  
 335 value of the resistances may vary widely across cell lines. In this section, we explore the typical  
 336 endogenous temperature changes for a range of length-scales and interfacial resistances. An  
 337 estimate of the typical temperature changes can help determine the required sensitivity of  
 338 measurement techniques to measure such temperature changes.



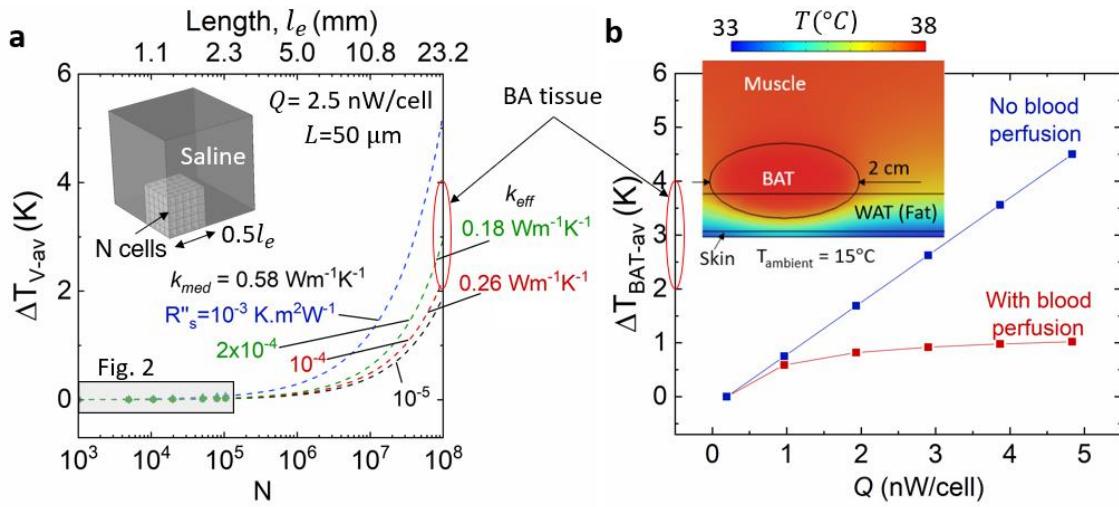
340 Figure 5. Maximum localized temperature changes in sub-cellular compartments due to a total  
 341 endogenous heat release rate of 10 nW. We plot this for a range of possible equivalent resistances,  $R_S''$ , at  
 342 a length-scale  $L$ . The notations a, b, c, d correspond to different types of subcellular compartments. A  
 343 conservative thermal conductivity of  $0.1 \text{ Wm}^{-1}\text{K}^{-1}$  was assumed for the subcellular compartments and the  
 344 surrounding medium (cytosol).

345

346 *Sub-cellular localized temperature changes*

347 In this section, we estimate the localized temperature changes in sub-cellular compartments  
 348 due to endogenous heating. Endogenous heat release in individual cells is typically in the range of  
 349  $1\text{--}10 \text{ nW}$  in a  $50 \mu\text{m}$  diameter cell ( $\sim 1\text{--}20 \text{ kW/m}^3$ ) [28], [41], [62]. We consider a few different  
 350 scenarios (listed in Figure 5) each representing different sub-cellular compartment sizes, but all  
 351 producing the same  $10 \text{ nW}$  of total heat. For instance, scenario a has 10,000 compartments each  
 352 producing a heat  $Q=1 \text{ pW}$  and has a length-scale  $L= 50 \text{ nm}$  roughly corresponding to individual  
 353 protein chains. On the other hand, the scenario c has 1,000 compartments each producing a heat  
 354  $Q=10 \text{ pW}$  and has a length-scale  $L= 1 \mu\text{m}$ , roughly corresponding to that of mitochondria. In Figure  
 355, we show the maximum localized temperature changes in such sub-cellular compartments. We  
 356 only plot the temperature changes for a range of possible equivalent resistances  $R_S''$ . For instance,  
 357 we do not plot the temperature changes in scenario a for  $R_S'' > 10^{-6} \text{ K} \cdot \text{m}^2 \text{W}^{-1}$ , since it is unlikely for  
 358 protein chains of 50 nm length-scale to have such resistances. The volumetric heat rate for the  
 359 scenarios shown in Figure 5 are in the range  $\sim 1\text{--} 8000 \text{ MW/m}^3$ . Despite such a high volumetric  
 360 heat release rate, the localized temperature changes in a cell are expected to be  $< 0.1 \text{ K}$ . This is

361 contrary to certain previous studies that report intracellular organelles to be  $\sim 1$  K higher than the  
362 cytosol [7], [17]. The intracellular temperature changes can be greater than 0.1 K if exogenous  
363 stimulants [9], [36], [64], [65] such as proton uncouplers (BAM15, CCCP, FCCP), laser,  
364 resonating magnetic nanoparticles, etc. are used to increase the heat released in cells by several  
365 orders of magnitude above endogenous conditions. Moreover, transient endogenous temperature  
366 fluctuations in a 10 nm sub-cellular compartment can be up to  $\sim 1$  K, but it can only occur over a  
367 timescale of 0.1 ns, which could be averaged-out by most measurement techniques [26]. Overall,  
368 to measure endogenous and localized temperature changes in intracellular regions, the  
369 measurement technique is required to have a detection limit  $\ll 100$  mK.


370

### 371 *Tissue-scale temperature changes*

372 A few nanowatts of intracellular heat cannot raise the local temperature in an isolated cell  
373 by a few K as evident from Figure 2 and Figure 5. However, it is well known that brown adipose  
374 tissue (BAT) cells contribute toward increasing the local tissue temperatures by 1-2 K [4], [5],  
375 especially under cold-induced conditions. In this section, we systematically show how the  
376 temperature changes increase from a few mK in a single isolated cell to 1-2 K in tissues through  
377 our cuboidal resistance network for cells. We also compare our results against a bioheat transport  
378 model that was previously developed for tissues.

379 For a nominal heat of 2.5 nW per cell, we previously discussed in Figure 2 that the average  
380 temperature change increases with the number of cells,  $N$ . The temperature changes,  $\Delta T_{V-av}$ , in  
381 Figure 2 roughly follows a power-law,  $\Delta T_{V-av} \propto N^\gamma$ , where  $\gamma = 0.63-0.67$ , which is consistent  
382 with previous analytical estimates [18], [66]. By extrapolating this fit, in Figure 6a, we calculate  
383 the corresponding temperature changes at tissue length-scales of  $\sim 20$  mm. The thermal  
384 conductivity of adipose tissue is typically in the range of 0.18-0.26 Wm<sup>-1</sup>K<sup>-1</sup>. The corresponding  
385  $\Delta T_{V-av}$  is expected to be in the range of 2-4 K for a tissue of size  $\sim 20$  mm (Figure 6a). We compare  
386 this prediction to a 3D bio-heat transport model that was developed for tissues to include the effects  
387 of blood perfusion. Details of this model are available in previous studies [27], [28], and also in  
388 the supplementary material. Briefly, the bioheat transport model accounts for volumetric metabolic  
389 heat production ( $Q''_{met}$ ) at tissues and blood associated thermoregulation ( $Q''_{blood}$ ). The blood  
390 perfusion rate is expressed as  $\omega_b$  in s<sup>-1</sup>. The volumetric heat supplied or removed by the blood is  
391 then given by,  $Q''_{blood} = \rho_b \omega_b C_b (T_b - T)$ , where  $C_b$  is the specific heat capacity,  $\rho_b$  is the density  
392 of the blood,  $T_b$  is the arterial blood temperature, and  $T$  is the local tissue temperature. In Figure  
393 6b, we use the bio-heat transport model to calculate the expected temperature changes in brown  
394 adipose tissue (BAT) deposits during a cold-induced ( $T_{ambient}=15^\circ\text{C}$ ) thermogenesis. BAT  
395 volumes vary depending on age, location, and weight of the individual. Here, we choose a 2 cm<sup>3</sup>  
396 ellipsoidal BAT as representative of supraclavicular region [28], [67], [68]. We used previously  
397 reported thermal and physical properties for blood, fat (BAT and WAT), and muscle, which we  
398 also summarize in Table S1 in the supplementary material. Our previous estimation of  $\Delta T_{V-av} \sim 2-$   
399 4 K rise in a stack of cells (Figure 6a) is equivalent to a scenario in BAT (Figure 6b,  $Q=2-3$   
400 nW/cell) with no blood perfusion. Notably, we were able to predict the temperature change in  
401 tissues by using a framework built from single cells (with  $k_{med}$  and  $R_s''$  along a cuboidal resistance

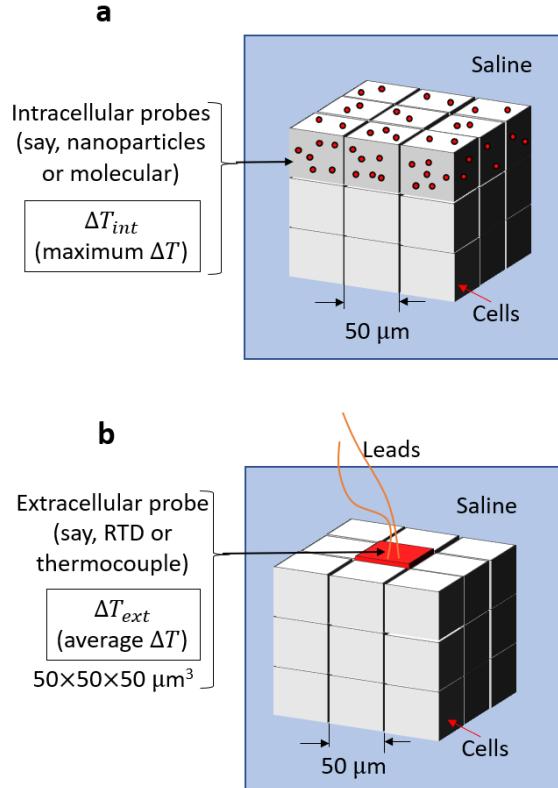
402 network) each producing  $\sim 2.5$  nW of heat. The  $\Delta T$  from a stack of cells (Figure 6a) did not include  
403 the effects of blood transport. Blood perfusion is responsible for the nutrient transport required to  
404 sustain the thermogenesis. Considering the effects of blood perfusion, we expect the tissue's  
405 temperature to rise by  $\sim 1$  K (Figure 6b). This is also consistent with previous experimental reports  
406 that studied thermoregulatory neuronal circuits and report a maximum temperature change in the  
407 order of  $\sim 1$ - $2$  K in BAT deposits [4], [5]. Even though intracellular temperature changes are  $\ll 0.1$   
408 K in an isolated cell ( $\sim 50$   $\mu$ m), the temperature changes can reach 1-2 K at tissue length-scales of  
409  $\sim 10$  mm. Overall, the detection limit required for the measurement of endogenous temperature  
410 changes at tissue length-scales are in the order of  $\sim 0.1$  K, which is realizable in common  
411 macroscopic measurement techniques.



412  
413 Figure 6. a) Average temperature of the stack of cells increases with the number of cells,  $N$ , and reaches  
414  $\sim 2$ - $4$  K at a length-scale of  $\sim 20$  mm. We extrapolated these curves from Figure 2. b) Average temperature  
415 change in the BAT deposit is shown for 5, 10, 15, 20, 25-fold increase in BAT metabolism. The x-axis  
416 shows the heat released in the tissue in nW per cell (of dimension 50  $\mu$ m x 50  $\mu$ m x 50  $\mu$ m). The “no  
417 blood perfusion” case assumed  $\omega_b$  to be zero. More details on this bio-heat transport model can be found  
418 in the supplementary material.

419  
420 **Choosing an appropriate thermometry technique**  
421 In the previous section, we estimated the typical endogenous temperature changes at intracellular  
422 and tissue length-scales. Such temperature changes occur inherently in the biological medium,  
423 irrespective of the measurement technique. When a temperature probe is introduced into the  
424 biological milieu, it often measures a temperature that is spatially averaged across the dimensions  
425 of the probe [69]. Therefore, in this section, we consider the perspective of the measurement  
426 technique and examine the temperature changes measured by the probes employed. Specifically,  
427 we consider two commonly used techniques – intracellular and extracellular thermometry. We  
428 examine the expected measurement temperatures over a range of cellular to tissue length-scales  
429 for biochemical reactions of different timescales and heat rates. Such an analysis would help to

430 identify the optimal thermometry technique that can provide physiological insight for a given type  
431 of biochemical reaction.

