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ABSTRACT: Nucleic-acid-based immune adjuvants have been
extensively investigated for the design of cancer vaccines. However,
nucleic acids often require the assistance of a carrier system to
improve cellular uptake. Yet, such systems are prone to carrier-
associated adaptive immunity, leading to difficulties in a multidose
treatment regimen. Here, we demonstrate that a spherical nucleic
acid (SNA)-based self-adjuvanting system consisting of phospho-
diester oligonucleotides and vitamin E can function as a potent
anticancer vaccine without a carrier. The two functional modules
work synergistically, serving as each other’s delivery vector to
enhance toll-like receptor 9 activation. The vaccine rapidly enters
cells carrying OVA model antigens, which enables eflicient
activation of adaptive immunity in vitro and in vivo. In OVA-
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expressing tumor allograft models, both prophylactic and therapeutic vaccinations significantly retard tumor growth and prolong
animal survival. Furthermore, the vaccinations were also able to reduce lung metastasis in a BI6F10-OVA model.
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Nucleic acids represent a key family of adjuvants
recognized by several pattern-recognition receptors
(PRRs), such as toll-like receptors (TLRs) 3, 7, 8, and 9,
retinoic acid inducible gene I (RIG-1), and cyclic-GMP-AMP
synthase (cGAS).'™* For immunoregulatory applications,
however, nucleic acids face significant cellular and in vivo
pharmacological barriers, including poor cell uptake, nuclease
instability, and rapid renal clearance. Thus, it is often more
appealing to consider alternative activation strategies such as
synthetic small-molecule agonists or antagonists.” ~ While
many such ligands are in development, few have reached
regulatory approval.'”'" In addition, spatiotemporally con-
trolled codelivery with soluble antigens, which suffer from fast
clearance, poor lymph node (LN) draining/retention, and
inefficient colocalization, remains a challenge.lz’13 To codeliver
the antigens with a ligand for nucleic-acid-related PRRs (either
natural or synthetic), a cocarrier system is often required."*”"”
However, such a cocarrier is prone to anticarrier adaptive
immunity in a stimulated immune system.”® Thus, it is ideal if
the adjuvant and the antigen form a self-delivering construct
that can reach the target tissue and cellular organelle/
cytoplasm without additional immunogenic epitopes that can
lead to unwanted activation of adaptive immunity.”"** While it
is still possible to generate antinucleic acid antibodies, it has
been reported that immunogenicity is phosphorothioate
backbone specific.”?
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Herein, we have designed a cancer vaccine consisting of a
spherical nucleic acid (SNA) core hybridized to an antigen—
oligonucleotide conjugate (Figure 1A). The dual-adjuvanted
SNA (daSNA) is assembled from a DNA amphiphile having a
CpG-rich oligonucleotide hydrophilic segment and a vitamin E
(VE) containing hydrophobic segment; the latter can be
released bioreductively (Figure S1C).**** Not only does the
VE component serve as the hydrophobic driving force for SNA
formation but also the released VE can also work synergically
with CpG DNA to amplify immune responses.”*>” Although
no carrier is involved, the daSNA vaccine undergoes rapid
cellular uptake into endocytic compartments, where TLRY is
predominantly located. Activation of the TLR9-MyD88
pathway leads to dendritic cell (DC) activation, upregulation
of proinflammatory cytokines, sequential antigen-specific T cell
proliferation, and ultimately strong antigen-specific immune
responses.””” In addition, the daSNA vaccine was retained in
the draining lymph node (dLN) to a much higher extent in
comparison to a physical mixture of the antigen/adjuvant. Both
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Figure 1. Mechanism of action and physical characterization of the daSNA vaccine. (A) Chemical structure and schematic representation of the
daSNA vaccine and the mode of action for the antigen-specific antitumor effect in vivo, created with BioRender.com. (B) DMF GPC of the
poly(VE)-Br precursor for the daSNA vaccine. (C) DLS number-average size distribution of poly(VE)-CpG daSNA. Insert: { potential (mV) of the
daSNA in comparison to that of free CpG DNA in 1X PBS buffer. (D) TEM micrograph of the poly(VE)-CpG daSNA, negatively stained with 2%
uranyl acetate. (E) Confocal microscopy of DC2.4 cells treated with test agents, showing significantly enhanced cellular uptake of antigen/adjuvant
and their colocalization for the daSNA vaccine in comparison with a free mixture of the constituent components.

prophylactic and therapeutic application of the vaccine against
cancer cells expressing ovalbumin (OVA, model antigen) in
mouse allograft tumor models resulted in decidedly prolonged
animal survival. In addition, the vaccination substantially
reduced lung metastasis. Consisting almost entirely of naturally
occurring compounds (DNA/VE > 85% by molecular weight),
the daSNA vaccine represents a powerful vaccinology approach
for developing potent natural agonists for nucleic-acid-
associated PRRs while eliminating the safety and immuno-
logical concerns over an added cocarrier system.

