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Abstract. Whereas set-valued tableaux are the combinatorial objects as-
sociated to stable Grothendieck polynomials, hook-valued tableaux are
associated with stable canonical Grothendieck polynomials. In this pa-
per, we define a novel uncrowding algorithm for hook-valued tableaux.
The algorithm “uncrowds” the entries in the arm of the hooks, and yields
a set-valued tableau and a column-flagged increasing tableau. We prove
that our uncrowding algorithm intertwines with crystal operators. An al-
ternative uncrowding algorithm that “uncrowds” the entries in the leg
instead of the arm of the hooks is also given. As an application of un-
crowding, we obtain various expansions of the canonical Grothendieck
polynomials.
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1. Introduction

Set-valued tableaux play an important role in the K-theory of the Grass-
mannian. They form a generalization of semistandard Young tableaux, where
boxes may contain sets of integers rather than just integers [3]. In particular,
the stable symmetric Grothendieck polynomial indexed by the partition A is
the generating function of set-valued tableaux

GalasB) = >0 AT Pgraa), (1)
TESVT())

where SVT()) is the set of set-valued tableaux of shape A and weight(T") is the
vector with ith entry being the number of ¢ in T'. Here, |T'| is the number of
entries in T and |A| is the size of X. Stable symmetric Grothendieck polynomials
G, can be viewed as a K-theory analog of the Schur functions s, (while the
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Grothendieck polynomial is an analog of the Schubert polynomial [11]). Buch
[3] also described the structure coefficients cf,,, which is the coefficient of G,
in the expansion of G,G, in terms of set-valued tableaux, generalizing the
Littlewood—Richardson rule for Schur functions.

The Grassmannian Gr(k, C™) of k-planes in C™ has a fundamental duality
isomorphism

Gr(k,C") = Gr(n — k,C™).

This implies that the structure constants have the symmetry S = cKi u
where A\’ denotes the conjugate of the partition A (see for example [5, Example
9.20]). Hence, one expects a ring homomorphism on the completion of the ring
of symmetric function defined on the basis of stable symmetric Grothendieck
polynomials 7(Gy) = Gy . The standard involutive ring automorphism w de-
fined on the Schur basis by w(sy) = sy does not have this property [10]

w(Gy) = Jx # Gy,

where J) is the weak symmetric Grothendieck polynomial.
Yeliussizov [16] introduced a new family of canonical stable Grothendieck
polynomials G (z; «, ), such that

W(G)\(SC’ a, 6)) = G)\/(I; 57 Ol)
Combinatorially, the canonical stable Grothendieck polynomials can be ex-
pressed as generating functions of hook-valued tableaux. In a hook-valued

tableau, each box contains a semistandard Young tableau of hook shape, which
is weakly increasing in rows and strictly increasing in columns. More precisely

Gi(z;a,8) = Z aa(T)ﬂé(T)xweight(T)7
TEHVT())

where HVT()) is the set of hook-valued tableaux of shape A, a(7T") is the sum
of all arm lengths, and ¢(T) is the sum of all leg lengths of the hook tableaux
inT.

A hook-valued tableau T is a set-valued tableau when all hook tableaux
entries are single columns or equivalently a(7) = 0. Hence, G (z; «, ) spe-
cializes to G (x; ) for @ = 0. Similarly, a hook-valued tableau T is a multiset-
valued tableau when all hook tableaux entries are single rows or equivalently
¢(T) = 0. Hence, Gx(x; o, B) specializes to Jy(x; o) for 8 =0.

In this paper, we describe a novel uncrowding algorithm on hook-valued
tableaux (see Definitions 3.2, 3.4, and 3.5 ). The uncrowding algorithm on set-
valued tableaux was originally developed by Buch [3, Theorem 6.11] to give a
bijective proof of Lenart’s Schur expansion of symmetric stable Grothendieck
polynomials [9]. This uncrowding algorithm takes as input a set-valued tableau
and produces a semistandard Young tableau (using the RSK bumping algo-
rithm to uncrowd cells that contain more than one integer) and a flagged
increasing tableau [9] (also known as an elegant filling [1,10,14]), which serves
as a recording tableau.

Chan and Pflueger [4] provide an expansion of stable Grothendieck poly-
nomials indexed by skew partitions in terms of skew Schur functions. Their
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proof uses a generalization of the uncrowding algorithm of Lenart [9], Buch
[3], and Reiner et al. [15] to skew shapes. Their analysis is motivated geomet-
rically by identifying Euler characteristics of Brill-Noether varieties up to sign
as counts of set-valued standard tableaux. The uncrowding algorithm was also
used in the analysis of K-theoretic analogs of the Hopf algebras of symmet-
ric functions, quasisymmetric functions, noncommutative symmetric functions,
and of the Malvenuto—Reutenauer Hopf algebra of permutations [1,10,14]. In
[6], a vertex model for canonical Grothendieck polynomials and their duals
was studied, which was used to derive Cauchy identities.

An important property of the uncrowding algorithm on set-valued tableaux
is that it intertwines with crystal operators [13] (see also [12]). The crystal
structure on a combinatorial set is the combinatorial shadow of a (quantum)
group representation (see, for example, [2,7]). A crystal structure on hook-
valued tableaux was recently introduced by Hawkes and Scrimshaw [8]. Our
novel uncrowding map on hook-valued tableaux yields a set-valued tableau
and a recording tableau. We prove that it intertwines with crystal operators
(see Proposition 3.12 and Theorem 3.14). This was stated as an open problem
in [8].

The paper is organized as follows. In Sect. 2, we review the definition of
semistandard hook-valued tableaux of [16] and the crystal structure on them
[8]. In Sect. 3, we define the new uncrowding map on hook-valued tableaux
and prove that it intertwines with the crystal operators and other properties.
We also give a variant of the uncrowding algorithm on hook-valued tableaux.
In Sect. 4, we consider applications of the uncrowding algorithm, in partic-
ular expansions of the canonical Grothendieck polynomials using techniques
developed in [1].

2. Hook-Valued Tableaux

In Sect. 2.1, we define hook-valued tableaux [16], and in Sect. 2.2, we review
the crystal structure on hook-valued tableaux as introduced in [8].

2.1. Hook-Valued Tableaux

A semistandard Young tableau U of hook shape is a tableau of the form
U= é—p )

A

o [a] - Jed]

where the integer entries weakly increase from left to right and strictly increase
from bottom to top. Note that we use French notation for Young diagrams and
tableaux throughout the paper. In this case, H(U) = z is called the hook entry
of U, L(U) = (41,42, ...,Lp) is the leg of U, and A(U) = (a1, az,...,aq) is the
arm of U. Both the arm and the leg of U are allowed to be empty. Additionally,
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the extended leg of U is defined as L*(U) = (x, 41,02, ...,¢,). We denote by
max(U) (resp. min(U)) the maximal (resp. minimal) entry in U.

Definition 2.1 [16]. Fix a partition A. A semistandard hook-valued tableau (or
hook-valued tableau for short) T of shape A is a filling of the Young diagram
for A with (nonempty) semistandard Young tableaux of hook shape, such that

(i) max(A) < min(B) whenever the cell containing A is in the same row,
but left of the cell containing B;

(ii) max(A) < min(C) whenever the cell containing A is in the same column,
but below the cell containing C.

The set of all hook-valued tableaux of shape A (respectively, with entries at
most m) is denoted by HVT(A) (respectively, HVT™()\)).

Given a hook-valued tableau T', its arm excess is the total number of
integers in the arms of all cells of T', while its leg excess is the total number of
integers in the legs of all cells of T.

Remark 2.2. In the special case when a hook-valued tableau has arm excess
0, it is also called a set-valued tableau. Similarly, a multiset-valued tableau is
a hook-valued tableau with leg excess 0. We use the notation SVT(A) (resp.
SVT™(N)) and MVT(A) (resp. MVT™(\)) for the set of all set-valued tableaux
of shape A (resp. with entries at most m) and the set of all multiset-valued
tableaux of shape A (resp. with entries at most m), respectively.

2.2. Crystal Structure on Hook-Valued Tableaux

Hawkes and Scrimshaw [8] defined a crystal structure on hook-valued tableaux.
We review their definition here.

Definition 2.3 ([8], Definition 4.1). Let C be a hook-valued tableau of column
shape. The column reading word R(C) is obtained by reading the extended
leg in each cell from top to bottom, followed by reading all of the remaining
entries, arranged in a weakly increasing order.

For a hook-valued tableau T, its column reading word is formed by con-
catenating the column reading words of all of its columns, read from left to
right, that is

R(T) = R(C1)R(Cs) ... R(Cy),
where £ is the number of columns of T" and C; is the ith column of T

Example 2.4. Let T be the hook-valued tableau

4
33(5
2 |4
11|334|4445

T =

The column reading words for the columns of T' are, respectively, 432113,
54334, and 4445, so that

R(T) = 432113543344445.
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Definition 2.5 [8, Definition 4.3]. Let 7" € HVT™()). For any 1 < i < m, we
employ the following pairing rules. Assign — to every ¢ in R(T') and assign +
to every ¢ + 1 in R(T'). Then, successively pair each + that is adjacent and to
the left of a —, removing all paired signs until nothing can be paired.

The operator f; acts on T according to the following rules in the given
order. If there is no unpaired —, then f; annihilates 7. Otherwise, locate the cell
¢ with entry the hook-valued tableau B = T'(¢) containing the i corresponding
to the rightmost unpaired —.

(M) If there is an i + 1 in the cell above ¢ with entry BT, then f; removes an

i from A(B) and adds i + 1 to A(BT).

(S) Otherwise, if there is a cell to the right of ¢ with entry B—, such that it
contains an ¢ in LT (B™), then f; removes the 4 from L™ (B™) and adds
i+ 1 to L(B).

(N) Else, f; changes the 7 in B into an i + 1.

Similarly, the operator e; acts on T according to the following rules in
the given order. If there is no unpaired +, then e; annihilates T. Otherwise,
locate the cell ¢ with entry the hook-valued tableau B = T'(c) containing the
entry i + 1 corresponding to the leftmost unpaired +.

(M) If there is an 4 in the cell below ¢ with entry B!, then e; removes the i+ 1

from A(B) and adds i to A(B').

(S) Otherwise, if there is a cell to the left of ¢ with entry B, such that it
contains an ¢ + 1 in L(B*), then e; removes the i + 1 from L(B“) and
adds i to LT(B).

(N) Else, e; changes the i+ 1 in B into an 1.

Based on the pairing procedure above, ¢;(T") is the number of unpaired —,
whereas ¢;(T) is the number of unpaired +.

We remark that the definition of crystal operators on HVT specializes to
the definition on SVT in [13] or the one on MVT in [8] when the arm excess or
leg excess of the tableaux is set to 0, respectively.

Ezample 2.6. Consider the following hook-valued tableau T

415
34|14
T= 213
11{233
Then, ez annihilates T, whereas
I T T
34|14 34|44
el(T): 3 ) fl(T): 213 ) f3(T): 213 1"
2
111133 12|233 11|23

For a given cell (r,¢) in row 7 and column c in a hook-valued tableau T,
let Ly (r, ¢) be the leg of T'(r, ¢), let Ar(r,c) be arm of T(r,c), let Hr(r,c) be
the hook entry of T(r,c), and let L7 (r,c) be the extended leg of T(r, c).
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3. Uncrowding Map on Hook-Valued Tableaux

In Sect. 3.1, we first review the uncrowding map on set-valued tableaux. In
Sect. 3.2, we give a new uncrowding map on hook-valued tableaux and prove
some of its properties in Sect. 3.3. The relation to the uncrowding map on
multiset-valued tableaux is given in Sect. 3.4. In Sect. 3.5, we give the inverse
of the uncrowding map on hook-valued tableaux, called the crowding map.
In Sect. 3.6, an alternative definition of the uncrowding map on hook-valued
tableaux is provided.

3.1. Uncrowding Map on Set-Valued Tableaux

For set-valued tableaux, there exists an uncrowding operator, which maps a
set-valued tableau to a pair of tableaux, one being a semistandard Young
tableau and the other a flagged increasing tableau (see, for example, [1,3,9,
15]). In this setting, the uncrowding operator intertwines with the crystal op-
erators on set-valued tableaux and semistandard Young tableaux, respectively
[13].

Consider partitions A, p with A C g and Ay = p;. A flagged increasing
tableau (introduced in [9] and called (strict) elegant fillings by various authors
[1,10,14]) is a row and column strict filling of the skew shape u/\, such that
the positive integer entries in the ith row of the tableau are at most ¢ —1 for all
1 <i<{(u), where ¢(p) is the length of partition . In particular, the bottom
row is empty. The set of all flagged increasing tableaux is denoted by F. The
set of all flagged increasing tableaux of shape p/A with A\ = p1 is denoted by
Fu/N).

We now review the uncrowding operation on set-valued tableaux. We call
a cell in a set-valued tableau a multicell if it contains more than one letter.

Definition 3.1. Define the uncrowding operation on 7' € SVT()\) as follows.

First identify the topmost row r in 7" with a multicell. Let x be the largest

letter in row r that lies in a multicell; remove z from the cell and perform RSK

row bumping with x into the rows above. The resulting tableau, whose shape

differs from A by the addition of one cell, is the output of this operation.
The uncrowding map on set-valued tableaux

Usyr : SVT(A) — | | SSYT () x F(u/N) (3.1)
H2A

is defined as follows. Let T' € SVT(A) with leg excess /.

