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Abstract. Whereas set-valued tableaux are the combinatorial objects as-
sociated to stable Grothendieck polynomials, hook-valued tableaux are
associated with stable canonical Grothendieck polynomials. In this pa-
per, we define a novel uncrowding algorithm for hook-valued tableaux.
The algorithm “uncrowds” the entries in the arm of the hooks, and yields
a set-valued tableau and a column-flagged increasing tableau. We prove
that our uncrowding algorithm intertwines with crystal operators. An al-
ternative uncrowding algorithm that “uncrowds” the entries in the leg
instead of the arm of the hooks is also given. As an application of un-
crowding, we obtain various expansions of the canonical Grothendieck
polynomials.
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1. Introduction

Set-valued tableaux play an important role in the K-theory of the Grass-
mannian. They form a generalization of semistandard Young tableaux, where
boxes may contain sets of integers rather than just integers [3]. In particular,
the stable symmetric Grothendieck polynomial indexed by the partition λ is
the generating function of set-valued tableaux

Gλ(x;β) =
∑

T∈SVT(λ)

β|T |−|λ|xweight(T ), (1.1)

where SVT(λ) is the set of set-valued tableaux of shape λ and weight(T ) is the
vector with ith entry being the number of i in T . Here, |T | is the number of
entries in T and |λ| is the size of λ. Stable symmetric Grothendieck polynomials
Gλ can be viewed as a K-theory analog of the Schur functions sλ (while the
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Grothendieck polynomial is an analog of the Schubert polynomial [11]). Buch
[3] also described the structure coefficients cν

λμ, which is the coefficient of Gν

in the expansion of GλGμ in terms of set-valued tableaux, generalizing the
Littlewood–Richardson rule for Schur functions.

The Grassmannian Gr(k,Cn) of k-planes in C
n has a fundamental duality

isomorphism

Gr(k,Cn) ∼= Gr(n − k,Cn).

This implies that the structure constants have the symmetry cν
λμ = cν′

λ′μ′ ,
where λ′ denotes the conjugate of the partition λ (see for example [5, Example
9.20]). Hence, one expects a ring homomorphism on the completion of the ring
of symmetric function defined on the basis of stable symmetric Grothendieck
polynomials τ(Gλ) = Gλ′ . The standard involutive ring automorphism ω de-
fined on the Schur basis by ω(sλ) = sλ′ does not have this property [10]

ω(Gλ) = Jλ �= Gλ′ ,

where Jλ is the weak symmetric Grothendieck polynomial.
Yeliussizov [16] introduced a new family of canonical stable Grothendieck

polynomials Gλ(x;α, β), such that

ω(Gλ(x;α, β)) = Gλ′(x;β, α).

Combinatorially, the canonical stable Grothendieck polynomials can be ex-
pressed as generating functions of hook-valued tableaux. In a hook-valued
tableau, each box contains a semistandard Young tableau of hook shape, which
is weakly increasing in rows and strictly increasing in columns. More precisely

Gλ(x;α, β) =
∑

T∈HVT(λ)

αa(T )β�(T )xweight(T ),

where HVT(λ) is the set of hook-valued tableaux of shape λ, a(T ) is the sum
of all arm lengths, and �(T ) is the sum of all leg lengths of the hook tableaux
in T .

A hook-valued tableau T is a set-valued tableau when all hook tableaux
entries are single columns or equivalently a(T ) = 0. Hence, Gλ(x;α, β) spe-
cializes to Gλ(x;β) for α = 0. Similarly, a hook-valued tableau T is a multiset-
valued tableau when all hook tableaux entries are single rows or equivalently
�(T ) = 0. Hence, Gλ(x;α, β) specializes to Jλ(x;α) for β = 0.

In this paper, we describe a novel uncrowding algorithm on hook-valued
tableaux (see Definitions 3.2, 3.4, and 3.5 ). The uncrowding algorithm on set-
valued tableaux was originally developed by Buch [3, Theorem 6.11] to give a
bijective proof of Lenart’s Schur expansion of symmetric stable Grothendieck
polynomials [9]. This uncrowding algorithm takes as input a set-valued tableau
and produces a semistandard Young tableau (using the RSK bumping algo-
rithm to uncrowd cells that contain more than one integer) and a flagged
increasing tableau [9] (also known as an elegant filling [1,10,14]), which serves
as a recording tableau.

Chan and Pflueger [4] provide an expansion of stable Grothendieck poly-
nomials indexed by skew partitions in terms of skew Schur functions. Their
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proof uses a generalization of the uncrowding algorithm of Lenart [9], Buch
[3], and Reiner et al. [15] to skew shapes. Their analysis is motivated geomet-
rically by identifying Euler characteristics of Brill–Noether varieties up to sign
as counts of set-valued standard tableaux. The uncrowding algorithm was also
used in the analysis of K-theoretic analogs of the Hopf algebras of symmet-
ric functions, quasisymmetric functions, noncommutative symmetric functions,
and of the Malvenuto–Reutenauer Hopf algebra of permutations [1,10,14]. In
[6], a vertex model for canonical Grothendieck polynomials and their duals
was studied, which was used to derive Cauchy identities.

An important property of the uncrowding algorithm on set-valued tableaux
is that it intertwines with crystal operators [13] (see also [12]). The crystal
structure on a combinatorial set is the combinatorial shadow of a (quantum)
group representation (see, for example, [2,7]). A crystal structure on hook-
valued tableaux was recently introduced by Hawkes and Scrimshaw [8]. Our
novel uncrowding map on hook-valued tableaux yields a set-valued tableau
and a recording tableau. We prove that it intertwines with crystal operators
(see Proposition 3.12 and Theorem 3.14). This was stated as an open problem
in [8].

The paper is organized as follows. In Sect. 2, we review the definition of
semistandard hook-valued tableaux of [16] and the crystal structure on them
[8]. In Sect. 3, we define the new uncrowding map on hook-valued tableaux
and prove that it intertwines with the crystal operators and other properties.
We also give a variant of the uncrowding algorithm on hook-valued tableaux.
In Sect. 4, we consider applications of the uncrowding algorithm, in partic-
ular expansions of the canonical Grothendieck polynomials using techniques
developed in [1].

2. Hook-Valued Tableaux

In Sect. 2.1, we define hook-valued tableaux [16], and in Sect. 2.2, we review
the crystal structure on hook-valued tableaux as introduced in [8].

2.1. Hook-Valued Tableaux

A semistandard Young tableau U of hook shape is a tableau of the form

U = �p...

�1

x a1 . . . aq

,

where the integer entries weakly increase from left to right and strictly increase
from bottom to top. Note that we use French notation for Young diagrams and
tableaux throughout the paper. In this case, H(U) = x is called the hook entry
of U , L(U) = (�1, �2, . . . , �p) is the leg of U , and A(U) = (a1, a2, . . . , aq) is the
arm of U . Both the arm and the leg of U are allowed to be empty. Additionally,
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the extended leg of U is defined as L+(U) = (x, �1, �2, . . . , �p). We denote by
max(U) (resp. min(U)) the maximal (resp. minimal) entry in U .

Definition 2.1 [16]. Fix a partition λ. A semistandard hook-valued tableau (or
hook-valued tableau for short) T of shape λ is a filling of the Young diagram
for λ with (nonempty) semistandard Young tableaux of hook shape, such that

(i) max(A) ≤ min(B) whenever the cell containing A is in the same row,
but left of the cell containing B;

(ii) max(A) < min(C) whenever the cell containing A is in the same column,
but below the cell containing C.

The set of all hook-valued tableaux of shape λ (respectively, with entries at
most m) is denoted by HVT(λ) (respectively, HVTm(λ)).

Given a hook-valued tableau T , its arm excess is the total number of
integers in the arms of all cells of T , while its leg excess is the total number of
integers in the legs of all cells of T .

Remark 2.2. In the special case when a hook-valued tableau has arm excess
0, it is also called a set-valued tableau. Similarly, a multiset-valued tableau is
a hook-valued tableau with leg excess 0. We use the notation SVT(λ) (resp.
SVTm(λ)) and MVT(λ) (resp. MVTm(λ)) for the set of all set-valued tableaux
of shape λ (resp. with entries at most m) and the set of all multiset-valued
tableaux of shape λ (resp. with entries at most m), respectively.

2.2. Crystal Structure on Hook-Valued Tableaux

Hawkes and Scrimshaw [8] defined a crystal structure on hook-valued tableaux.
We review their definition here.

Definition 2.3 ([8], Definition 4.1). Let C be a hook-valued tableau of column
shape. The column reading word R(C) is obtained by reading the extended
leg in each cell from top to bottom, followed by reading all of the remaining
entries, arranged in a weakly increasing order.

For a hook-valued tableau T , its column reading word is formed by con-
catenating the column reading words of all of its columns, read from left to
right, that is

R(T ) = R(C1)R(C2) . . . R(C�),

where � is the number of columns of T and Ci is the ith column of T .

Example 2.4. Let T be the hook-valued tableau

T =

4
33 5
2
11

4
334 4445

.

The column reading words for the columns of T are, respectively, 432113,
54334, and 4445, so that

R(T ) = 432113543344445.
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Definition 2.5 [8, Definition 4.3]. Let T ∈ HVTm(λ). For any 1 ≤ i < m, we
employ the following pairing rules. Assign − to every i in R(T ) and assign +
to every i + 1 in R(T ). Then, successively pair each + that is adjacent and to
the left of a −, removing all paired signs until nothing can be paired.

The operator fi acts on T according to the following rules in the given
order. If there is no unpaired −, then fi annihilates T . Otherwise, locate the cell
c with entry the hook-valued tableau B = T (c) containing the i corresponding
to the rightmost unpaired −.
(M) If there is an i + 1 in the cell above c with entry B↑, then fi removes an

i from A(B) and adds i + 1 to A(B↑).
(S) Otherwise, if there is a cell to the right of c with entry B→, such that it

contains an i in L+(B→), then fi removes the i from L+(B→) and adds
i + 1 to L(B).

(N) Else, fi changes the i in B into an i + 1.
Similarly, the operator ei acts on T according to the following rules in

the given order. If there is no unpaired +, then ei annihilates T . Otherwise,
locate the cell c with entry the hook-valued tableau B = T (c) containing the
entry i + 1 corresponding to the leftmost unpaired +.
(M) If there is an i in the cell below c with entry B↓, then ei removes the i+1

from A(B) and adds i to A(B↓).
(S) Otherwise, if there is a cell to the left of c with entry B←, such that it

contains an i + 1 in L(B←), then ei removes the i + 1 from L(B←) and
adds i to L+(B).