Design and Material Preparation. To synthesize the
poly(VE) segment, a-tocopherol (a common VE form) was
linked to a polymerizable monomer via a bioreductively

cleavable linker. @-Tocopherol was sequentially reacted with
triphosgene and 2-hydroxyethyl disulfide modified norbornene
(compound 1, Figure SI1A) to yield the norbornenyl VE
monomer (N-SS-VE, Figure S1A). For robust micelle
formation, a degree of polymerization of 10 was targeted.
Sequential copolymerization of N-SS-VE monomer (10 equiv)
with an oxanorbornene bromide (N-Br, 2 equiv) gives a
narrowly dispersed block copolymer (PDI = 1.13, M, = 4.3
kDa; Figure 1B) with a high yield (~96%). Substitution of the
bromides with azides gives the hydrophobic portion of the
amphiphile, poly(VE)-N;, which was then conjugated to a §'-
dibenzocyclooctyne-modified ODN1826 (a CpG-rich oligo-
nucleotide, henceforward abbreviated as “CpG”) via copper-
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Figure 2. Stimulation of BMDCs and proliferation of the antigen-specific T lymphocytes in vitro. (A—D) CD80*CD86%, CD40*, SIINFEKL-
specific MHC I*, and MHC II' DC populations (CD11c") after treatment with daSNA vaccines and the corresponding physical mixtures as
negative controls. (E—G) CD80*CD86", CD40*, and SIINFEKL-specific MHC I* DC populations (CD11c") after treatment with daSNA vaccines
and negative control SNA containing a nonagonist for TLR9 (GpC instead of GpG, ODN2138). (H, I) TNF-a and IL-6 levels in the extracellular
supernatant after treatment with daSNA vaccines and controls. (J) CFSE dilutions of CD8" lymphocytes derived from OT-1 mice after direct
stimulation with daSNA vaccines and controls. (K) IFN-y levels in the supernatant of lymphatic cells derived from OT-1 mice after direct

stimulation with daSNA vaccines and controls.

free click chemistry to yield the final DNA ampbhiphile,
poly(VE)-CpG (Figure S1B). The amphiphile spontaneously
forms micellar structures in an aqueous buffer (1X PBS), as
evidenced by a narrow, more slowly migrating band in agarose
electrophoresis (2%) in comparison to free CpG (Figure S2).
Transmission electron microscopy (TEM; Figure 1D) shows
that the self-assembly yields uniform daSNAs with an average
dry-state diameter of 42.6 + 6.0 nm, which is corroborated by
dynamic light scattering (DLS) measurements (number-
average hydrodynamic diameter S1.7 + 3.6 nm; Figure 1C).
This size is within the appropriate range for dLN targeting,
where 10—100 nm particles have been shown to exhibit the
best dLN localization.”® In addition, the daSNA shows a ¢
potential of —54.6 & 5.6 mV, which is similar to that of the free
CpG DNA (Figure 1C).

Next, model antigens (OVA protein or the peptidyl epitope,
SIINFEKL) were covalently functionalized with the comple-
mentary DNA (cDNA) of the CpG sequence. The conjugate is
to be used to decorate the daSNA core with antigens through
hybridization. Once the daSNA vaccine undergoes endocy-

