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Since the average treatment effect (ATE) measures the change in social welfare, even if positive, there is a risk of negative effect on,
say, some 10% of the population. Assessing such risk is difficult, however, because any one individual treatment effect (ITE) is never
observed so the 10% worst-affected cannot be identified, while distributional treatment effects only compare the first deciles within
each treatment group, which does not correspond to any 10%-subpopulation. In this paper we consider how to nonetheless assess this
important risk measure, formalized as the conditional value at risk (CVaR) of the ITE-distribution. We leverage the availability of
pre-treatment covariates and characterize the tightest-possible upper and lower bounds on ITE-CVaR given by the covariate-conditional
average treatment effect (CATE) function. We then proceed to study how to estimate these bounds efficiently from data and construct
confidence intervals. This is challenging even in randomized experiments as it requires understanding the distribution of the unknown
CATE function, which can be very complex if we use rich covariates so as to best control for heterogeneity. We develop a debiasing
method that overcomes this and prove it enjoys favorable statistical properties even when CATE and other nuisances are estimated by
black-box machine learning or even inconsistently. Studying a hypothetical change to French job-search counseling services, our

bounds and inference demonstrate a small social benefit entails a negative impact on a substantial subpopulation.
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1 INTRODUCTION

Policymakers and project managers regularly conduct randomized experiments (“A/B tests”) to assess potential changes
to policy or product. A key metric is the average treatment effect (ATE), the difference in the population-average
outcome when everyone or no one is treated. ATEs are easily estimated by differences in the sample-average outcome
within treatment groups, barring interference. Estimation from observational data is also possible under appropriate
assumptions, e.g., unconfoundedness [27]. Identifying an individual’s outcome with their utility - as we will throughout
this paper - the ATE is the difference in social welfare in these two counterfactual scenarios. By linearity, this
coincides with the population-average of each individual’s treatment effect, the difference in their own utility in the
two counterfactual scenarios.

It is widely recognized, however, that treatment effects can vary widely between individuals [15, 25]. Thus, even if
the ATE is positive, there is a risk that many individuals are harmed by the proposed change. Crucially, distributional
treatment effects (DTEs), which compare the two counterfactual utility distributions beyond their means, cannot capture
this risk. Indeed, Imbens and Wooldridge [28] note “quantile effects are defined as differences between quantiles of the
two marginal potential outcome distributions, and not as quantiles of the unit level effect” They nonetheless advocate

for the former because policy “choice should be governed by preferences of the policymaker over these distributions”
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However, such rational-decision-making framing presumes a policymaker facing a choice between lotteries drawing
at random from individual outcomes. Instead, concerned with equity beyond social welfare, we should worry about
the individuals, not the policymaker. Hypothetically, harm to some individuals is possible even when the “treat-all”
utility distribution first-order-dominates “treat-none” so that any expected-increasing-utility-function-maximizer would
choose “treat-all”

One way to gain further insight into heterogeneity and hence inequities is to consider conditional ATEs (CATEs)
given pre-treatment covariates. For example, if we observe a discrete sensitive attribute (e.g., race), we can simply
compare the CATE in each attribute-value group.! But it may not always be clear what are relevant such attributes
and whether we are omitting important ones. Given rich and continuous covariates, we can still reliably learn the
CATE function by leveraging recent advances in causal machine learning [4, 26, 38, 42, 45, 56]. It may still not be clear,
nonetheless, whether the covariates are relevant for fairness considerations, what groups are captured in this way,
and/or how to summarize the many individual predictions of complex machine-learned CATEs.

It is therefore particularly appealing to focus directly on the distribution of individual treatment effects (ITEs), such
as the average effects among the worst-affected 10%, 20%, etc., corresponding to the conditional value at risk (CVaR) of
this distribution. The challenge is that no ITE can ever be observed - the so-called Fundamental Problem of Causal
Inference. Nonetheless, regardless of whether covariates are meaningful for fairness considerations, if they control for
heterogeneity, CATE may predict ITE well. In this paper, we leverage this to proxy these important but unidentifiable
treatment-effect risk measures. Specifically, we provide the tightest-possible upper and lower bounds given by CATE
on the CVaR of ITE. By construction these are functions of distributions of observables. What remains is inference from
data, whether experimental or observational. Since the CATE function can be high-dimensional, especially if we use a
lot of covariates to control for heterogeneity, inference is difficult and naive plug-in approaches fail. We design debiased
estimators and confidence intervals for our bounds that overcome this challenge by being exceedingly robust: given
rough, machine-learned estimates of CATE and other nuisances, they behave as though we used perfect estimates;
they remain consistent even when some nuisances are mis-estimated; and surprisingly they remain valid as bounds
even when CATE is mis-estimated. We conclude by using our tools to illustrate treatment-effect risk in a case study of

job-search-assistance benefits.