(N) Else, ei changes the i + 1 in B into an i.
Based on the pairing procedure above, ϕi(T ) is the number of unpaired −,
whereas εi(T ) is the number of unpaired +.

We remark that the definition of crystal operators on HVT specializes to
the definition on SVT in [13] or the one on MVT in [8] when the arm excess or
leg excess of the tableaux is set to 0, respectively.

Example 2.6. Consider the following hook-valued tableau T :

T =

4
34

5
4

2
11

3
233

.

Then, e3 annihilates T , whereas

e1(T ) =

4
34

5
4

11

3
2
133

, f1(T ) =

4
34

5
4

2
12

3
233

, f3(T ) =

4
34

5
44

2
11

3
23

.

For a given cell (r, c) in row r and column c in a hook-valued tableau T ,
let LT (r, c) be the leg of T (r, c), let AT (r, c) be arm of T (r, c), let HT (r, c) be
the hook entry of T (r, c), and let L+

T (r, c) be the extended leg of T (r, c).
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3. Uncrowding Map on Hook-Valued Tableaux

In Sect. 3.1, we first review the uncrowding map on set-valued tableaux. In
Sect. 3.2, we give a new uncrowding map on hook-valued tableaux and prove
some of its properties in Sect. 3.3. The relation to the uncrowding map on
multiset-valued tableaux is given in Sect. 3.4. In Sect. 3.5, we give the inverse
of the uncrowding map on hook-valued tableaux, called the crowding map.
In Sect. 3.6, an alternative definition of the uncrowding map on hook-valued
tableaux is provided.

3.1. Uncrowding Map on Set-Valued Tableaux

For set-valued tableaux, there exists an uncrowding operator, which maps a
set-valued tableau to a pair of tableaux, one being a semistandard Young
tableau and the other a flagged increasing tableau (see, for example, [1,3,9,
15]). In this setting, the uncrowding operator intertwines with the crystal op-
erators on set-valued tableaux and semistandard Young tableaux, respectively
[13].

Consider partitions λ, μ with λ ⊆ μ and λ1 = μ1. A flagged increasing
tableau (introduced in [9] and called (strict) elegant fillings by various authors
[1,10,14]) is a row and column strict filling of the skew shape μ/λ, such that
the positive integer entries in the ith row of the tableau are at most i−1 for all
1 ≤ i ≤ �(μ), where �(μ) is the length of partition μ. In particular, the bottom
row is empty. The set of all flagged increasing tableaux is denoted by F . The
set of all flagged increasing tableaux of shape μ/λ with λ1 = μ1 is denoted by
F(μ/λ).

We now review the uncrowding operation on set-valued tableaux. We call
a cell in a set-valued tableau a multicell if it contains more than one letter.

Definition 3.1. Define the uncrowding operation on T ∈ SVT(λ) as follows.
First identify the topmost row r in T with a multicell. Let x be the largest
letter in row r that lies in a multicell; remove x from the cell and perform RSK
row bumping with x into the rows above. The resulting tableau, whose shape
differs from λ by the addition of one cell, is the output of this operation.

The uncrowding map on set-valued tableaux

USVT : SVT(λ) −→
⊔

μ⊇λ

SSYT(μ) × F(μ/λ) (3.1)

is defined as follows. Let T ∈ SVT(λ) with leg excess �.

(1) Initialize P0 = T and Q0 = F0, where F0 is the unique flagged increasing
tableau of shape λ/λ.

(2) For each 1 ≤ i ≤ �, Pi is obtained from Pi−1 by applying the uncrowding
operation. Let C be the cell in shape(Pi)/shape(Pi−1). If C is in row r′,
then Fi is obtained from Fi−1 by adding cell C with entry r′ − r.

(3) Set USVT(T ) = (P, F ) := (P�, F�).

It was proved in [3, Section 6] that USVT in (3.1) is a bijection. Monical et
al. [13] proved that USVT intertwines with the crystal operators on set-valued
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tableaux (see also [12]). A similar uncrowding algorithm for multiset-valued
tableaux was given in [8, Section 3.2].

3.2. Uncrowding Map on Hook-Valued Tableaux

In [8], the authors ask for an uncrowding map for hook-valued tableaux which
intertwines with the crystal operators. Here, we provide such an uncrowding
map by uncrowding the arm excess in a hook-valued tableaux to obtain a set-
valued tableaux. An alternative obtained by uncrowding the leg excess first is
given in Sect. 3.4.

Definition 3.2. The uncrowding bumping Vb : HVT → HVT is defined by the
following algorithm:
(1) Initialize T as the input.
(2) If the arm excess of T equals zero, return T.
(3) Else, find the rightmost column that contains a cell with nonzero arm

excess. Within this column, find the cell with the largest value in its arm.
(In French notation, this is the topmost cell with nonzero arm excess in
the specified column.) Denote the row index and column index of this
cell by r and c, respectively. Denote the cell as (r, c), its rightmost arm
entry by a, and its largest leg entry by �.

(4) Look at the column to the right of (r, c) (i.e., column c + 1) and find the
smallest number that is greater than or equal to a.

• If no such number exists, attach an empty cell to the top of column
c + 1 and label the cell as (r̃, c + 1), where r̃ is its row index. Let k
be the empty character.

• If such a number exists, label the value as k and the cell containing
k as (r̃, c + 1) where r̃ is the cell’s row index.

We now break into cases:
(a) If r̃ �= r, then remove a from AT (r, c), replace k with a, and attach

k to the arm of AT (r̃, c + 1).
(b) If r̃ = r then remove (a, �] ∩ LT (r, c) from LT (r, c) where (a, �] =

{a + 1, a + 2, . . . , �}, remove a from AT (r, c), insert (a, �] ∩ LT (r, c)
into LT (r̃, c + 1), replace the hook entry of (r̃, c + 1) with a, and
attach k to AT (r̃, c + 1).

(5) Output the resulting tableau.
See Figs. 1 and 2 for illustration.

Lemma 3.3. The map Vb is well defined. More precisely, for T ∈ HVT, we have
Vb(T ) ∈ HVT.

Proof. It suffices to check that Vb preserves the semistandardness condition of
both the entire hook-valued tableau and the filling within each cell. We break
into two cases depending on whether Step a or b in Definition 3.2 is applied.
Case 1 Assume Step a is applied. To verify semistandardness within each cell,

it suffices to check cells (r, c) and (r̃, c + 1). The semistandardness
within cell (r, c) is clearly preserved as the only change to the hook-
shaped tableau in cell (r, c) is that an entry was removed from AT (r, c).
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−
− − a
−
−
−
−−

−
−

Vb−→

−
−−
−
− a
−
−−

−
−

−
− − a

−
−−

−
k
−

Vb−→

−
−−

−
−−

−
a
− k

Figure 1. When r̃ �= r. Left: (r̃, c + 1) is a new cell; right:
(r̃, c + 1) is an existing cell

�
∗
−
− − a

Vb−→ −
−−

�
∗
a

�
∗
−
− − a

−
−
k

Vb−→
−
−−

−
−
�
∗
a k

Figure 2. When r̃ = r. Left: (r, c + 1) is a new cell; right:
(r, c + 1) is an existing cell

We now check the semistandardness condition within cell (r̃, c+1). We
have that Vb either created the cell (r̃, c + 1) and inserted the number
a in it or Vb replaced k with a and appended k to the arm of cell
(r̃, c + 1). In both cases, the tableau in cell (r̃, c + 1) is a semistandard
hook-shaped tableau. In the second case, this is true, since k is weakly
greater than HT (r̃, c + 1) and k is the smallest number weakly greater
than a in column c + 1.
We now check the semistandardness of the entire tableau. Note that
it suffices to check the semistandardness in row r̃ and column c + 1.
Since r̃ < r, the semistandardness in row r̃ is preserved as a is larger
than every number in (r̃, c) and k remains in the same cell. Also, the
semistandardness in column c + 1 is preserved as k is chosen to be the
smallest number in column c + 1 that is weakly greater than a.

Case 2 Assume Step b is applied. The semistandardness within cell (r, c)
is clearly preserved as the only change to (r, c) is that entries from
LT (r, c) and AT (r, c) are removed. We now check the semistandard-
ness condition within cell (r, c + 1). If (a, �] ∩ LT (r, c) = ∅, then a is
weakly larger than all elements of (r, c). In this case, the semistan-
dardness within cell (r, c + 1) follows from the argument in Case 1.
If (a, �] ∩ LT (r, c) �= ∅, then a is not weakly larger than all elements
of (r, c). After applying Vb, the semistandardness condition in the leg
of (r, c + 1) will still hold as a < x < z for all x ∈ (a, �] ∩ LT (r, c),
where z is the smallest value in LT (r, c + 1). Similarly, the semistan-
dardness condition in the arm of (r, c + 1) holds as a < k or k is the
empty character. Thus, the semistandardness condition in each cell is
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preserved. The semistandardness of row r is preserved as all numbers
strictly greater than a in (r, c) are moved to (r, c+1) along with a. The
semistandardness condition within column c + 1 is preserved as every
number in (r + 1, c + 1) is strictly greater than � and every number in
(r − 1, c + 1) is strictly less than a.

�
Definition 3.4. The uncrowding insertion V : HVT → HVT is defined as V(T ) =
Vd

b (T ), where the integer d ≥ 1 is minimal, such that shape(Vd
b (T ))/shape(Vd−1

b

(T )) �= ∅ or Vd
b (T ) = Vd−1

b (T ).

A column-flagged increasing tableau is a tableau whose transpose is a
flagged increasing tableau. Let F̂ denote the set of all column-flagged in-
creasing tableaux. Let F̂(μ/λ) denote the set of all column-flagged increasing
tableaux of shape μ/λ.

Definition 3.5. Let T ∈ HVT(λ) with arm excess α. The uncrowding map

U : HVT(λ) →
⊔

μ⊇λ

SVT(μ) × F̂(μ/λ)

is defined by the following algorithm:
(1) Let P0 = T and let Q0 be the column-flagged increasing tableau of shape

λ/λ.
(2) For 1 ≤ i ≤ α, let Pi+1 = V(Pi). Let c be the index of the rightmost

column of Pi containing a cell with nonzero arm excess and let c̃ be the
column index of the cell shape(Pi+1)/shape(Pi). Then, Qi+1 is obtained
from Qi by appending the cell shape(Pi+1)/shape(Pi) to Qi and filling
this cell with c̃ − c.