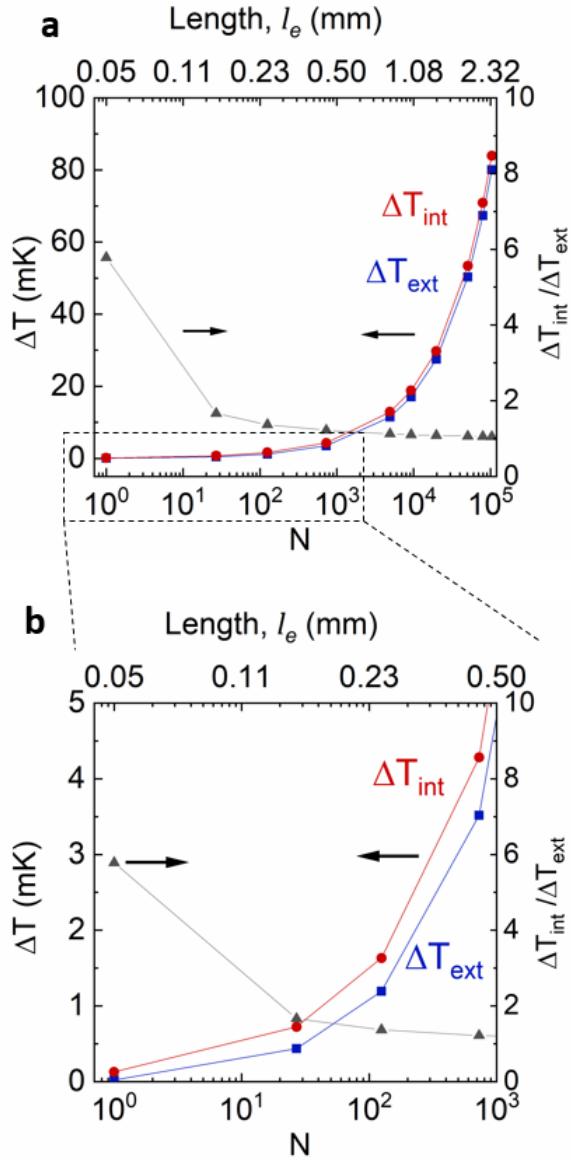

432 Figure 7 schematically depicts the two measurement techniques that we analyze in this  
433 section. We define  $\Delta T_{int}$  as the maximum intracellular temperature that can be measured through  
434 infinitesimal intracellular probes (say nanoparticles or molecular probes) dispersed inside the cells  
435 at the surface of a tissue of  $N$  cells. We define  $\Delta T_{ext}$ , as the temperature measured by an  
436 extracellular probe (say RTD or thermocouple) of  $50 \times 50 \times 50 \mu\text{m}^3$  size, which is also assumed to  
437 be at the surface of a tissue of  $N$  cells. In the following sections, we first analyze the time-scale  
438 effects of the measurement temperatures ( $\Delta T_{int}$  vs.  $\Delta T_{ext}$ ) across a range of length-scales. We then  
439 highlight how the temperature changes compare with the typical detectable limits of the  
440 measurement techniques.

441

#### 442 *Time-scale effects*

443 We first compare the steady-state temperature changes expected to be measured by extracellular  
444 ( $\Delta T_{ext}$ ) and intracellular ( $\Delta T_{int}$ ) probes, as shown in Figure 8. We assume a steady heat release of  
445 10 nW per cell of size 50  $\mu\text{m}$ , typical of brown adipose tissue cells under cold-induced  
446 thermogenesis. From Figure 8, we find that the  $\Delta T_{ext}$  and  $\Delta T_{int}$  closely follow each other on the  
447 scale of 0 to 100 mK over a range of length-scales. For  $N < 1000$ , the absolute magnitude of the  
448 temperature changes is  $< 10$  mK, which is lower than the typical detection limits of the  
449 measurement techniques. We later discuss (in the following section) the influence of the heat  
450 magnitude on the absolute value of the temperatures and how they compare against the detection  
451 limit. In Figure 8, we also plot the ratio of the temperature changes,  $\Delta T_{int}/\Delta T_{ext}$ , which is  
452 independent of the absolute magnitude of heat release. The ratio  $\Delta T_{int}/\Delta T_{ext}$  reaches a maximum  
453 of about 5.8 at  $N=1$ , which corresponds to an isolated cell. Further,  $\Delta T_{int}/\Delta T_{ext}$  remains under 2  
454 for  $N > 25$  cells. This shows that using an intracellular probe to measure temperature changes is  
455 beneficial, especially if the number of cells in the study is less than 10. In other words, intracellular  
456 probes can be useful for *in vitro* studies in a petri dish setting, where the temperature changes  
457 inside a cell can be up to 5.8 times higher than that outside of a cell, under steady-state conditions.

458

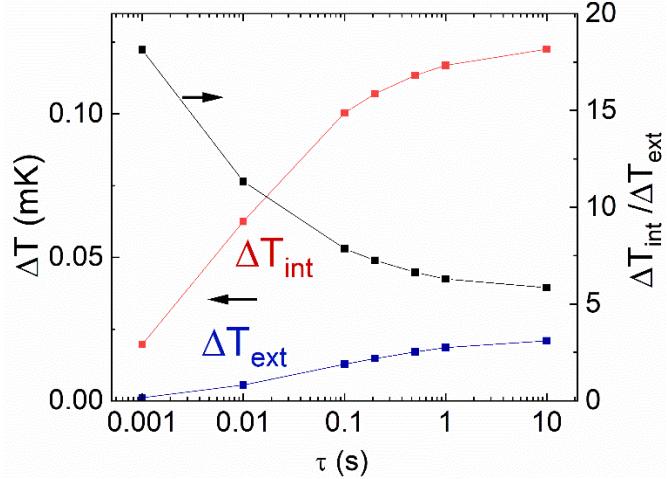



459

460 Figure 7 a) Schematic of intracellular temperature measurement is shown, defining  $\Delta T_{int}$  as the  
 461 maximum intracellular temperature from cells at the surface of  $N$  number of cells. b) Schematic of a  
 462 typical extracellular temperature measurement is shown, defining  $\Delta T_{ext}$  as the extracellular temperature  
 463 measured at a location of size  $(50 \times 50 \times 50 \mu\text{m}^3)$ . The probe is assumed to have the same thermal  
 464 properties as that of water. We assume a nominal resistance,  $R_S'' = 10^{-4} \text{ K.m}^2\text{W}^{-1}$  corresponding to a  
 465  $k_{eff} \sim 0.26 \text{ Wm}^{-1}\text{K}^{-1}$ .

466

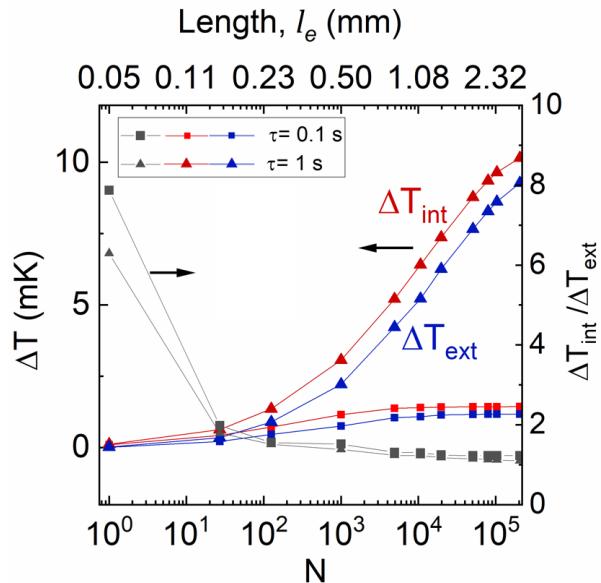
467 Under transient heating conditions, intracellular temperature changes ( $\Delta T_{int}$ ) can be 5-20 times  
 468 higher than that measured at extracellular regions ( $\Delta T_{ext}$ ) in an *in vitro* setting for isolated cells.  
 469 We depict this in Figure 9, where we show the simulated measurement temperatures for transient  
 470 heating of  $Q = 10 e^{-t/\tau} \text{nW}$  in a single isolated cell in an infinite medium, releasing heat  $Q$  at  
 471 different timescales ( $\tau$ ). We find the ratio  $\Delta T_{int}/\Delta T_{ext}$  to increase from 5.8 (~for steady-state  
 472 conditions) to up to 18 at a timescale of  $\tau=1 \text{ ms}$  for the heat release. The ratio  $\Delta T_{int}/\Delta T_{ext}$  is high  
 473 at lower timescales ( $\tau$ ) primarily because the time taken for the heat to diffuse (given by  $L^2/\alpha$ ,  
 474 where  $L$  is the length-scale and  $\alpha$  is the thermal diffusivity) and reach the extracellular probes is  
 475 higher than the heat release duration ( $\tau$ ). Thus, the heat is spatially confined to intracellular regions.  
 476 Intracellular thermometry is, therefore, better suited in isolated cells *in vitro*, especially if the heat  
 477 release is expected to be transient with a timescale  $\ll 1 \text{ s}$ .




478

479 Figure 8 a) The extracellular ( $\Delta T_{ext}$ , blue points) and intracellular ( $\Delta T_{int}$ , red points) temperature changes  
 480 during endogenous thermogenesis (10 nW, steady state per cell) are plotted on the left y-axis. The ratio  
 481  $\Delta T_{int}/\Delta T_{ext}$  (black points) is plotted on the right y-axis. b) The temperature changes over  $N=1$  to 1000 is  
 482 plotted separately to clearly show the magnitude of temperature changes at small length-scales. We  
 483 assumed the cell to have edge length  $L=50$   $\mu\text{m}$ . The ratio  $\Delta T_{int}/\Delta T_{ext}$  is independent of the magnitude of  
 484 heat.

485


486



487

488 Figure 9: The intracellular ( $\Delta T_{int}$ , red) and extracellular ( $\Delta T_{ext}$ , blue) temperature changes are plotted  
 489 along the left y-axis for a transient heat release ( $10 e^{-t/\tau}$  nW) in an isolated cell in an infinite saline  
 490 medium. The ratio  $\Delta T_{int}/\Delta T_{ext}$  (black points) is plotted on the right y-axis. The ratio  $\Delta T_{int}/\Delta T_{ext}$  is  
 491 independent of the magnitude of heat.

492

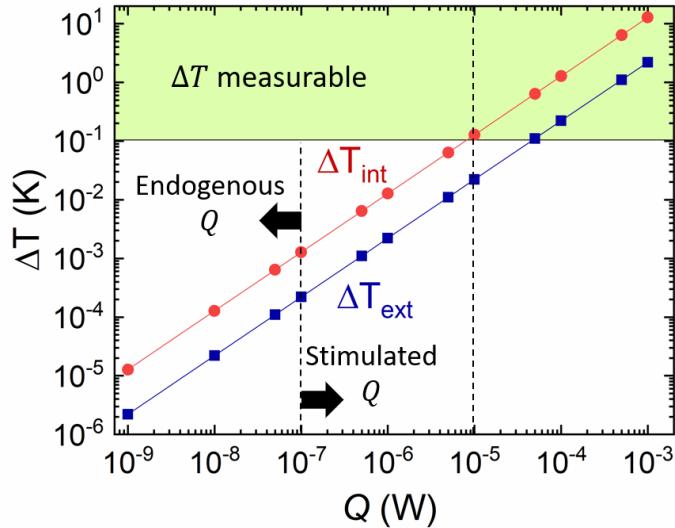


493

494 Figure 10. The extracellular ( $\Delta T_{ext}$ , blue points) and intracellular ( $\Delta T_{int}$ , red points) temperature changes  
 495 during transient thermogenesis ( $10 e^{-t/\tau}$  nW per cell) are plotted on the left y-axis. The ratio  $\Delta T_{int}/\Delta T_{ext}$   
 496 (black points) is plotted on the right y-axis. We assumed the cell to have edge length  $L=50 \mu\text{m}$  and  
 497  $R_S'' \sim 10^{-4} \text{ K.m}^2\text{W}^{-1}$ . The ratio  $\Delta T_{int}/\Delta T_{ext}$  is independent of the magnitude of heat.

498 Since the transient heating is localized within a cell, the transient temperature changes do  
 499 not increase at larger length-scales. In Figure 6 and Figure 8, the steady-state heating resulted in  
 500 the corresponding temperature change ( $\Delta T$ ) to increase with the number of cells ( $N$ ) as  $\Delta T \sim N^\gamma$ .  
 501 However, if the heat release is transient in nature, as shown in Figure 10, the corresponding  
 502 temperature changes do not increase with the number of cells ( $N$ ) beyond a certain  $N$ . Moreover,

503 from Figure 10, we find that a smaller timescale of heat release ( $\tau \sim 0.1$  s) results in temperature  
504 changes that saturate at smaller length-scales ( $l_e \sim 1$  mm) than that for  $\tau \sim 1$  s. This is expected since  
505 the heat diffusion length ( $\sqrt{\alpha\tau}$ ) is smaller for shorter heat release duration ( $\tau$ ). Overall, we again  
506 find that intracellular thermometry is better suited for transiently thermogenic reactions with  
507 timescales  $\ll 1$  s in isolated cells under *in vitro* conditions; however, at larger length-scales,  
508 extracellular thermometry is also equally suited to measure the temperature changes since  
509  $\Delta T_{int}/\Delta T_{ext} \rightarrow 1$  for length-scales  $l_e > 0.2$  mm. Throughout this section, we analyzed the ratio  
510  $\Delta T_{int}/\Delta T_{ext}$  to conclude that intracellular thermometry is better suited for transients in isolated  
511 cells; however, the absolute magnitude of  $\Delta T_{int}$  is  $< 1$  mK (Figures 8-10) in isolated cells, which  
512 renders it not possible to measure using conventional techniques. We discuss the implications of  
513 the absolute temperature changes and the heat rate magnitudes in the following section.