2 PROBLEM SET UP AND DEFINITIONS

Each individual in the population is associated with two potential outcomes, Y*(0), Y*(1) € R, corresponding to
individual utility under “treat-all” and “treat-none,” respectively, and baseline covariates (observable characteristics),
X € X. The ITE, ATE, and CATE are, respectively,

§=Y"(1) - Y*(0), T=E[Y"(1)] - E[Y"(0)] =ES = Er(X)
(X)) =E[§ | X] = p(X,1) — p(X,0), where u(X,a) =E[Y"(a) | X].
We assume E§? < co throughout.

Of interest is the average effect among the (100 X )%-worst affected, formalized by CVaR(5), where for any Z
[497

CVaRy(Z) = sup (ﬁ + lE(Z - ﬂ)_) , (1)
B [24

!We may still make some inferences on these even if we do not observe such attributes; see [11, 33].
2CVaR is sometimes defined for the right tail, corresponding to our — CVaR, (~Z2).
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where (1) = u A 0. The sup is attained by f equal the a-quantile:
Fgl(a) =inf{f: Fz(f) > a}, where Fz(z) =P (Z < 2z). (2)

Provided FZ(F;(O()) = « (e.g., Z continuous), then CVaR,(Z) = E [Z | Z < Fgl(a)]. Otherwise, CVaR,(Z) €
[E [Z | Z < Fél(oc)] ,E [Z | Z < Fgl (a)]], and, unlike these two endpoints, CVaR (Z) is continuous in @ and coherent
[2]. It is therefore the correct generalization of “average of the (100 X a)%-lowest values” when ambiguous due to
discontinuities.

We consider data from a randomized experiment or observational study. Each individual is associated with a treatment
A € {0,1}, and we observe the factual outcome Y = Y*(A) (never Y*(1 — A)). The data is (X;,A;,Yi) ~ (X,AY),
1 < i < n. We assume unconfoundedness throughout: Y*(a) 1L A | X.3 Randomized experiments (our focus) ensure this
by design (often with X 1L A). Our results nonetheless extend to observational settings assuming unconfoundedness.
Under unconfoundedness, ATE and CATE are identifiable, i.e., are functions of the (X, A, Y)-distribution: u(X, a) = E[Y |
X,A=al,7(X) = p(X,1) — u(X,0), T =Er(X) =E[Y | A=1] —E[Y | A= 0] if X L A). Define also the propensity
score e(X) =P (A =1 | X) and marginal-outcome regression i(X) = E[Y | X] = e(X)p(X, 1) + (1 — e(X))u(X, 0).

We now illustrate treatment-effect risk and its unidentifiability, which motivates us to consider the tightest-possible

identifiable bounds (Section 3) and inference thereon (Section 4).

Example 2.1 (Simple Example). Suppose

Y*(0) .U(O) 1 p
(Y*(l)) h N((,u(l))’ (P l))’ u(1) = p(0), p e [-1,1].

If 7 = p(1) — p(0) > 0, the Y*(1)-distribution first-order-dominates Y*(0). If (1) = u(0), the distributions are indistin-
guishable. However, the ITE-distribution depends on p: § ~ N (u(1) — p(0), /2 = 2p), CVaRg 1(8) = T — 1.75+/2 = 2p.
The unidentifiability of CVaRg 1 () follows because the (A, Y)-distribution is fixed given just p(0), z(1), P (A = 1) while
CVaRy 1 () varies with p.

Remark 1 (Covariate-conditional policies). Treat (i.e., rollout to) all or none is often the choice faced by project
managers, but given covariates we can learn covariate-conditional treatment policies [5, 31, 36, 40, 46, 57]. Learning
aside, treating only when 7(X) > 0 ensures all covariate-defined groups have nonnegative group-average effects.*
Personalizing on all available covariates is however generally infeasible due to operational, non-stationarity, and/or
ethical/reputational concerns. Nonetheless, given any policy 7 : X — {0, 1}, we may simply redefine ITE as Y (7(X)) —
Y(0) and our results still apply. This is especially relevant when 7 personalizes on some covariates and the rest explain

heterogeneity conditionally thereon.

Remark 2 (Risk of observed vs unobserved variables). CVaR is an example of coherent risk measures [2], which are
used to assess distributions beyond expectations and are equivalent to distributionally-robust worst-case expectations
[51]. For example, CVaR is the worst-case expectation among distributions with Radon-Nikodym derivative to the given
distribution bounded by 1/a. Other distributional divergences can also define ambiguity sets [e.g., 9, 10, 20]. Alternative
approaches limit the complexity of subpopulations [37, 43]. In both finance [41], distributionally-robust supervised
learning [6], demographics-free fair learning [43], and CVaR-DTEs [32], the variable whose risk is of interest is always

observed. E.g., model loss on each training example is observed. In contrast, we consider risk of an unobserved variable,

3And Y = Y*(A) assumes non-interference [50].
4However, even this ideal can induce disparate impacts [35].
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hence we study bounds in Section 3. For inference, we are uniquely concerned with risk of an unknown function, hence

we develop learning-robust methods in Section 4.