Define U(T ) = (P (T ), Q(T )) := (Pα, Qα).

Example 3.6. Let T be the hook-valued tableau

8
67
5
4
233 66

1
2
11

7
5

Then, we obtain the following sequence of tableaux Vi
b(T ) for 0 ≤ i ≤ 2 = d

when computing the first uncrowding insertion:

8
67
5
4
233 66

1
2
11

7
5

→

8
67
5
4
233 6

1
2
11

6
57

→

8
67
5
4
233 6

1
2
11

6
5 7

= V(T ).
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Continuing with the remaining uncrowding insertions, we obtain the following
sequences of tableaux for the uncrowding map:

8
67
5
4
233 66

1
2
11

7
5

→

8
67
5
4
233 6

1
2
11

6
5 7

→

8
67
5
4
233 6

1 1
2
1

6
5 7

→

6
8
7

5
4
233 6

1 1
2
1

6
5 7

→

6
8
7

23

5
4
3 6

1 1
2
1

6
5 7

→

6
8
7

2 3

5
4
3

1 1
2
1

6
5 6 7

= P (T ),

→
2

→
2 3

→

1

2 3
→

1

2

2 3
→

1

2

2 3 5
= Q(T ).

Corollary 3.7. Let T ∈ HVT. Then, P (T ) is a set-valued tableau.

Proof. By Lemma 3.3 and Definition 3.4, we have that V(T ) is a hook-valued
tableau. Note that if the arm excess of T is nonzero, then the arm excess of
V(T ) is one less than that of T . Since P (T ) = Vα(T ), where α is the arm
excess of T , we have that the arm excess of P (T ) is zero. Thus, P (T ) is a
set-valued tableau. �

Definition 3.8. Let T ∈ HVT and let d be minimal, such that V(T ) = Vd
b (T ).

The insertion path p of T → V(T ) is defined as follows:
• If d = 0, set p = ∅.
• Otherwise, let (r0, c0) be the rightmost and topmost cell of T containing

a cell with nonzero arm excess. For all 1 ≤ j ≤ d, let cj = c0 + j and
let rj = r̃ be r̃ in Definition 3.2 when Vb is applied to Vj−1

b (T ). Set
p = ((r0, c0), (r1, c1), . . . , (rd, cd)).

Lemma 3.9. Let T ∈ HVT. Then, Q(T ) is a column-flagged increasing tableau.

Proof. By construction, the positive integer entries in column i of Q(T ) are at
most i−1. Let m be the smallest nonnegative integer, such that Vm(T ) = P (T ).
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Let pi = ((ri
0, c

i
0), (r

i
1, c

i
1), . . . , (r

i
di

, ci
di

)) for 0 ≤ i < m be the insertion path
of Vi(T ) → Vi+1(T ). Since ci+1

0 ≤ ci
0 for all 0 ≤ i < m, the entries in each

row of Q(T ) are strictly increasing. To check that the entries in each column
of Q(T ) are strictly increasing, it suffices to show that if ci+1

0 = ci
0 then pi+1

lies weakly below pi. In other words, it suffices to check that ci+1
0 = ci

0 implies
that ri+1

j ≤ ri
j for all 0 ≤ j ≤ di. We prove this by induction on j. Note that

ri+1
0 ≤ ri

0 by the definition of U . Assume by induction that ri+1
j ≤ ri

j . This
implies that the a when applying Vb to Vj

b (Vi(T )) is weakly smaller than the
a when applying Vb to Vj

b (Vi−1(T )). Thus, we must have ri+1
j+1 ≤ ri

j+1. �

3.3. Properties of the Uncrowding Map

Let T be a hook-valued tableau. Define Ri(T ) as the induced subword of R(T )
consisting only of the letters i and i + 1. In the next lemma, we use the same
notation as in Definition 3.2. Furthermore, two words are Knuth equivalent if
one can be transformed to the other by a sequence of Knuth equivalences on
three consecutive letters

xzy ≡ zxy forx ≤ y < z, yxz ≡ yzx for x < y ≤ z.

Lemma 3.10. For T ∈ HVT, Ri(T ) = Ri(Vb(T )) unless T satisfies one of the
following three conditions:

(a) a = i or a = i + 1 and column c + 1 contains both an i and an i + 1,
(b) r̃ = r, i ∈ (a, �] ∩ LT (r, c), k = i, and column c + 1 contains an i + 1,
(c) r̃ = r, a = i, i + 1 ∈ (a, �] ∩ LT (r, c), and (r, c) contains another i besides

a.

Moreover, Ri(T ) is Knuth equivalent to Ri(Vb(T )).

Proof. Let Ri(T ) = r1r2 . . . rm. We break into cases based on the value of a.
Case 1: Assume a �= i, i + 1.

Assume Step a is applied by Vb. If k �= i, i+1, then Ri(T ) = Ri(Vb(T )) as
the position of all letters i and i+1 remains the same. Let k = i. We have that
k is the only i in column c + 1. Hence, when k gets bumped from LT (r̃, c + 1)
and appended to AT (r̃, c + 1), the relative position of k to the other letters i
and i + 1 in Ri(T ) does not change. Thus, Ri(T ) = Ri(Vb(T )). Let k = i + 1.
Note that column c + 1 cannot have a cell containing an i as k is the smallest
number weakly greater than a. Hence, moving k from LT (r̃, c+1) to AT (r̃, c+1)
will not change Ri(T ). Therefore, we once again have that Ri(T ) = Ri(Vb(T )).

Assume Step b is applied by Vb. Consider the subcase when (a, �] ∩
LT (r, c) = ∅. By a similar argument to the previous paragraph, we have that
Ri(T ) = Ri(Vb(T )). Next, consider the subcase when i + 1 ∈ (a, �] ∩ LT (r, c).
This implies that a < i and the only time i + 1 occurs in column c is in
LT (r, c). Note that if an i exists in column c, it must be contained in LT (r, c).
We also have that k ≥ i + 1 or k is the empty character and no cell in column
c + 1 contains an i. Thus, removing (a, �] ∩ LT (r, c) from LT (r, c), replacing
k with (a, �] ∩ LT (r, c) in LT (r, c + 1), and appending k to AT (r, c + 1) do
not change Ri(T ). Therefore, Ri(T ) = Ri(Vb(T )). Let i ∈ (a, �] ∩ LT (r, c)
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and i + 1 �∈ (a, �] ∩ LT (r, c). Note that the only place i + 1 can occur in col-
umn c is as HT (r + 1, c) and the only place i can occur in column c is in
LT (r, c). This implies that removing (a, �] ∩ LT (r, c) from LT (r, c), replacing
k with (a, �] ∩ LT (r, c) in LT (r, c + 1), and appending k to AT (r, c + 1) will
not change Ri(T ) unless both i + 1 and i show up in column c + 1. This can
only occur when k = i which implies that Ri(T ) = r1 . . . i i + 1 k . . . rm and
Ri(Vb(T )) = r1 . . . i+1 i k . . . rm. We see that Ri(T ) and Ri(Vb(T )) only differ
by a Knuth relation implying that they are Knuth equivalent. Assume that
i, i + 1 �∈ (a, �] ∩ LT (r, c) �= ∅. If a > i + 1 the positions of all letters i and i + 1
remain the same after Vb is applied. If a < i, then the positions of all letters
i and i + 1 also remain the same unless k = i or k = i + 1. In both of these
special subcases, it can be checked that still Ri(T ) = Ri(Vb(T )).
Case 2: Assume a = i.

Assume Step a is applied by Vb. If column c + 1 does not contain both
an i and an i + 1, then we have Ri(T ) = Ri(Vb(T )). However, if both an
i and an i + 1 are in column c + 1, then Ri(T ) = r1 . . . i i + 1 i . . . rm and
Ri(Vb(T )) = r1 . . . i + 1 i i . . . rm which are Knuth equivalent.

Assume Step b is applied by Vb. Consider the subcase when (a, �] ∩
LT (r, c) = ∅. By a similar argument to the previous paragraph, we have that
Ri(T ) = Ri(Vb(T )) unless both an i and an i + 1 are in column c + 1 in which
case Ri(T ) and Ri(Vb(T )) are only Knuth equivalent. Consider the subcase
given by i + 1 ∈ (a, �] ∩ LT (r, c). Note that no cell in column c + 1 can contain
an i, the only cell that could contain an i + 1 in column c + 1 is (r, c + 1),
and the only cell containing letters i or i + 1 in column c is (r, c). This im-
plies that it suffices to look at the changes to (r, c) and (r, c + 1). We see
that Ri(T ) = r1 . . . i + 1 i . . . i a︸ ︷︷ ︸

γ

. . . rm and Ri(Vb(T )) = r1 . . . i . . . i︸ ︷︷ ︸
γ−1

i + 1 a

where γ ≥ 1 is the number of letters i in cell (r, c) including a. We see
that Ri(T ) and Ri(Vb(T )) are Knuth equivalent. Consider the subcase when
i + 1 �∈ (a, �] ∩ LT (r, c) �= ∅. We have that both i and i + 1 cannot be in a cell
in column c + 1 and an i + 1 cannot be in column c. Thus applying Vb does
not change Ri(T ) giving us that Ri(T ) = Ri(Vb(T )).
Case 3: Assume a = i + 1.

Assume Step a is applied by Vb. If column c + 1 does not contain both i
and i + 1, then we have that Ri(T ) = Ri(Vb(T )). However, if both i and i + 1
occur in column c + 1, then Ri(T ) = r1 . . . i + 1 i + 1 i . . . rm and Ri(Vb(T )) =
r1 . . . i + 1 i i + 1 . . . rm which are Knuth equivalent.

Assume Step b is applied by Vb. If (a, �] ∩ LT (r, c) = ∅, then Ri(T ) =
Ri(Vb(T )) unless both i and i + 1 occur in column c + 1. In this exceptional
case, we have that Ri(T ) and Ri(Vb(T )) are only Knuth equivalent by a similar
argument to the previous paragraph. If (a, �] ∩ LT (r, c) �= ∅, then k > i + 1 or
k is the empty character and no cell in column c + 1 contains an i + 1. Thus,
applying Vb does not change Ri(T ) giving us that Ri(T ) = Ri(Vb(T )). �

Remark 3.11. In general, the full reading words are not Knuth equivalent un-
der the uncrowding map. For example, take the following hook-valued tableau
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T , which uncrowds to a set-valued tableau S:

T =

4
3
2
12

5
4

→ 2
1

4
3
2

5
4

= S.