(1) Initialize Py =T and Qo = Fy, where Fy is the unique flagged increasing
tableau of shape \/A.

(2) For each 1 <14 < ¢, P; is obtained from P;_; by applying the uncrowding
operation. Let C be the cell in shape(P;)/shape(P;—1). If C' is in row r/,
then F; is obtained from F;_; by adding cell C with entry ' — r.

(3) Set UsyT(T') = (P, F) := (P, Fy).

It was proved in [3, Section 6] that Usyt in (3.1) is a bijection. Monical et
al. [13] proved that Usyt intertwines with the crystal operators on set-valued
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tableaux (see also [12]). A similar uncrowding algorithm for multiset-valued
tableaux was given in [8, Section 3.2].

3.2. Uncrowding Map on Hook-Valued Tableaux

In [8], the authors ask for an uncrowding map for hook-valued tableaux which
intertwines with the crystal operators. Here, we provide such an uncrowding
map by uncrowding the arm excess in a hook-valued tableaux to obtain a set-
valued tableaux. An alternative obtained by uncrowding the leg excess first is
given in Sect. 3.4.

Definition 3.2. The uncrowding bumping V,: HVT — HVT is defined by the
following algorithm:
(1) Initialize T as the input.
(2) If the arm excess of T equals zero, return T.
(3) Else, find the rightmost column that contains a cell with nonzero arm
excess. Within this column, find the cell with the largest value in its arm.
(In French notation, this is the topmost cell with nonzero arm excess in
the specified column.) Denote the row index and column index of this
cell by r and ¢, respectively. Denote the cell as (7, c), its rightmost arm
entry by a, and its largest leg entry by /.
(4) Look at the column to the right of (r,¢) (i.e., column ¢+ 1) and find the
smallest number that is greater than or equal to a.
e If no such number exists, attach an empty cell to the top of column
¢+ 1 and label the cell as (7,c+ 1), where 7 is its row index. Let k
be the empty character.
e If such a number exists, label the value as k£ and the cell containing
k as (7,c+ 1) where 7 is the cell’s row index.
We now break into cases:

(a) If 7 # r, then remove a from Ap(r,c), replace k with a, and attach
k to the arm of Ap (7, ¢+ 1).

(b) If # = r then remove (a,f] N Ly (r,¢) from Ly (r,c) where (a,f] =
{a+1,a+2,...,¢}, remove a from Ar(r,c), insert (a,?] N Lr(r,c)
into Lr(7, ¢ + 1), replace the hook entry of (7,¢ + 1) with a, and
attach k to Ap(7,c+1).

(5) Output the resulting tableau.

See Figs. 1 and 2 for illustration.

Lemma 3.3. The map V, is well defined. More precisely, forT € HVT, we have
Vo(T) € HVT.

Proof. Tt suffices to check that V} preserves the semistandardness condition of
both the entire hook-valued tableau and the filling within each cell. We break
into two cases depending on whether Step a or b in Definition 3.2 is applied.
Case 1 Assume Step a is applied. To verify semistandardness within each cell,
it suffices to check cells (r,¢) and (7,c¢ + 1). The semistandardness
within cell (r,c¢) is clearly preserved as the only change to the hook-
shaped tableau in cell (r, ¢) is that an entry was removed from Ar(r, ¢).
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FIGURE 1. When 7 # r. Left: (7,c¢ + 1) is a new cell; right:
(F,c+ 1) is an existing cell

Case 2

FIGURE 2. When 7 = r. Left: (r,c + 1) is a new cell; right:
(r,c+ 1) is an existing cell

We now check the semistandardness condition within cell (7, c¢+1). We
have that V), either created the cell (7,¢+ 1) and inserted the number
a in it or V, replaced k with a and appended k to the arm of cell
(7,c+1). In both cases, the tableau in cell (7,c+ 1) is a semistandard
hook-shaped tableau. In the second case, this is true, since k is weakly
greater than Hp(7, ¢+ 1) and k is the smallest number weakly greater
than a in column ¢ + 1.

We now check the semistandardness of the entire tableau. Note that
it suffices to check the semistandardness in row 7 and column ¢ + 1.
Since 7 < r, the semistandardness in row 7 is preserved as a is larger
than every number in (7, ¢) and k remains in the same cell. Also, the
semistandardness in column c+ 1 is preserved as k is chosen to be the
smallest number in column ¢ + 1 that is weakly greater than a.
Assume Step b is applied. The semistandardness within cell (r,c)
is clearly preserved as the only change to (r,c) is that entries from
Lr(r,c) and Ap(r,c) are removed. We now check the semistandard-
ness condition within cell (r,c + 1). If (a,f] N Ly(r,¢) = 0, then a is
weakly larger than all elements of (r,¢). In this case, the semistan-
dardness within cell (r,c¢ 4 1) follows from the argument in Case 1.
If (a,€) N Ly(r,c) # 0, then a is not weakly larger than all elements
of (r,c). After applying V, the semistandardness condition in the leg
of (r,e+ 1) will still hold as a < = < z for all x € (a,€] N Lr(r,c),
where z is the smallest value in Ly (r,c + 1). Similarly, the semistan-
dardness condition in the arm of (r,c¢+ 1) holds as a < k or k is the
empty character. Thus, the semistandardness condition in each cell is
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preserved. The semistandardness of row r is preserved as all numbers
strictly greater than a in (r, ¢) are moved to (r,c+1) along with a. The
semistandardness condition within column ¢ + 1 is preserved as every
number in (r 4+ 1,¢+ 1) is strictly greater than £ and every number in
(r —1,c¢+ 1) is strictly less than a.

O

Definition 3.4. The uncrowding insertion V: HVT — HVT is defined as V(T'
V{(T), where the integer d > 1 is minimal, such that shape(VE(T))/shape(V~
(1)) # 0 or VI(T) = Vy~H(T).

A column-flagged increasing tableau is a tableau whose transpose is a
flagged increasing tableau. Let F denote the set of all column-flagged in-
creasing tableaux. Let F(u/)\) denote the set of all column-flagged increasing
tableaux of shape pu/A.

[

Definition 3.5. Let 7' € HVT(\) with arm excess a. The uncrowding map
U: HVT(A) — | | SVT () x F(u/N)
7PN
is defined by the following algorithm:
(1) Let Py =T and let Qg be the column-flagged increasing tableau of shape
A/ A
(2) For 1 < i < a, let Py1 = V(P;). Let ¢ be the index of the rightmost
column of P; containing a cell with nonzero arm excess and let ¢ be the
column index of the cell shape(P;11)/shape(P;). Then, Q; 1 is obtained
from @; by appending the cell shape(P;11)/shape(P;) to Q; and filling
this cell with ¢ — c.
Define U(T) = (P(T),Q(T)) := (Pa, Qua)-

Ezample 3.6. Let T be the hook-valued tableau

8

67

)

4

233|66
2|7

1 |11(5

Then, we obtain the following sequence of tableaux Vi(T) for 0 <i<2=4d
when computing the first uncrowding insertion:

8 8 8
67 67 67
5 5 5
4 — 4 — |4 = V(7).
233|166 2336 2336
2 |7 2 |6 2 |6
1 [11/5 1 [11|57 1 |11|5|7
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Continuing with the remaining uncrowding insertions, we obtain the following
sequences of tableaux for the uncrowding map:

8 8 8
67 67 67
5 5 5
4 — |4 — |4 —
23366 233|6 233|6

2 |7 2 16 2|6
1 |11|5 1 |11}5|7 1 |1|1|5|7

8 8 18]
6 |7 6 |7 6|7
5 5 5
4 — 4 — 4 = P(T),
233|6 23(3|6 21313

2|6 2|6 2|6

1 |1|1|5|7 1 |1(1]5|7 1{1|1|5(6|7

Corollary 3.7. Let T € HVT. Then, P(T) is a set-valued tableau.

Proof. By Lemma 3.3 and Definition 3.4, we have that V(T') is a hook-valued
tableau. Note that if the arm excess of T' is nonzero, then the arm excess of
V(T) is one less than that of T. Since P(T) = V*(T'), where « is the arm
excess of T, we have that the arm excess of P(T) is zero. Thus, P(T) is a
set-valued tableau. g

Definition 3.8. Let 7' € HVT and let d be minimal, such that V(T) = V(T).
The insertion path p of T — V(T) is defined as follows:
o If d=0, set p=10.
e Otherwise, let (19, co) be the rightmost and topmost cell of T containing
a cell with nonzero arm excess. For all 1 < j < d, let ¢; = ¢op + j and
let 7; = 7 be 7 in Definition 3.2 when V, is applied to Vg_l(T). Set
p=((ro,co), (ri,c1),...,(ra,cq))-

Lemma 3.9. Let T € HVT. Then, Q(T) is a column-flagged increasing tableau.

Proof. By construction, the positive integer entries in column ¢ of Q(T') are at
most i—1. Let m be the smallest nonnegative integer, such that V"(T') = P(T).
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Let p' = ((r,cf), (ri,¢h), ..., (rh,,¢4)) for 0 < i < m be the insertion path
of VI(T) — Vi+(T). Since it < ¢} for all 0 < i < m, the entries in each
row of Q(T) are strictly increasing. To check that the entries in each column
of Q(T) are strictly increasing, it suffices to show that if cé‘H = ¢} then p'*!
lies weakly below p’. In other words, it suffices to check that cé“ = ¢} implies
that r;H < r§ for all 0 < j < d;. We prove this by induction on j. Note that
rott < rj by the definition of U. Assume by induction that 7’;“ < r%. This
implies that the a when applying V, to Vg (VH(T)) is weakly smaller than the
a when applying V, to VJ (V~!(T)). Thus, we must have r;ill <ri. O
3.3. Properties of the Uncrowding Map

Let T be a hook-valued tableau. Define R;(T) as the induced subword of R(T")
consisting only of the letters ¢ and ¢ 4 1. In the next lemma, we use the same
notation as in Definition 3.2. Furthermore, two words are Knuth equivalent if
one can be transformed to the other by a sequence of Knuth equivalences on
three consecutive letters

zzy = zxy forx <y < z, yrz =yzx forx <y <z

Lemma 3.10. For T € HVT, R,/(T) = R;,(W(T)) unless T satisfies one of the
following three conditions:

(a) a=1iora=i+1 and column ¢+ 1 contains both an i and an i+ 1,

(b) F=r,i€ (a,f]NLy(r,c), k=1, and column c+ 1 contains an i+ 1,

(¢) F=r,a=14,i+1¢€ (a,fNLy(r,c), and (r,c) contains another i besides
a.

Moreover, R;(T) is Knuth equivalent to R;(Vy(T)).

Proof. Let R;(T) = rira...7rm. We break into cases based on the value of a.
Case 1: Assume a # 7,37 + 1.

Assume Step a is applied by V. If k # 4,9+ 1, then R;(T) = R;(V(T)) as
the position of all letters ¢ and 7+ 1 remains the same. Let k = i. We have that
k is the only 4 in column ¢+ 1. Hence, when & gets bumped from L (7, ¢+ 1)
and appended to Ar(7,c+ 1), the relative position of k to the other letters 4
and ¢ + 1 in R;(T) does not change. Thus, R;(T) = R;,(Vs(T)). Let k =i+ 1.
Note that column ¢+ 1 cannot have a cell containing an ¢ as k is the smallest
number weakly greater than a. Hence, moving k from Ly (7, c+1) to Ap(7, c+1)
will not change R;(T'). Therefore, we once again have that R;(T) = R;(V,(T)).

Assume Step b is applied by V4. Counsider the subcase when (a,f] N
Lr(r,c) = 0. By a similar argument to the previous paragraph, we have that
R;(T) = R;(WV»(T)). Next, consider the subcase when i + 1 € (a, ] N Lyp(r,c).
This implies that a < ¢ and the only time ¢ + 1 occurs in column c¢ is in
Lr(r, c). Note that if an ¢ exists in column ¢, it must be contained in Ly (r, ).
We also have that &k > ¢+ 1 or k is the empty character and no cell in column
¢+ 1 contains an ¢. Thus, removing (a, ] N Lp(r,¢) from Ly (r,c), replacing
k with (a,€] N Lr(r,c) in Lr(r,c + 1), and appending k to Ap(r,c + 1) do
not change R;(T). Therefore, R;(T) = R;(Vy(T)). Let i € (a,€] N Lp(r,c)
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and i + 1 ¢ (a,¢] N Ly(r,c). Note that the only place ¢ + 1 can occur in col-
umn c is as Hp(r + 1,¢) and the only place i can occur in column c is in
Ly (r,c). This implies that removing (a,#] N Ly(r,¢) from Lp(r,c), replacing
k with (a,¢] NLy(r,c) in Ly(r,c + 1), and appending k to Ap(r,c + 1) will
not change R;(7T) unless both 7 + 1 and ¢ show up in column ¢ + 1. This can
only occur when k = ¢ which implies that R;(T) =ry...ii+1k...r, and
RWy(T))=r1...i4+1 10 k...ry. Wesee that R;(T) and R;(Vs(T)) only differ
by a Knuth relation implying that they are Knuth equivalent. Assume that
i,i+1¢ (a,f]NLp(r,c) # 0. If a > i+ 1 the positions of all letters ¢ and i + 1
remain the same after V, is applied. If a < i, then the positions of all letters
i and 7 4+ 1 also remain the same unless £k = 7 or k = ¢ + 1. In both of these
special subcases, it can be checked that still R;(T) = R;(Vs(T)).