514

#### 515 *Heat rate magnitude: endogenous vs stimulated*

516 Under physiological conditions, intracellular temperature changes are usually limited to  
517 sub-mK values, which are not directly measurable *in vitro* by intracellular probes, unless the cells  
518 are thermally isolated by multiple vacuum chambers [41], [42]. However, if the intracellular heat  
519 release can be stimulated by external agents, the intracellular temperature changes can reach  
520 measurable limits, as we show in Figure 11. We plot the steady-state temperature changes ( $\Delta T_{int}$   
521 and  $\Delta T_{ext}$ ) in an isolated cell in a petri dish setting, for a range of uniform volumetric heat release  
522  $Q$  inside the cell. Typically, any physiological heat release rate is  $< 100$  nW [28], [41], [42], [62]  
523 as marked in Figure 11. To increase the expected temperatures to measurable limits  
524 (conservatively, 0.1 K), the intracellular heat release needs to be stimulated exogenously to  $> 10$   
525  $\mu$ W. Stimulated mitochondrial proton uncoupling [9] is one such example, where the heat release  
526 is stimulated by an external proton uncoupler. Other examples of exogenous heating include laser  
527 [65], resonating magnetic nanoparticles [36], norepinephrine [64], etc. Only when the intracellular  
528 heat release is stimulated, intracellular thermometry techniques can provide useful and measurable  
529 physiological information on the stimulated biochemical reaction. Therefore, intracellular  
530 temperature probes can be useful for steady-state and transient measurements *in vitro*, especially  
531 if the intracellular heat release is stimulated exogenously.

532 On the other hand, extracellular thermometry can be useful for probing endogenously  
533 thermogenic reactions at tissue length-scales. The steady-state temperature changes increase with  
534 the length-scale and reach up to a few K at  $l_e \sim 10$  mm, as evident from Figure 6. At such length-  
535 scales ( $l_e > 10$  mm), the extracellular probe can directly measure thermogenesis-induced  
536 temperature changes. Further, there is little benefit to using intracellular probes at larger length-  
537 scales ( $> 1$  mm) as evident from Figure 8a. Therefore, extracellular temperature probes can provide  
538 useful physiological information on endogenous thermogenesis-related activities at larger length-  
539 scales such as tissues/organs that are  $> 1$  mm. This is also evident from previous studies that  
540 utilized mm-scale thermometers to study thermoregulatory neuronal circuits [4], [5], and cancer  
541 metabolism [6], [29], [70], [71].

542



543

544 Figure 11. For a single isolated cell in a typical petri dish setting, the intracellular ( $\Delta T_{int}$ , red) and  
 545 extracellular ( $\Delta T_{ext}$ , blue) temperature changes are plotted for various steady-state volumetric heat release  
 546 rates,  $Q$ . Physiologically expected heat release rates are  $\ll 100$  nW. The typical intracellular temperature  
 547 measurement limit is  $> 0.1$  K, in an *in vitro* petri dish setting.

548

549 **SUMMARY OF DISCUSSION**

550 In the discussions above, we explained how our heat diffusion model can be used to design  
 551 cellular thermometry experiments. Here, we first summarize our key recommendations, provide  
 552 relevant examples, and then address some limitations. We explored different thermometry options  
 553 and thermogenic reactions of different heat rates and times-scales to identify which technique is  
 554 optimal for a given reaction. By investigating a range of parameters such as length-scales,  
 555 timescales, and expected heat release rates, we find the following:

556 1. Intracellular thermometry is useful in a petri dish setting for *in vitro* studies, especially if  
 557 the intracellular heat release is stimulated exogenously and is transient in nature occurring  
 558 over  $< 1$  s. For instance, a previous study utilized a nanodiamond-based intracellular  
 559 thermometer and laser-induced heating to find that the early embryonic development in *C. elegans*  
 560 is determined independently by individual cells rather than cell-to-cell  
 561 communications [72]. Another study utilized a microfabricated intracellular thermometer  
 562 in *Aplysia* neurons and observed transient heating during sudden mitochondrial  
 563 depolarization by proton uncoupler BAM15 [9]. Such intracellular thermometry studies  
 564 utilizing exogenous stimulants can result in temperature changes above detection limits  
 565 and provide unprecedented insights into the subcellular metabolic pathways.

566 2. Extracellular thermometry is useful to observe physiologically relevant and endogenous  
 567 thermogenesis, especially in tissues ( $> 1$  mm length-scale). For instance, a previous study  
 568 utilized an extracellular thermistor probe to observe that the brown adipose tissue (BAT)  
 569 thermogenesis is controlled by a synergy between Leptin and thyrotropin-releasing

570 hormone in the rat's hindbrain [5]. Another study observed that the hypothalamic orexin-  
571 synthesizing neurons contribute to the intensity with which rats respond to external  
572 conditions, by measuring BAT temperatures through a thermistor [73]. Since the  
573 endogenous temperature changes in tissues [1], [2], [6] can be above the detection limits,  
574 they can provide direct insights into the metabolic pathways being probed.

575 Other non-conventional thermometry techniques such as isolating a cell in a microfluidic  
576 channel or micropipettes with multiple isothermal vacuum chambers have been previously  
577 attempted [41], [42]. Such techniques increase the resistance to heat flow, which can increase the  
578 temperature changes above detection limits even for a nominal endogenous heat release  $\sim$ 1-10 nW  
579 from one or few cells. However, under such isolated conditions, transient temperature  
580 measurements in the order of sub-seconds are yet to be developed. Overall, future bioenergetics  
581 studies can choose an appropriate thermometry technique using our guidelines discussed here, if  
582 the underlying biochemical reaction's timescale and stimulation mechanisms are known.

583 Throughout this work, we utilized a cellular heat diffusion model with a cuboidal network  
584 of resistance  $R''_s$  to capture the influence of interfacial resistances in the cellular milieu. We  
585 assumed a constant  $k_{med}$  of  $0.58 \text{ W m}^{-1} \text{ K}^{-1}$  corresponding to water ( $k_{water}$ ) and concentrated all  
586 the resistances from the proteins or organelles to be at  $R''_s$ . However, cellular heat diffusion could  
587 be from a combination of  $k_{med}$  ( $< k_{water}$ , due to a homogeneous distribution of proteins and ions  
588 or low packing density) and  $R''_s$ , where the magnitude of  $R''_s (= \sum_i R_{TIR_i})$  could be less than that  
589 used throughout this work. Similarly, the increase in thermal conductivity at large length-scales  
590 could be due to a low packing density of cells in tissues. Further, lipid bilayers and other proteins  
591 undergo phase change near room temperatures [74], [75], which may influence the local thermal  
592 resistances. Thus, the effective thermal conductivity ( $k_{eff}$ ) may likely depend not only on the  
593 length-scale but also on the temperature at which they are measured. Future intracellular  
594 thermometry studies can provide insights on the length-scale and temperature dependence of  
595 thermal properties ( $k_{eff}$  and  $R''_s$ ) by measuring the local temperature changes across a range of  
596 length-scales  $50 \text{ nm} - 100 \mu\text{m}$  using a certain heat input. Spatial distribution of the local thermal  
597 interfacial resistances can be known if spatial temperature distributions can also be measured  
598 across the cellular medium. Recent studies [59], [76] have measured the thermal properties of the  
599 lipid bilayers in cell membranes; however, measurements on cytoskeleton components such as  
600 actin, microtubules, intermediate filaments, etc. are necessary to understand the significance of  
601 their thermal interfacial resistance. Additional topographical information on the biomolecular  
602 interfaces and their interface resistance values may help to improve the heat diffusion model.  
603 Nonetheless, the cuboidal resistance network used in this work served as a generalized example to  
604 understand the influence of the interface resistances.

## 605 CONCLUSION

606 In conclusion, our work provides recommendations on choosing a thermometry technique  
607 by quantifying whether/when temperature changes are measurable under different biological  
608 conditions. A cellular heat diffusion model that incorporates the effects of dissimilar interfaces,  
609 provides the temperatures estimated in this work. We show that the commonly used effective

610 thermal conductivity parameter may fail to capture true temperature distributions in the cellular  
611 milieu. This is particularly true at sub-cellular length scales where local interfacial resistances can  
612 be in the order of  $10^{-7}$ - $10^{-6}$  K.m<sup>2</sup>W<sup>-1</sup>, which can result in an effective thermal conductivity ( $k_{eff}$ )  
613 substantially lower than those of the medium ( $k_{med}$ ) and proteins ( $k_p$ ). We captured the reduction  
614 in thermal conductivity at lower length-scales, as a test case, using a cuboidal topology for the  
615 interfacial resistance network. Our results underscore the need for future studies to measure and  
616 map the thermal interfacial resistances in the cellular medium. Further, we find that in subcellular  
617 organelles, temperature changes are expected to be less than 100 mK under physiological  
618 conditions. In contrast, at tissue scales, we find that even endogenous heat of few nanowatts per  
619 cell can produce 1-2 K overall temperature change, which is typical in cold-induced  
620 thermogenesis. Thus, extracellular probes are better suited to probing endogenous thermogenic  
621 reactions, since the temperature changes exceed detection limits at tissue length-scales. On the  
622 other hand, intracellular thermometry is better suited to probing transient thermogenic reactions  
623 since transient temperature changes are typically localized within the cell. However, such  
624 intracellular temperature changes are measurable only if the biochemical reaction is stimulated  
625 exogenously. Overall, this work provides insight into cellular heat diffusion modeling, using which  
626 we show how to choose the right thermometry technique to probe a biochemical pathway.

627

628 **Supplementary material:**

629 A supplementary material document accompanies this paper.

630

631 **Acknowledgments:**

632 We thank Dr. Jeffrey Brown, Prof. Daniel Llano, and Prof. Rhanor Gillette for their useful inputs  
633 throughout this work. Figure 1 was made in part using biorender.com. This work was supported  
634 in part by funding from the National Science Foundation through Grant No. NSF-CBET-17-  
635 06854.

636

637 **Supporting citations:**

638 References [77-83] appear in the supplementary material.

639

640 **References:**

641 [1] U. R. Acharya, E. Y. K. Ng, J.-H. Tan, and S. V. Sree, “Thermography based breast cancer  
642 detection using texture features and Support Vector Machine,” *J Med Syst*, vol. 36, no. 3,  
643 Art. no. 3, Jun. 2012, doi: 10.1007/s10916-010-9611-z.

644 [2] A. Helmy, M. Holdmann, and M. Rizkalla, “Application of thermography for non-invasive  
645 diagnosis of thyroid gland disease,” *IEEE Trans Biomed Eng*, vol. 55, no. 3, Art. no. 3,  
646 Mar. 2008, doi: 10.1109/TBME.2008.915731.

647 [3] C. Guy, F. Kaplan, J. Kopka, J. Selbig, and D. K. Hincha, “Metabolomics of temperature  
648 stress,” *Physiol Plant*, vol. 132, no. 2, Art. no. 2, Feb. 2008, doi: 10.1111/j.1399-  
649 3054.2007.00999.x.

650 [4] S. F. Morrison, C. J. Madden, and D. Tupone, “Central Neural Regulation of Brown  
651 Adipose Tissue Thermogenesis and Energy Expenditure,” *Cell Metabolism*, vol. 19, no. 5,  
652 pp. 741–756, May 2014, doi: 10.1016/j.cmet.2014.02.007.

653 [5] R. C. Rogers, M. J. Barnes, and G. E. Hermann, “Leptin ‘gates’ thermogenic action of  
654 thyrotropin-releasing hormone in the hindbrain,” *Brain Research*, vol. 1295, pp. 135–141,  
655 Oct. 2009, doi: 10.1016/j.brainres.2009.07.063.

656 [6] P. M. Gullino, R. K. Jain, and F. H. Grantham, “Temperature Gradients and Local  
657 Perfusion in a Mammary Carcinoma,” *J Natl Cancer Inst*, vol. 68, no. 3, pp. 519–533, Mar.  
658 1982, doi: 10.1093/jnci/68.3.519.

659 [7] K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama, “Intracellular  
660 temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime  
661 imaging microscopy,” *Nat Commun*, vol. 3, p. 705, Feb. 2012, doi: 10.1038/ncomms1714.

662 [8] S. Kiyonaka *et al.*, “Genetically encoded fluorescent thermosensors visualize subcellular  
663 thermoregulation in living cells,” *Nat. Methods*, vol. 10, no. 12, Art. no. 12, Dec. 2013, doi:  
664 10.1038/nmeth.2690.

665 [9] M. C. Rajagopal *et al.*, “Transient heat release during induced mitochondrial proton  
666 uncoupling,” *Communications Biology*, vol. 2, no. 1, Art. no. 1, Jul. 2019, doi:  
667 10.1038/s42003-019-0535-y.

668 [10] J. Zhou, B. del Rosal, D. Jaque, S. Uchiyama, and D. Jin, “Advances and challenges for  
669 fluorescence nanothermometry,” *Nature Methods*, vol. 17, no. 10, Art. no. 10, Oct. 2020,  
670 doi: 10.1038/s41592-020-0957-y.