The reading word changed from 4321254 to 2143254, which are not Knuth
equivalent.

Proposition 3.12. Let T ∈ HVT.
(1) If fi(T ) = 0, then fi(P (T )) = 0.
(2) If ei(T ) = 0, then ei(P (T )) = 0.

Proof. Since P (T ) = Vs
b (T ) for some s ∈ N and Knuth equivalence is tran-

sitive, we have that Ri(T ) is Knuth equivalent to Ri(P (T )) by the previous
lemma. As fi(T ) = 0, we have that every i in Ri(T ) is i-paired with an i + 1
to its left. This property is preserved under Knuth equivalence giving us that
fi(P (T )) = 0. The same reasoning implies (2). �

Lemma 3.13. Let T ∈ HVT.

(1) If fi(T ) �= 0, then fi(Vb(T )) = Vb(fi(T )) �= 0.
(2) If ei(T ) �= 0, then ei(Vb(T )) = Vb(ei(T )) �= 0.

Proof. We are going to prove (1). Part (2) follows, since ei and fi are partial
inverses.

Let a, �, k, r, c, and r̃ be defined as in Definition 3.2 when Vb is applied
to T . Similarly, define a′, �′, k′, r′, c′, and r̃′ for when Vb is applied to fi(T ).
Let Ri(T ) = r1r2 . . . rm and Ri(Vb(T )) = r′

1r
′
2 . . . r′

m be the corresponding
reading words. Let (r̂, ĉ) denote the cell containing the rightmost unpaired i
in T , where r̂ and ĉ are its row and column index, respectively. We break into
cases based on the position of (r̂, ĉ) to (r, c).
Case 1 Assume (r̂, ĉ) = (r, c). We break into subcases based on how fi acts

on T .
• Assume that (r + 1, c) contains an i + 1.

As every entry in (r, c) must be strictly smaller than the values in
(r +1, c) and (r, c) must contain an i, we have that � = i or a = i. If
� = i, then � is i-paired with the i+1 in (r+1, c). Hence, a is always
equal to i and a must correspond to the rightmost unpaired i of T .
Thus, fi acts on T by removing a from (r, c) and appending an i+1
to AT (r + 1, c). Note that (a, �] ∩ LT (r, c) = ∅ implying Vb acts on
T by removing a from AT (r, c), replacing k in (r̃, c + 1) with a, and
appending k to AT (r̃, c + 1) where r̃ ≤ r. We break into subcases
based on where the values of i and i+1 are in column c+1 utilizing
the fact that column c + 1 cannot contain an i without an i + 1
(since the arm excess of cell (r + 1, c) is zero and cell (r, c) contains
the rightmost unpaired i).
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Assume that column c+1 does not contain an i. Since a corresponds
to the rightmost unpaired i in T and column c + 1 does not contain
an i, we have that the rightmost unpaired i in Vb(T ) is precisely a
in the cell (r̃, c + 1). Note that (r̃ + 1, c + 1) does not contain an
i + 1 in Vb(T ) as k ≥ i + 1 or k is the empty character. Similarly,
we have that (r̃, c+2) does not contain an i. Thus, fi acts on Vb(T )
by changing a to an i + 1 in (r̃, c + 1). We now consider Vb(fi(T )).
When applying Vb to fi(T ), a′ is precisely the i + 1 appended to
AT (r + 1, c) and k′ is the same as k. Since r̃′ = r̃ < r + 1, we have
that Vb acts on fi(T ) by removing i+1 from Afi(T )(r+1, c), replac-
ing k with an i + 1 in (r̃, c + 1), and appending k to Afi(T )(r̃, c + 1).
We see that fi(Vb(T )) = Vb(fi(T )).

Assume that column c + 1 contains both an i and an i + 1 in the
same cell. Note that this implies that k = i. Since a is the rightmost
unpaired i in T and the only cell in column c + 1 that contained an
i + 1 or an i is (r̃, c + 1), we have that the rightmost unpaired i in
Vb(T ) is the i appended to AT (r̃, c + 1). Since (r̃, c + 1) contains an
i+1, we have that (r̃+1, c+1) cannot contain an i+1 and (r̃, c+2)
cannot contain an i. Thus, fi acts on Vb(T ) by changing the i in
AVb(T )(r̃, c + 1) to an i + 1. We now consider Vb(fi(T )). When ap-
plying Vb to fi(T ), a′ is precisely the i + 1 appended to AT (r + 1, c)
and k′ is the i + 1 in (r̃, c + 1). Since r̃′ = r̃ < r + 1, we have that
Vb acts on fi(T ) by removing i + 1 from Afi(T )(r + 1, c), replacing
i+1 in (r̃, c+1) with the i+1 from Afi(T )(r +1, c), and appending
an i + 1 to Afi(T )(r̃, c + 1). We see that fi(Vb(T )) = Vb(fi(T )).

Assume that column c+1 contains both an i and an i+1 in different
cells. Note that this implies that k = i. Since a corresponds to the
rightmost unpaired i in Ri(T ) and the only i + 1 and i in column
c + 1 are in cells (r̃ + 1, c + 1) and (r̃, c + 1), respectively, we have
that the rightmost unpaired i in Ri(Vb(T )) corresponds to the i
appended to AT (r̃, c+1). By assumption, we have that (r̃+1, c+1)
contains an i + 1. Thus, fi acts on Vb(T ) by removing the i from
AVb(T )(r̃, c + 1) and appending an i + 1 to AVb(T )(r̃ + 1, c + 1). We
now consider Vb(fi(T )). When applying Vb to fi(T ), a′ is precisely
the i + 1 appended to AT (r + 1, c) and k′ is the i + 1 in cell (r̃ +
1, c+1). If r̃′ = r +1, then i+1 is weakly larger than every value in
(r+1, c). Thus, either (a′, �′]∩Lfi(T )(r+1, c) = ∅ or r̃′ < r+1. This
implies that Vb acts on fi(T ) by removing i+1 from Afi(T )(r+1, c),
replacing the i+1 in Hfi(T )(r̃+1, c+1) with the i+1 removed from
Afi(T )(r + 1, c), and appending an i + 1 to Afi(T )(r̃ + 1, c + 1). We
see that fi(Vb(T )) = Vb(fi(T )).

• Assume that (r+1, c) does not contain an i+1 and (r, c+1) contains
an i.
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Under these assumptions, we have that no cell in column c can con-
tain an i + 1. This implies that column c + 1 must contain an i + 1.
The cell (r+1, c+1) cannot have an i+1 as this would force (r+1, c)
to also have an i + 1. Thus, (r, c + 1) must contain an i + 1 in its
leg. By our assumption, we have that fi acts on T by removing the
i from (r, c + 1) and appending an i + 1 to LT (r, c). We break into
subcases according to where the rightmost unpaired i sits inside the
cell (r, c). If the rightmost unpaired i is in HT (r, c), then a ≥ i which
would either contradict the hook entry being the rightmost unpaired
i or cell (r, c + 1) containing an i. Thus, we only need to consider
the subcases where the rightmost unpaired i is either in the leg or
arm of (r, c).

Assume that the rightmost unpaired i is in LT (r, c) for this entire
paragraph. This implies that � = i. Since (r, c + 1) contains an i,
we have that a < i. If r̃ < r, then Vb acts on T by removing a
from (r, c), replacing k with a in (r̃, c + 1), and appending k to
AT (r̃, c + 1). Since a, k < i, we have that Vb does not change posi-
tion of the rightmost unpaired i. Note that (r + 1, c) still does not
contain an i + 1, while (r, c + 1) still contains an i. Thus, fi acts on
Vb(T ) by removing the i from (r, c + 1) and appending an i + 1 to
LVb(T )(r, c). We now consider Vb(fi(T )). Note that (r′, c′), a′, and
k′ are the same as (r, c), a, and k, respectively. Thus, Vb acts in
the same way as before. This gives us that fi(Vb(T )) = Vb(fi(T )).
If r̃ = r, then k is precisely the i in cell (r, c + 1). We see that
Vb acts on T by removing (a, i] ∩ LT (r, c) from LT (r, c) and a from
AT (r, c), replacing k with ((a, i] ∩ LT (r, c)) ∪ {a}, and appending k
to AT (r +1, c). Since there is an i+1 in LVb(T )(r, c+1), we see that
the rightmost unpaired i in Vb(T ) is precisely k in AVb(T )(r, c + 1).
Note that (r + 1, c + 1) does not contain an i + 1 and (r, c + 2)
does not contain an i, because (r, c + 1) contains an i + 1. Thus,
fi acts on Vb(T ) by changing the i in AVb(T )(r, c + 1) to an i + 1.
We now consider Vb(fi(T )). We have that a′ is the same as a and
k′ are the i + 1 in (r, c + 1). We have (a′, �′] ∩ Lfi(T )(r′, c′) =
{i + 1} ∪ ((a, i] ∩ LT (r, c)). This implies that Vb acts on fi(T ) by
removing {i + 1} ∪ ((a, i] ∩ LT (r, c)) from Lfi(T )(r, c) and a from
Afi(T )(r, c), replacing i + 1 with {i + 1} ∪ ((a, i] ∩ LT (r, c)) ∪ {a} in
(r, c + 1), and appending an i + 1 to Afi(T )(r, c + 1). We see that
fi(Vb(T )) = Vb(fi(T )).

Assume that the rightmost unpaired i is in AT (r, c). This implies
that a = i and forces a to correspond to the rightmost unpaired i.
We also have that k is the i in (r, c + 1). Since i is weakly greater
than all values in (r, c), we have that (a, �] ∩ LT (r, c) = ∅. Thus, Vb

acts on T by removing a from (r, c), replacing k with a in (r, c + 1),
and appending k to AT (r, c+1). Since a was the rightmost unpaired
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i in T and cell (r, c+1) contains an i+1 in its leg, we have that the
rightmost unpaired i in Vb(T ) is k in AVb(T )(r, c + 1). As i + 1 is in
(r, c+1), we have that (r+1, c+1) cannot contain an i+1 and (r, c+2)
cannot contain an i. This implies that fi acts on Vb(T ) by changing
the i in AVb(T )(r, c + 1) to an i + 1. We now consider Vb(fi(T )). We
have that a′ is the same as a and k′ is equal to the i+1 in (r, c+1).
Note that (a′, �′] ∩ LT (r, c) = {i + 1}. This implies that Vb acts on
fi(T ) by removing i + 1 from Lfi(T )(r, c) and a from Afi(T )(r, c),
replacing the i + 1 in (r, c + 1) with {i + 1, a}, and appending an
i + 1 to Afi(T )(r, c + 1). We see that fi(Vb(T )) = Vb(fi(T )).