Case 2: Assume a = i.

Assume Step a is applied by V,. If column ¢ + 1 does not contain both
an ¢ and an ¢ + 1, then we have R;(T) = R;(Vs(T)). However, if both an
¢ and an ¢ 4+ 1 are in column ¢ + 1, then R;(T) = ry...ii+ 14...r, and
Ri(WVy(T))=7r1...9+ 14 i...ry which are Knuth equivalent.

Assume Step b is applied by V4. Consider the subcase when (a,f] N
Lr(r,c¢) = 0. By a similar argument to the previous paragraph, we have that
Ri(T) = R;(Vs(T)) unless both an ¢ and an ¢+ 1 are in column ¢+ 1 in which
case R;(T) and R;(Vy(T)) are only Knuth equivalent. Consider the subcase
given by i + 1 € (a, ¢] N Lr(r,c). Note that no cell in column ¢+ 1 can contain
an 4, the only cell that could contain an ¢ + 1 in column ¢+ 1 is (r,c+ 1),
and the only cell containing letters i or ¢ + 1 in column c is (r,c¢). This im-
plies that it suffices to look at the changes to (r,c) and (r,c 4+ 1). We see
that R;(T) =r1...i4+ 1 §...iq...ry and R,(WV(T)) = rlu i+1la

v v—1
where v > 1 is the number of letters ¢ in cell (r,¢) including a. We see
that R;(T) and R;(V»(T')) are Knuth equivalent. Consider the subcase when
i+1¢ (a,f)NLp(r,c) # 0. We have that both ¢ and 7 + 1 cannot be in a cell
in column ¢+ 1 and an ¢ 4+ 1 cannot be in column c¢. Thus applying V; does
not change R;(T') giving us that R;(T) = R;(Vs(T)).
Case 3: Assume ¢ =4+ 1.

Assume Step a is applied by V,. If column ¢ + 1 does not contain both ¢
and ¢ + 1, then we have that R;(T) = R;(V,(T)). However, if both ¢ and i + 1
occur in column ¢+ 1, then R;(T) =r1...i+1i+14...7ry and R;(W(T)) =
ri...i+14i4+1...r, which are Knuth equivalent.

Assume Step b is applied by Vy. If (a,€] N Lyp(r,c) = 0, then R;(T) =
R;(Vy(T)) unless both ¢ and ¢ + 1 occur in column ¢ + 1. In this exceptional
case, we have that R;(T) and R;(V,(T)) are only Knuth equivalent by a similar
argument to the previous paragraph. If (a,f] N Ly(r,c) # 0, then &k > i+ 1 or
k is the empty character and no cell in column ¢ + 1 contains an ¢ + 1. Thus,
applying V,, does not change R;(T) giving us that R;(T) = R;(WVp(T)). O

Remark 3.11. In general, the full reading words are not Knuth equivalent un-
der the uncrowding map. For example, take the following hook-valued tableau
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T, which uncrowds to a set-valued tableau S:

5 1

T = —|2|3|5| = S.
215 1|2}4
12|4

The reading word changed from 4321254 to 2143254, which are not Knuth
equivalent.

Proposition 3.12. Let T € HVT.

(1) If fi(T) =0, then fi(P(T)) = 0.
(2) If e;(T) =0, then e;(P(T)) = 0.

Proof. Since P(T) = V;(T) for some s € N and Knuth equivalence is tran-
sitive, we have that R;(T") is Knuth equivalent to R;(P(T)) by the previous
lemma. As f;(T) = 0, we have that every ¢ in R;(T) is i-paired with an ¢ 4 1
to its left. This property is preserved under Knuth equivalence giving us that
fi(P(T)) = 0. The same reasoning implies (2). O

Lemma 3.13. Let T € HVT.

(1) If fi(T) # 0, then f;(Vo(T)) = Vo (fi(T)) # 0.
(2) If e;(T) # 0, then e;(Vy(T)) = Vp(e;(T)) # 0.

Proof. We are going to prove (1). Part (2) follows, since e; and f; are partial
inverses.
Let a, ¢, k, r, ¢, and 7 be defined as in Definition 3.2 when V), is applied

to T'. Similarly, define o/, ¢/, k', v, ¢/, and 7' for when V), is applied to f;(T).

Let Ri(T) = rira...rym and R;(WVo(T)) = rirh...7}, be the corresponding

reading words. Let (7, ¢) denote the cell containing the rightmost unpaired 4

in T, where 7 and ¢ are its row and column index, respectively. We break into

cases based on the position of (7,¢) to (r,c).

Case 1 Assume (7,¢) = (r,c¢). We break into subcases based on how f; acts

onT.
e Assume that (r + 1, ¢) contains an ¢ + 1.

As every entry in (r,¢) must be strictly smaller than the values in
(r+1,c¢) and (r,¢) must contain an i, we have that £ =i or a = 4. If
¢ = i, then ¢ is i-paired with the i+ 1 in (r+1, ¢). Hence, a is always
equal to ¢ and a must correspond to the rightmost unpaired i of T.
Thus, f; acts on T by removing a from (7, ¢) and appending an i+ 1
to Ar(r + 1,¢). Note that (a,€] N Ly(r,c¢) = 0 implying V} acts on
T by removing a from Arp(r,c), replacing k in (7, ¢+ 1) with a, and
appending k to Ar(7,c + 1) where 7 < r. We break into subcases
based on where the values of i and ¢+ 1 are in column c+ 1 utilizing
the fact that column ¢ + 1 cannot contain an ¢ without an ¢ + 1
(since the arm excess of cell (r+ 1, ¢) is zero and cell (r, ¢) contains
the rightmost unpaired 7).
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Assume that column c¢+1 does not contain an i. Since a corresponds
to the rightmost unpaired ¢ in T and column ¢+ 1 does not contain
an i, we have that the rightmost unpaired ¢ in V,(T) is precisely a
in the cell (7,c¢+ 1). Note that (7 + 1,¢ + 1) does not contain an
i+ 1in Vy(T) as k > i+ 1 or k is the empty character. Similarly,
we have that (7, ¢+ 2) does not contain an i. Thus, f; acts on V(7))
by changing a to an ¢+ 1 in (7, ¢+ 1). We now consider V,(f;(T)).
When applying V;, to f;(T), o' is precisely the ¢ + 1 appended to
Ar(r+1,c¢) and k' is the same as k. Since 7' = 7 < r 4+ 1, we have
that V;, acts on f;(T') by removing i+ 1 from Ay, (7)(r+1, ¢), replac-
ing k with an i + 1 in (7, c+1), and appending k to Ay, (7)(7,c+1).
We see that fi(Vy(T)) = Vs (fi(T)).

Assume that column ¢+ 1 contains both an ¢ and an ¢ + 1 in the
same cell. Note that this implies that k = 4. Since «a is the rightmost
unpaired ¢ in T and the only cell in column ¢+ 1 that contained an
i+ 1oraniis (f,c+ 1), we have that the rightmost unpaired 4 in
Vy(T) is the i appended to Ap(7,c+ 1). Since (7, c+ 1) contains an
1+1, we have that (7+1,c+1) cannot contain an ¢+ 1 and (7, c+2)
cannot contain an 4. Thus, f; acts on V,(T) by changing the i in
Ay, (1) (T, c+1) to an i + 1. We now consider Vy(f;(T")). When ap-
plying V, to f;(T), @’ is precisely the i + 1 appended to Ap(r+1,¢)
and k" is the i + 1 in (7,¢+ 1). Since # = 7 < r + 1, we have that
Vp acts on f;(T) by removing i + 1 from Ay, ) (r + 1, ¢), replacing
i+1in (7,c+1) with the i +1 from Ay, p)(r 41, ¢), and appending
an i+ 1 to Ay, (7, c+1). We see that f;(Vy(T)) = Vu(fi(T)).

Assume that column ¢+ 1 contains both an ¢ and an i+ 1 in different
cells. Note that this implies that k& = 4. Since a corresponds to the
rightmost unpaired i in R;(T) and the only ¢ + 1 and ¢ in column
¢+ 1 are in cells (7 + 1,¢+ 1) and (7, ¢ + 1), respectively, we have
that the rightmost unpaired ¢ in R;(V(T)) corresponds to the 4
appended to Ap (7, c+1). By assumption, we have that (7 +1,¢c+1)
contains an i + 1. Thus, f; acts on V,(T) by removing the i from
Ay, ) (7,c+ 1) and appending an i + 1 to Ay, () (7 + 1,c+1). We
now consider Vy,(f;(T)). When applying V, to f;(T), a’ is precisely
the ¢ + 1 appended to Ar(r + 1,¢) and k' is the i + 1 in cell (7 4+
1,e+1). If 7 = r+1, then i + 1 is weakly larger than every value in
(r+1,¢). Thus, either (a’, ']NLy,ry(r+1,¢) = 0 or 7 < r+41. This
implies that V}, acts on f;(T) by removing i +1 from A, ) (r+1,¢),
replacing the i+ 1 in Hy, (7) (741, ¢+ 1) with the i+ 1 removed from
As.(ry(r+1,c), and appending an i + 1 to Ay, () (7 + 1,c+1). We
see that fi(Ve(T)) = Vs (fi(T)).

Assume that (r+1, ¢) does not contain an i+1 and (r, c+1) contains
an i.
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Under these assumptions, we have that no cell in column ¢ can con-
tain an ¢ 4+ 1. This implies that column ¢+ 1 must contain an 7 + 1.
The cell (r+1, c+1) cannot have an i+1 as this would force (r+1, c)
to also have an i + 1. Thus, (r,¢ + 1) must contain an ¢ + 1 in its
leg. By our assumption, we have that f; acts on T by removing the
¢ from (r,c+ 1) and appending an i + 1 to Ly (r, ¢). We break into
subcases according to where the rightmost unpaired ¢ sits inside the
cell (r, ¢). If the rightmost unpaired ¢ is in Hy(r, ¢), then a > ¢ which
would either contradict the hook entry being the rightmost unpaired
i or cell (r,¢+ 1) containing an 4. Thus, we only need to consider
the subcases where the rightmost unpaired ¢ is either in the leg or
arm of (r, c).

Assume that the rightmost unpaired ¢ is in Ly (7, ¢) for this entire
paragraph. This implies that ¢ = 4. Since (r,c+ 1) contains an 1,
we have that ¢ < 4. If 7 < r, then V} acts on T by removing a
from (r,c), replacing k with a in (7,¢ + 1), and appending k to
Ar(7,c+ 1). Since a, k < i, we have that V, does not change posi-
tion of the rightmost unpaired i. Note that (r 4 1, ¢) still does not
contain an ¢ + 1, while (r, ¢+ 1) still contains an ¢. Thus, f; acts on
Vy(T') by removing the ¢ from (r,c + 1) and appending an i + 1 to
Ly, (1) (r, ¢). We now consider Vy(fi(T)). Note that (r',c’), a’, and
k' are the same as (r,c), a, and k, respectively. Thus, V, acts in
the same way as before. This gives us that f;(Vy(T)) = Vu(fi(T)).
If 7 = r, then k is precisely the ¢ in cell (r,c + 1). We see that
Vy acts on T by removing (a,i] N Ly(r,¢) from Ly(r, ¢) and a from
Ar(r, c), replacing k with ((a,i] N Ly (r,¢)) U{a}, and appending k
to Ar(r+1,c). Since there is an i 41 in Ly, (1) (r,c+ 1), we see that
the rightmost unpaired i in V,(T') is precisely &k in Ay, (7y(r,c + 1).
Note that (r + 1,¢ 4+ 1) does not contain an ¢ + 1 and (r,c¢ + 2)
does not contain an i, because (r,c+ 1) contains an i + 1. Thus,
fi acts on V,(T') by changing the i in Ay, ()(r,c + 1) to an i + 1.
We now consider V,(f;(T')). We have that o’ is the same as a and
k' are the ¢ + 1 in (r,c + 1). We have (a’,0'] N Ly, (1',c") =
{i + 1} U ((a,i] N Lp(r,c)). This implies that V, acts on f;(T) by
removing {i + 1} U ((a,4] N Lr(r,¢)) from Ly, 7)(r,c) and a from
Ag.(r)(r, c), replacing i 4 1 with {i + 1} U ((a,4] N Lzp(r,c)) U {a} in
(r,c+1), and appending an i + 1 to Ay, p)(r,c + 1). We see that
fiVe(T)) = Vo (fi(T)).

Assume that the rightmost unpaired 4 is in Ar(r,¢). This implies
that a = i and forces a to correspond to the rightmost unpaired 1.
We also have that k is the ¢ in (r,c¢ + 1). Since 4 is weakly greater
than all values in (r, ¢), we have that (a, ] N Lp(r,c¢) = (. Thus, V,
acts on T by removing a from (r, ¢), replacing k with a in (r,c+ 1),
and appending k to Ar(r,c+1). Since a was the rightmost unpaired
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tin T and cell (r,c+ 1) contains an ¢+ 1 in its leg, we have that the
rightmost unpaired i in Vy(T) is k in Ay, () (r,c+1). As i+ 1is in
(r,c+1), we have that (r+1, c+1) cannot contain an i+1 and (r, c+2)
cannot contain an 4. This implies that f; acts on V,(T) by changing
the i in Ay, (7)(7,c+ 1) to an i 4 1. We now consider Vy(fi(T)). We
have that a' is the same as a and &’ is equal to the i+ 1 in (r,c+1).
Note that (a’, '] N Lr(r,¢) = {i + 1}. This implies that V} acts on
fi(T) by removing i + 1 from Ly, (7y(r,c) and a from Ay, (7, c),
replacing the ¢ + 1 in (r,c¢ 4+ 1) with {i + 1,a}, and appending an
i+ 1to Ag, ) (r,c+1). We see that f;(Vo(T')) = Vu(fi(T)).
Assume that (r+1, ¢) does not contain an i+1 and (r, ¢c+1) does not
contain an ¢. We break into subcases based on where the rightmost
unpaired ¢ sits inside (r, c).