3 BOUNDS
3.1 Upper Bound: The CATE-CVaR

An upper bound on CVaR () is crucial: if negative or substantially below ATE, the change poses certifiable risk or
inequity to an (100 X ) %-subpopulation.

TaEOREM 3.1 (UPPER BOoUND BY CATE-CVAR).
CVaR,(§) < CVaRy (7(X)). (3)

Moreover, given any X-distribution and integrable r : X — R, some (X, §)-distribution has the given X-marginal,

7(X) = E[6 | X], and Eq. (3) holding with equality.

Since 7(X) represents our best guess for § (in squared error), imputing the unknown § with 7(X) seems reasonable.
Theorem 3.1 shows this in fact provides an upper bound.® If 7(X) is continuous, CVaR4 (7(X)) = E[§ | 7(X) < F;(lx) ()],
and Eq. (3) is intuitive: CVaR, () is worst average effect among all (100 X ) %-subpopulations, while CVaR, (7(X))
only among X-defined subpopulations. This bound is also tight: given just 7(X), it cannot be improved.®

Theorem 3.1 implies an ordering:

CVaRg, (8) < CVaRy, (8) < CVaRy, (7(X)) < CVaRy, (7(X)) <7V0<a; <az < a3 < 1. (4)

Remark 3 (CVaR as summary of CATE). Aside from being a bound, CVaR, (7(X)) is of independent interest as a
summary of effect heterogeneity along meaningful covariates X of explicit equity concern. When X is more than a
few discrete groups, understanding the many facets of estimated heterogeneity is challenging, both interpretationally
and statistically. We could test for X-heterogeneity [15, 16, 22, 52].7 E.g., omnibus test Hp : 0 € argmin, E(z(X) -7 —
v T (X —EX))? [13]. This, however, may detect minor heterogeneity in small subpopulations, may not assess magnitude
or direction, and may be inappropriate if we expect heterogeneity. In contrast, CVaR, (7(X)) is a simple, meaningful

summary of 7(X). Inference, however, is a challenge. We tackle this in Section 4.

Remark 4 (Who is negatively affected?). Suppose we find CVaR, (7(X)) < 0 while 7 > 0, where « is “substantial” —
the social-welfare benefit of the proposal is borne by some substantial negatively-impacted subpopulation. While that
may already cool enthusiasm for the proposal, we may wonder who are the harmed individuals, e.g., to help design a
new, better treatment.

Assuming continuity, CVaR, (7(X)) is the ATE among individuals with 7(X) < Fr_(lx) (@) - an identifiable group. A
question is interpretation. This is easy if 7(X) is linear or tree (or estimated using such models, which still gives a bound
per Theorem 4.5). We can also consider summaries of this group, e.g., fraction belonging to sensitive groups, or learn
simpler models to explain membership [44, 47]. Alternatively, given we detect substantial inequities, we can separately

investigate which variables negatively modulate treatment effect by, e.g., studying argmin, E(r(X) -7 —yTX)? [13, 38].

SEquation (3) extends to any coherent risk by writing § = 7(X) + (8 — 7(X)) and using sub-additivity.

The bound need not be tight given the (X, A, Y)-distribution, which characterizes more than the mean of the (8§ | X)-distribution, as described by the
Fréchet-Hoeffding bounds. We focus on best bounds given just by CATE, which is the common tool to understand effect heterogeneity in practice.
"There are also tests for heterogeneity not explained by X [17, 18]. These, like us, leverage bounds on unidentifiable quantities.

4
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3.2 Lower Bounds under Limited Residual Heterogeneity Range

Much as we try to best control for heterogeneity, disparate effect-predictiveness of covariates may mean some negative
ITEs are averaged out and hidden while others are singled out. A remedy when concerned about disproportionate
predictiveness among sensitive groups (e.g., race) would be to include these (or proxies) within X. But, we may always
worry about missing something. A lower bound can provide assurances about what the upper bound may be missing.

This depends on how much residual heterogeneity remains. Our first set of lower bounds limit the range of residual
heterogeneity, i.e., almost-sure bounds on § — 7(X), while our second set of lower bounds limit its variance, i.e., bounds
on Var(8 | X) = E(§ — 7(X))?%.

THEOREM 3.2. Suppose |t(X) — 8| < b. Then
CVaR,(8) = sup [+ —E[(z(X) — b - )_] + —E[(z(X) +b - f)_1). (5)
ﬁ 20{ 20{

Moreover, given any X-distribution and integrable r : X — R, some (X, 8)-distribution has the given X-marginal,
7(X) =E[§ | X], |7(X) — 8| < b, and Eq. (5) holding with equality.