671 [11] R. Tanimoto *et al.*, “Detection of Temperature Difference in Neuronal Cells,” *Scientific  
672 reports*, vol. 6, p. 22071, Mar. 2016, doi: 10.1038/srep22071.

673 [12] T. Tsuji, K. Ikado, H. Koizumi, S. Uchiyama, and K. Kajimoto, “Difference in intracellular  
674 temperature rise between matured and precursor brown adipocytes in response to uncoupler  
675 and  $\beta$ -adrenergic agonist stimuli,” *Scientific Reports*, vol. 7, no. 1, Art. no. 1, Oct. 2017,  
676 doi: 10.1038/s41598-017-12634-7.

677 [13] W. Tian *et al.*, “A high precision apparatus for intracellular thermal response at single-cell  
678 level,” *Nanotechnology*, vol. 26, no. 35, Art. no. 35, Aug. 2015, doi: 10.1088/0957-  
679 4484/26/35/355501.

680 [14] C. Wang *et al.*, “Determining intracellular temperature at single-cell level by a novel  
681 thermocouple method,” *Cell Res.*, vol. 21, no. 10, Art. no. 10, Oct. 2011, doi:  
682 10.1038/cr.2011.117.

683 [15] S. Arai, S.-C. Lee, D. Zhai, M. Suzuki, and Y. T. Chang, “A Molecular Fluorescent Probe  
684 for Targeted Visualization of Temperature at the Endoplasmic Reticulum,” *Scientific  
685 Reports*, vol. 4, no. 1, Art. no. 1, Oct. 2014, doi: 10.1038/srep06701.

686 [16] Y. Takei *et al.*, “A Nanoparticle-Based Ratiometric and Self-Calibrated Fluorescent  
687 Thermometer for Single Living Cells,” *ACS Nano*, vol. 8, no. 1, pp. 198–206, Jan. 2014,  
688 doi: 10.1021/nn405456e.

689 [17] D. Chrétien *et al.*, “Mitochondria are physiologically maintained at close to 50 °C,” *PLOS*  
690 *Biology*, vol. 16, no. 1, p. e2003992, Jan. 2018, doi: 10.1371/journal.pbio.2003992.

691 [18] G. Baffou, H. Rigneault, D. Marguet, and L. Jullien, “A critique of methods for temperature  
692 imaging in single cells,” *Nat. Methods*, vol. 11, no. 9, Art. no. 9, Sep. 2014, doi:  
693 10.1038/nmeth.3073.

694 [19] G. Baffou, H. Rigneault, D. Marguet, and L. Jullien, “Reply to: ‘Validating subcellular  
695 thermal changes revealed by fluorescent thermosensors’ and ‘The 10 5 gap issue between  
696 calculation and measurement in single-cell thermometry,’” *Nature Methods*, vol. 12, no. 9,  
697 Art. no. 9, Sep. 2015, doi: 10.1038/nmeth.3552.

698 [20] S. Kiyonaka, R. Sakaguchi, I. Hamachi, T. Morii, T. Yoshizaki, and Y. Mori, “Validating  
699 subcellular thermal changes revealed by fluorescent thermosensors,” *Nature Methods*, vol.  
700 12, no. 9, Art. no. 9, Sep. 2015, doi: 10.1038/nmeth.3548.

701 [21] M. Suzuki, V. Zeeb, S. Arai, K. Oyama, and S. Ishiwata, “The 105 gap issue between  
702 calculation and measurement in single-cell thermometry,” *Nat Methods*, vol. 12, no. 9, Art.  
703 no. 9, Sep. 2015, doi: 10.1038/nmeth.3551.

704 [22] A. D. Pickel, A. Teitelboim, E. M. Chan, N. J. Borys, P. J. Schuck, and C. Dames,  
705 “Apparent self-heating of individual upconverting nanoparticle thermometers,” *Nature  
706 Communications*, vol. 9, no. 1, Art. no. 1, Nov. 2018, doi: 10.1038/s41467-018-07361-0.

707 [23] A. Vyšniauskas, M. Qurashi, N. Gallop, M. Balaz, H. L. Anderson, and M. K. Kuimova,  
708 “Unravelling the effect of temperature on viscosity-sensitive fluorescent molecular rotors,”  
709 *Chemical Science*, vol. 6, no. 10, pp. 5773–5778, 2015, doi: 10.1039/C5SC02248G.

710 [24] D. Chrétien *et al.*, “Pitfalls in Monitoring Mitochondrial Temperature Using Charged  
711 Thermosensitive Fluorophores,” *Chemosensors*, vol. 8, no. 4, Art. no. 4, Dec. 2020, doi:  
712 10.3390/chemosensors8040124.

713 [25] G. Baffou, I. Bordacchini, A. Baldi, and R. Quidant, “Simple experimental procedures to  
714 distinguish photothermal from hot-carrier processes in plasmonics,” *Light: Science &  
715 Applications*, vol. 9, no. 1, Art. no. 1, Jun. 2020, doi: 10.1038/s41377-020-00345-0.

716 [26] M. Suzuki and T. Plakhotnik, “The challenge of intracellular temperature,” *Biophys Rev*,  
717 vol. 12, no. 2, pp. 593–600, Apr. 2020, doi: 10.1007/s12551-020-00683-8.

718 [27] J. Crezee and J. J. W. Lagendijk, “Experimental verification of bioheat transfer theories:  
719 measurement of temperature profiles around large artificial vessels in perfused tissue,”  
720 *Phys. Med. Biol.*, vol. 35, no. 7, pp. 905–923, Jul. 1990, doi: 10.1088/0031-9155/35/7/007.

721 [28] D. B. Rodrigues *et al.*, “Numerical 3D modeling of heat transfer in human tissues for  
722 microwave radiometry monitoring of brown fat metabolism,” *Proc SPIE*, vol. 8584, Feb.  
723 2013, doi: 10.1117/12.2004931.

724 [29] R. K. Jain, F. H. Grantham, and P. M. Gullino, “Blood Flow and Heat Transfer in Walker  
725 256 Mammary Carcinoma,” *J Natl Cancer Inst*, vol. 62, no. 4, pp. 927–933, Apr. 1979, doi:  
726 10.1093/jnci/62.4.927.

727 [30] P. Kapitza, “The study of heat transfer in helium II,” *J. Phys. (Moscow)*, vol. 4, p. 181,  
728 1941.

729 [31] Z. Ge, D. G. Cahill, and P. V. Braun, “AuPd Metal Nanoparticles as Probes of Nanoscale  
730 Thermal Transport in Aqueous Solution,” *J. Phys. Chem. B*, vol. 108, no. 49, pp. 18870–  
731 18875, Dec. 2004, doi: 10.1021/jp048375k.

732 [32] O. M. Wilson, X. Hu, D. G. Cahill, and P. V. Braun, “Colloidal metal particles as probes of  
733 nanoscale thermal transport in fluids,” *Phys. Rev. B*, vol. 66, no. 22, p. 224301, Dec. 2002,  
734 doi: 10.1103/PhysRevB.66.224301.

735 [33] Z. Ge, D. G. Cahill, and P. V. Braun, "Thermal Conductance of Hydrophilic and  
736 Hydrophobic Interfaces," *Phys. Rev. Lett.*, vol. 96, no. 18, p. 186101, May 2006, doi:  
737 10.1103/PhysRevLett.96.186101.

738 [34] H. M. Duong, D. V. Papavassiliou, K. J. Mullen, B. L. Wardle, and S. Maruyama, "A  
739 numerical study on the effective thermal conductivity of biological fluids containing single-  
740 walled carbon nanotubes," *International Journal of Heat and Mass Transfer*, vol. 52, no.  
741 23, pp. 5591–5597, Nov. 2009, doi: 10.1016/j.ijheatmasstransfer.2009.06.016.

742 [35] K. Khosla, L. Zhan, A. Bhati, A. Carley-Clopton, M. Hagedorn, and J. Bischof,  
743 "Characterization of Laser Gold Nanowarming: A Platform for Millimeter-Scale  
744 Cryopreservation," *Langmuir*, vol. 35, no. 23, pp. 7364–7375, Jun. 2019, doi:  
745 10.1021/acs.langmuir.8b03011.

746 [36] N. Manuchehrabadi *et al.*, "Improved tissue cryopreservation using inductive heating of  
747 magnetic nanoparticles," *Science Translational Medicine*, vol. 9, no. 379, Mar. 2017, doi:  
748 10.1126/scitranslmed.aah4586.

749 [37] E. M. Knavel and C. L. Brace, "Tumor Ablation: Common Modalities and General  
750 Practices," *Tech Vasc Interv Radiol*, vol. 16, no. 4, pp. 192–200, Dec. 2013, doi:  
751 10.1053/j.tvir.2013.08.002.

752 [38] G. Poggi, N. Tosoratti, B. Montagna, and C. Picchi, "Microwave ablation of hepatocellular  
753 carcinoma," *World J Hepatol*, vol. 7, no. 25, pp. 2578–2589, Nov. 2015, doi:  
754 10.4254/wjh.v7.i25.2578.

755 [39] D. Li, J. Kang, B. J. Golas, V. W. Yeung, and D. C. Madoff, "Minimally invasive local  
756 therapies for liver cancer," *Cancer Biol Med*, vol. 11, no. 4, pp. 217–236, Dec. 2014, doi:  
757 10.7497/j.issn.2095-3941.2014.04.001.

758 [40] M. C. Rajagopal, K. V. Valavala, D. Gelda, J. Ma, and S. Sinha, "Fabrication and  
759 characterization of thermocouple probe for use in intracellular thermometry," *Sensors and  
760 Actuators A: Physical*, vol. 272, pp. 253–258, Apr. 2018, doi: 10.1016/j.sna.2018.02.004.

761 [41] S. Hong *et al.*, "Sub-nanowatt microfluidic single-cell calorimetry," *Nature  
762 Communications*, vol. 11, no. 1, Art. no. 1, Jun. 2020, doi: 10.1038/s41467-020-16697-5.

763 [42] S. Hur, R. Mittapally, S. Yadlapalli, P. Reddy, and E. Meyhofer, "Sub-nanowatt resolution  
764 direct calorimetry for probing real-time metabolic activity of individual *C. elegans* worms,"  
765 *Nature Communications*, vol. 11, no. 1, Art. no. 1, Jun. 2020, doi: 10.1038/s41467-020-  
766 16690-y.

767 [43] A. S. Verkman, "Solute and macromolecule diffusion in cellular aqueous compartments,"  
768 *Trends in Biochemical Sciences*, vol. 27, no. 1, pp. 27–33, Jan. 2002, doi: 10.1016/S0968-  
769 0004(01)02003-5.

770 [44] G. Chen, "Ballistic-Diffusive Heat-Conduction Equations," *Phys. Rev. Lett.*, vol. 86, no. 11,  
771 pp. 2297–2300, Mar. 2001, doi: 10.1103/PhysRevLett.86.2297.

772 [45] C. Chen, Z. Du, and L. Pan, "Extending the diffusion approximation to the boundary using  
773 an integrated diffusion model," *AIP Advances*, vol. 5, no. 6, p. 067115, Jun. 2015, doi:  
774 10.1063/1.4922269.

775 [46] G. Balasubramanian and I. K. Puri, "Heat conduction across a solid-solid interface:  
776 Understanding nanoscale interfacial effects on thermal resistance," *Appl. Phys. Lett.*, vol.  
777 99, no. 1, p. 013116, Jul. 2011, doi: 10.1063/1.3607477.

778 [47] B. H. Kim, A. Beskok, and T. Cagin, "Molecular dynamics simulations of thermal  
779 resistance at the liquid-solid interface," *J. Chem. Phys.*, vol. 129, no. 17, p. 174701, Nov.  
780 2008, doi: 10.1063/1.3001926.