Assume that the rightmost unpaired ¢ is in the hook entry of (r,¢)
for the remainder of this paragraph. Note that this implies that
a > i and the rightmost unpaired ¢ in V,(T) is still the hook entry
of (r,c¢). We see that V, does not insert an ¢+ 1 into (r + 1,¢) nor
an 4 into (r,c¢+ 1). This implies that f; acts on T' and V,(T) in the
same way by changing the hook entry of (r,¢) into an ¢ + 1. Next,
we note that (',c’), o/, k', and (a',€'] N Ly, (1) (r',¢’) are the same
as (r,c), a, k, and (a,?] N Lr(r,c), respectively. Thus, V, acts on
T and f;(T) in the same manner without affecting the hook entry
of (r,c¢). Therefore, we have that the actions of f; and V}, on T are
independent and f;(Vy(T)) = Vo (fi(T)).

Assume that the rightmost unpaired i is in the leg of (r,¢) for the
remainder of this paragraph. This implies that a # i. First, we as-
sume that a > i or 7 < r. Under this extra assumption, we observe
that the action of V}, does not change the position of the rightmost
unpaired 4. Also, V, does not insert an i + 1 into (r + 1,¢) nor an 4
into (r,c+ 1). We see that f; acts on T and V,(T') in the same way
by changing the ¢ in the leg of (7, ¢) into an i+ 1. Next, we note that
(r',cd), @', and k' are the same as (r,c), a, and k, respectively. If
a >4, we have that a > i + 1, implying that (o', '] N Ly, (1, ¢) =
(a,f] MLz (r,c). Thus, either (a’, '] Ly, 1y (', ¢") = (a, €] N Ly(r,c)
or 7 < r. This implies that V}, acts on T and f;(T) in the same man-
ner and does not affect the ¢ or i + 1 in the leg of (r, ¢). Therefore,
we have that the actions of f; and V}, on T are independent and
FiVe(T)) = Vu(fi(T)). Next, assume that 7 = r and a < i. This
implies that (a,€] N Lr(r,c) # @ as ¢ € (a,€] N Ly(r,c). We have
that V, acts on T' by removing (a,¢] N Lr(r,¢) from Ly(r,¢) and a
from Ap(r,c), replacing k with ((a,l] N Ly(r,¢)) U{a} in (r,c+ 1),
and appending k to Ar(r,c + 1). By assumption, there was no i in
(r,c+ 1) to begin with. Thus, we have that the rightmost unpaired
i of Vp(T) is the 7 in (r,c + 1) that replaced k. Since k > i + 1
or k is the empty character, we have that the cell (r + 1,¢ + 1)
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does not contain an i + 1 and the cell (r,c + 2) does not contain
an i. Hence, f; acts on V(T') by replacing the i in Ly, (p)(r,c+ 1)
with an ¢ + 1. We now consider Vy(f;(T')). We have that f; acts
on T by changing the ¢ in Ly(r,¢) to an ¢ + 1. We see that o’ and
k' are the same as a and k, respectively. Since ¢ > a, we have that
i+1 > a or in other words i+1 € (a’, ¢]NLr(r, ¢). This implies that
(@', 0']NLs, ) (r', ) = (((a', £']NLp(r, ¢))U{i+1}) —{i}. We have V,
acts on f;(T') by removing (a', £'| Ly, (1 (7, c) from Ly, (7y(r,c) and a
from Ay, ) (r, c), replacing k with (a', £'|NLy, (7 (r, ¢) in (r,c+1), and
appending k to Ay, (r)(r,c+1). We see that f;(Vo(T)) = Vu(fi(T)).

Assume that the rightmost unpaired ¢ is in Ap(r,¢) and 7 < r or
(a,€)NLy(r,c) = 0 for this entire paragraph. Under this assumption,
fi acts on T by changing the rightmost ¢ in the arm of (r,¢) to an
i+1. Also, V, acts on T by removing a from Ar(r,c), replacing & in
(7, ¢+1) with a, and appending k to Ap (7, c+1). First, we make the
additional assumption that ¢ < a. Since we assume the rightmost
unpaired ¢ is in the arm of (r,¢) and i < a, we have the rightmost
unpaired 4 in V4(T) is in the same position as in T. Note that the
cell (r + 1,¢) still does not contain an 7 + 1 and the cell (r,c+ 1)
still does not contain an i. Thus, we have that f; acts on V,(T) by
changing the rightmost ¢ in Ay, (7, ¢) into an ¢ + 1. We now consider
Vu(fi(T)). We see that o’ and k' are the same as a and k, respec-
tively. This implies that V, acts on f;(T) by removing a from (r, c),
replacing k with a in (7, ¢), and appending k to Ay, (7 (7, c+1). We
see that f;(Vs(T)) = Vu(fi(T)). Next, we make the assumption that
a = 4 and column ¢+ 1 does not contain both an ¢ and an ¢+ 1. We
have that the rightmost unpaired i in V;,(T) is precisely the ¢ that
replaced k in (7, c+1). We also have that k > i+1 or k is the empty
character, implying that the cell (7 + 1,c+ 1) does not contain an
i+ 1 and the cell (7, ¢+ 2) does not contain an ¢. This implies that
fi acts on V(T by changing the ¢ in L:;b(T)(ﬂ c+1)toani+1. We
now consider Vy(f;(T")). We see that a’ is the ¢ + 1 in (r,¢) created
by applying f; and &’ is the same as k. Thus, V, acts on f;(T) by
removing the i+ 1 from (r, ¢), replacing k with an ¢+ 1 in (7, ¢), and
appending k to Ay, () (7, c+1). We see that f;(Vo(T)) = Vu(fi(T)).
Next, we assume that a = ¢ and column ¢ + 1 contains both an 4
and an ¢ 4+ 1 in the same cell. Note that this implies that £ = i.
Since a corresponded to the rightmost unpaired 7 in 7" and the only
cell in column ¢ + 1 that contains an ¢ + 1 or an 4 is (7,c + 1), we
have that the rightmost unpaired i in V;,(T) corresponds to the 4
appended to Ap(7, ¢+ 1). Since (7, ¢+ 1) contains an ¢+ 1 in Vy(T),
we have that (7 + 1,¢ + 1) cannot contain an ¢ + 1 and (7, ¢ + 2)
cannot contain an i. Thus, f; acts on Vu(T) by changing the i in
Ay, (1) (T, c+1) to an i+ 1. We now consider V,(f;(1')). We see that
a’ is the i + 1 in (r, ¢) obtained after applying f; and &’ is the i + 1
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in cell (7,c+1). This implies that V}, acts on f;(T") by removing the
i+1 from (r, ¢), replacing k' with an i+1 in (7, ¢+1), and appending
k" to Af,ry(F,c +1). We see that f;(Vy(T)) = Vo(fi(T)). Finally,
we make the assumption that a = ¢ and column ¢+ 1 contains both
an ¢ and an ¢ + 1 but in different cells. We once again have that
k = i, but now we have that (7 +1,c+1) contains an i+ 1. We have
that the rightmost unpaired i in V,(T) is the i that was appended to
Ar(7,c+1). Since (7+1,c+1) contains an i+ 1, we have that f; acts
on V,(T') by removing the i from Ay, (7y(7, ¢+ 1) and appending an
i+1to Ay, () (7+1,c+1). We now consider V,(f;(T)). We see that
a' is the i +1 in (r, ¢) obtained after applying f; and k' the i + 1 in
cell (7+1,c+1). This implies that V, acts on f;(T") by removing the
i+ 1 from (r,¢), replacing k' with an i+ 1 in (7 4+ 1,¢+ 1), and ap-
pending k" to Ay, () (F+1,c+1). We see that f;(Vo(T')) = Vu(fi(T)).

Assume that the rightmost unpaired ¢ is in the arm of (r,¢), 7 = r,
and (a,f] N Lr(r,c) # O for this entire paragraph. First, we make
the additional assumption that ¢ < a. This gives us that V,(T) is
attained from T by removing (a, £]NLr(r, ¢) from Lz (r, ¢) and a from
Ar(r, c), replacing k in cell (r,c + 1) with ((a,€] N Ly(r,c)) U {a},
and appending k to Ap(r,c + 1). Since k,a > i, we have that the
rightmost unpaired 7 in V,(T') remains the same as in 7. We also
have that the cell (r + 1,¢) does not contain an 7 + 1 and the cell
(r,c+ 1) does not contain an i. Thus, f; acts on V,(T) by changing
the rightmost i in Ay, (7)(, ¢) to an i+1. We now consider V,(f;(T')).
We have that f; acts on T' by changing the rightmost ¢ in Ar(r, c¢) to
ani+1. We see that o, k', and (a’,I']NLy, (1) (r', ¢') are the same as a,
k, and (a, {]NLp(r, ¢), respectively. This implies that V}, acts on f;(T')
by removing (a, £] Lz (r, c) from Ly, ¢7y(r, c) and a from Ay, (7, c),
replacing k in cell (r, c+1) with ((a,]NLr(r, ¢))U{a}, and appending
kto Agry(r,c+1). We see that f;(Vy(T)) = Vu(fi(T)). Next, we
assume that a = ¢ and (r,c¢) contains an i + 1. Since a = %, the
i+ 1in (r,c¢) must be in its leg. Also as a is the rightmost unpaired
i of T, we must have that (r,c) contains another i besides a. This
gives us that V, (7)) is attained from T by removing (a, ¢] N Ly (r, ¢)
from Ly (r,c) and a from Ar(r,c), replacing k in cell (r,c+ 1) with
((a, £ N Lp(r,c)) U{a}, and appending k to Ar(r,c+ 1). Note that
the ¢ inserted into (r,c + 1) becomes i-paired, while an ¢ in (r,c)
becomes unpaired. This implies that the rightmost unpaired ¢ in
Vy(T) still sits in the cell (r,¢). We see that the cell (r 4 1,¢) still
does not contain an i + 1; however, the cell (r,c+ 1) now contains
an ¢. This implies that f; acts on V4(T') by removing the ¢ from
the cell (r,c + 1) and appending an i + 1 to Ly, (p)(r,c). We now
consider V,(f;(T)). We have that f; acts on T by changing a into
an ¢+ 1. We have that a’ is the 7 + 1 obtained from applying f; and
k' is the same as k. We see that (a’,¢'] N Ly, 7y (r', ') is the same as
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Case 2

Case 3

(a, €] N Lp(r, ) excluding the i + 1. We have that V,, acts on f;(T)
by removing (a’,¢'] N Ly, ¢y (1, ") from Ly, py(r,c) and i 4 1 from
Ay cry(r,c), leaving the i + 1 in Ly, (1) (r, ), replacing k in (r,c+ 1)
with ((a/, €']NLy, 1y (1, ¢'))U{a’}, and appending k to Ay, (1 (1, c+1).
We see that f;(Vp(T)) = Vu(fi(T)). Finally, we assume that a = 4
and i+ 1 is not in the cell (r, ¢). This gives us that V,(T') is attained
from T by removing (a, {]NLr(r, ¢) from Ly (r, ¢) and a from Ar(r, ¢),
replacing k in cell (r, c+1) with ((a, £JNLr(r, ¢))U{a}, and appending
k to Ar(r,c+1). Since k > j > i+ 1 for all j € (a,€] N Lr(r,c),
we have that the ¢ inserted into the cell (r,c+ 1) is the rightmost
unpaired ¢ in V,(7'). Note that the cell (r+1, c+1) does not contain
an ¢ + 1 and the cell (r,c+ 2) does not contain an i. Thus, f; acts
on V(T by changing the ¢ in (r,c—+1) to an i+ 1. We now consider
Vi (fi(T)). We have that f; acts on T by changing a into an i + 1.
We have that o’ is the ¢ + 1 obtained from applying f; and & is
the same as k. We see that (a/,¢'] N Ly, (r',¢") = (a, €] N Lp(r,c).
We have that V4 acts on f;(T") by removing (a,¢] N Lr(r,¢) from
Ly, (r)(r,c) and i + 1 from Ay, (p)(r, c), replacing k in (r,c + 1) with
((a,q]NLy(r,c)) U{a’}, and appending k to Ay, (ry(r,c+1). We see
that fi(V(T)) = Vy(fi(T)).
Assume that 7+ < r and ¢ = c.
Note that ¢ > 4. By Lemma 3.10, we have that R;(T) = R;(V(T))
unless ¢ = ¢ + 1 and column ¢ + 1 contains both an ¢ and an ¢ + 1.
However, even in this special case, we see that the rightmost unpaired
i of V,(T') is in the same position as the rightmost unpaired 7 of T
We also see that Vi,(T') does not change whether or not cell (7 + 1, ¢)
contains an ¢+ 1 and whether or not cell (#,c+ 1) contains an ¢. Thus,
fi acts on the same ¢ and in the same way for both 7" and V,(T'). Since
a > i, we have that k" is the same as k. Note that the only way for
fi to affect the cell (r,¢) in T is if # = r — 1 and (r,¢) contains an
i+ 1. However, even in this special case, we see that (r,¢’), a’, ', and
(a’, '] N Ly ry(r',c) are the same as (r,c), a, £, and (a,€] N Ly (r,c).
Thus, V,, acts on T' and f;(T") in the same way. Therefore, we have
that the actions of f; and V, on T are independent and f;(Vp(T)) =
Vo(fi(T)). 3
Assume that ¢ < c. Let ¢ denote the rightmost unpaired i of T'. From
the proof of Lemma 3.10, we have that V, does not change whether or
not the 4’s to the right of ¢ in R;(T") are i-paired. Thus, the rightmost
unpaired ¢ in R;(T) and R;(Vs(T)) are in the same position. As V)
does not affect any column to the left of column ¢, we have that the
rightmost unpaired ¢ for V,(T) is in the same position as the rightmost
unpaired ¢ for 7T'. Note that V), also does not affect whether or not cell
(7+1, ¢) contains an i+ 1 and whether or not cell (7, ¢+1) contains an i.
Thus, f; acts on the rightmost unpaired 7 in 7" and V,(7T') in exactly the
same way. Next, we note that (r',c’), a/, k', and (a’,€'] "Ly, (1 (1, )
are the same as (r,c), a, k, and (a,?] N Ly(r,¢), respectively. Thus,
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V, acts on T and f;(T") in the same way. Therefore, we have that the
actions of f; and V, on T are independent and f;(Vy(T)) = Vo (fi(T)).
Assume that # < r and ¢ =c+ 1.