• Assume that (r+1, c) does not contain an i+1 and (r, c+1) does not
contain an i. We break into subcases based on where the rightmost
unpaired i sits inside (r, c).
Assume that the rightmost unpaired i is in the hook entry of (r, c)
for the remainder of this paragraph. Note that this implies that
a > i and the rightmost unpaired i in Vb(T ) is still the hook entry
of (r, c). We see that Vb does not insert an i + 1 into (r + 1, c) nor
an i into (r, c + 1). This implies that fi acts on T and Vb(T ) in the
same way by changing the hook entry of (r, c) into an i + 1. Next,
we note that (r′, c′), a′, k′, and (a′, �′] ∩ Lfi(T )(r′, c′) are the same
as (r, c), a, k, and (a, �] ∩ LT (r, c), respectively. Thus, Vb acts on
T and fi(T ) in the same manner without affecting the hook entry
of (r, c). Therefore, we have that the actions of fi and Vb on T are
independent and fi(Vb(T )) = Vb(fi(T )).

Assume that the rightmost unpaired i is in the leg of (r, c) for the
remainder of this paragraph. This implies that a �= i. First, we as-
sume that a > i or r̃ < r. Under this extra assumption, we observe
that the action of Vb does not change the position of the rightmost
unpaired i. Also, Vb does not insert an i + 1 into (r + 1, c) nor an i
into (r, c + 1). We see that fi acts on T and Vb(T ) in the same way
by changing the i in the leg of (r, c) into an i+1. Next, we note that
(r′, c′), a′, and k′ are the same as (r, c), a, and k, respectively. If
a > i, we have that a ≥ i + 1, implying that (a′, �′] ∩ Lfi(T )(r′, c′) =
(a, �] ∩ LT (r, c). Thus, either (a′, �′] ∩ Lfi(T )(r′, c′) = (a, �] ∩ LT (r, c)
or r̃ < r. This implies that Vb acts on T and fi(T ) in the same man-
ner and does not affect the i or i + 1 in the leg of (r, c). Therefore,
we have that the actions of fi and Vb on T are independent and
fi(Vb(T )) = Vb(fi(T )). Next, assume that r̃ = r and a < i. This
implies that (a, �] ∩ LT (r, c) �= ∅ as i ∈ (a, �] ∩ LT (r, c). We have
that Vb acts on T by removing (a, �] ∩ LT (r, c) from LT (r, c) and a
from AT (r, c), replacing k with ((a, l] ∩ LT (r, c)) ∪ {a} in (r, c + 1),
and appending k to AT (r, c + 1). By assumption, there was no i in
(r, c + 1) to begin with. Thus, we have that the rightmost unpaired
i of Vb(T ) is the i in (r, c + 1) that replaced k. Since k ≥ i + 1
or k is the empty character, we have that the cell (r + 1, c + 1)
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does not contain an i + 1 and the cell (r, c + 2) does not contain
an i. Hence, fi acts on Vb(T ) by replacing the i in LVb(T )(r, c + 1)
with an i + 1. We now consider Vb(fi(T )). We have that fi acts
on T by changing the i in LT (r, c) to an i + 1. We see that a′ and
k′ are the same as a and k, respectively. Since i > a, we have that
i+1 > a or in other words i+1 ∈ (a′, �′]∩LT (r, c). This implies that
(a′, �′]∩Lfi(T )(r′, c′) = (((a′, �′]∩LT (r, c))∪{i+1})−{i}. We have Vb

acts on fi(T ) by removing (a′, �′]∩Lfi(T )(r, c) from Lfi(T )(r, c) and a
from Afi(T )(r, c), replacing k with (a′, �′]∩Lfi(T )(r, c) in (r, c+1), and
appending k to Afi(T )(r, c + 1). We see that fi(Vb(T )) = Vb(fi(T )).

Assume that the rightmost unpaired i is in AT (r, c) and r̃ < r or
(a, �]∩LT (r, c) = ∅ for this entire paragraph. Under this assumption,
fi acts on T by changing the rightmost i in the arm of (r, c) to an
i+1. Also, Vb acts on T by removing a from AT (r, c), replacing k in
(r̃, c+1) with a, and appending k to AT (r̃, c+1). First, we make the
additional assumption that i < a. Since we assume the rightmost
unpaired i is in the arm of (r, c) and i < a, we have the rightmost
unpaired i in Vb(T ) is in the same position as in T . Note that the
cell (r + 1, c) still does not contain an i + 1 and the cell (r, c + 1)
still does not contain an i. Thus, we have that fi acts on Vb(T ) by
changing the rightmost i in AVb

(r, c) into an i+1. We now consider
Vb(fi(T )). We see that a′ and k′ are the same as a and k, respec-
tively. This implies that Vb acts on fi(T ) by removing a from (r, c),
replacing k with a in (r̃, c), and appending k to Afi(T )(r̃, c + 1). We
see that fi(Vb(T )) = Vb(fi(T )). Next, we make the assumption that
a = i and column c + 1 does not contain both an i and an i + 1. We
have that the rightmost unpaired i in Vb(T ) is precisely the i that
replaced k in (r̃, c+1). We also have that k ≥ i+1 or k is the empty
character, implying that the cell (r̃ + 1, c + 1) does not contain an
i + 1 and the cell (r̃, c + 2) does not contain an i. This implies that
fi acts on Vb(T ) by changing the i in L+Vb(T )(r̃, c+1) to an i+1. We
now consider Vb(fi(T )). We see that a′ is the i + 1 in (r, c) created
by applying fi and k′ is the same as k. Thus, Vb acts on fi(T ) by
removing the i+1 from (r, c), replacing k with an i+1 in (r̃, c), and
appending k to Afi(T )(r̃, c + 1). We see that fi(Vb(T )) = Vb(fi(T )).
Next, we assume that a = i and column c + 1 contains both an i
and an i + 1 in the same cell. Note that this implies that k = i.
Since a corresponded to the rightmost unpaired i in T and the only
cell in column c + 1 that contains an i + 1 or an i is (r̃, c + 1), we
have that the rightmost unpaired i in Vb(T ) corresponds to the i
appended to AT (r̃, c+1). Since (r̃, c+1) contains an i+1 in Vb(T ),
we have that (r̃ + 1, c + 1) cannot contain an i + 1 and (r̃, c + 2)
cannot contain an i. Thus, fi acts on Vb(T ) by changing the i in
AVb(T )(r̃, c+1) to an i+1. We now consider Vb(fi(T )). We see that
a′ is the i + 1 in (r, c) obtained after applying fi and k′ is the i + 1
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in cell (r̃, c+1). This implies that Vb acts on fi(T ) by removing the
i+1 from (r, c), replacing k′ with an i+1 in (r̃, c+1), and appending
k′ to Afi(T )(r̃, c + 1). We see that fi(Vb(T )) = Vb(fi(T )). Finally,
we make the assumption that a = i and column c + 1 contains both
an i and an i + 1 but in different cells. We once again have that
k = i, but now we have that (r̃+1, c+1) contains an i+1. We have
that the rightmost unpaired i in Vb(T ) is the i that was appended to
AT (r̃, c+1). Since (r̃+1, c+1) contains an i+1, we have that fi acts
on Vb(T ) by removing the i from AVb(T )(r̃, c + 1) and appending an
i+1 to AVb(T )(r̃+1, c+1). We now consider Vb(fi(T )). We see that
a′ is the i + 1 in (r, c) obtained after applying fi and k′ the i + 1 in
cell (r̃+1, c+1). This implies that Vb acts on fi(T ) by removing the
i + 1 from (r, c), replacing k′ with an i + 1 in (r̃ + 1, c + 1), and ap-
pending k′ to Afi(T )(r̃+1, c+1). We see that fi(Vb(T )) = Vb(fi(T )).