781 [48] A. Rajabpour, R. Seif, S. Arabha, M. M. Heyhat, S. Merabia, and A. Hassanali, “Thermal  
782 transport at a nanoparticle-water interface: A molecular dynamics and continuum modeling  
783 study,” *J. Chem. Phys.*, vol. 150, no. 11, p. 114701, Mar. 2019, doi: 10.1063/1.5084234.  
784 [49] Y. Wang and P. Kebinski, “Role of wetting and nanoscale roughness on thermal  
785 conductance at liquid-solid interface,” *Appl. Phys. Lett.*, vol. 99, no. 7, p. 073112, Aug.  
786 2011, doi: 10.1063/1.3626850.  
787 [50] L. Xue, P. Kebinski, S. R. Phillpot, S. U.-S. Choi, and J. A. Eastman, “Effect of liquid  
788 layering at the liquid–solid interface on thermal transport,” *International Journal of Heat  
789 and Mass Transfer*, vol. 47, no. 19, pp. 4277–4284, Sep. 2004, doi:  
790 10.1016/j.ijheatmasstransfer.2004.05.016.  
791 [51] J.-L. BARRAT and F. CHIARUTTINI, “Kapitza resistance at the liquid–solid interface,”  
792 *Molecular Physics*, vol. 101, no. 11, pp. 1605–1610, Jun. 2003, doi:  
793 10.1080/0026897031000068578.  
794 [52] A. Lervik, F. Bresme, and S. Kjelstrup, “Heat transfer in soft nanoscale interfaces: the  
795 influence of interface curvature,” *Soft Matter*, vol. 5, no. 12, pp. 2407–2414, 2009, doi:  
796 10.1039/B817666C.  
797 [53] A. Lervik, F. Bresme, S. Kjelstrup, D. Bedeaux, and J. M. Rubi, “Heat transfer in protein –  
798 water interfaces,” *Physical Chemistry Chemical Physics*, vol. 12, no. 7, pp. 1610–1617,  
799 2010, doi: 10.1039/B918607G.  
800 [54] M. C. Rajagopal, T. Man, A. Agrawal, G. Kuntumalla, and S. Sinha, “Intrinsic thermal  
801 interfacial resistance measurement in bonded metal–polymer foils,” *Review of Scientific  
802 Instruments*, vol. 91, no. 10, p. 104901, Oct. 2020, doi: 10.1063/5.0012404.  
803 [55] S. Sotoma *et al.*, “In situ measurement of intracellular thermal conductivity using heater-  
804 thermometer hybrid diamond nanosensor,” *bioRxiv*, p. 2020.06.03.126789, Jun. 2020, doi:  
805 10.1101/2020.06.03.126789.  
806 [56] M. P. Clausen, H. Colin-York, F. Schneider, C. Eggeling, and M. Fritzsche, “Dissecting the  
807 actin cortex density and membrane-cortex distance in living cells by super-resolution  
808 microscopy,” *J. Phys. D: Appl. Phys.*, vol. 50, no. 6, p. 064002, Jan. 2017, doi:  
809 10.1088/1361-6463/aa52a1.  
810 [57] C. M. O’Connor, J. U. Adams, and J. Fairman, “Essentials of cell biology,” *Cambridge,  
811 MA: NPG Education*, vol. 1, p. 54, 2010.  
812 [58] H. C. Chang *et al.*, “Composite Structured Surfaces for Durable Dropwise Condensation,”  
813 *International Journal of Heat and Mass Transfer*, vol. 156, p. 119890, Aug. 2020, doi:  
814 10.1016/j.ijheatmasstransfer.2020.119890.  
815 [59] A. R. N. Bastos *et al.*, “Thermal Properties of Lipid Bilayers Determined Using  
816 Upconversion Nanothermometry,” *Advanced Functional Materials*, vol. 29, no. 48, p.  
817 1905474, 2019, doi: 10.1002/adfm.201905474.  
818 [60] C. E. Hagberg *et al.*, “Flow Cytometry of Mouse and Human Adipocytes for the Analysis  
819 of Browning and Cellular Heterogeneity,” *Cell Reports*, vol. 24, no. 10, pp. 2746–2756.e5,  
820 Sep. 2018, doi: 10.1016/j.celrep.2018.08.006.  
821 [61] M. C. Rajagopal *et al.*, “Materials-to-device design of hybrid metal-polymer heat exchanger  
822 tubes for low temperature waste heat recovery,” *International Journal of Heat and Mass  
823 Transfer*, vol. 143, p. 118497, Nov. 2019, doi: 10.1016/j.ijheatmasstransfer.2019.118497.  
824 [62] M. D. Johnson, J. Völker, H. V. Moeller, E. Laws, K. J. Breslauer, and P. G. Falkowski,  
825 “Universal constant for heat production in protists,” *PNAS*, vol. 106, no. 16, pp. 6696–  
826 6699, Apr. 2009, doi: 10.1073/pnas.0902005106.

827 [63] R. P. Chhabra, *CRC Handbook of Thermal Engineering*. CRC Press, 2017.

828 [64] M. K. Sato *et al.*, “Temperature Changes in Brown Adipocytes Detected with a Bimaterial  
829 Microcantilever,” *Biophysical Journal*, vol. 106, no. 11, pp. 2458–2464, Jun. 2014, doi:  
830 10.1016/j.bpj.2014.04.044.

831 [65] G. Kucsko *et al.*, “Nanometre-scale thermometry in a living cell,” *Nature*, vol. 500, no.  
832 7460, Art. no. 7460, Aug. 2013, doi: 10.1038/nature12373.

833 [66] G. Baffou *et al.*, “Photoinduced Heating of Nanoparticle Arrays,” *ACS Nano*, vol. 7, no. 8,  
834 pp. 6478–6488, Aug. 2013, doi: 10.1021/nn401924n.

835 [67] P. Lee, K. K. Y. Ho, P. Lee, J. R. Greenfield, K. K. Y. Ho, and J. R. Greenfield, “Hot fat in  
836 a cool man: infrared thermography and brown adipose tissue,” *Diabetes, Obesity and  
837 Metabolism*, vol. 13, no. 1, pp. 92–93, Jan. 2011, doi: 10.1111/j.1463-1326.2010.01318.x.

838 [68] W. D. van Marken Lichtenbelt *et al.*, “Cold-Activated Brown Adipose Tissue in Healthy  
839 Men,” *New England Journal of Medicine*, vol. 360, no. 15, pp. 1500–1508, Apr. 2009, doi:  
840 10.1056/NEJMoa0808718.

841 [69] A. D. Pickel and C. Dames, “Size and shape effects on the measured peak temperatures of  
842 nanoscale hotspots,” *Journal of Applied Physics*, vol. 128, no. 4, p. 045103, Jul. 2020, doi:  
843 10.1063/5.0012167.

844 [70] R. K. Jain, S. A. Shah, and P. L. Finney, “Continuous Noninvasive Monitoring of pH and  
845 Temperature in Rat Walker 256 Carcinoma During Normoglycemia and Hyperglycemia,” *J  
846 Natl Cancer Inst*, vol. 73, no. 2, pp. 429–436, Aug. 1984, doi: 10.1093/jnci/73.2.429.

847 [71] P. M. Gullino, P.-N. Yi, and F. H. Grantham, “Relationship Between Temperature and  
848 Blood Supply or Consumption of Oxygen and Glucose by Rat Mammary Carcinomas,” *J  
849 Natl Cancer Inst*, vol. 60, no. 4, pp. 835–847, Apr. 1978, doi: 10.1093/jnci/60.4.835.

850 [72] J. Choi *et al.*, “Probing and manipulating embryogenesis via nanoscale thermometry and  
851 temperature control,” *PNAS*, vol. 117, no. 26, pp. 14636–14641, Jun. 2020, doi:  
852 10.1073/pnas.1922730117.

853 [73] M. Mohammed, Y. Ootsuka, M. Yanagisawa, and W. Blessing, “Reduced brown adipose  
854 tissue thermogenesis during environmental interactions in transgenic rats with ataxin-3-  
855 mediated ablation of hypothalamic orexin neurons,” *American Journal of Physiology-  
856 Regulatory, Integrative and Comparative Physiology*, vol. 307, no. 8, pp. R978–R989, Aug.  
857 2014, doi: 10.1152/ajpregu.00260.2014.

858 [74] S. Youssefian, N. Rahbar, C. R. Lambert, and S. Van Dessel, “Variation of thermal  
859 conductivity of DPPC lipid bilayer membranes around the phase transition temperature,”  
860 *Journal of The Royal Society Interface*, vol. 14, no. 130, p. 20170127, May 2017, doi:  
861 10.1098/rsif.2017.0127.

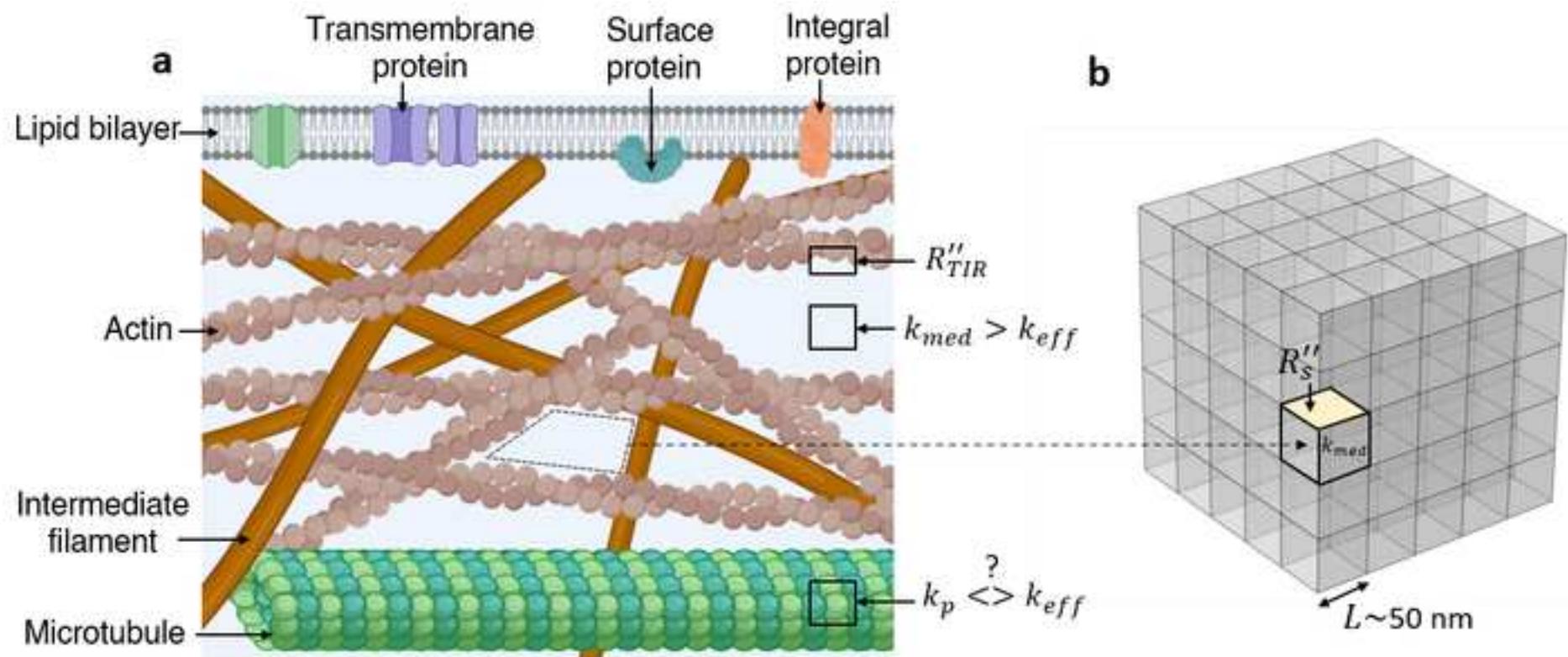
862 [75] J. A. Kenar, “The use of lipids as phase change materials for thermal energy storage,” *Lipid  
863 Technology*, vol. 26, no. 7, pp. 154–156, 2014, doi: 10.1002/lite.201400037.

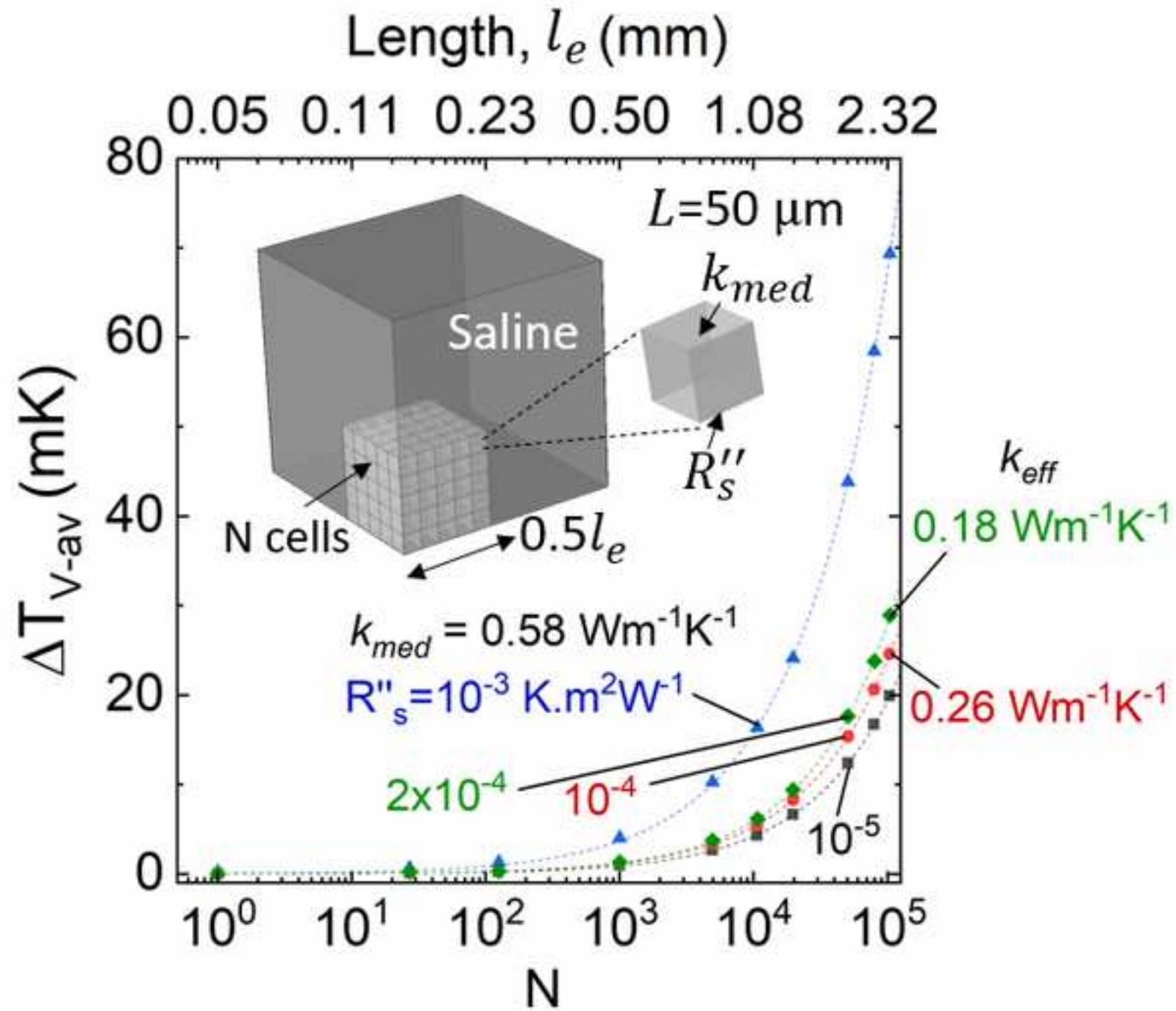
864 [76] A. R. N. Bastos *et al.*, “Thermal properties of lipid bilayers derived from the transient  
865 heating regime of upconverting nanoparticles,” *Nanoscale*, vol. 12, no. 47, pp. 24169–  
866 24176, 2020, doi: 10.1039/D0NR06989B.