Under this assumption, we have that column ¢ 4+ 1 does not contain

an i+ 1 and a # i + 1, since the cells in column ¢ + 1 do not contain

any arms. We break into subcases.

e Assume that k # ¢. This implies that the rightmost unpaired i in
Vy(T) is in the same position as the rightmost unpaired ¢ in 7. We
see that V, does not change whether or not cell (#+1, c+1) contains
an i+ 1 and whether or not cell (7, ¢c+2) contains an ¢. Thus, f; acts
on the rightmost unpaired i in T and V;,(T) in exactly the same way.
We also observe that (r',c'), o', ¢/, k', and (a’, '] "Ly, ()(1', ') are
the same as a, £, k, and (a, £]NLy, 1) (r, ¢), respectively. Thus, V; acts
on T and f;(T) in the same way. Therefore, we have that the actions
of f; and V, on T are independent and f;(Vp(T)) = Vu(fi(T)).

e Assume that k = i. We see that the rightmost unpaired ¢ in V,(T) is
the ¢ that was appended to Ar (7, c+1). Note that V, does not change
whether or not cell (# 4+ 1,¢+ 1) contains an ¢ + 1 and whether or
not cell (7, ¢+ 2) contains an i. We first make the extra assumption
that (7,c¢+2) in T contains an 4. This implies that f; acts on V4, (T)
and T in the same way by removing the ¢ from the hook entry of
(#,¢+ 2) and appending an i + 1 to the leg of (7,¢ + 1). We also
have that (r',c’), o', £, k', and (a', '] N Ly, (7)(r’,c’) are equal to
(r,¢), a, £, k, and (a,£] "Ly, (7y(r,c), respectively. Thus, V} acts on
T and f;(T) in the same way. Therefore, we have that the actions
of f; and V, on T are independent and f;(Vy(T)) = Vu(fi(T)). We
now assume that (7, ¢+ 2) does not contain an ¢. This implies that
fi acts on V(T') by changing the i in Ay, (p)(7,c+ 1) to an i + 1
and acts on 7" similarly by changing the i in Ly, (7)(7, ¢+ 1) to an
i+ 1. Note that (+',c'), o', ¢, and (a’,€'] N Ly, () (1, ") are equal
to (r,¢), a, £, and (a,f] N Ly, (7)(r, c), respectively, while &’ is the
i+ 1in Ly, (1) (7, ¢+ 1). Thus, besides the value of the number that
is bumped from the leg of (7,¢+ 1) to its arm, we have V), acts on
T and f;(T) in the same way. Looking at f;(Vp(T)) and Vi (f:(T)),
we see that f;(Vo(T)) = Vo (fi(T)).

Assume that # > r and ¢ = ¢ or ¢+ 1. Under this assumption, we have

that V}, does not change the cells (7, é), (41, ¢), and (7, é+1). We also

have that R;(T) = R;(Vs(T)), implying that the rightmost unpaired

i in Vu(T) is in the same position as the rightmost unpaired ¢ in 7T

Thus, f; acts on the rightmost unpaired ¢ in V,(T') and T in the same

way. Note that i + 1 cannot be in column ¢, implying that f; can only

make changes to the legs and hook entries of (7, ¢) and (7,é41). Since
these changes only affect the legs and hook entries of cells outside of
the possible cells that V, can change, we have that V, acts on T and
fi(T) in the same way. Therefore, we have that the actions of f; and
Vy on T are independent and f;(Vp(T')) = Vs (fi(T)).
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Case 6 Assume that ¢ > c+2. Let ¢ denote the rightmost unpaired i of T'. From
the proof of Lemma 3.10, we have that V, does not change whether or
not the i+1’s to the left of 7 are i-paired. Thus, the rightmost unpaired
iin R;(T) and R;(V(T)) are in the same position. As V}, does not affect
any column to the right of column ¢+ 1, we have that the rightmost
unpaired ¢ for V,(T') is in the same position as the rightmost unpaired
i for T. Note that V, also does not affect whether or not cell (741, ¢)
contains an i+ 1 and whether or not cell (7, ¢+ 1) contains an i. Since
the cells that f; and V} could change are different and the rightmost
unpaired ¢ does not change, we have that the actions of f; and V, on
T are independent and f;(Vo(T)) = Vi (fi(T)).

O

Theorem 3.14. Let T € HVT.

(1) If fi(T) # 0, we have fi(P(T)) = P(fi(T)) and Q(T) = Q(fi(T)).
(2) If ei(T) # 0, we have e;(P(T)) = P(ei(T)) and Q(T) = Q(ei(T)).

Proof. Part (2) follows from part (1), since e; and f; are partial inverse. We
prove part (1) here.

Let T € HVT with arm excess «, such that f;(T) # 0 for some 4. Then,
fi(P(T)) = P(fi(T)) follows from Lemma 3.13, as P(T) is obtained by succes-
sive applications of V on T and each application of V is a string of applications
of Vb.

Since crystal operators do not change arm excess, we may employ the
notation in Definition 3.5 and denote the pair of insertion and recording
tableaux produced at the jth step for 0 < 57 < « of the uncrowding map
U for T and f;(T) as (P;(T),Q;(T)) and (P;(fi(T)),Q;(fi(T))), respectively.
As crystal operators do not change the shape of T', we have shape(P;(f;T)) =
shape(f;(P;(T))) = shape(P;(T)) for all 0 < j < o. Hence

shape(P;11(T))/shape(P;(T)) = shape(P;11(fi(T)))/shape(P;(fi(T)))
foral0<j<a-1. (3.2)

Next, we show Q;(T) = Q;(fi(T)) for all 0 < a by induction.
When j = 0, Qo(T) = Qo(fi(T)), since shape(FPo(T)) pe(Po(fi(T))) =
shape(T).

Suppose Q;(T) = Q;(f:(T)) for a given j > 0. It suffices to show that
the cells

shape(Q;+1(T))/shape(Q;(T)) = shape(P;11(T'))/shape(P;(T’)) and
shape(Q;1+1(fi(T)))/shape(Q;(fi(T))) = shape(P;+1(fi(T)))/shape(F; (fi(T)))
in Qj41(T) and Q;4+1(fi(T)) are at the same position with the same entry.
By (3.2), the cells are in the same position, say in column ¢é. By Definition 2.5,
fi does not move elements in the arm to a different column, so the columns
in which we start the uncrowding insertion V on P;(T) and P;(f;(T)) are the
same, say c, by Definition 3.5. Hence, the cells shape(Q;+1(T))/shape(Q;(T))
and shape(Q;41(fi(T)))/shape(Q;(fi(T))) are at the same position with entry
¢ — c. The theorem follows. O

Jj <
= sha
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Hawkes and Scrimshaw [8, Theorem 4.6] proved that HVT™ () is a Stem-
bridge crystal by checking the Stembridge axioms. This also follows directly
from our analysis above.

Corollary 3.15. The crystal HVT™(\) of Definition 2.5 is a Stembridge crystal
of type Apm—1.

Proof. According to [13], SVT™(u) is a Stembridge crystal of type A,,—1. By
Theorem 3.14, the map

U HVT™(A) — | | SVT™ (1) x Fp/N),
HOA

is a strict crystal morphism (see, for example, [2, Chapter 2]). The statement
follows. O

3.4. Uncrowding Map on Multiset-Valued Tableaux

The uncrowding map on hook-valued tableaux described above turns out to
be a generalization of the uncrowding map on multiset-valued tableaux by
Hawkes and Scrimshaw [8, Section 3.2]. We will prove that this is indeed the
case in this section. Let us recall the definition of the uncrowding map in [8,
Section 3.2].

Definition 3.16. Let 7' € MVT()). The uncrowding map

T:MVT(A) — | | SSYT (1) x F(u/A)
H2A

sends T' to a pair of tableaux using the following algorithm:

(1) Set Uy, 41 = 0 and Fy, 41 be the unique column-flagged increasing tableau
of shape 0/0.

(2) Let 1 < k < )\ and assume that the pair (Ugy1, Fi11) is defined. The
pair (Ug, Fy,) is defined recursively from (U1, F+1) using the following
two steps:

(a) Define Uy as the RSK row insertion tableau from the word

R(Cy)R(Cr1) -+ R(Cy,),

where Cj is the jth column of T for every 1 < j < A;. In other words,
if we denote by T the tableau formed by the columns weakly to the
right of the kth column of T', Uy, is obtained by performing the RSK row
insertion using the column reading word of 1.

(b) Form the tableau F} of shape shape(Uy)/shape(T>x) as follows. Shift
Fi11 by one column to the right and fill the boxes in the same positions
into Fy; for every unfilled box in the shape shape(Uy)/shape(Ugy1), label
each box in column ¢ with entry ¢ — 1.

Define Y(T') = (U, F) := (Uy, F1).
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Ezxample 3.17. Let T be the multiset-valued tableau

45

233|345
T =

1 (11| 4

Then, we obtain the following pairs of tableaux for the uncrowding map T:

(Us, Fy) = (0,0)

(U, Py = ( _)

(U2, F2) = 1)1
0L F) = |t — (U, F) = 1(T).
ik 3]s ]

Proposition 3.18. Let T' € MVT(X). Then, U(T) = Y(T). In other words, the
uncrowding map as defined in Definition 3.5 is equivalent to the uncrowding
map of Definition 3.16 in [8, Section 3.2].

Proof. Recall from Definition 3.5 that the pair of uncrowding and recording
tableaux for U(T') is denoted by (P(T),Q(T)) = U(T). Similarly, let us denote
(U(T), F(T)) := X(T).

Assume that S € MVT(A) is highest weight, that is, e;(S) = 0 for ¢ > 1.
By [8, Proposition 3.10], row ¢ of S only contains the letter ¢. Thus, its weight is
some partition p = (u1, p2, ..., te) if A = (A1, A2, ..., A¢). By Proposition 3.12
and Theorem 3.14, P(S) € SSYT is highest weight. As weights of tableaux are
preserved under uncrowding, the weight of P(S) is equal to p. By a similar
argument using [8, Theorem 3.17], U(S) € SSYT is also highest weight with
weight p. Since highest weight semistandard Young tableaux are uniquely de-
termined by their weights, we have P(S) = U(S5).

Recall that as long as f;T # 0 for T € MVT(A), we have U(f;T) =
fi:U(T) by [8, Theorem 3.17] and P(f;T) = f;P(T) by Theorem 3.14. Now,
let T € MVT(A) be arbitrary. Then, T = f;, --- fi, (S) for some sequence of
i1,...,ix and S highest weight. Hence

P(T) = P(fi, - firS) = fi, -+ fi, P(S) = fir -+ fiy
U(S) =U(fi, - i, 5) = U(T).

It remains to show that Q(T) = F(T) for all T € MVT()). To do this,
we show that the newly created boxes of the uncrowding map up to a specified
column in Definition 3.16 are in the same positions as those for the uncrowding
insertion in Definition 3.5. For every Y € MVT(u) and for every 1 < j < pg,
denote by Y>; the tableau formed by the rightmost j columns of Y; here,
Y> 41 4+1 is the empty tableau.
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Let T' € MVT(A) be arbitrary. For 1 < k < A\ +1, let P®) be the tableau
obtained by performing the uncrowding map U on T on the columns from
right to left up to and including the kth column of T’; here, PG1+1) = T,
In other words, P*) = V@ (T) as in Definition 3.4, where ay is the arm ex-
cess of T>j. As the entries to the left of column k of T" are untouched by the
uncrowding insertion in Definition 3.4, for every 1 < k < A\; + 1, we have
(PH))sy = P(Tsy) = U(Tsg). It follows that for every 1 < k < Ay, up
to horizontal shifts, the newly formed boxes in shape(P¥))/shape(P*+1) =
shape[(P*))>x11]/shape[(P*+ V)51 11] and  shape([U(T>1)]>k+1)/shape([U
(T>k+1)]>k+1) are in the same positions. Since the entries in these boxes both
record the difference in column indices relative to the kth column for each
1 < k < A1 and since the recording tableaux for both maps are formed from
the union of these boxes, we conclude that Q(T) = F(T), completing the
proof. O

3.5. Crowding Map

In this section, we give a description of the “inverse” of the uncrowding map.