Assume that the rightmost unpaired i is in the arm of (r, c), r̃ = r,
and (a, �] ∩ LT (r, c) �= ∅ for this entire paragraph. First, we make
the additional assumption that i < a. This gives us that Vb(T ) is
attained from T by removing (a, �]∩LT (r, c) from LT (r, c) and a from
AT (r, c), replacing k in cell (r, c + 1) with ((a, �] ∩ LT (r, c)) ∪ {a},
and appending k to AT (r, c + 1). Since k, a > i, we have that the
rightmost unpaired i in Vb(T ) remains the same as in T . We also
have that the cell (r + 1, c) does not contain an i + 1 and the cell
(r, c + 1) does not contain an i. Thus, fi acts on Vb(T ) by changing
the rightmost i in AVb(T )(r, c) to an i+1. We now consider Vb(fi(T )).
We have that fi acts on T by changing the rightmost i in AT (r, c) to
an i+1. We see that a′, k′, and (a′, l′]∩Lfi(T )(r′, c′) are the same as a,
k, and (a, �]∩LT (r, c), respectively. This implies that Vb acts on fi(T )
by removing (a, �]∩LT (r, c) from Lfi(T )(r, c) and a from Afi(T )(r, c),
replacing k in cell (r, c+1) with ((a, l]∩LT (r, c))∪{a}, and appending
k to Afi(T )(r, c + 1). We see that fi(Vb(T )) = Vb(fi(T )). Next, we
assume that a = i and (r, c) contains an i + 1. Since a = i, the
i + 1 in (r, c) must be in its leg. Also as a is the rightmost unpaired
i of T , we must have that (r, c) contains another i besides a. This
gives us that Vb(T ) is attained from T by removing (a, �] ∩ LT (r, c)
from LT (r, c) and a from AT (r, c), replacing k in cell (r, c + 1) with
((a, �] ∩ LT (r, c)) ∪ {a}, and appending k to AT (r, c + 1). Note that
the i inserted into (r, c + 1) becomes i-paired, while an i in (r, c)
becomes unpaired. This implies that the rightmost unpaired i in
Vb(T ) still sits in the cell (r, c). We see that the cell (r + 1, c) still
does not contain an i + 1; however, the cell (r, c + 1) now contains
an i. This implies that fi acts on Vb(T ) by removing the i from
the cell (r, c + 1) and appending an i + 1 to LVb(T )(r, c). We now
consider Vb(fi(T )). We have that fi acts on T by changing a into
an i + 1. We have that a′ is the i + 1 obtained from applying fi and
k′ is the same as k. We see that (a′, �′] ∩ Lfi(T )(r′, c′) is the same as
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(a, �] ∩ LT (r, c) excluding the i + 1. We have that Vb acts on fi(T )
by removing (a′, �′] ∩ Lfi(T )(r′, c′) from Lfi(T )(r, c) and i + 1 from
Afi(T )(r, c), leaving the i + 1 in Lfi(T )(r, c), replacing k in (r, c + 1)
with ((a′, �′]∩Lfi(T )(r′, c′))∪{a′}, and appending k to Afi(T )(r, c+1).
We see that fi(Vb(T )) = Vb(fi(T )). Finally, we assume that a = i
and i+1 is not in the cell (r, c). This gives us that Vb(T ) is attained
from T by removing (a, �]∩LT (r, c) from LT (r, c) and a from AT (r, c),
replacing k in cell (r, c+1) with ((a, �]∩LT (r, c))∪{a}, and appending
k to AT (r, c + 1). Since k ≥ j > i + 1 for all j ∈ (a, �] ∩ LT (r, c),
we have that the i inserted into the cell (r, c + 1) is the rightmost
unpaired i in Vb(T ). Note that the cell (r+1, c+1) does not contain
an i + 1 and the cell (r, c + 2) does not contain an i. Thus, fi acts
on Vb(T ) by changing the i in (r, c+1) to an i+1. We now consider
Vb(fi(T )). We have that fi acts on T by changing a into an i + 1.
We have that a′ is the i + 1 obtained from applying fi and k′ is
the same as k. We see that (a′, �′] ∩ Lfi(T )(r′, c′) = (a, �] ∩ LT (r, c).
We have that Vb acts on fi(T ) by removing (a, �] ∩ LT (r, c) from
Lfi(T )(r, c) and i + 1 from Afi(T )(r, c), replacing k in (r, c + 1) with
((a, �] ∩ LT (r, c)) ∪ {a′}, and appending k to Afi(T )(r, c + 1). We see
that fi(Vb(T )) = Vb(fi(T )).

Case 2 Assume that r̂ < r and ĉ = c.
Note that a > i. By Lemma 3.10, we have that Ri(T ) = Ri(Vb(T ))
unless a = i + 1 and column c + 1 contains both an i and an i + 1.
However, even in this special case, we see that the rightmost unpaired
i of Vb(T ) is in the same position as the rightmost unpaired i of T .
We also see that Vb(T ) does not change whether or not cell (r̂ + 1, c)
contains an i+1 and whether or not cell (r̂, c+1) contains an i. Thus,
fi acts on the same i and in the same way for both T and Vb(T ). Since
a > i, we have that k′ is the same as k. Note that the only way for
fi to affect the cell (r, c) in T is if r̂ = r − 1 and (r, c) contains an
i + 1. However, even in this special case, we see that (r′, c′), a′, l′, and
(a′, �′] ∩ Lfi(T )(r′, c′) are the same as (r, c), a, �, and (a, �] ∩ LT (r, c).
Thus, Vb acts on T and fi(T ) in the same way. Therefore, we have
that the actions of fi and Vb on T are independent and fi(Vb(T )) =
Vb(fi(T )).

Case 3 Assume that ĉ < c. Let ĩ denote the rightmost unpaired i of T . From
the proof of Lemma 3.10, we have that Vb does not change whether or
not the i’s to the right of ĩ in Ri(T ) are i-paired. Thus, the rightmost
unpaired i in Ri(T ) and Ri(Vb(T )) are in the same position. As Vb

does not affect any column to the left of column c, we have that the
rightmost unpaired i for Vb(T ) is in the same position as the rightmost
unpaired i for T . Note that Vb also does not affect whether or not cell
(r̂+1, ĉ) contains an i+1 and whether or not cell (r̂, ĉ+1) contains an i.
Thus, fi acts on the rightmost unpaired i in T and Vb(T ) in exactly the
same way. Next, we note that (r′, c′), a′, k′, and (a′, �′] ∩ Lfi(T )(r′, c′)
are the same as (r, c), a, k, and (a, �] ∩ LT (r, c), respectively. Thus,
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Vb acts on T and fi(T ) in the same way. Therefore, we have that the
actions of fi and Vb on T are independent and fi(Vb(T )) = Vb(fi(T )).

Case 4 Assume that r̂ ≤ r and ĉ = c + 1.
Under this assumption, we have that column c + 1 does not contain
an i + 1 and a �= i + 1, since the cells in column c + 1 do not contain
any arms. We break into subcases.
• Assume that k �= i. This implies that the rightmost unpaired i in

Vb(T ) is in the same position as the rightmost unpaired i in T . We
see that Vb does not change whether or not cell (r̂+1, c+1) contains
an i+1 and whether or not cell (r̂, c+2) contains an i. Thus, fi acts
on the rightmost unpaired i in T and Vb(T ) in exactly the same way.
We also observe that (r′, c′), a′, �′, k′, and (a′, �′] ∩ Lfi(T )(r′, c′) are
the same as a, �, k, and (a, �]∩Lfi(T )(r, c), respectively. Thus, Vb acts
on T and fi(T ) in the same way. Therefore, we have that the actions
of fi and Vb on T are independent and fi(Vb(T )) = Vb(fi(T )).

• Assume that k = i. We see that the rightmost unpaired i in Vb(T ) is
the i that was appended to AT (r̂, c+1). Note that Vb does not change
whether or not cell (r̂ + 1, c + 1) contains an i + 1 and whether or
not cell (r̂, c + 2) contains an i. We first make the extra assumption
that (r̂, c+2) in T contains an i. This implies that fi acts on Vb(T )
and T in the same way by removing the i from the hook entry of
(r̂, c + 2) and appending an i + 1 to the leg of (r̂, c + 1). We also
have that (r′, c′), a′, �′, k′, and (a′, �′] ∩ Lfi(T )(r′, c′) are equal to
(r, c), a, �, k, and (a, �] ∩ Lfi(T )(r, c), respectively. Thus, Vb acts on
T and fi(T ) in the same way. Therefore, we have that the actions
of fi and Vb on T are independent and fi(Vb(T )) = Vb(fi(T )). We
now assume that (r̂, c + 2) does not contain an i. This implies that
fi acts on Vb(T ) by changing the i in AVb(T )(r̂, c + 1) to an i + 1
and acts on T similarly by changing the i in LVb(T )(r̂, c + 1) to an
i + 1. Note that (r′, c′), a′, �′, and (a′, �′] ∩ Lfi(T )(r′, c′) are equal
to (r, c), a, �, and (a, �] ∩ Lfi(T )(r, c), respectively, while k′ is the
i + 1 in Lfi(T )(r̂, c + 1). Thus, besides the value of the number that
is bumped from the leg of (r̂, c + 1) to its arm, we have Vb acts on
T and fi(T ) in the same way. Looking at fi(Vb(T )) and Vb(fi(T )),
we see that fi(Vb(T )) = Vb(fi(T )).

Case 5 Assume that r̂ > r and ĉ = c or c+1. Under this assumption, we have
that Vb does not change the cells (r̂, ĉ), (r̂+1, ĉ), and (r̂, ĉ+1). We also
have that Ri(T ) = Ri(Vb(T )), implying that the rightmost unpaired
i in Vb(T ) is in the same position as the rightmost unpaired i in T .
Thus, fi acts on the rightmost unpaired i in Vb(T ) and T in the same
way. Note that i + 1 cannot be in column ĉ, implying that fi can only
make changes to the legs and hook entries of (r̂, ĉ) and (r̂, ĉ+1). Since
these changes only affect the legs and hook entries of cells outside of
the possible cells that Vb can change, we have that Vb acts on T and
fi(T ) in the same way. Therefore, we have that the actions of fi and
Vb on T are independent and fi(Vb(T )) = Vb(fi(T )).
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Case 6 Assume that ĉ ≥ c+2. Let ĩ denote the rightmost unpaired i of T . From
the proof of Lemma 3.10, we have that Vb does not change whether or
not the i+1’s to the left of ĩ are i-paired. Thus, the rightmost unpaired
i in Ri(T ) and Ri(Vb(T )) are in the same position. As Vb does not affect
any column to the right of column c + 1, we have that the rightmost
unpaired i for Vb(T ) is in the same position as the rightmost unpaired
i for T . Note that Vb also does not affect whether or not cell (r̂ + 1, ĉ)
contains an i+1 and whether or not cell (r̂, ĉ+1) contains an i. Since
the cells that fi and Vb could change are different and the rightmost
unpaired i does not change, we have that the actions of fi and Vb on
T are independent and fi(Vb(T )) = Vb(fi(T )).

�

Theorem 3.14. Let T ∈ HVT.
(1) If fi(T ) �= 0, we have fi(P (T )) = P (fi(T )) and Q(T ) = Q(fi(T )).
(2) If ei(T ) �= 0, we have ei(P (T )) = P (ei(T )) and Q(T ) = Q(ei(T )).

Proof. Part (2) follows from part (1), since ei and fi are partial inverse. We
prove part (1) here.

Let T ∈ HVT with arm excess α, such that fi(T ) �= 0 for some i. Then,
fi(P (T )) = P (fi(T )) follows from Lemma 3.13, as P (T ) is obtained by succes-
sive applications of V on T and each application of V is a string of applications
of Vb.

Since crystal operators do not change arm excess, we may employ the
notation in Definition 3.5 and denote the pair of insertion and recording
tableaux produced at the jth step for 0 ≤ j ≤ α of the uncrowding map
U for T and fi(T ) as (Pj(T ), Qj(T )) and (Pj(fi(T )), Qj(fi(T ))), respectively.
As crystal operators do not change the shape of T , we have shape(Pj(fiT )) =
shape(fi(Pj(T ))) = shape(Pj(T )) for all 0 ≤ j ≤ α. Hence

shape(Pj+1(T ))/shape(Pj(T )) = shape(Pj+1(fi(T )))/shape(Pj(fi(T )))
for all 0 ≤ j ≤ α − 1. (3.2)

Next, we show Qj(T ) = Qj(fi(T )) for all 0 ≤ j ≤ α by induction.
When j = 0, Q0(T ) = Q0(fi(T )), since shape(P0(T )) = shape(P0(fi(T ))) =
shape(T ).