The right-hand side of Eq. (5) is the a-CVaR of the equal-mixture distribution of 7(X) — b and 7(X) + b. It reduces
to CVaR,(7(X)) when b = 0 (equivalent to § = 7(X)). When a = 1, it becomes 7 for any b > 0 (as necessary for
tightness). The lower bound is established via weak semi-infinite duality and its tightness by exhibiting the equal-mixture
distribution.

Since (7(X) £ b — f)- = (z(X) — f)- — b, Eq. (5) upper bounds CVaR (7(X)) — b. This simpler bound is tight if we

only assume a one-sided-bounded range.

THEOREM 3.3. Suppose 7(X) — 8 < b. Then

CVaRy(8) = CVaRgy (7(X)) — b. (6)

Moreover, for a < 1, given any ¢ > 0, X-distribution, and integrable t : X — R, some (X, §)-distribution has the given
X-marginal, ©(X) = E[d | X], 7(X) — § < b, and Eq. (6) holding with equality up to e-error.

The lower bound is immediate and its tightness given by exhibiting a skewed two-point-mass distribution. For a = 1,
Eq. (6) simply reads 7 > 7 — b, but for any a < 1, Eq. (6) is actually tight.
3.3 Lower Bounds under Limited Residual Heterogeneity Variance

Limiting residual heterogeneity within a range may be implausible, or plausible only with large constants, yielding a
weak bound. We next explore the implication of the residual ITE-variance after controlling for X, which we can bound

given observables.

THEOREM 3.4. Suppose Var(§ | X) < 52(X) for some integrable 5° : X — R,. Then

CVaRy(8) > sup (ﬁ + %E [T(X) -B- \/(T(X) - B)2 + 52 (X)}) . (7)
B

Moreover, given any & > 0, X -distribution, and integrable T : X — R, some (X, §)-distribution has the given X-marginal,
7(X) = B[S | X], Var(§ | X) < 6%(X), and Eq. (7) holding with equality up to e-error.

The proof of Theorem 3.4 leverages strong duality for convex semi-infinite optimization. Note Eq. (7) equals
CVaR, (7(X)) whenever 2(X) = 0 and 7 whenever a = 1. Since |§ — 7(X)| < b = Var(§ | X) < b?, plugging
5
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5%(X) = b? into Eq. (7) must be looser than Eq. (5) by tightness. Triangle inequality verifies this directly: 3, (t(X) +
b=p)-=1(X) =~ 5 2u1t(X) £b~ | = 2(X) = f = V(z(X) - p)? + b2

A residual-variance bound is both more plausible and easier to calibrate than an absolute bound. Letting p(X) =
Corr(Y(0),Y(1) | X) € [-1, 1], we have

Var(§ | X) = Var(Y | X,A=0) + Var(Y | X,A=1) - 2p(X) Var'/2(Y | X, A= 0) Var'/2(Y | X,A=1),  (8)

where all terms but p(X) are identifiable. Thus, postulating different potential-outcome correlations, we obtain different
bounds. Equation (8) is maximized for p(X) = —1, which is tight, as all correlations are realizable. Thus, plugging
52(X) = (Var'/2(Y | X, A = 0) + Var'/2(Y | X, A = 1))? into Eq. (7) yields a tight lower bound on ITE-CVaR, given
conditional expectations and variances. We may obtain better bounds if we postulate larger p(X).

Theorem 3.4 also implies a simpler but looser bound.

COROLLARY 3.5.

0 < CVaRy (7(X))— CVaRy () < %E [Var1/2(5 | X)] 9)
< %E [Varl/z(Y|X,A=O)+Var1/2(Y|X,A=1)] (10)
< i\/E [(Y - p(X. A))2 | A=0] + i\/E [(Y - p(X, A))2 | A=1]. (11)

Equation (9) more transparently bounds the slack in Eq. (3) in terms of residual effect variance. However, it is not
tight, as can be seen for @ = 1. Equation (11) is even looser but appealing as it avoids Var(Y | X, A), depending only on

the root-mean-squared error of regressing Y on X for each A € {0, 1} (i.e., the numerator of nonparametric R?).

4 INFERENCE

We next turn to estimating the bounds developed in Section 3 and constructing confidence intervals. Recall our data
(Xi, A, Yi) ~ (X,AY), 1 <i < n,may be experimental or observational. The only relevant technical difference between
these two cases is whether propensity, e(X) = P (A = 1 | X), is known or not. While it matters not here, note that e(X)
is usually constant in experiments (A 1L X). In observational settings e(X) may be estimated.