We begin by introducing some notation. Let F' € F with e entries. For
each cell (r,¢) in F with entry F(r,c), define the corresponding destination
column to be d(r,¢) = ¢ — F(r,c¢). Define the crowding order on F' by ordering
all the cells in F' with a filling, first determined by their destination column
(smallest to largest) and then by column index (largest to smallest). Denote
the order by (r1,¢1), (re,c2),...,(re,ce). Set a(F) = (a1,a3,...,a.), where
a; = F(r;,¢;). Let the arm excess for a column of a hook-valued tableau be
the sum of arm excesses of all its cells.

Definition 3.19. Let h € HVT and let (r,¢) be a cell in A with ¢ > 1 and with
at most one element in Ay (r,c). If Ay (r,c) is empty, we also require that the
cell (r,c) is a corner cell in h. Then, we define the crowding bumping C, on
the pair [h, (r,¢)] by the following algorithm:

(1) If Agp(r,c) is nonempty, set m to be the only element in Ap(r,c) and
b = max{z € L (r,c¢) | z < m}. Otherwise, set m = Hy(r,c) and b =
max(L} (r, c)).

(2) Find the largest r’, such that Hp(r',c—1) < b. If ' = r, set ¢ = Hp(r, ¢).
Otherwise, set ¢ = b. In either case, append ¢ to Ap(r',c— 1).

(3) (a) If 7’ from Step 2 equals r, perform either of the following:

(i) If Ap(r,c) is nonempty, move the set {x € Ly(r,c) | ¢ < z < m}
from Ly (7, ¢) to Lp(r’,c— 1) and keep it strictly increasing. Remove
m from Ay (r, c) and set Hy(r,c) = m.

(ii) Otherwise, Ay (r, c) is empty, so move Ly (r,¢) into Lyp(r', ¢ — 1) and
keep it to be strictly increasing. Remove cell (r, ¢) from h.

(b) Otherwise, 1’ # r and perform either of the following:

(i) Suppose that A(r,c) is nonempty. Replace q in L} (r,c) with m.
Remove m from Ap(r, ¢).
(i) If instead Ap(r, c) is empty, then remove cell (r,¢) from h.
Denote the resulting (not necessarily semistandard) hook-valued tableau by
K. We write Cy([h, (r,¢)]) = [F/, (r',c — 1)]. We also define the projections p;
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S
Q
o
* o
Q
o
*

——lgm ——q|m ——m

FIGURE 3. When ' = r. Left: (i) An(r,c) # 0. Right: (ii)
Ah (Tv C) = @

|
S
|
3

FIGURE 4. When 7' # r. Left: Ap(r,c) # 0. Right:
Ah(T,C):@

and py by pr 0 Co([h, (1, ¢)]) = b’ and py 0 Cy([h, (r, )]) = (', c— 1). See Figs. 3
and 4 for illustration.

Example 3.20. We compute Cp, in two examples

5

7(171)] = [T/v(lal)]'

~
I
DN W = Ot
)
b=l
—~
~
—
l—‘
[N}
~—
=
I
Ut

11

Remark 3.21. In Definition 3.19,

e if ' =1, then A’ is always semistandard and has the same weight as h;

e if ' £ r and Ap(r,c) is empty, then h' might have fewer letters than
h. In Example 3.20, S contains 5 letters, while S’ only contains 4. This
happens precisely when L, (r, ¢) is nonempty.

In principle, the arm in cell (7', ¢ — 1) could be greater than the ¢ that is to be
inserted. However, we only consider the cases as defined in the order described
by the next paragraph. We refer to Proposition 3.27 which states that all
tableaux we deal with in this section are indeed semistandard hook-valued
tableaux.
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Let (S, F) € SVT(u) x F(u/A) with crowding order (r1,¢1), (12, ¢2), . . .,
(re,ce) and a(F) = (o1, 2,...,a.). Forall0 < j<e—1land foral 0 <s <
aj41, define Tj(s) recursively by setting TO(O) := S and

7). _ p1o Cb([Tj(Sil% (rj+1,¢j41)]) when s >0,
s Tg(fi) when s =0 and 5 > 0.

Additionally, define T, := T3
Thus, we obtain the following sequence:

§ =0 PG, g PeGE o) PGP peG )

(r1,c1) ! (r2,c2) 2 (rses)  (rece)

Remark 3.22. The tableaux Tj(s) are well defined. We check the conditions in

Definition 3.19. Let h = Tj(s) for some 0 < j < e—1 and for some 0 < s < 41,
with cell (r, c).

e Since F € F, we always have ¢ > 1.

e The case that Ay (r,¢) is empty can only occur in Tj(g)l for some j > 0.
In this case, (r,¢) = (r;,¢;), which is a corner cell.
(0)

T;7. We first delete cell (r;,c;),

cd
e Consider the a; steps in TJ(O)1 RERACIN

(rj:ci)
which has no arm. Then, at evegry] step after that, we move leftward
one column at a time. Before we reach column d(r;, ¢;), there is exactly
one column with arm excess being 1 and the rest has zero arm excess
among columns to the right of d(r;, ¢;), since recall that the cells (75, ¢;)
are ordered from smallest to largest destination column. Once we reach
column d(r}, ¢;), the cell there may contain more than one arm element,
but we then go to (11, ¢j4+1), which is a corner cell instead. Thus, there
is at most one element in Ay (r, c).

Definition 3.23. With the same notation as above, define the insertion path of
Tj(g)l — Tj(o) for 1 <j<etobe

0 0 1 1 a; aj
path; i= (", el (1 ). () ) )

where (rj(-s), cg.s)) ‘=1pg o Cg([Tj(E)l, (rj,ci)]) for 0 < s < o .

Ezample 3.24. Consider the following pair of tableaux (S, F') € HVT((5, 3,2))x

F((5,3,2)/(3,2,1))):
5]
4

213

— N

11
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The crowding order is (1,5),(1,4), (3,2), (2, 3). The insertion path and desti-
nation column for each of them are

pathl - ((1 5) (1 4) (2 3)v (272)7 (2a 1))a d(175) = 1a
path2 - ((1 4) (2 3)a (272)7 (?’v 1))a d(174) = ]-a
path; = ((3,2),(3,1)), d(3,2) =1,
path4 - ((2a 3)7 (2? 2))7 d(273) =2
We obtain the sequence from the algorithm
5] 1 5 5 5 5
415 4 |5 4415 445 445
4 p10Cit 4 p10C3 4 p10Cyh 4 p10Cyp 4
2(3(3 (1,5 [23|3|4 (1,4) [23|13|4| ,2) |23 |3|4] (2,3 |23 |34
2 2 2 2 2
1|1(1|4|4 1 [1{1|4 1 |11 1 (11 1 (1|1

Lemma 3.25. If d(r;,cj) = d(rj41,¢j41), then path; , is weakly above path;.

Proof. By the definition of crowding order, d(rj,¢;) = d(rj+1,¢j41) implies

o (s+z5) _ _ —
¢j > ¢jq1. Set z; := ¢j —¢j41. Then, we have c; =Cj—2—S=Cjy1—8=

0(21 for 0 <'s < aj41. We need to show that rj(-j_)l > T§-S+Zj) for 0 < s < ajyr1.

Computing T j(i)l from Tj(izl)

and Step (2) of Definition 3.19 by b(‘s) and q(-s).

Since (7j41,¢j4+1) is a corner cell in T( 1), we have 7"(+)1 > 7‘§z1) We

prove that, for 1 < s < «;4;1, we have that q( )

j+1
b§i)1 b§s+2]) (s) > T(S+Z]).

for 1 < s < o, we denote b and ¢ in Step (1)

> q(s+zj), which implies
and thus 7,

We prove q(i)l > q](5+z’ ) by induction on s. First, we check the case

J
k=1 1f 7”;(821 > pl# ), then it is obvious that q](Jr)1 > qj(zJJrl

J
0 _ (z) (z5) ;

j+1 = r;°", we consider the following cases. ¢;”"" is the only element in

AT(zj) (’I“j+1, Cj+1). Letx =H (z v) (’I“j+1, Cj+1) Y= maX(L (z v) (Tj+17 Cj+1)) and
j-1

Otherwise

if r

y' = max{z € LJTr(z (7“7+1,cj+1) | z < q } See Fig. 5 for 1llustrat1on
3=
zj+1 zj zj+1 zj
Case (1): If rj( i+ ( )7 then qj(- T 1 7"(1+)1 = r(OJr)l, then qj(i)l = q]( ),
If 7‘521 #* 7"(?31’ then q( ) equals y when y > ¢ and qj ) when y =y'. In both

cases, qj(ﬁl >z = §z]+1).

Case (2): fr§zj+1) + r](fzj), then q](.zj—H) = y'. In this case, we have HT;ijl) (rj+1+
lejy1—1) < y’ <. Since H_.o) (rj4+1 + 1,¢j41 — 1) is smaller or equal to v,
J
(1)

we have that 7" 75 ’I“] +1 Therefore, ¢; 7, equals y when y > y' and qj ) when

y = y'. In this case, qj( ) >y = (ZJ‘H)
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Y Y
_ Y _
/ - (25)
3: (25) 9 J
. 45 *
T (Z])
4; T

FiGure 5. Cell (r(%,, %) = (%), ) in T) (left); in

(0) .
1,7, case(1) (middle), case(2) (right)

Y Yy

_/ :li (SJFZJ)

" (s+2) (s J

* ‘S Zj ‘S *
(s+2;) 9 Gi+1 (s)

T q; T g

FIGURE 6. Cell (ﬁ)l, 51)1) = (rf“f), §S+ZJ)) in Tj(izj)

(left); in Tj(s)7 case(1) (middle), case(2) (right)

Now, we have proved the base case s = 1. Next, suppose it holds for

some s > 1 that q(j_)l > q(s+z’) and 7"](1)1 2 (S+Zj) The statement is sim-
(s) (z +5)

ilar to the argument of the base case. If T]+1 > , it is obvious that

qj(fll) > q(.HHZJ and thus 7"(“1) >r (HHZJ) It J(i)l = 7‘§Zj+s), we discuss
the following cases. q( +%) is the only element in A (g+z >(r§s+zj), §s+Z’))
Let z = H (5+zj)( §S+Z’), ;s+z])) y = max(L_ (o4 ) (r (S+ZJ), ;Hrzj))) and y' =
max{z € L+§S+ZJ)(T§S+Z]), c§3+z])) |z < q(s+ J)} See Fig. 6 for illustration.

Case (1): Ier(s+1+zj) = (S+ZJ) , then qj( SPIE) g 1t r(:ql) = r(fgl, then

s+1 stz s s s
qj(++1 ) = q(. D> g 1 +11) # rﬁ_l,thenqj( = max{z € L+(S>( j(_gl, ;_21) |

]
z < q;p (s) 13> q( +25) > x. Therefore, in either case, we have qj( st > q; (s+1+2)
Case (2): If r](.s+1+zj) + js+z]) then q(5+1+z1) y'. In this case, we have

s+2z; stz STZ
HT]-(izj)(r; ) 4 1,c§ i) 1)<y < qj( %) Since HT@( ri )1 —|—17c§_21 -1)

is smaller or equal to q(s+z'7) we have that rjj_tl) =+ TJ_H Therefore, q](jll) =

max{z € L;(S)( g(i)l’ J+1) | z < q } By induction, we have q( stz) < j(i)l,
j

thus, qﬁtn > q§-8+z’) >y = (SHH]) . This completes the proof. O

Lemma 3.26. With the notations as above, let 0 < j <e—1,0 < 5 < a4
and Cp([T T ,(r0)]) = [Tj(sﬂ),(r’,c — 1)] for some r,c,r’. Then, in Tj(s+1),
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column ¢ — 1 is the rightmost column with nonzero arm excess and (r',c — 1)
18 the topmost cell in column ¢ — 1 with nonzero arm excess.

Proof. In any path;, consider the arm excess of its columns. Those with column
index ¢ such that d(rj,c;) < ¢ < ¢; started with arm excess 0, then changed
to arm excess 1 when the insertion path passed through that column, and
immediately decreased to 0.

Thus, the q](-s) that is being moved to cell (r',c — 1) is always at the
rightmost column containing nonzero arm excess. When ¢ — 1 > d(rj, ¢;), the
arm excess of the column ¢ — 1 is exactly 1, (r/,c — 1) is also the topmost
cell containing an arm. For ¢ — 1 = d(r;,¢;), the path path, has reached its
destination. At that point, any column to the right of d(r;, ¢;) has 0 arm excess.
It follows from Lemma 3.25 that the cell (r;aj), c§aj )) is also the topmost cell
containing an arm (Figs. 7, 8, 9, 10). ]

Proposition 3.27. The tableau T;SH) is a semistandard hook-valued tableau for
all0<j<e—1and for all0 < s < ojyq.

Proof. We only need to check that the ¢ in Step 2 of Definition 3.19 is greater
or equal to the hook entry and arm of the cell ¢ is to be inserted into. When
q is the only arm element, it is obvious that ¢ is greater or equal to the hook
entry.