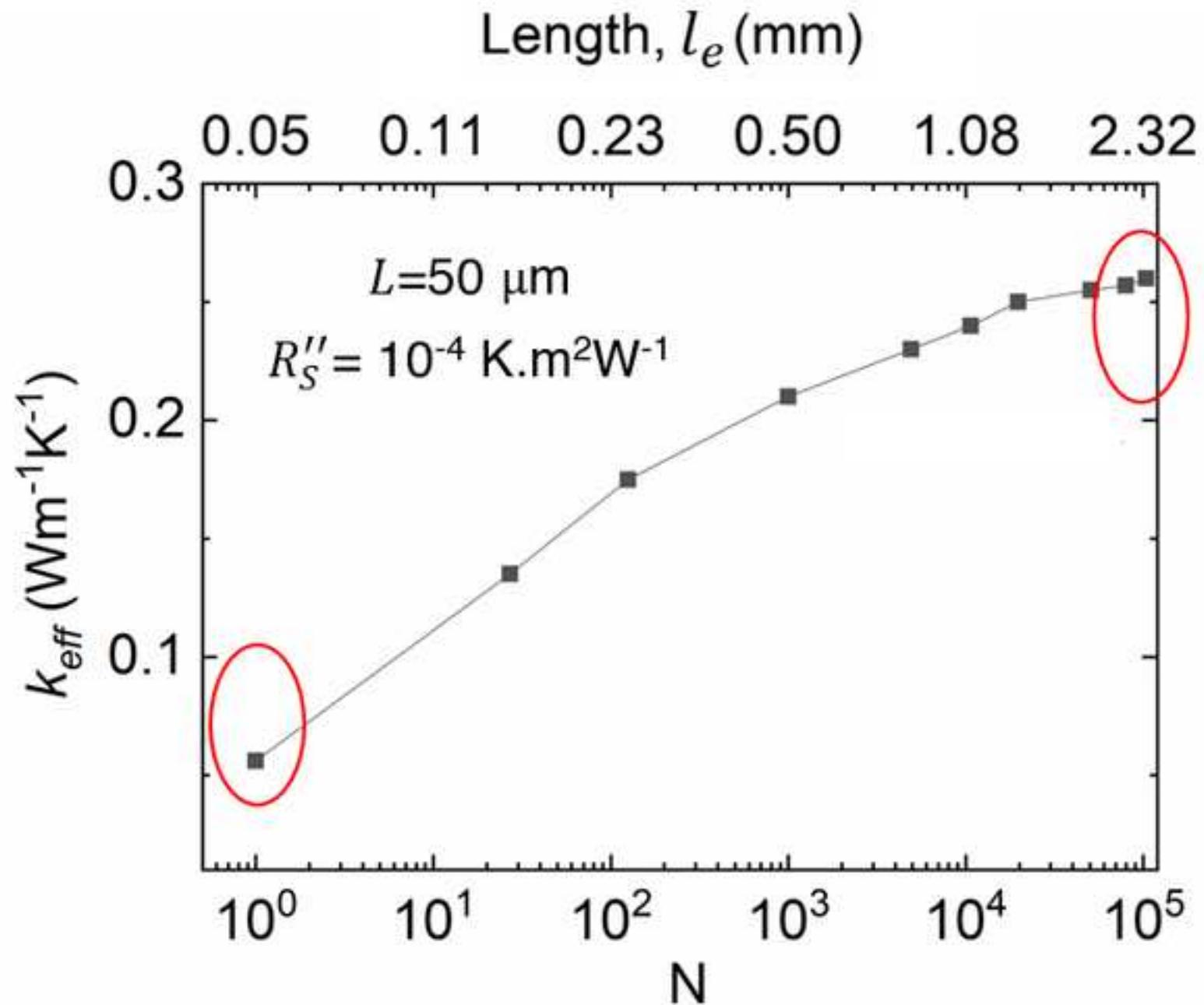
867 [77] T. A. Balasubramaniam and H. F. Bowman, “Temperature Field Due to a Time  
868 Dependent Heat Source of Spherical Geometry in an Infinite Medium,” *J. Heat Transfer*, vol. 96,  
869 no. 3, pp. 296–299, Aug. 1974, doi: 10.1115/1.3450195.

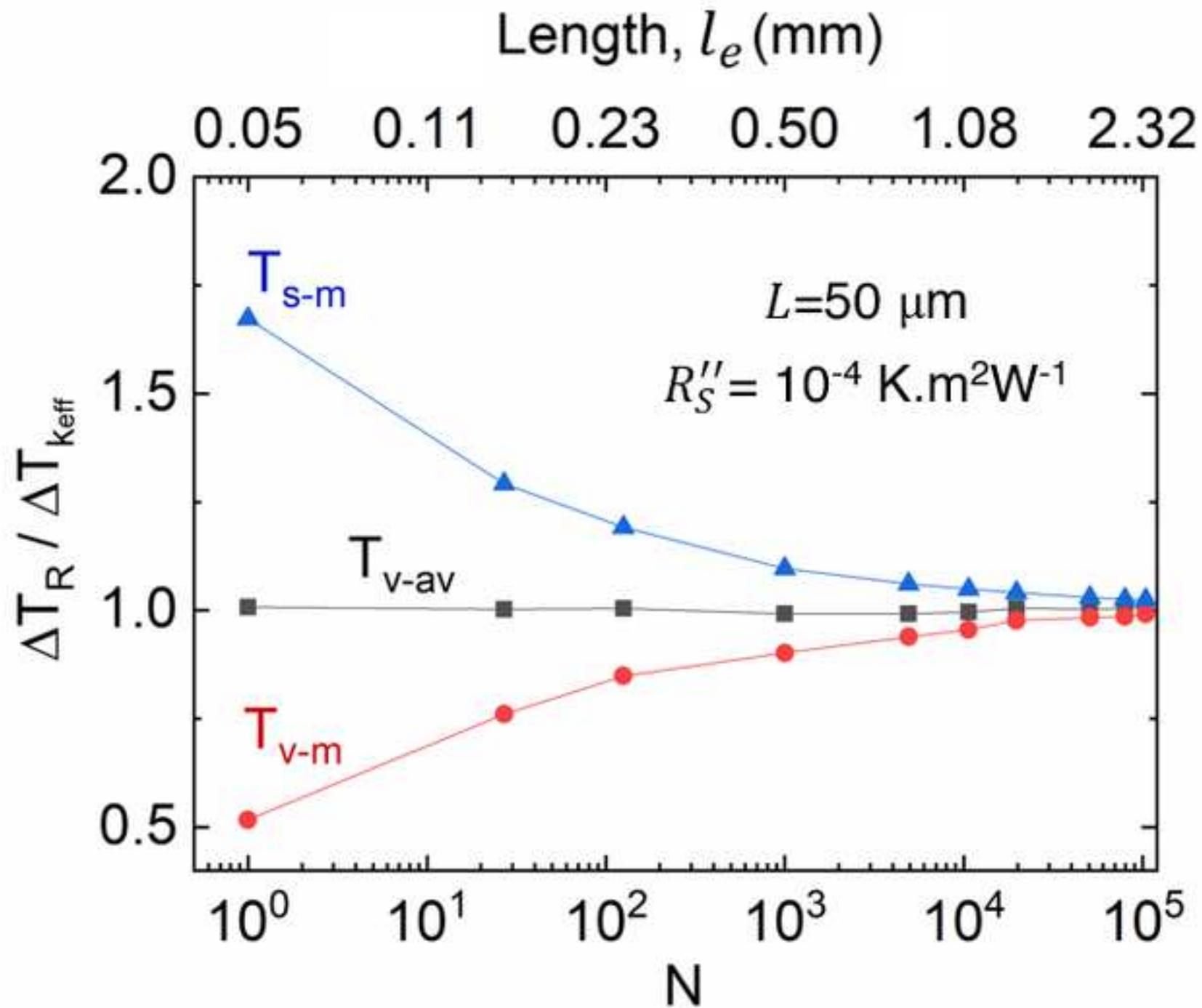
870 [78] R. T. ElAfandy *et al.*, “Nanomembrane-Based, Thermal-Transport Biosensor for Living  
871 Cells,” *Small*, vol. 13, no. 7, Art. no. 7, 2017, doi: 10.1002/smll.201603080.

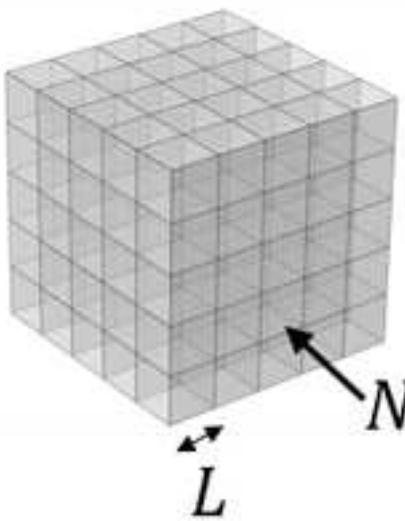
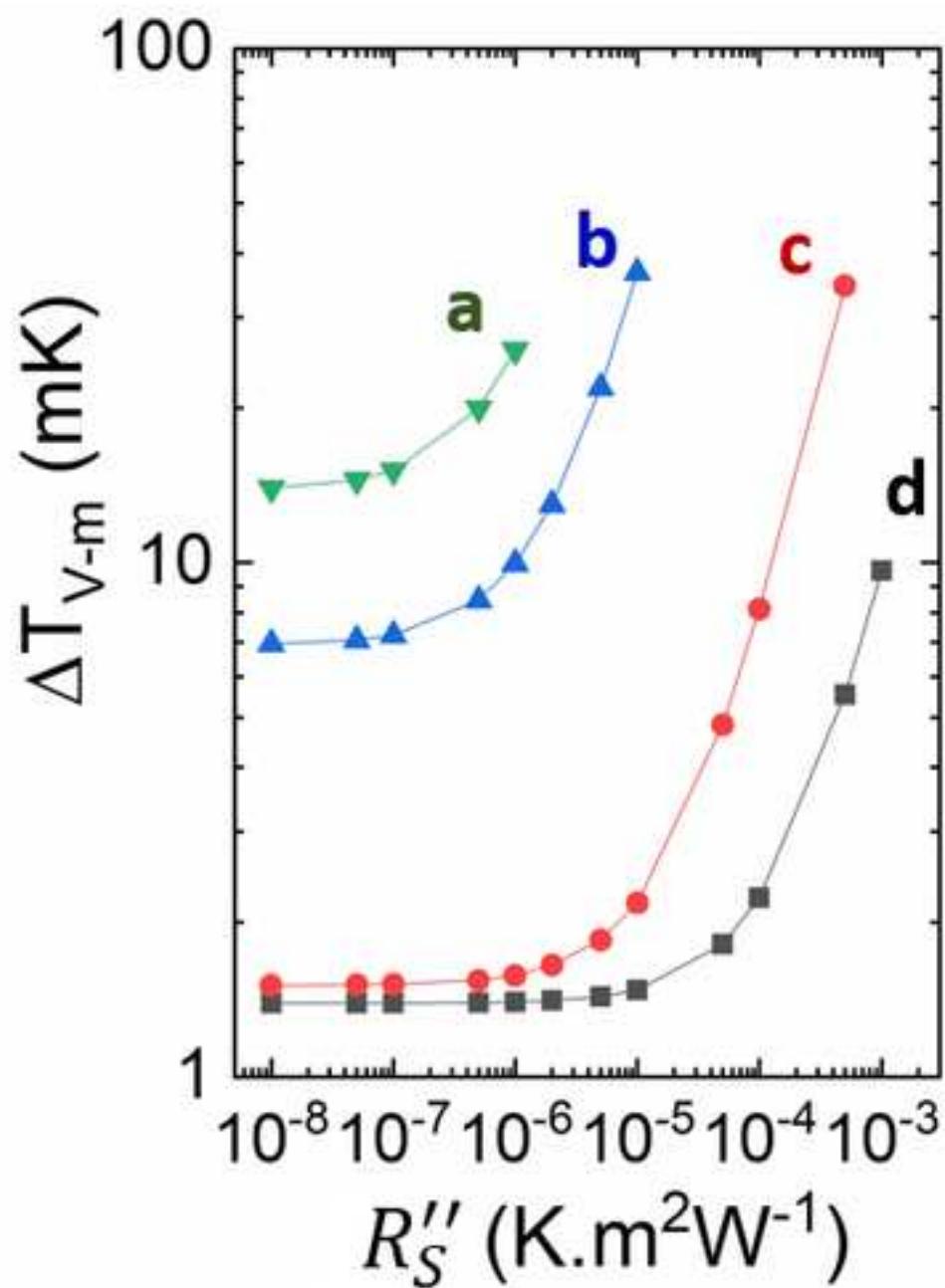
872 [79] M. H. Sharqawy, J. H. L. V, and S. M. Zubair, “Thermophysical properties of seawater: a  
873 review of existing correlations and data,” *Desalination and Water Treatment*, vol. 16, no. 1–3,  
874 pp. 354–380, Apr. 2010, doi: 10.5004/dwt.2010.1079.