We focus here on inference on CATE-CVaR. We provide analogous procedures for the lower bounds of Theorems 3.2

to 3.4 and Corollary 3.5 in Appendix A. Fix a. Our inferential target is
1
¥ = CVaR,(r(X)) = "+ =E(r(X) — f*)-, where * = F;(IX)((X) =inf{f:P(z(X) < ) > a}.
a

Since 7(X) is not directly observed, the first step is fitting it. Fortunately, recent advances in causal machine learning
provide excellent tools for this [4, 26, 38, 42, 45, 56]. Given an estimate 7, we might consider a plug-in approach:
gplug-in — gyp s(+ L 3" (#(X;) - B)-). Unfortunately, the statistical behavior of PPlug-in depends heavily on that
of :if 7 converges slowly and/or has non-negligible bias, as occurs when fit by flexible machine-learning methods,
both estimation rates and valid inference may be imperiled for plug-in,

Instead, we develop a debiasing approach that is insensitive to CATE-estimation, accommodating both misspecified
parametric models and flexible-but-imprecise machine-learning CATE-estimators. The main challenge is estimating §*,
which cannot be expressed by an estimating equation in X, Y(0), Y(1), so its efficient/orthogonal estimation is unclear,
unlike the case of quantile/CVaR treatment effects [8, 21, 32]. Fortunately, we care only about ¥, not §*, and special
optimization structure in ¥ gives robustness to perturbations. so even rough estimates suffice. Our approach is therefore

6
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Algorithm 1 Point estimate and confidence interval for CVaR, (7(X))

Input: Level @ € (0,1), data {(X;, A;, Y;) : i = 1,...,n}, number of folds K, e, y1, r-estimators
1: fork=1,...,Kdo
2. Estimate é(k),ﬁ(k), #(k) using data {(Xj, A;, Y;) : i # k — 1 (mod K)}
3 Set %) =inf{B: Tizk1 (mod k) I[E ™ (Xi) < fl — @) 2 0}
4 fori=k—1(modK)do set ¢; = ¢(X;, A;, Yi; 60 j(0) (k) plk))
5. end for
6

et = 1 ML g se = \/ﬁ h (g - ¥)?

7. Return ¥ as point estimate and [+ 1((1+ Y)/2)se] as y-confidence intervals

unique: we treat both 7 and f* as nuisance parameters, together with e, j1, and ensure simultaneous orthogonality to all
four nuisances.

Algorithm 1 summarizes our procedure. It proceeds by approximating the sample average of ¥ = E¢(X, A, Y, e, i1, 7, ),
where, we define
A-é(X)

o0a-z) TG -5 (2)

BXCA Y5t f) = o —1[7(X) < f] (ﬂ(x, 1) = (X,0) +

We first estimate the unknown (e, 1, 7, *). We do so using “cross-fitting” over K even folds so that nuisance estimates
are independent of samples where applied [12, 53, 58].8 As we discuss in detail in Section 4.3, we treat r as a separate
nuisance even though 7(x) = p(x, 1) — u(x, 0). For one, this enables the use of specialized CATE-learners. We also treat
B* as a separate nuisance (not as a parameter as in [32]) and fit it as the quantile of 7(X) in the out-of-fold data. As
simple regressions, e and y can be fit by parametric regression or standard machine-learning methods such as random

forests, gradient boosting, neural networks, etc..

Remark 5 (Comparing different levels). To assess disparities, we may want to compare to ATE (equivalently, CVaR; (7(X))).
To get good confidence intervals on CVaR, (7(X)) — CVaRy (7(X)), we can replace ¢; in Line 4 of Algorithm 1 with
the difference of ¢;’s for & and a’ (using the same nuisances except B (%)), This will correctly yield smaller confidence
intervals on 7 — CVaR, (7(X)) for a closer and closer to 1. We may also consider covariances of ¢;’s corresponding to

many «a-levels for constructing simultaneous intervals.

Remark 6 (Partial-identification intervals). While Algorithm 1 focuses on CATE-CVaR, which upper bounds ITE-
CVaR, in Appendix A we provide inference procedures for lower bounds on ITE-CVaR. These can be combined to
construct intervals containing ITE-CVaR with probability y. By union bound, we can simply combine the one-sided
(1 + y)/2-confidence intervals for the lower and upper bounds. But coverage may be conservative (> y) for the partial-
identification interval given by the bounds. For calibrated y-coverage (asymptotically), we must account for correlation
between lower- and upper-bound estimates, given by the correlation between ¢;’s for each procedure. Then, we can

construct calibrated intervals following Appendix A.4 of Kallus et al. [33].

Remark 7 (Monotonicity). While CVaR, (7(X)) is monotone in «, Algorithm 1’s output for different & may not be
due to estimation errors. We can post-process to ensure monotonicity using rearrangement [24], which only improves
estimation and does not affect inference [14]. We use this in Section 5.

8We may avoid cross-fitting and fit nuisances once on the whole sample if we assume estimates belong to a Donsker class with probability tending to 1;
we omit this option for brevity.
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4.1 Local Robustness and Confidence Intervals

We now establish favorable guarantees for Algorithm 1. First, we show it is insensitive to slow but consistent estimation
of nuisances, having first-order behavior as if we used true values.

We will need some minimal regularity.

Assumption 1 (Regularity). é < e < 1 — ¢ and |Y| < B for positive constants ¢, B > 0.

Fy(x) is continuously differentiable at Fr_(lx) (a).