Suppose Qj(T ) = Qj(fi(T )) for a given j ≥ 0. It suffices to show that
the cells

shape(Qj+1(T ))/shape(Qj(T )) = shape(Pj+1(T ))/shape(Pj(T )) and

shape(Qj+1(fi(T )))/shape(Qj(fi(T ))) = shape(Pj+1(fi(T )))/shape(Pj(fi(T )))

in Qj+1(T ) and Qj+1(fi(T )) are at the same position with the same entry.
By (3.2), the cells are in the same position, say in column c̃. By Definition 2.5,
fi does not move elements in the arm to a different column, so the columns
in which we start the uncrowding insertion V on Pj(T ) and Pj(fi(T )) are the
same, say c, by Definition 3.5. Hence, the cells shape(Qj+1(T ))/shape(Qj(T ))
and shape(Qj+1(fi(T )))/shape(Qj(fi(T ))) are at the same position with entry
c̃ − c. The theorem follows. �
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Hawkes and Scrimshaw [8, Theorem 4.6] proved that HVTm(λ) is a Stem-
bridge crystal by checking the Stembridge axioms. This also follows directly
from our analysis above.

Corollary 3.15. The crystal HVTm(λ) of Definition 2.5 is a Stembridge crystal
of type Am−1.

Proof. According to [13], SVTm(μ) is a Stembridge crystal of type Am−1. By
Theorem 3.14, the map

U : HVTm(λ) →
⊔

μ⊇λ

SVTm(μ) × F̂(μ/λ),

is a strict crystal morphism (see, for example, [2, Chapter 2]). The statement
follows. �

3.4. Uncrowding Map on Multiset-Valued Tableaux

The uncrowding map on hook-valued tableaux described above turns out to
be a generalization of the uncrowding map on multiset-valued tableaux by
Hawkes and Scrimshaw [8, Section 3.2]. We will prove that this is indeed the
case in this section. Let us recall the definition of the uncrowding map in [8,
Section 3.2].

Definition 3.16. Let T ∈ MVT(λ). The uncrowding map

Υ : MVT(λ) →
⊔

μ⊇λ

SSYT(μ) × F̂(μ/λ)

sends T to a pair of tableaux using the following algorithm:

(1) Set Uλ1+1 = ∅ and Fλ1+1 be the unique column-flagged increasing tableau
of shape ∅/∅.

(2) Let 1 ≤ k ≤ λ1 and assume that the pair (Uk+1, Fk+1) is defined. The
pair (Uk, Fk) is defined recursively from (Uk+1, Fk+1) using the following
two steps:

(a) Define Uk as the RSK row insertion tableau from the word

R(Ck)R(Ck+1) · · · R(Cλ1),

where Cj is the jth column of T for every 1 ≤ j ≤ λ1. In other words,
if we denote by T≥k the tableau formed by the columns weakly to the
right of the kth column of T , Uk is obtained by performing the RSK row
insertion using the column reading word of T≥k.

(b) Form the tableau Fk of shape shape(Uk)/shape(T≥k) as follows. Shift
Fk+1 by one column to the right and fill the boxes in the same positions
into Fk; for every unfilled box in the shape shape(Uk)/shape(Uk+1), label
each box in column i with entry i − 1.

Define Υ(T ) = (U,F ) := (U1, F1).
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Example 3.17. Let T be the multiset-valued tableau

T =

45

233 345

1 11 4
.

Then, we obtain the following pairs of tableaux for the uncrowding map Υ:
(U4, F4) = (∅, ∅)

(U3, F3) =
(

4 ,
)

(U2, F2) =

⎛

⎝ 3 5

1 1 4 4
,

1

2 3

⎞

⎠

(U1, F1) =

⎛

⎜⎜⎜⎜⎝

4 5

2 3 3 5

1 1 1 3 4 4

,
1

1 3

2 3 5

⎞

⎟⎟⎟⎟⎠
= (U,F ) = Υ(T ).

Proposition 3.18. Let T ∈ MVT(λ). Then, U(T ) = Υ(T ). In other words, the
uncrowding map as defined in Definition 3.5 is equivalent to the uncrowding
map of Definition 3.16 in [8, Section 3.2].

Proof. Recall from Definition 3.5 that the pair of uncrowding and recording
tableaux for U(T ) is denoted by (P (T ), Q(T )) = U(T ). Similarly, let us denote
(U(T ), F (T )) := Υ(T ).

Assume that S ∈ MVT(λ) is highest weight, that is, ei(S) = 0 for i ≥ 1.
By [8, Proposition 3.10], row i of S only contains the letter i. Thus, its weight is
some partition μ = (μ1, μ2, . . . , μ�) if λ = (λ1, λ2, . . . , λ�). By Proposition 3.12
and Theorem 3.14, P (S) ∈ SSYT is highest weight. As weights of tableaux are
preserved under uncrowding, the weight of P (S) is equal to μ. By a similar
argument using [8, Theorem 3.17], U(S) ∈ SSYT is also highest weight with
weight μ. Since highest weight semistandard Young tableaux are uniquely de-
termined by their weights, we have P (S) = U(S).

Recall that as long as fiT �= 0 for T ∈ MVT(λ), we have U(fiT ) =
fiU(T ) by [8, Theorem 3.17] and P (fiT ) = fiP (T ) by Theorem 3.14. Now,
let T ∈ MVT(λ) be arbitrary. Then, T = fi1 · · · fik

(S) for some sequence of
i1, . . . , ik and S highest weight. Hence

P (T ) = P (fi1 · · · fik
S) = fi1 · · · fik

P (S) = fi1 · · · fik

U(S) = U(fi1 · · · fik
S) = U(T ).

It remains to show that Q(T ) = F (T ) for all T ∈ MVT(λ). To do this,
we show that the newly created boxes of the uncrowding map up to a specified
column in Definition 3.16 are in the same positions as those for the uncrowding
insertion in Definition 3.5. For every Y ∈ MVT(μ) and for every 1 ≤ j ≤ μ1,
denote by Y≥j the tableau formed by the rightmost j columns of Y ; here,
Y≥μ1+1 is the empty tableau.
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Let T ∈ MVT(λ) be arbitrary. For 1 ≤ k ≤ λ1+1, let P (k) be the tableau
obtained by performing the uncrowding map U on T on the columns from
right to left up to and including the kth column of T ; here, P (λ1+1) = T .
In other words, P (k) = Vαk(T ) as in Definition 3.4, where αk is the arm ex-
cess of T≥k. As the entries to the left of column k of T are untouched by the
uncrowding insertion in Definition 3.4, for every 1 ≤ k ≤ λ1 + 1, we have
(P (k))≥k = P (T≥k) = U(T≥k). It follows that for every 1 ≤ k ≤ λ1, up
to horizontal shifts, the newly formed boxes in shape(P (k))/shape(P (k+1)) =
shape[(P (k))≥k+1]/shape[(P (k+1))≥k+1] and shape([U(T≥k)]≥k+1)/shape([U
(T≥k+1)]≥k+1) are in the same positions. Since the entries in these boxes both
record the difference in column indices relative to the kth column for each
1 ≤ k ≤ λ1 and since the recording tableaux for both maps are formed from
the union of these boxes, we conclude that Q(T ) = F (T ), completing the
proof. �
3.5. Crowding Map

In this section, we give a description of the “inverse” of the uncrowding map.
We begin by introducing some notation. Let F ∈ F̂ with e entries. For

each cell (r, c) in F with entry F (r, c), define the corresponding destination
column to be d(r, c) = c−F (r, c). Define the crowding order on F by ordering
all the cells in F with a filling, first determined by their destination column
(smallest to largest) and then by column index (largest to smallest). Denote
the order by (r1, c1), (r2, c2), . . . , (re, ce). Set α(F ) = (α1, α2, . . . , αe), where
αi = F (ri, ci). Let the arm excess for a column of a hook-valued tableau be
the sum of arm excesses of all its cells.

Definition 3.19. Let h ∈ HVT and let (r, c) be a cell in h with c > 1 and with
at most one element in Ah(r, c). If Ah(r, c) is empty, we also require that the
cell (r, c) is a corner cell in h. Then, we define the crowding bumping Cb on
the pair [h, (r, c)] by the following algorithm:
(1) If Ah(r, c) is nonempty, set m to be the only element in Ah(r, c) and

b = max{x ∈ L+h (r, c) | x ≤ m}. Otherwise, set m = Hh(r, c) and b =
max(L+h (r, c)).

(2) Find the largest r′, such that Hh(r′, c− 1) ≤ b. If r′ = r, set q = Hh(r, c).
Otherwise, set q = b. In either case, append q to Ah(r′, c − 1).

(3) (a) If r′ from Step 2 equals r, perform either of the following:
(i) If Ah(r, c) is nonempty, move the set {x ∈ Lh(r, c) | q < x ≤ m}

from Lh(r, c) to Lh(r′, c − 1) and keep it strictly increasing. Remove
m from Ah(r, c) and set Hh(r, c) = m.

(ii) Otherwise, Ah(r, c) is empty, so move Lh(r, c) into Lh(r′, c − 1) and
keep it to be strictly increasing. Remove cell (r, c) from h.

(b) Otherwise, r′ �= r and perform either of the following:
(i) Suppose that Ah(r, c) is nonempty. Replace q in L+h (r, c) with m.

Remove m from Ah(r, c).
(ii) If instead Ah(r, c) is empty, then remove cell (r, c) from h.

Denote the resulting (not necessarily semistandard) hook-valued tableau by
h′. We write Cb([h, (r, c)]) = [h′, (r′, c − 1)]. We also define the projections p1
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−
−−

−
b
∗
q m

Cb−→
b
∗
−
− − q

−
m

−
−−

b
∗
m

Cb−→
b
∗
−
− − m

Figure 3. When r′ = r. Left: (i) Ah(r, c) �= ∅. Right: (ii)
Ah(r, c) = ∅

−
−−

−
−−

−
b
−m

Cb−→

−
− − b

−
−−

−
m
−

−
−−
−
−

∗
m

−
−−

−
−

Cb−→

−
− − m
−
−
−
−−

−
−

Figure 4. When r′ �= r. Left: Ah(r, c) �= ∅. Right:
Ah(r, c) = ∅

and p2 by p1 ◦ Cb([h, (r, c)]) = h′ and p2 ◦ Cb([h, (r, c)]) = (r′, c − 1). See Figs. 3
and 4 for illustration.