tosis, the labile ester or disulfide linkages can be enzymatically
or bioreductively cleaved, so that antigens can be presented via
major histocompatibility complex (MHC) T or IL*"** For
OVA modification, a succinimidyl 4-(N-maleimidomethyl)-
cyclohexane-1-carboxylate linker was used to derivatize the
exposed amino groups with a maleimide group, which enabled
subsequent conjugation with thiol-modified ¢cDNA (Figure
S3B—D). For SIINFEKL (later denoted “OVA,;”), a cystine
residue was appended at the C terminus, which was
sequentially reacted with 2,2'-dipyridyl disulfide and thiol-
modified cDNA via a thiol-exchange reaction (Figure S3A,E).
The successful syntheses were confirmed by matrix-assisted
desorption—ionization mass spectrometry (MALDI-TOF), gel
permeation chromatography (GPC), reversed-phase HPLC,
and gel electrophoresis (Figure S4). Hybridization of purified
cDNA-—antigen conjugates to the SNA (1 mol:0.2 mol
CpG:cDNA) vyields the final daSNA vaccines (daSNA-OVA
and daSNA-OVA,,;). Hybridization was confirmed by gel
electrophoresis, showing that the antigen component (CyS or
FITC) colocalizes with the Cy3-labeled SNA (Figure SSA) and
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Figure 3. daSNA-OVA,, promotes DC activation and lymph node retention and primes the antigen-specific T cells in vivo. (A) Representative
photographs of mouse dLNs 20 h after initial s.c. vaccination. (B) Flow cytometry analysis of double-positive (antigen*adjuvant”) DCs 24 h after
initial s.c. vaccination. (C—E) In vivo DC costimulatory markers (CD80 and CD40) and antigen presentation (SIINFEKL-MHC I) 20 h after initial
s.c. vaccination. (F) Schedule for vaccinations and analysis of PBMCs. (G) Flow cytometry analysis of SIINFEKL-specific cytotoxic T cell
population (SIINFEKL-tetramer'CD8") in PBMCs. (H) Flow cytometry analysis of IFN-y secreting cytotoxic T cells in PBMCs. (I)
Representative flow cytometry density plot of SINFEKL-specific cytotoxic T cells in PBMCs after vaccination with daSNA-OVA,; and controls.

that the bands corresponding to free cDNA—antigens have
disappeared after hybridization (Figure SSB).

SNA-Assisted Intracellular Delivery of Antigens. Key
factors for inducing strong antigen-specific immune responses
include high levels of cellular uptake and the simultaneous
codelivery of antigens/adjuvants into the same APC.”>** To
investigate the uptake of the daSNA, murine DCs (DC2.4)
were treated with dual-fluorescently-labeled particles and
analyzed by flow cytometry. In comparison to DC2.4 treated
with a physical mixture of antigens and free CpG
oligonucleotide, cells treated with daSNA exhibited markedly
increased mean fluorescence intensities (MFIs) for both the
CpG and the antigen (Figure S6). The daSNA structure
increased the uptake of CpG by 23-fold, while the uptakes of
OVA/OVA,, were both enhanced by 6-fold (at 1 uM CpG).
The elevated uptake is likely due to caveolae/lipid-raft-
dependent endocytosis, previously observed for SNAs
consisting of a gold nanoparticle core.”® The flow cytometry
results were corroborated by confocal microscopy, which
shows stronger fluorescent signals from both CpG and antigen
channels for DC2.4 treated with the daSNA vaccines relative to
those treated with the corresponding physical mixture at
identical concentrations (Figures 1E and Figure S7A). The

signals appear as colocalized, punctate patterns, which is
indicative of entrapment of intact particles within endocytic
compartments.