875 [80] K. Arunachalam, P. F. Maccarini, O. I. Craciunescu, J. L. Schlorff, and P. R. Stauffer,  
876 “Thermal characteristics of thermobrachytherapy surface applicators for treating chest wall  
877 recurrence,” *Phys. Med. Biol.*, vol. 55, no. 7, pp. 1949–1969, Mar. 2010, doi: 10.1088/0031-  
878 9155/55/7/011.

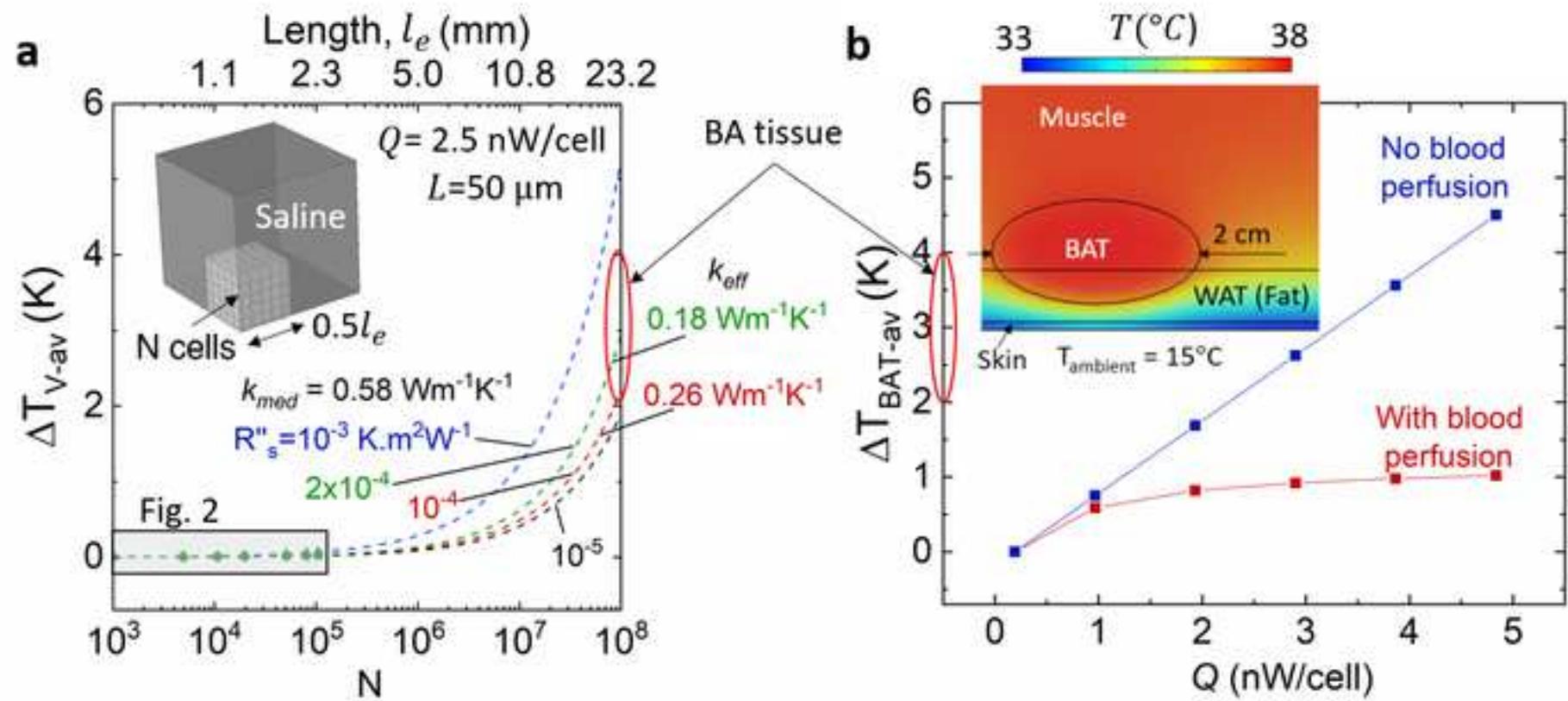

879 [81] K. A. Virtanen *et al.*, “Functional Brown Adipose Tissue in Healthy Adults,”  
880 <http://dx.doi.org/10.1056/NEJMoa0808949>, Dec. 2009, doi: 10.1056/NEJMoa0808949.


881 [82] A. M. Cypess *et al.*, “Identification and Importance of Brown Adipose Tissue in Adult  
882 Humans,” <http://dx.doi.org/10.1056/NEJMoa0810780>, Dec. 2009, doi:  
883 10.1056/NEJMoa0810780.


884 [83] V. Vuksanović, L. W. Sheppard, and A. Stefanovska, “Nonlinear Relationship between  
885 Level of Blood Flow and Skin Temperature for Different Dynamics of Temperature Change,”  
886 *Biophysical Journal*, vol. 94, no. 10, pp. L78–L80, May 2008, doi:  
887 10.1529/biophysj.107.127860.



888

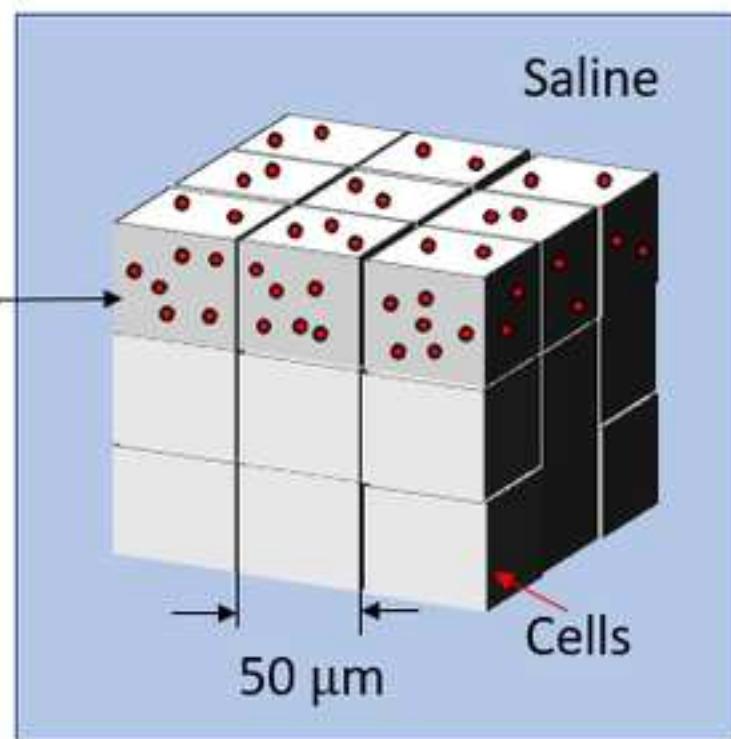












- a:**  $N=10000, L=50$  nm,  $Q=1$  pW
- b:**  $N=10000, L=100$  nm,  $Q=1$  pW
- c:**  $N=1000, L=1$   $\mu$ m,  $Q=10$  pW
- d:**  $N=10, L=10$   $\mu$ m,  $Q=1$  nW



**a**

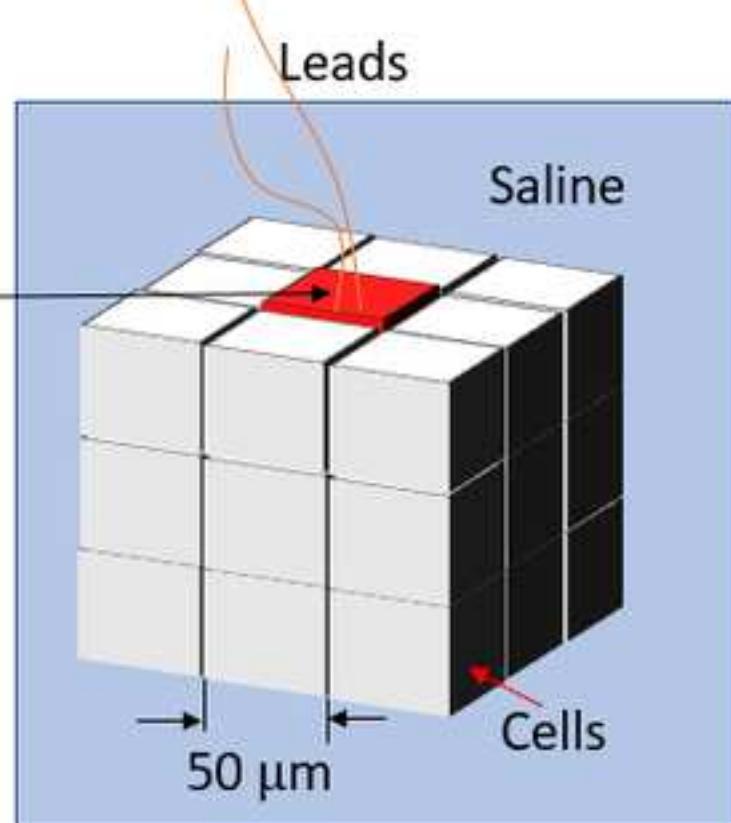
Intracellular probes  
(say, nanoparticles  
or molecular)

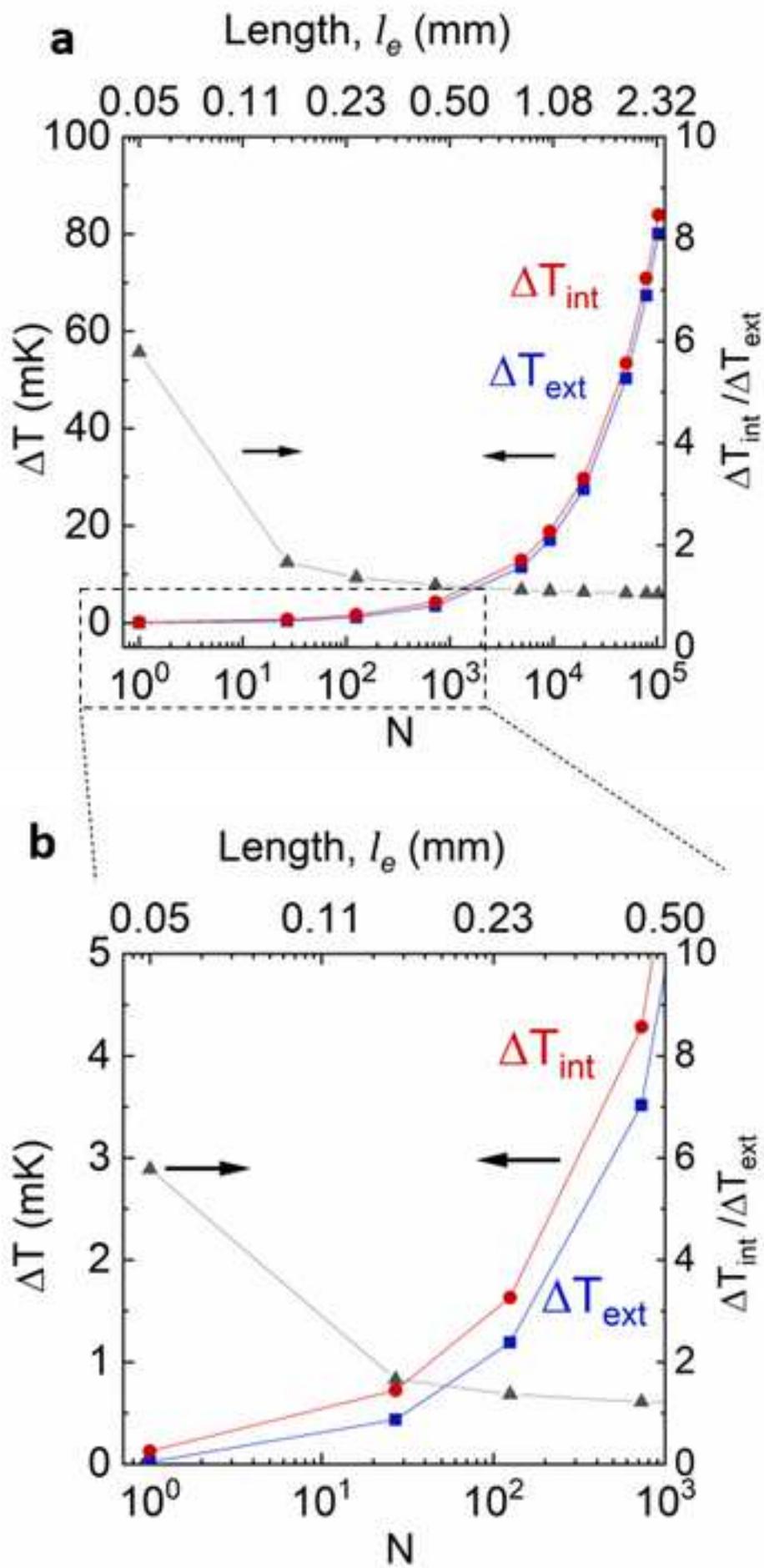
$\Delta T_{int}$   
(maximum  $\Delta T$ )