The case when ¢ is not the only arm element can only happen when we
reach the destination column of the path. By the proof of Lemma 3.25, we have
that for q( ) > j( *%) for s > 1 and for Jj, such that d(rj,c;) = d(rjt1,cj41)-
Hence, the statement follows by setting k = aj41. O

Before we define the “inverse” of the uncrowding map U : HVT(A) —
UuoaSVT(u) x F(u/X), we need to restrict our domain to a subset Ky of
UoaSVT (1) x F(p/A), as the image of U is not all of L, 5xSVT (1) x F(u/\).
We define

Ka (i) ={(S, F) € SVT (1) x F(u/)) | weight(Z}") = weight(S),
VO<j<e—-1,V0<s<aji},

Ky = |_| K ()

MDA

Remark 3.28. From the perspective of the uncrowding map, the set-valued
tableau S in Example 3.20 cannot be obtained from a shape (1, 1) hook-valued
tableau via the uncrowding map as explained in Remark 3.21. We say the cell
(1,2) in S practices social distancing. In this case

II o

The (S, F') in Example 3.24 is in K(3 2,1)(5,3,2
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— V}, - Vb
— —

FIGURE 7. Left: case (1A): (7,c+ 1) is not in h. Right: case
(1B): (F,c+1)isin h

Definition 3.29. We can now define the crowding map C for any partition A as
follows:

C: Ky — HVT())
(S,F) — T,

Proposition 3.30. The image of the uncrowding map U : HVT(X) — U,0\SVT
(1) x F(u/N) is a subset of Ky. Moreover, we have C olU = Thvr(n)-

Proof. We show that if h = V,(h), where h € HVT, V, is as defined in Def-
inition 3.2 and & is obtained by moving some letter(s) from the cell (r,¢) to
(7,c+1) (potentially adding a box), then Cy([h, (7, c+1)]) = [/, (', ¢)] satisfies
[hla (rla c)] = [h, (r,c)].

We follow the notation used in Definitions 3.2 and 3.19. Thus a = max(Ap(r, ¢)).
We have that Hp(7,¢) < a. If cell (r + 1,¢) is in h, then Hy(r + 1,¢) > a.
Case (1): 7 # 7.
Case (1A): If cell (7,c + 1) is not in h, then A’ is obtained by adding cell
(7, c+1) and moving a from Ay (r, ¢) to Hp (7, ¢+ 1). Under the action of Cp, by
Step (1), b = a and 7’ = r. Cy appends a to A;,(r,c¢) and removes cell (7,c+1),
which recovers h.
Case (1B): If cell (7,c+1) is in h, then k € L)} (7,c+1) is the smallest number
that is greater than or equal to a in column ¢+ 1. b’ is obtained by removing
a from Ay (r,c), replacing k with a, and attaching k to Ap(7,c + 1). Under
the action of Cp, by Step (1), we can see that m = k, b = a, and ' = r. By
Step (1), ¢ = b = a, and a is appended to A (r,c) and ¢ = a in Lj(7,c+1) is
replaced with m = k. In the end, m is removed from A; (7, ¢+ 1). We recover
h.
Case (2): 7 = 7. Let £ = max(L; (1, ¢)).
Case (2A): If cell (r,c+1) is not in h, V), adds cell (r,c+ 1), removes the part
of Ly (r, c) that is greater than a to Ly(r,c+ 1), and moves a from Ay (r,c) to
Hy(r,c+ 1). Under the action of Cy, by Step 1, m = a and b = £. Thus, r' = r.
By Step 3(a)ii, we move L; (r,c+ 1) into L; (r, ¢) and we recover h.
Case (2B): If cell (r,c+1) is in h, h is obtained by moving the part of Ly (r, ¢)
that is greater than a to Ly(r,c+ 1), moving a from Ay (r,c) to Hp(r,c+ 1),
and appending k to Ay (r,c+ 1). Under the action of Cy, by Step 1, m = k and
b= (. Then, ' = r and ¢ = a. By Step 3(a)i, we move the set {z € L;(r,c) |
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FIGURE 8. Left: Case (1A): (r,c+1) isnot in h. Right: Case
(1B): (r,c+1)isin h

a < x < k} from Lj (r,c+1) into L;, (r, ¢), which is the set that was moved from
cell (r,¢) by Vy. Removing k from A; (r,c+ 1) and setting Hj (r,c+1) = k, we
recover h.

Now, we have proven Cy([h, (7,c+1)]) = [I/, (', ¢)] = [h, (r, ¢)]. Tt follows
that for any (S, F') = U(h), we have that Tj(s) is semistandard and has the same
weight as S for all 0 < j <e—1, for all 0 < s < a;41. Thus, image(lf) C Ky
and Cold = 1HVT()\)- U

Proposition 3.31. Ky is a subset of the image of U : HVT(X) — U,0aSVT (1) X
F(u/N). Moreover, U o C = 1, .

Proof. Let (S,F) € Ky, then for all 0 < j < e and for all 0 < s < aj41,

Cb([Tj(S), (r,e)]) = [T;SH), (r',c—1)] for some r, ¢, 7. We show that Vb(Tj(SH)) =

Tj(s) for all 0 < j < e and for all 0 < s < aj4;. Following the notation in Def-
inition 3.2, we first locate the rightmost column that contains nonzero arm
excess, and then determine the topmost cell in row 7 in that column with
nonzero arm excess. We denote by a the largest arm element in that cell.

By Lemma 3.26, in Tj(sﬂ), column ¢ — 1 is the rightmost column with
nonzero arm excess and (r’,¢ — 1) is the topmost cell in column ¢ — 1 with
NONZEro arm excess.

Case (1): 7/ = r. In this case, either cell (r 4+ 1,¢— 1) does not exist in Tj(s)7 or

HT'_(S) (r+1,c—1)>0b.
Case (1A): A 5)(r,¢) = 0. m = H_ o (r,c) and b = maX(LJTr(S)(T, ¢)). Since
J J j

r'=r, qg=m, T]-(SH) is obtained by appending m to A . (r,¢ — 1), moving

T
J
LTj(s) (r,c) into LTJ@ (r,e — 1), and removing cell (r,¢) from Tj(s). Note that
everything in L) (r, c) is greater than m and everything in L (r,c — 1) is
j j

smaller or equal to m.

For the V;, action, we have a = m and b is the greatest letter in L .co+1) (r,c—

J

1). Since every letter in Tj(SH)(r”, ¢) is smaller than m for v/ < r, we have

7 =17. V), acts on UASaR) by adding the cell (r, ¢), setting the hook entry to be

j
m, and moving (m, b "L+ (r,c—1) to L+ (7, ¢). Then, we recover Tj(s).
J J
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FIGURE 9. Left: Case (1A): A (r, ¢) = 0. Right: Case (1B):
AT§5) (7“, C) 75 @
J

FIGURE 10. Left: case (2A): A
AT;S) (?", C) 75 (Z]

TJ@)(T, ¢) = 0. Right: case (2B):

Case (1B): ATJ(S) (r,c) # (. m is the only element in AT;S)(T, ), q= HT]@) (r,c)

and b = max{z € L;(S) | © < m}. Tj(s+1) is obtained by appending ¢ to

J
/—\Tj(s) (r,c — 1), setting HT;S)(T, ¢) to be m, deleting A
L

) and moving {z €

T (r0) | g <2z <m}to LTJ_(S) (r,c—1).

For the V, action, a = ¢ and b is the greatest letter in LT<S+1)(7", c—1).
i

Since every letter in T;s+1)(r”,c) is smaller than ¢ for »” < r and m > gq,

7 = r. V, acts on TKSH)

i by setting HT;SH)(n c) = q, AT;sH) (r,¢) = m, and

moving (¢, ] N L+ (r, ¢ — 1) to L+ (7, ¢). We recover Tj(s).
Case (2): 1’ # r. ] ]

Case (2A): AT;“) (r,c¢) = 0. Note that in this case, C, will move m somewhere
else and remove the cell (r,¢). Since weight(Tj(SH)) = Weight(Tj(s)), we must
have that LT].(S’ (r,e) = 0. So b = ¢ = m. Tj(5+1) is obtained from Tj(S) by

appending m to A_) (', ¢ — 1) and removing the cell (r,¢).

T

J
For the V, action, a = m. Since every letter in Tj(SH)(r”,c) is smaller

than m for v/ < r, a new cell (r,c) is added, 7 = r. V, acts on T].(SH) by

moving m to H ) (r, ¢). We recover Tj(s)
J
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Case (2B): A (r,c) # 0. m is the only element in A_(r,c), ¢ = b =

7
J
max{z € L"T';S> (rye) | ¢ < m}. Tj(SH) is obtained by appending b to AT]@ (r,c

1), replacing b in LT(S) (7, ¢) with m, and removing m from A ) (r, c).

For the V, action, a = b. Since every letter in T( +1)(7"H7 ¢) is smaller than

b for "’ < r, m is the smallest letter that is greater or equal to b in column c.
Hence, 7 = r. V,, acts on T(SH) by removing b from AT<S+1) (r',c—1), replacing

m in LT< 11 (1, ¢) with b, and attaching m to AT(S+1)(T ¢). We recover T( *)

Therefore, we have V, (T(s+1)) = T(g) for all 0 < j < e —1, for all
0<s<aj and V(T(O ) T(O) It follows that we also recover the recording
tableau F'. Thus, Z/I( ) (S F). O

Corollary 3.32. The uncrowding map U is a bijection between HVT(A) and K
with inverse C.

3.6. Alternative Uncrowding on Hook-Valued Tableaux

In Sect. 3.2, we defined an uncrowding map sending hook-valued tableaux to
pairs of tableaux with one being set-valued and the other being column-flagged
increasing. As hook-valued tableaux were introduced as a generalization of
both set-valued tableaux and multiset-valued tableaux, it is natural to ask if
there is an uncrowding map taking hook-valued tableaux to pairs of tableaux
with one being multiset-valued. In this section, we provide such a map.

Definition 3.33. The multiset uncrowding bumping V,: HVT — HVT is de-
fined by the following algorithm:

(1) Initialize T as the input.

(2) If the leg excess of T equals zero, return T.

(3) Find the topmost row that contains a cell with nonzero leg excess. Within
this column, find the cell with the largest value in its leg. (This is the
rightmost cell with nonzero leg excess in the specified row.) Denote the
row index and column index of this cell by r and ¢, respectively. Denote
the cell as (r,c), its largest leg entry by ¢, and its rightmost arm entry
by a.

(4) Look at the row above (r,¢) (i.e. row r+1) and find the leftmost number
that is strictly greater than /.

e If no such number exists, attach an empty cell to the end of row
r+1 and label the cell as (r+ 1, ¢), where ¢ is its column index. Let
k be the empty character.
e If such a number exists, label the value as k£ and the cell containing
k as (r 4+ 1,¢) where ¢ is the cell’s column index.
We now break into cases:

(a) If ¢ # ¢, then remove ¢ from Lp(r, ), replace k with ¢, and attach & to
the leg of Ly(r + 1, ¢).

(b) If é = ¢, then remove [¢,a] N Ar(r, c) from Ar(r,c) where [¢,a] N Ap(r,c)
is the multiset {z € Ar(r,¢) | ¢ < z < a}. Remove ¢ from Ly (r, ¢), insert
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[¢,a] N Ap(r,c) into Ap(r + 1, ¢), replace the hook entry of (r + 1,¢) with
¢, and attach k to Ly (r + 1,¢).
(5) Output the resulting tableau.

Definition 3.34. The multiset uncrowding insertion V: HVT — HVT is defined
as V(T) = V&(T), where the integer d > 1 is minimal, such that shape(V{(T))/
shape(Vi~H(T)) # 0 or VX(T) = VI~ H(T).

Definition 3.35. Let T' € HVT()) with leg excess o. The multiset uncrowding
map

U: HVT(A) — | | MVT (i) x F(u/A)
B2
is defined by the following algorithm:
(1) Let Py =T and let Qg be the flagged increasing tableau of shape A/A.
(2) For 1 < i < a, let Pp1 = V(F;). Let r be the index of the topmost
row of P; containing a cell with nonzero leg excess and let 7 be the row
index of the cell shape(P;11)/shape(P;). Then, Q;11 is obtained from Q;

by appending the cell shape(P;y1)/shape(P;) to Q; and filling this cell
with 7 —r.

Define U(T) = (P(T),Q(T)) := (P, Qa).
Ezample 3.36. Let T be the hook-valued tableau
79

8
T =1233|78 | .
3 |7

1 ]223}4

Then, we obtain the following sequence of tableaux f/g(T) for0<i<2=d
when computing the first multiset uncrowding insertion:

79 9] 9
8 78 78

233178 | —[233[78 | —[233[78 | = V(T).
3 |7 3 |7 3 |7

1 [223[4] |1 [223[4] |1 [2234

Continuing with the remaining multiset uncrowding insertions, we obtain
the following sequences of tableaux for the multiset uncrowding map:

79 9 9 9
8 78 78 [8 8

23378 | — [233[78 | — [233[77 | — [77 |8 = P(T),
3|7 3 |7 3 233[337

1 [223/4 1 (2234 1 (2234 I [22 4]
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Proposition 3.37. Let T € HVT. Then, U(T) is well defined.

Proof. The statement follows from a similar argument to the proofs found in
Corollary 3.7 and Lemma 3.9. g

Similar to the uncrowding map U, the multiset uncrowding map U inter-
wines with the corresponding crystal operators.