DC Activation and Antigen-Specific T Cell Prolifer-
ation In Vitro. We next investigated APC activation
stimulated by the daSNA vaccines in vitro. Mouse bone
marrow derived DCs (BMDCs) were incubated with either a
daSNA vaccine or its corresponding physical mixture at
identical antigen/adjuvant concentrations for 18 h before a
flow cytometry analysis. Examining costimulatory markers
related to BMDC-maturation (CD86%, CD80", and CD40"),
daSNA vaccines showed significant BMDC maturation over
both the vehicle (Figure 2A,B) and the physical mixture. We
attribute the BMDC maturation to the daSNA core because an
antigen-free SNA was also able to induce similar BMDC
maturation. The cell supernatants were also collected for an
enzyme-linked immunosorbent assay (ELISA) to test cytokines
expressed by BMDCs (TNF-a, IL-12p70, and IL-6).
Consistently, strong cytokine expressions were induced by
daSNA (Figure 2H,I and Figure S8B). Molecular VE has been
shown to work synergistically with CpG.*® To test the
contribution of VE, a non-TLR9 agonist sequence
(ODN2138) with altered CG position was used to construct
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Figure 4. daSNA-OVA,;, vaccination provides prophylaxis against tumor growth. (A) Vaccination and tumor inoculation schedules. (B) Average
tumor growth curve after inoculation with B16F10-OVA cells (tumor volume = (width)? X length X 0.5). (C) Kaplan—Meier animal survival
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a negative control SNA. Flow cytometry showed that the
poly(VE)-2138-based SNA induced a lower (but still statisti-
cally significant) level of DC maturation relative to the vehicle
(Figure 2E,F). The contribution of VE was more pronounced
when the BMDC antigen cross-presentation levels were
examined (SIINFEKL-specific MHC I). It was found that
BMDCs treated with the poly(VE)-2138 SNA and daSNA
(both with OVA,g;) showed comparable levels of antigen
presentation (with 85.40% and 68.63% SIINFEKL'CD11c*
cell populations, respectively; Figure 2G). For MHC 1I
presentation, the percentage of MHC II'CD1lc" DCs was
significantly boosted for the daSNA vaccines in comparison to
the physical mixtures (Figure 2D), which is in line with BMDC
maturation results. Similarly, replacing the CpG sequence with
ODN2138 caused a noticeable decrease but not complete loss
of MHC II'CD1lc* DCs. These results suggest that the

synergy between CpG and VE extends beyond enhanced
endocytosis (Figure S8A).

The ability of the daSNA vaccines to raise antigen-specific T
cell response was also tested in vitro using lymphatic cells
derived from transgenic OT-1 mice, whose CD8" T
lymphocytes have an immune memory toward OVA,s,.
Carboxyfluorescein succinimidyl ester (CFSE) labeled OT-1
lymphatic cells were incubated with the daSNA vaccines or
controls for 48 h and analyzed by flow cytometry. Both
vaccines induced the proliferation of OVA,,-specific CD8* T
cells, as evidenced by fluorescence dilution. Notably, the
daSNA-OVA,,,-treated lymphatic cells exhibited similar
OVA,;-specific T lymphocyte proliferation in comparison to
free OVA,g, (Figure 2J and Figure S8C), suggesting that
OVA,j;; tethered to the daSNA surface can be recognized by
antigen-specific CD8" T lymphocytes as efficiently as free
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nuclei-rich regions represent tumor metastases.

OVA,;. In addition, the IFN-y expression levels in the
supernatant of the cell culture after 72 h incubation (Figure
2K) were significantly higher for the daSNA vaccines in
comparison to their corresponding physical mixtures. Given
the robust performance of daSNA-OVA,;, for stimulating DC
maturation, antigen cross-presentation, and antigen-specific
cytotoxic T cell proliferation, this particle was selected for
subsequent in vivo studies.

Targeting DCs In Vivo and Antigen-Specific Cytotoxic
T Cell Response. In lymphatic circulation, lymph nodes
(LNs) are the major sites where immune cells reside. Thus,
efficient trafficking to LNs is essential to generate a strong
immune response. To investigate LN retention of daSNA-
OVA,; in vivo, daSNA- OVA,;, or the physical mixture (CpG-
Cy3 and OVA,s,-CyS) were subcutaneously (s.c.) injected in
the right flank of C57BL/6 mice. After 24 h, the inguinal LNs
approximate to the injection site were extracted and the

lymphatic cells were analyzed by flow cytometry. Remarkably,
the daSNA-OVA,, resulted in nearly a 100-fold higher
double-positive (CpG-Cy3*OVA,,-CyS*) DC population
(CD11c*) in comparison to the physical mixture (Figure
3B), indicating that the daSNA-OVA,; significantly increased
trafficking of DCs into the LNs and the retention of the
antigen/adjuvants in LNs. In addition, the extracted LNs are
visibly enlarged for mice dosed with daSNA-OVA,, in
comparison with the vehicle- or the physical-mixture-treated
mice (Figure 3A), which indicates increased cellularity.
Through flow cytometry, we identified substantially increased
populations of matured DCs (CD80* and CD40* in CD11c*
DCs) as well as an improved CD11lc* DC population
presenting a SIINFEKL-specific MHC I marker (Figure 3C—
E). These observations demonstrate that daSNA-OVA,.,
strongly stimulates DC maturation and antigen presentation
in vivo, which is essential for antigen-specific immunity.
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To investigate the level of antigen-specific T cell response
induced by vaccination, we injected daSNA-OVA,, a physical
mixture, or a vehicle s.c. in the right flank of C57BL/6 mice
weekly for a total of three injections. On day 21, the peripheral
blood from immunized mice was collected, and the percentage
of antigen-specific T cells among peripheral blood mono-
nuclear cells (PBMCs) was analyzed by flow cytometry (Figure
3F). While immunization with the physical mixture of CpG/
OVA,, produced no elevation in OVA,;-specific cytotoxic T
cell population (OVA,,-tetramer'CD8") in comparison to
vehicle treatment, mice receiving daSNA-OVA,s, showed a
considerably increased OVA,g;,-specific T cell population
(~10-fold, Figure 3GI). The population of IFN-y-secreting
cytotoxic T cells (IFN-y*CD8'CD3) was also similarly
increased by the immunization (Figure 3H). Collectively,
these results strongly suggest that daSNA-OVA,s, can
stimulate the antigen-specific T cell response in vivo and
point to potent antitumor activity.