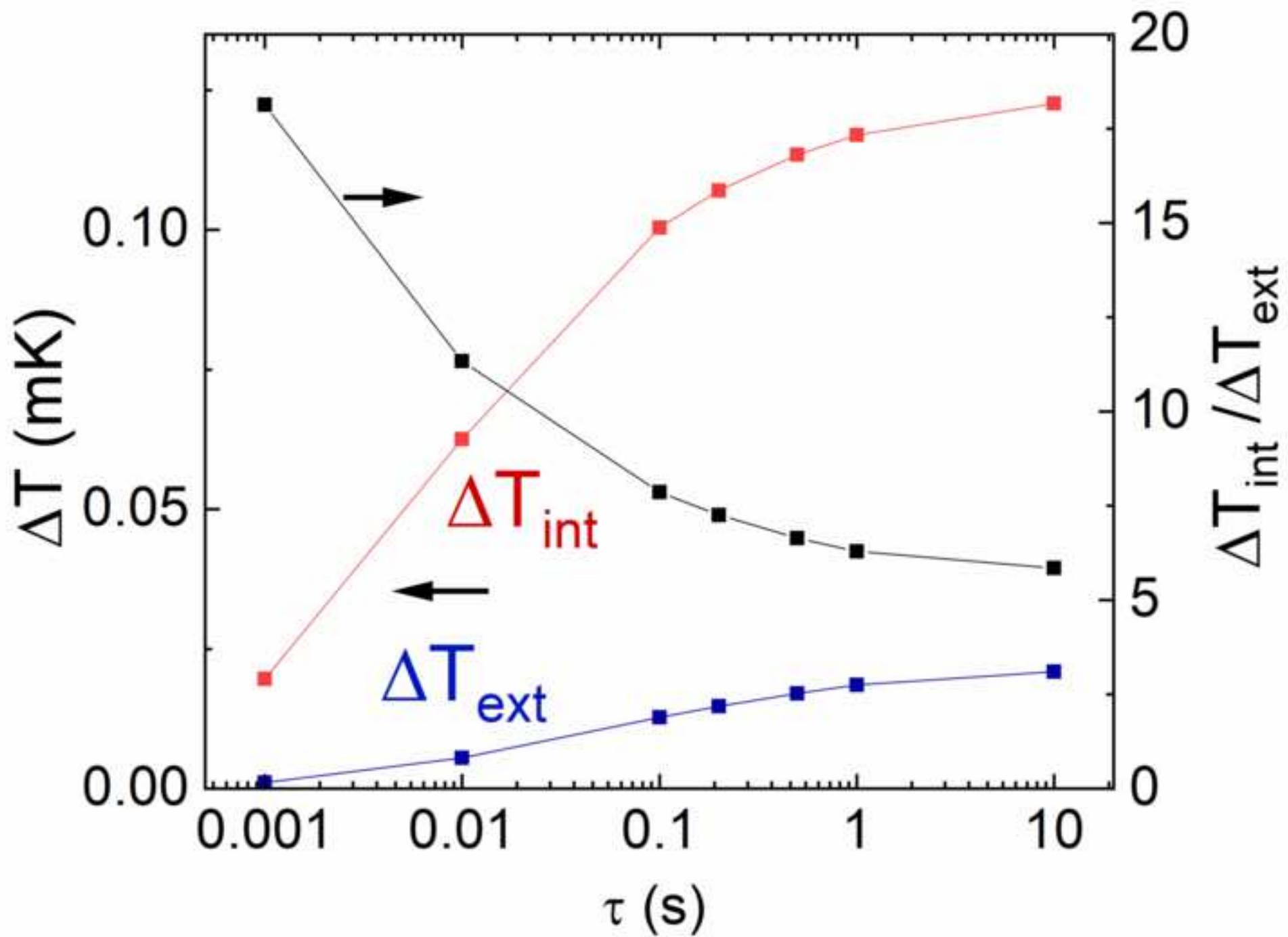
**b**

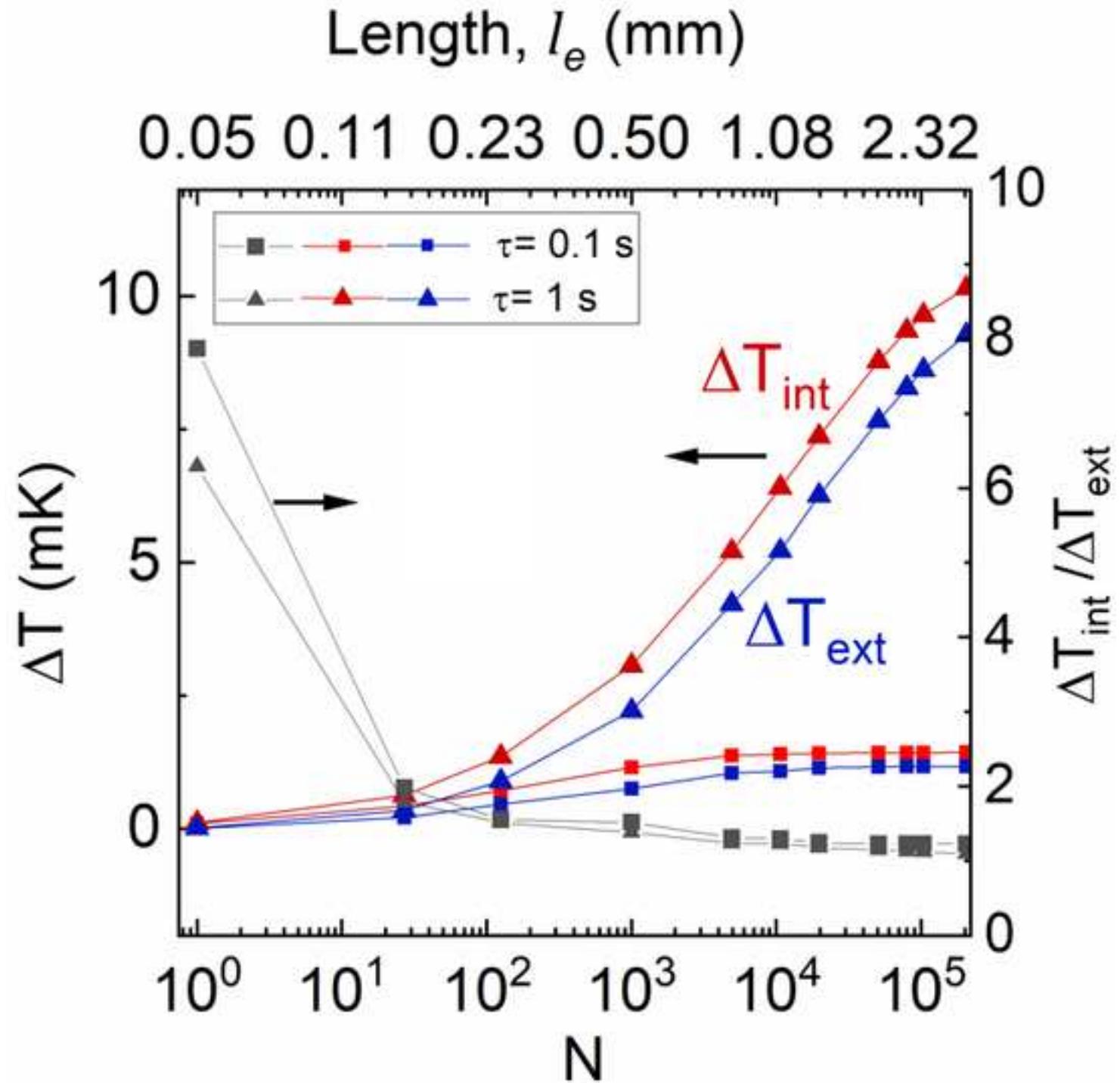
Extracellular probe  
(say, RTD or  
thermocouple)

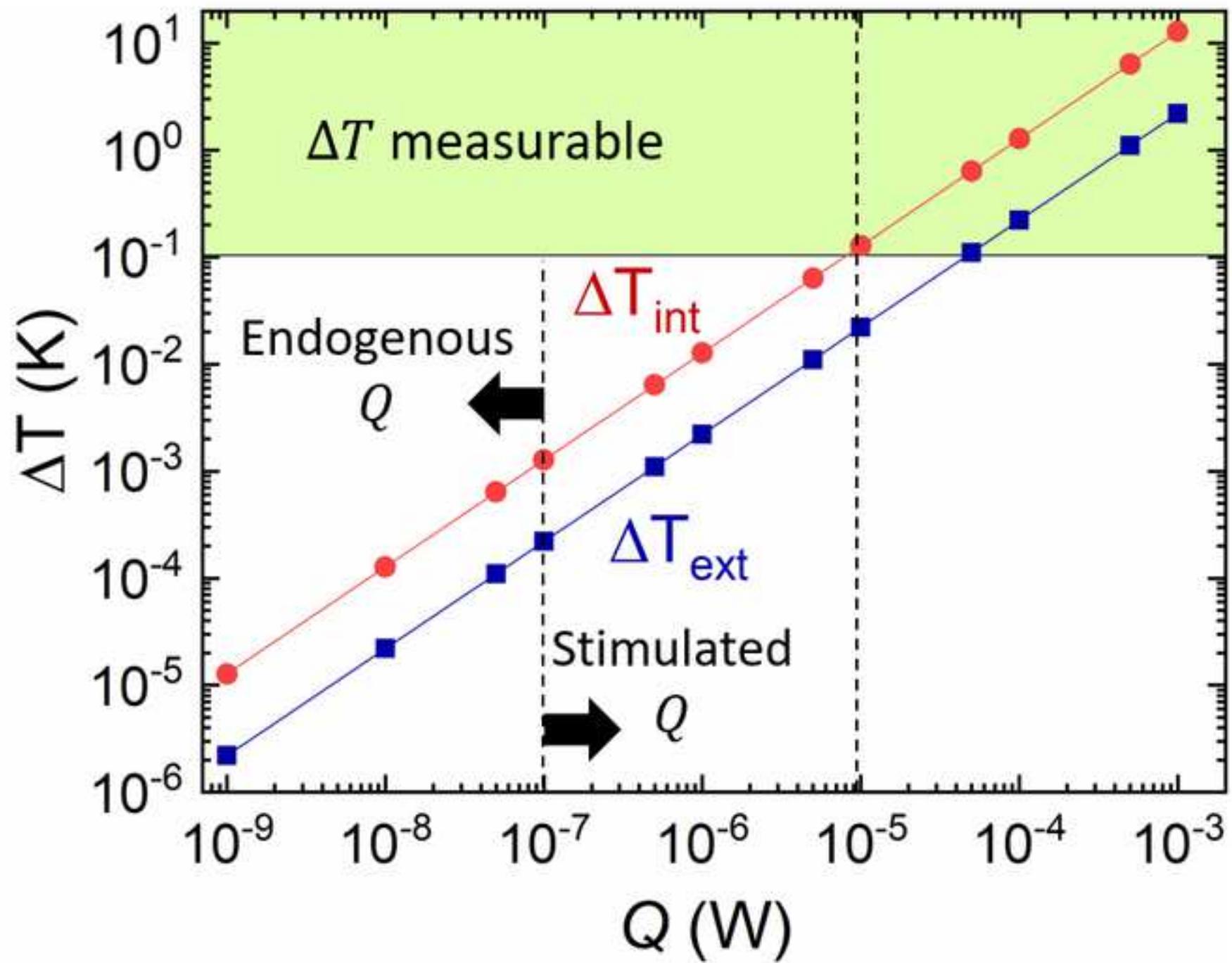
$\Delta T_{ext}$   
(average  $\Delta T$ )


50×50×50  $\mu\text{m}^3$


Leads


Saline


Cells


50  $\mu\text{m}$













Click here to access/download  
**Supplemental Information**  
SupplementaryMaterial.pdf