The first condition ensures that the X-distributions of experimental groups overlap. It is usually guaranteed in
randomized experiments by setting e(X) constant (A 1L X). In unconfounded observational studies, it is a standard
assumption. The second condition requires bounded outcomes and is largely technical to make analysis tractable. The
third condition prohibits degeneracy of the quantile. The same is needed for asymptotic normality of sample quantiles
of observed variables. If 7(X) is discrete, the condition may be replaced by 3¢ > 0 : F;(lx)(a —¢) = F;(IX) (a+¢),
yielding superefficient quantile estimation. The only problematic case is multiplicity of {§ : F(x)(f) = «}, but only
finitely-many such “bad” a’s exist. Since the focus is on X being rich, we focus on the continuous case and the condition
in Assumption 1.

We first show how, under Assumption 1, estimation rates for #(%) translate to rates for ﬁ (k)
LEMMA 4.1. Suppose Assumption 1 holds. Then, for eachk = 1,...,K, ﬁ(k) in Line 3 of Algorithm 1 satisfies
B0 — 571 = 0p (a2 v 180 — 2 7T) vr € [1,00].
We now show robust oracle-like behavior for ¥.
THEOREM 4.2. Suppose Assumption 1 holds and that fork = 1,...,K, 6 — el = 0p(1), IIﬁ(k) = pllz = 0p(1),

16® —ellallg® = pllz = 0p(n77), 2% = 7llco = 0p(n73), (i) ||co < B) — 1, and P(e < é®) < 1) — 1. Then
H H p p H
¥, se in Line 6 of Algorithm 1 satisfy

S I
¥=- D S A et f7) +0p(n ) =9+ 0p(n7H7),
i=1

P(¥ e [¥+071((1+y)/2)se]) — v Vy.

The rate assumptions on e and p are lax: it suffices to have op(n_1/4)—rates on both or no rate on y at all if e is
known. This parallels standard conditions in double-machine-learning ATE-estimation, achievable by a variety of

machine-learning methods [12]. We explore the condition on 7 in Section 4.3.

4.2 Double Robustness and Double Validity

Theorem 4.2 guarantees good performance if all nuisances are estimated slowly, but still consistently. But even if
nuisances are inconsistent, we perform well.

First, we establish a property mirroring doubly-robust ATE-estimation [48]: even if e or y are inconsistent, we remain
consistent, provided 7 is consistently estimated, albeit slowly.

THEOREM 4.3 (DOUBLE ROBUSTNESS). Fixanyé, i withé < é < 1-¢, ||fillco < B. Letry, — 0 be a deterministic sequence.
Suppose Assumption 1 holds and that fork = 1,.. ., K, [|¢®) —¢||, = 0p(1), 125 il = 0p(1), 120 — 7)|o = Op(r,ll/z),
P(|i%® || < B) > 1,P(e < ¢®) <1-8) - 1, and

either [ —elly = 0p(rn) or 4% = pllz = Op(ry).
8
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Then ¥ in Line 6 of Algorithm 1 satisfies:
¥ =v+ Op(rn v n_l/z).

Theorem 4.3 is particularly strong in experiments (e known): we can get away with ﬁ(k) = 0. We need only estimate
CATE at op(n_1/4)—rates to ensure Op(n_l/z)—consistency.

It would appear we must consistently estimate CATE to have hope of estimating its CVaR. While true, we next show
that even if we mis-estimate CATE and also one of e, y1, we still get an upper bound on CATE-CVaR (hence on ITE-CVaR).
This appears to be the second finding of a double-validity property since being first documented in sensitivity analysis
[19].

We first establish the population-level bound behavior and then state the implication for estimation.

1

LEMMA 4.4. Fixany7:X — R. Le),‘,B~ =F X) (@). Suppose Assumption 1 holds with t replaced with . Then:

5(
CVaR, (#(X) < f+ ~E[I[F(X) < fl((X) - ). (13)

THEOREM 4.5 (DOUBLE VALIDITY). Fix any é,[i,7 withé < é < 1 - ¢, |||l < B, ||Z|]lcc < 2B. Letr, — 0 be a
deterministic sequence. Suppose Assumption 1 holds with t replaced with 7 and that fork = 1,...,K, [[¢®) — ¢, = 0p(1),
1A% = jillz = 0p (1), 17 = Flleo = Op (rn), PV ]|leo < B) — 1, P(e < 6K <1-€) — 1, and

either [0 —elly = 0p(rn) or 5% = pullz = Op(ry).

Then ¥ in Line 6 of Algorithm 1 satisfies:
V> ¥ - 0,(ry vinl/?),

Theorem 4.5 guarantees extensive robustness and suggests a practical, blackbox-free approach in experimental
settings: set A% = 0 and use simple misspecified parametric models (e.g., linear) for CATE-estimation, and we still
estimate a valid ITE-CVaR bound at fast O, (n_l/ 2)-rates.