Prophylactic Inhibition of Tumor Growth. We next
examined whether the vaccination leads to prophylactic
protection against OVA-expressing tumor cells in mice.
C57BL/6 mice were vaccinated with daSNA-OVA,,, its
constituent mixture, or 1X PBS for a total of three times
with 1 week intervals. Seven days after the final vaccination,
one million B16F10-OVA (melanoma) or MC38-OVA (colon
carcinoma) cells were injected s.c. in the right flank (Figure
4A). For the highly aggressive B16F10-OVA model, daSNA-
OVA,;, vaccination produced decidedly retarded tumor
growth, averaging 147 mm?® at 22 days in comparison to
1166 mm® for the physical mixture, which leads to longer
animal survival (~34 vs 20 days for the physical mixture)
(Figure 4B—D and Figure S10). The physical-mixture-treated
group exhibited no statistical difference from the vehicle group.
For the MC38-OVA model, all mice receiving the physical
mixture or PBS reached the end point (tumor size >1000
mm?®) within 30 days (Figure 4E—G). In contrast, ~60% of
mice receiving the daSNA-OVA,, vaccination were tumor-free
for 60 days. The immunological memory raised by the
vaccination was tested by rechallenging the remaining mice
that survived the initial MC38-OVA tumor inoculation with
another million MC38-OVA tumor cells in the opposite flank
on day 60. In comparison to same-aged naive C57BL/6 mice,
which reached the end point within 20 days, the vaccinated
mice showed slower tumor induction and prolonged survival
(25 days) (Figure S11A,B).

The mechanism of long-term immunological protection was
studied by comparing the memory cytotoxic T cell (CD8")
populations (effective memory T cells (Tgy) CD62L~CD44*
and central memory T cells (T¢y)] CD62L*CD44" between
the surviving and naive mice. Sixty days after the initial
inoculation of MC38-OVA cells, PBMCs were extracted from
the surviving mice and same-aged naive mice, and the
percentages of Tgy and Tcy were analyzed. In comparison
to the naive mice, the surviving mice showed an ~2.3X
increase in the Tgy population, while Tcy; exhibited no
significant difference (Figure S11C,D). Collectively, these data
indicate that daSNA-OVA,s, provides effective immune
stimulation, leading to prophylactic protection and long-term
immunological memory.

Therapeutic Suppression of Tumor Growth and
Inhibition of Lung Metastasis. To investigate the
therapeutic efficacy of daSNA-OVA,, treatment, we estab-
lished B16F10-OVA allografts in the right flank of C57BL/6

mice (Figure SA). Once the tumor size reached SO mm?,

treatments with daSNA-OVA,, or its physical mixture were
carried out by s.c. injection with weekly intervals in the right
flank. For the PBS- and physical-mixture-treated groups, all
animals reached the end point within 21 days (Figure SB,C
and Figure S12). In contrast, mice receiving daSNA-OVA,s,
exhibited evidently slower tumor growth and prolonged
survival (~31 days).