Theorem 3.38. Let T € HVT.

(1) If fi(T) = 0, then f;(P(T)) = 0.

(2) If e;(T) = 0, then e;(P(T ) =0. ) .

(3) If fi(T) # 0, we have f;(P(T)) = P(f;(T)) and Q(T) = Q(f:(T)).

(4) If ei(T) # 0, we have ¢;(P(T)) = P(ei(T)) and Q(T) = Q(ei(T)).
Proof. The proof follows similarly to those found in Proposition 3.12,
Lemma 3.13, and Theorem 3.14. g

4. Applications

In this section, we provide the expansion of the canonicalGrothendieck polyno-
mials G (z; @, §) in terms of the stable symmetric Grothendieck polynomials
G, (x; 8 = —1) and in terms of the dual stable symmetric Grothendieck poly-
nomials g, (z;8 = 1) using techniques developed in [1]. We first review the
basic definitions and Schur expansions of the two polynomials.

Recall from (1.1) that the stable symmetric Grothendieck polynomial is
the generating function of set-valued tableaux

Gu(z;-1) = Z (—1)I8I=ul yweight(S)

SESVT ()

Its Schur expansion can be obtained from the crystal structure on set-valued
tableaux [13]

GH<.’E; —1) = Z (_1)|S|_|H| Sweight(S) -

SeSVT(u)

e; (S)=0 Vi
Definition 4.1. The reading word word(S) = wjws - - - wy, of a set-valued tableau
S € SVT(u) is obtained by reading the elements in the rows of S from the top
row to the bottom row in the following way. In each row, first ignore the small-
est element of each cell and read all remaining elements in descending order.
Then, read the smallest elements of each cell in ascending order.
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Ezample 4.2. The reading word of P(T) in Example 3.6 is word(P(T)) =
8675423362111567.

Ezample 4.3. The highest weight set-valued tableaux of shape (2) are

4
2 3 3

a 7 27 ’ RS
1)1 1l

which gives the Schur expansion
G2)(z;—1) = 52 — S91 + 5211 — S2111 £ -+ - .

The dual stable symmetric Grothendieck polynomials g, (z;1) are dual
to G (z; —1) under the Hall inner product on the ring of symmetric functions.

Definition 4.4. A reverse plane partition of shape p is a filling of the cells in
the Ferrers diagram of p with positive integers, such that the entries are weakly
increasing in rows and columns. We denote the collection of all reverse plane
partitions of shape p by RPP(u) and the set of all reverse plane partitions by
RPP.

The evaluation ev(R) of a reverse plane partition R € RPP is a composi-
tion o = (av;)i>1, where «; is the total number of columns in which ¢ appears.
The reading word word(R) is obtained by first circling the bottommost oc-
currence of each letter in each column, and then reading the circled letters
row-by-row from top to bottom and left to right within each row.

Example 4.5. Consider the reverse plane partition

1]2
113\

R= € RPP((3,2)).

By circling the bottommost occurrence of each letter in each column, we
obtain

R=|1P|  ev(R)=(2,1,1), word(R) = 2113.
D)

Lam and Pylyavskyy [10] showed that the dual stable symmetric
Grothendieck polynomials g, (x;1) are generating functions of reverse plane
partitions of shape p

gule:; )= Y 2™,

RERPP(p)

They also provided the Schur expansion of the dual stable symmetric
Grothendieck polynomials [10, Theorem 9.8]

g;t(x; 1) - Z Sinnershape(F)>
F

where the sum is over all flagged increasing tableaux whose outer shape is u.
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Ezample 4.6. When p = (p1) is a partition with only one row, we have

9Gu) (%3 1) = 5(4,)-
The flagged increasing tableaux of outer shape (2,1, 1) are

9 8 58

Hence, go11(z;1) = s211 + 2821 + 2.

According to [1], a symmetric function f, over the ring R is said to have
a tableaux Schur expansion if there is a set of tableaux T(«) and a weight
function wt, : T(a) — R, so that

fa= Z Wty (T)sshape(T)'
TeT(w)
Furthermore, any symmetric function with such a property has the following
expansion in terms of G, (z;—1) and g, (z;1).
Theorem 4.7. [1, Theorem 3.5] Let f, be a symmetric function with a tableauz
Schur expansion fo = 3 per(a) Wta(T)Sshape(r) for some T(a). Let S() and

R(a) be defined as sets of set-valued tableaux and reverse plane partitions,
respectively, by

S € S(a) if and only if P(word(S)) € T(«), and
R € R(a) if and only if P(word(R)) € T(«),
where P(w) is the RSK insertion tableau of the word w. We also extend wt,,

to S(a) and R(a) by setting wty(X) := wty(P(word(X))) for any X € S(«)
or R(«). Then, we have

Ja= Z Wta(R)Gshape(R)(-?:;*l)a and

ReR(a)
fa = Z Wta(S)(_1)|S|7|Shap6(S)|gshape(S) (33; 1)
SeS(aw)
Proposition 4.8. The canonical Grothendieck polynomials have a tableauz Schur

expansion.

Proof. Recall the uncrowding map on set-valued tableaux of Definition 3.1
Usyt : SVT (1) — | | SSYT(v) x F(v/p).
vou
By Corollary 3.32, we have a bijection
U:HVT(N) = Ky = | | Ka(p)
H2A

Note that Ky C |],, SVT (k) x F(u/\). Denote
ox(S) = {F € F | (5, F) € Ky}.
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Note that sometimes ¢5(S) = 0.

Given H € HVT()), we have U(H) = (S,F) € SVT(u) x F(u/\) for
some p 2 A and |p| = |A| + a(H). We can also obtain Usyt(S) = (T,Q) €
SSYT(v) x F(v/p) for some v O p and |v| = |H|. The weights of H,S
and T are the same. When H is highest weight, that is e;(H) = 0 for all
i, then S and T are also of highest weight and weight(H) = shape(T'). De-
note by HVTj (X)), SVT,(X),SSYT,(A) the subset of highest weight elements in
HVT(X), SVT(A),SSYT (M), respectively.

Applying [8, Theorem 4.6] and the above correspondence, we obtain

Gi(wsa, B) = > oD i
HeHVT,L(X)

= Z Z At =N gISI=lulg s

K2 (S, F)eKx (1)

= Z Z oA (S)alkI=IN gISI=lulg o)

HIX SESVT, (1)

= Z Z Z Z ¢A(u§/}F(T7 Q))am‘ip\‘ﬁluli‘Msweight(T)

HOAVOp TESSYT), (v) QEF (v/p)

= Z Z Z alul_Mlﬁ‘UI_lul Z ¢>\(us_\/lr(T> Q))sshape(T)

uDA v TESSYT, (V) QEF(v/1)
= Z wity (T)Sshape(T)7
TET(A)
where T(A\) = {T € SSYT,(v) | v 2 A} and
W)= S0 el glshare(T) | lui > Ut (T,Q)).
w:ACpCshape(T) QEF (shape(T) /1)

O

Note that Proposition 4.8 in particular implies that the canonical
Grothendieck polynomials are Schur positive. This was known from [8], but
here an explicit tableaux formula is given.

Corollary 4.9. The canonical Grothendieck polynomials have G, (z;—1) and
gu(x; 1) expansions

Gi(z;0,8) = Z Wt (R)Ghape(r) (75 —1),

RER(N)

G)\(x; Q, B) = Z Wt)\(S)(71)lSlilShape(S)‘gshape(S) (l’; 1)
SeS(A)

Example 4.10. We compute the first two terms in G o) (z; a, ) = s2 + Bs21 +
2as3 + 2a0s31 + - - - . The semistandard Young tableaux involved are

2 2

A ) pagg e




Uncrowding Algorithm for Hook-Valued Tableaux 299

Labelling the tableaux 11,75, 73, Ty, ..., we have wt(o)(T1) = 1,wt(9)(T2) =
B, w2y (T3) = 20, wt(2)(Ty) = 2a3. Next, we compute the elements in R((2)
and S((2)) that correspond to T7 and 75

1]
{ReR((2) | P(word(R)) = T1} ={ Tl‘i 1 1 1‘,...}
111
2] 2]
2] 1]2] |1 2
{REeR((2)) | P(word(R)) = Ty} ={ T 1‘,...}

(S €S((2)) | P(word(S)) = T1} :{
2]

2
11 \’}'

Applying the expansion formulas, we obtain

{S €5((2)) | P(word(S)) = T} ={

Gy (5, B) =(G 2y (5 —=1) + G21y(x; —1) 4+ Ga) (x5 =1) + G211y (23 —1) + -+ +)
+ B8(G21y(m; —1) + Gaoy(z; —1) + 2G 1y (z; =1) + -+ ) + - -~
G (z;a, B) =g2)(x;1) + B(g(21) (25 1) — 9oy (z31)) + - .

Acknowledgements

We are grateful to Graham Hawkes and Travis Scrimshaw for discussions. This
work was partially supported by NSF grant DMS-1764153. JiP was partially
supported by NSF grant DMS-1700814. AS was partially supported by NSF
grant DMS-1760329.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

300 J. Pan et al.

References

[1] Jason Bandlow and Jennifer Morse. Combinatorial expansions in K-theoretic
bases. Electron. J. Combin., 19(4):Paper 39, 27, 2012.

[2] Daniel Bump and Anne Schilling. Crystal bases. World Scientific Publishing Co.
Pte. Ltd., Hackensack, NJ, 2017. Representations and combinatorics.

[3] Anders Skovsted Buch. A Littlewood-Richardson rule for the K-theory of Grass-
mannians. Acta Math., 189(1):37-78, 2002.

[4] Melody Chan and Nathan Pflueger. Combinatorial relations on skew Schur and
skew stable Grothendieck polynomials. Algebr. Comb., 4(1):175-188, 2021.

[5] William Fulton. Young tableaux, volume 35 of London Mathematical Society
Student Texts. Cambridge University Press, Cambridge, 1997. With applications
to representation theory and geometry.

[6] Ajeeth Gunna and Paul Zinn-Justin. Vertex models for canonical Grothendieck
polynomials and their duals. arXiv preprint arXiv:2009.13172, 2020.

[7] Jin Hong and Seok-Jin Kang. Introduction to quantum groups and crystal bases,
volume 42 of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 2002.

[8] Graham Hawkes and Travis Scrimshaw. Crystal structures for canonical
Grothendieck functions. Algebraic Combinatorics, 3(3):727-755, 2020.

[9] Cristian Lenart. Combinatorial aspects of the K-theory of Grassmannians. Ann.
Comb., 4(1):67-82, 2000.

[10] Thomas Lam and Pavlo Pylyavskyy. Combinatorial Hopf algebras and K-
homology of Grassmannians. Int. Math. Res. Not. IMRN, (24):Art. ID rnm125,
48, 2007.

[11] Alain Lascoux and Marcel-Paul Schiitzenberger. Symmetry and flag manifolds.
In Invariant theory (Montecatini, 1982), volume 996 of Lecture Notes in Math.,
pages 118-144. Springer, Berlin, 1983.

[12] Jennifer Morse, Jianping Pan, Wencin Poh, and Anne Schilling. A crystal on de-
creasing factorizations in the 0-Hecke monoid. Electron. J. Combin., 27(2):Paper
2, 29, 2020.

[13] Cara Monical, Oliver Pechenik, and Travis Scrimshaw. Crystal structures for
symmetric Grothendieck polynomials. Transform. Groups, 26(3):1025-1075,
2021.

[14] Rebecca Patrias. Antipode formulas for some combinatorial Hopf algebras. Elec-
tron. J. Combin., 23(4):Paper 4, 30, 2016.

[15] Vic Reiner, Bridget E. Tenner, and Alexander Yong. Poset edge densities, nearly
reduced words, and barely set-valued tableaux. J. Combin. Theory, Ser. A,
158:66-125, 2018.


http://arxiv.org/abs/2009.13172

Uncrowding Algorithm for Hook-Valued Tableaux 301

[16] Damir Yeliussizov. Duality and deformations of stable Grothendieck polynomi-
als. J. Algebraic Combin., 45(1):295-344, 2017.

Jianping Pan, Joseph Pappe, Wencin Poh and Anne Schilling
Department of Mathematics

UC Davis

One Shields Ave.,

Davis CA 95616-8633

USA

e-mail: anne@math.ucdavis.edu

Joseph Pappe
e-mail: jhpappe@ucdavis.edu

Wencin Poh
e-mail: wpoh@ucdavis.edu

Present Address

Jianping Pan

Present address:
Department of Mathematics
NC State University
Raleigh NC 27695-8205
USA

e-mail: jpan9@ncsu.edu

Communicated by Alexander Yong
Received: 4 January 2021.
Accepted: 10 January 2022.



	Uncrowding Algorithm for Hook-Valued Tableaux
	Abstract
	1. Introduction
	2. Hook-Valued Tableaux
	2.1. Hook-Valued Tableaux
	2.2. Crystal Structure on Hook-Valued Tableaux

	3. Uncrowding Map on Hook-Valued Tableaux
	3.1. Uncrowding Map on Set-Valued Tableaux
	3.2. Uncrowding Map on Hook-Valued Tableaux
	3.3. Properties of the Uncrowding Map
	3.4. Uncrowding Map on Multiset-Valued Tableaux
	3.5. Crowding Map
	3.6. Alternative Uncrowding on Hook-Valued Tableaux

	4. Applications
	Acknowledgements
	References