4.3 CATE-Estimation and Rates

Algorithm 1 accepts separate learners for both p and 7. So, while 7(x) = p(x,1) — pu(x,0), we need not have 0 (x) =
ﬁ(k) (x,1) — ﬂ(k) (x,0), and in fact we should not. Recent work advocates and provides specialized methods for directly
estimating CATE [4, 26, 38, 42, 45, 56].

This is important because Algorithm 1 uses the y- and r-estimates differently and, correspondingly, our theoretical
results impose different assumptions on each. The 7-estimate is used for approximating the event I [7(X) < f*], which
is crucial for targeting CVaR correctly. In contrast, the p-estimate is just used in order to estimate a weighted-average
treatment effect, given the weights I [7(X) < "], and is therefore interchangeable with propensity.

We next review different options for CATE-estimation and how these ensure the conditions of Theorems 4.2, 4.3
and 4.5. We emphasize that these need not be understood as exhaustive list of which learners to use: practically, the
nuisance-estimation rates are high-level assumptions that generally say one may safely plug-in black-box machine-
learning estimators to Algorithm 1: no restrictions are made but rates (no metric-entropy conditions), estimators can be
flexible/nonparametric in that rates can be much slower than “parametric” Op(n_l/ 2)-rates, and results are exceedingly

robust to inconsistent estimation.

4.3.1 Experimental settings. A major issue with CATE-estimation by differencing outcome regressions is that effect

signals are easily lost. CATE is generally simpler and less variable than baseline mean outcomes, p(X, 0), #(X, 1). For
9
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example, many variables often help predict outcomes, but few modulate the treatment effect. It is therefore imperative
to learn CATE directly.

In experimental settings (e known) we can construct a pseudo-outcome A = A-e(X)

mY and, since 7(X) =
E[A | X], learn CATE by regressing A on X, using any supervised-learning method. One case that theoretically ensures
120 — 7] = op(n’1/4) is when 7(x) is more-than-d/2-smooth in x € R? [54, Theorem 1]. Another option is 7(x)
linear with o(+/n/log d)-nonzero coefficients [8]. Note this works regardless of i being nice.

Or, we may avoid black-box models (and cross-fitting) altogether by using simple linear regression of A on X to
obtain a valid bound per Theorem 4.5.

To satisfy the other conditions, for Theorems 4.3 and 4.5 we can set y = 0, and for Theorem 4.2 we need only
estimate p consistently without rate. We can either estimate p directly or only estimate i(X) = E [Y | X] and set
;}(k) (X,A) = ﬁ(k) (X) + (A —e(X))2R) (). Consistency for either is immediate from EY? < co [23].

4.3.2  Observational settings. When e is unknown, the pseudo-outcome-construction needs refinement. One option
is DR-leaner [38]: regress A = (X,1) — (X, 0) + Wi}o)(Y [1(X,A)) on X, where é, i are appropriately
cross-fitted. Another is R-learner [45]: let # minimize the average of (Y — ji(X) — (A - é(X))f(X)) , where é, i are
appropriately cross-fitted. Kennedy [38, Corollary 3] provides rates for local-polynomial R-learners: if e(x) is se-smooth
inx e RY, f(x) sy-smooth, and 7(x) more-than-d/2-smooth, then we obtain op(n_l/ 4)-rate pointwise error, provided

Sets,
Se = Sy, ez £ > d . To convert pointwise-error bounds to sup-norm-error bounds, we may follow the discretization

approach of Stone [54], incurring only logarithms. Or, we can simply use linear R- or DR-learners and get a valid bound

per Theorem 4.5.

5 CASE STUDY

We now demonstrate our bounds and inference.” While we consider a program-evaluation example, we believe our
results are also particularly relevant to A/B testing on online platforms, where, after testing, product innovations are
usually either scrapped/reworked or broadly rolled out, and where ATEs are often small, creating an opportunity for

many users to be negatively impacted despite positive average effects. Little such data is public, however.

5.1 Background and Setup

Behaghel et al. [7] analyze a large-scale randomized experiment comparing assistance programs offered to French
unemployed individuals. They compare three arms: individuals in the “control” arm receive the standard services of
the Public Employment Services, in “public” receive an intensive counseling program run by a public agency, and in
“private” a similar program run by private agencies.

We consider a hypothetical scenario where the private-run counseling program (A = 0) is currently being offered
to the unemployed and we consider the change to a public-run program (A = 1).1% We take reemployment within six
months as our (binary) outcome.

The ATE is 1.22 percentage points (90%-CI [—0.35, 2.8]), a 4.9% increase in reemployment. This suggests a posi-
tive/neutral effect, so a policymaker might hypothetically consider this an acceptable policy change, e.g., if the public-run
program provided cost savings.!!

Replication code is available at [ANONYMIZED].
19Some individuals assigned to the additional counseling refused it. We nonetheless restrict our attention to intent-to-treat interventions, considering

hypothetically making available either the public-run or private-run counseling to unemployed individuals, who may decline it.
Behaghel et al. [7, section IV] discuss why public-run programs fare better.