To study the therapeutic mechanism, B16F10-OVA
allografts were allowed to grow to a size of 200 mm”® in the
right flank of C57BL/6 mice. Thereafter, daSNA-OVA,;; or
controls were injected s.c. twice (1 week apart). Three days
after the second treatment, the tumor tissues were extracted for
tumor microenvironment (TME) analysis. The percentage of
CD3"CD8" T cells within the TME of daSNA-OVA, g, -treated
mice was greatly elevated (~6-fold) in comparison to mice
receiving either the physical mixture or the control, as
determined by confocal microscopy (Figure SD) and flow
cytometry (Figure SE). The population of antigen-specific
cytotoxic T cells (OVA,s,-tetramer'CD8") was also signifi-
cantly increased (~2-fold) (Figure SF). In addition, an
elevation of tumor necrosis factor a expression (Figure SG)
within the tumor tissues was observed, which may have
contributed to the overall therapeutic response. Differences in
CD3*CD4" T populations among treatment groups were not
evident.

Tumor metastasis is a major threat after the primary tumor
has been treated. Thus, we tested the ability of daSNA-OVA,,
vaccination to prophylactically prevent lung metastasis.
C57BL/6 mice received three doses of daSNA-OVA,;, or
the physical mixture every 7 days. On day 21, B16F10-OVA
cells (0.5 million) were injected intravenously in the tail vein
(Figure SH). Twenty days after the inoculation, lungs were
harvested to evaluate mass, tumor nodule abundance, and
histological features. While lungs from mice injected with the
PBS control exhibited a large number of overlapping tumor
nodules (as evidenced by the dark melanin pigmentation,
Figure SJ), the daSNA-OVA,, vaccine induced a strong
antimetastatic effect in mice with few to no nodules.
Interestingly, the physical mixture was also able to induce
some antimetastatic effect, but to a much lesser degree in
comparison to daSNA-OVA,;;,. Lung weight measurement
paints a similar picture: PBS- and physical-mixture-treated
mice showed markedly increased lung masses (0.90 + 0.14 and
036 + 0.06 g respectively), while mice vaccinated with
daSNA-OVA,, exhibited a lung mass similar to that of healthy
mice (0.19 # 0.02 and 0.19 + 0.03 g, respectively) (Figure SI).
Hematoxylin and eosin staining of the lungs of daSNA-
OVA,s,-vaccinated mice showed no significant tumor nodules
or histological variations from a normal lung, while both
control groups exhibited an abundance of nodules (nuclei-rich,
deeper-stained regions) (Figure SK and Figure S13). Taken
together, these results indicate that daSNA-OVA,, drastically
retards the progression of the highly aggressive melanoma
tumor model and reduces the likelihood of lung metastasis.

With regard to the safety of the daSNA-OVA,;, no apparent
toxicity was observed in BMDCs extracted from CS7BL/6
mice and in DC2.4 cells up to 2 M (nucleic acid basis), as
determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT) cytotoxicity assay (Figure S14). In
addition, mice treated with daSNA-OVA,;, did not exhibit
evidence of acute sepsis or septic shock, such as hypotension
and hypothermia, and no obvious changes in behavior (refusal
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to eat, startle response, etc.) were observed. With repeated
vaccinations/treatments, daSNA-OVA,,, induced no signifi-
cant weight changes (Figure SISA—C) or noticeable damage
to major organs (Figure S16). Thus, daSNA-OVA,; appears
to exhibit an acceptable safety profile while sufficiently
stimulating the immune system for a potent anticancer
response.

In summary, we have developed a nanoparticle vaccine
based on an CpG DNA-poly(VE) amphiphile termed daSNA,
whose surface consists almost entirely of antigens and
adjuvants. The core VE component allows the conjugate to
assemble into a dense, spherical form, enabling otherwise non-
cell-penetrating CpG to undergo rapid endocytosis. Thus, the
daSNA bypasses the need for potentially toxic and/or
immunogenic synthetic vectors and transforms otherwise
difficult pharmaceutical properties of the CpG and VE into
beneficial properties, which allow their efficient codelivery. The
construct exhibits excellent dLN targeting and retention, which
results in improved in vivo immune system stimulation. A
noteworthy advantage of the daSNA vaccine is that the
constituent natural phosphodiester ligand for TLR9 (CpG)
can be metabolized, which reduces the risk of persistent or
uncontrolled immune system stimulation by nondegradable
synthetic analogues and toxicity concerns associated with
chemical analogues. When the results are taken ogether, the
daSNA vaccine reported here represents a safe, simple, and
effective approach to convert natural nucleic acids into high-
performance adjuvants, which paves the way for carrier-free
vaccine designs for cancer and other immunoregulatory needs.
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