10
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To apply our methodology, we consider all pre-treatment covariates in table 2 of Behaghel et al. [7], except we treat
as numeric (rather than dichotomize) age, number children, years experience, salary target, assignment timing, and
number unemployment spells. Other variables quantify education, employment level and type, gender, martial status,
national origin, region, unemployment reason, and long-term-unemployment risk. The propensity is constant. As
recommended in Section 4.3.1, we fit CATE using a pseudo-outcome linear regression. We estimate y using cross-fitted

gradient-boosting machines.

5.2 Upper bounds

Figure 1 presents inference on CATE-CVaR using Algorithm 1 for & € {0.01,0.02,...,1}. The line represents our
point estimate, after rearrangement as recommended in Remark 7,'2 and the shaded region represents point-wise
90%-confidence intervals. Note uncertainty grows for smaller a.

We see that the ATE-estimate (right-most point) is positive with an interval containing zero. We find, however, that
some 56%-sized X-defined-subpopulation has a negative effect at 90%-confidence.!® This strongly suggests that the
change, if enacted could materially negatively impact a large portion of the population, despite the positive/neutral
m figure without rearrangement in Appendix B.

3Since outcome is binary, the largest fraction that can have a negative effect is (50 x (1 — 7))%, so either 7 < 0 or at most half may be negatively
affected. The ATE interval indeed contains zero with confidence only 90%.

11
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ATE. Thus, considering treatment effect risk provides a crucial metric not reflected in the ATE. This risk is also not
reflected in DTEs: the binary potential-outcome distributions are fully specified by just E[Y(0)], E[Y(1)].}4

In Fig. 2 we focus on comparing CATE-CVaR to ATE following Remark 5. The only difference to Fig. 1 is a slight
vertical shift and that confidence intervals (correctly) shrink to a point as « — 1, enabling more confident conclusions
comparing subpopulations to the population.

In Fig. 3 we consider CATE-CVaR when we capture less heterogeneity, using only age, high-school dropout, African

national origin, and Paris-region resident as covariates (X;). This detects no significant risk.

5.3 Lower bounds

While the upper bounds show a significant subpopulation can be negatively harmed, being only bounds, it may be
the subpopulation can be harmed even more or an even larger subpopulation can be harmed. Lower bounds help us
understand how much greater the risk might be.

In Fig. 4 we consider our lower bounds (vs ATE) when limiting the residual-heterogeneity range given by Theorems
3.2 (two-sided range) and 3.3 (one-sided range).

Since it may be hard to justify and calibrate a limited range, in Fig. 5 we consider lower bounds given by Theorem 3.4
and Corollary 3.5 by limiting residual-heterogeneity variance. For the former, we fit Var(Y | A, X) using gradient-
boosting machines and construct 5%(X) per Eq. (8) by varying constant values of p(X) = p € [—1,1]. Recall p = -1
always yields an assumption-free bound. We use the same model to estimate the right-hand side of Eq. (10). We compute
the cross-validated root-mean-squared prediction error to estimate the right-hand side of Eq. (11).

We observe that assuming perfectly-conditionally-correlated potential outcomes yields a lower bound very close to

the upper bound. The bounds of Corollary 3.5 appear loose; indeed they are not tight.

6 CONCLUDING REMARKS

We study the average effect on those worst-affected by a proposed change as a measure of its risk, how to tightly bound
it given covariates that explain some heterogeneity, and how to make robust inferences on these bounds even when
this heterogeneity is roughly estimated. This provides very practical tools for assessing policy and product changes
beyond their ATE and DTEs. We can safely use flexible yet biased/slow-to-converge machine learning, or we can
avoid black-box models and easily get good bounds by considering only linear projections of heterogeneity . In the
hypothetical case study this detected that, what appeared to be a positive/neutral change could actually very negatively
impact a substantial subpopulation.

We focused on experimental (or, unconfounded observational) settings without interference, where risk is already
unidentifiable despite randomization. A future direction is to consider the impact of interference [3, 29] or confounding
Tan [55], where even ATEs are unidentifiable and fairness is harder to assess [30, 34, 39]. Interestingly, for partial
identification under Tan [55]” model, X-conditional outcome-CVaR plays a crucial role [19]. Another direction may be
to consider other risk measures, such as given by Kullback-Leibler ambiguity sets [1]. Per Footnote 5, the tight upper
bound is still the risk measure applied to CATE, but it remains to compute lower bounds and design robust inference

methods.

1411 particular, the az-quantile DTE is uselessly zero for all & € [0,1]\{1 = E[Y(0)],1 = E[Y(1)]} and the a-CVaR DTE is i (E[Y(D] -1+ a)s —
é (E[Y(0)] — 1+ )+, which is not even monotonic. For illustration we plot it in Appendix B.
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