Example 3.20. We compute Cb in two examples

T =

5

1 1

5
4
3
2 4

, Cb([T, (1, 2)]) = [

5
4
3
1 1 2

5
4

, (1, 1) ] = [ T ′ , (1, 1) ].

S =
3
2
1

3
2

, Cb([S, (1, 2)]) = [
33
2
1

, (2, 1) ] = [ S′ , (2, 1) ].

Remark 3.21. In Definition 3.19,

• if r′ = r, then h′ is always semistandard and has the same weight as h;
• if r′ �= r and Ah(r, c) is empty, then h′ might have fewer letters than

h. In Example 3.20, S contains 5 letters, while S′ only contains 4. This
happens precisely when Lh(r, c) is nonempty.

In principle, the arm in cell (r′, c− 1) could be greater than the q that is to be
inserted. However, we only consider the cases as defined in the order described
by the next paragraph. We refer to Proposition 3.27 which states that all
tableaux we deal with in this section are indeed semistandard hook-valued
tableaux.
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Let (S, F ) ∈ SVT(μ) × F̂(μ/λ) with crowding order (r1, c1), (r2, c2), . . . ,
(re, ce) and α(F ) = (α1, α2, . . . , αe). For all 0 ≤ j ≤ e − 1 and for all 0 ≤ s ≤
αj+1, define T

(s)
j recursively by setting T

(0)
0 := S and

T
(s)
j :=

{
p1 ◦ Cb([T

(s−1)
j , (rj+1, cj+1)]) when s > 0,

T
(αj)
j−1 when s = 0 and j > 0.

Additionally, define T
(0)
e := T

(αe)
e−1 .

Thus, we obtain the following sequence:

S = T
(0)
0

p1◦ Cα1
b−−−−−→

(r1,c1)
T

(0)
1

p1◦ Cα2
b−−−−−→

(r2,c2)
T

(0)
2

p1◦ Cα3
b−−−−−→

(r3,c3)
. . .

p1◦ Cαe
b−−−−−→

(re,ce)
T (0)

e .

Remark 3.22. The tableaux T
(s)
j are well defined. We check the conditions in

Definition 3.19. Let h = T
(s)
j for some 0 ≤ j ≤ e−1 and for some 0 ≤ s < αj+1,

with cell (r, c).

• Since F ∈ F̂ , we always have c > 1.
• The case that Ah(r, c) is empty can only occur in T

(0)
j−1 for some j > 0.

In this case, (r, c) = (rj , cj), which is a corner cell.

• Consider the αj steps in T
(0)
j−1

p1◦ Cαj
b−−−−−→

(rj ,cj)
T

(0)
j . We first delete cell (rj , cj),

which has no arm. Then, at every step after that, we move leftward
one column at a time. Before we reach column d(rj , cj), there is exactly
one column with arm excess being 1 and the rest has zero arm excess
among columns to the right of d(rj , cj), since recall that the cells (rj , cj)
are ordered from smallest to largest destination column. Once we reach
column d(rj , cj), the cell there may contain more than one arm element,
but we then go to (rj+1, cj+1), which is a corner cell instead. Thus, there
is at most one element in Ah(r, c).

Definition 3.23. With the same notation as above, define the insertion path of
T

(0)
j−1 → T

(0)
j for 1 ≤ j ≤ e to be

pathj :=
(
(r(0)j , c

(0)
j ), (r(1)j , c

(1)
j ), . . . , (r(αj)

j , c
(αj)
j )

)
,

where (r(s)j , c
(s)
j ) := p2 ◦ Cs

b ([T (0)
j−1, (rj , cj)]) for 0 ≤ s ≤ αj .

Example 3.24. Consider the following pair of tableaux (S, F ) ∈ HVT((5, 3, 2))×
F̂((5, 3, 2)/((3, 2, 1))):

S =

5
4 5

2 3
4
3

1 1
2
1 4 4

, F =
1

1

3 4

.
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The crowding order is (1, 5), (1, 4), (3, 2), (2, 3). The insertion path and desti-
nation column for each of them are

path1 = ((1, 5), (1, 4), (2, 3), (2, 2), (2, 1)), d(1, 5) = 1,

path2 = ((1, 4), (2, 3), (2, 2), (3, 1)), d(1, 4) = 1,

path3 = ((3, 2), (3, 1)), d(3, 2) = 1,

path4 = ((2, 3), (2, 2)), d(2, 3) = 2.

We obtain the sequence from the algorithm

5
4 5

2 3
4
3

1 1
2
1 4 4

p1◦ C4
b−−−−→

(1,5)

5
4 5

23
4
3 4

1 1
2
1 4

p1◦ C3
b−−−−→

(1,4)

5
44 5

23
4
3 4

1 1
2
1

p1◦ Cb−−−−→
(3,2)

5
445

23
4
3 4

1 1
2
1

p1◦ Cb−−−−→
(2,3)

5
445

23
4
34

1 1
2
1

.

Lemma 3.25. If d(rj , cj) = d(rj+1, cj+1), then pathj+1 is weakly above pathj.

Proof. By the definition of crowding order, d(rj , cj) = d(rj+1, cj+1) implies
cj > cj+1. Set zj := cj −cj+1. Then, we have c

(s+zj)
j = cj −zj −s = cj+1 −s =

c
(s)
j+1 for 0 ≤ s ≤ αj+1. We need to show that r

(s)
j+1 ≥ r

(s+zj)
j for 0 ≤ s ≤ αj+1.

Computing T
(s)
j−1 from T

(s−1)
j−1 for 1 ≤ s ≤ αj , we denote b and q in Step (1)

and Step (2) of Definition 3.19 by b
(s)
j and q

(s)
j .

Since (rj+1, cj+1) is a corner cell in T
(zj)
j−1 , we have r

(0)
j+1 ≥ r

(zj)
j . We

prove that, for 1 ≤ s ≤ αj+1, we have that q
(s)
j+1 ≥ q

(s+zj)
j , which implies

b
(s)
j+1 ≥ b

(s+zj)
j and thus r

(s)
j+1 ≥ r

(s+zj)
j .

We prove q
(s)
j+1 ≥ q

(s+zj)
j by induction on s. First, we check the case

k = 1. If r
(0)
j+1 > r

(zj)
j , then it is obvious that q

(1)
j+1 > q

(zj+1)
j . Otherwise

if r
(0)
j+1 = r

(zj)
j , we consider the following cases. q

(zj)
j is the only element in

A
T

(zj)
j−1

(rj+1, cj+1). Let x = H
T

(zj)
j−1

(rj+1, cj+1), y = max(L
T

(zj)
j−1

(rj+1, cj+1)) and

y′ = max{z ∈ L+
T

(zj)
j−1

(rj+1, cj+1) | z ≤ q
(zj)
j }. See Fig. 5 for illustration.

Case (1): If r
(zj+1)
j = r

(zj)
j , then q

(zj+1)
j = x. If r

(1)
j+1 = r

(0)
j+1, then q

(1)
j+1 = q

(zj)
j .

If r
(1)
j+1 �= r

(0)
j+1, then q

(1)
j+1 equals y when y > y′ and q

(zj)
j when y = y′. In both

cases, q
(1)
j+1 ≥ x = q

(zj+1)
j .

Case (2): If r
(zj+1)
j �= r

(zj)
j , then q

(zj+1)
j = y′. In this case, we have H

T
(zj)
j−1

(rj+1+

1, cj+1 − 1) ≤ y′ ≤ y. Since H
T

(0)
j

(rj+1 + 1, cj+1 − 1) is smaller or equal to y′,

we have that r
(1)
j+1 �= r

(0)
j+1. Therefore, q

(1)
j+1 equals y when y > y′ and q

(zj)
j when

y = y′. In this case, q
(1)
j+1 ≥ y′ = q

(zj+1)
j .



288 J. Pan et al.

y
−
y′
∗
x q

(zj)
j

y
−
q
(zj)
j

y
−
q
(zj)
j

∗
x

Figure 5. Cell (r(0)j+1, c
(0)
j+1) = (r(zj)

j , c
(zj)
j ) in T

(zj)
j−1 (left); in

T
(0)
j , case(1) (middle), case(2) (right)

y
−
y′
∗
x q

(s+zj)
j

y
−
q
(s+zj)
j q

(s)
j+1

y
−
q
(s+zj)
j

∗
x q

(s)
j+1

Figure 6. Cell (r(s)j+1, c
(s)
j+1) = (r(s+zj)

j , c
(s+zj)
j ) in T

(s+zj)
j−1

(left); in T
(s)
j , case(1) (middle), case(2) (right)

Now, we have proved the base case s = 1. Next, suppose it holds for
some s ≥ 1 that q

(s)
j+1 ≥ q

(s+zj)
j and r

(s)
j+1 ≥ r

(s+zj)
j . The statement is sim-

ilar to the argument of the base case. If r
(s)
j+1 > r

(zj+s)
j , it is obvious that

q
(s+1)
j+1 > q

(s+1+zj)
j and thus r

(s+1)
j+1 ≥ r

(s+1+zj)
j . If r

(s)
j+1 = r

(zj+s)
j , we discuss

the following cases. q
(s+zj)
j is the only element in A

T
(s+zj)
j−1

(r(s+zj)
j , c

(s+zj)
j ).

Let x = H
T

(s+zj)
j−1

(r(s+zj)
j , c

(s+zj)
j ), y = max(L

T
(s+zj)
j−1

(r(s+zj)
j , c

(s+zj)
j )) and y′ =

max{z ∈ L+
T

(s+zj)
j−1

(r(s+zj)
j , c

(s+zj)
j ) | z ≤ q

(s+zj)
j }. See Fig. 6 for illustration.

Case (1): If r
(s+1+zj)
j = r

(s+zj)
j , then q

(s+1+zj)
j = x. If r

(s+1)
j+1 = r

(s)
j+1, then

q
(s+1)
j+1 = q

(s+zj)
j ≥ x. If r

(s+1)
j+1 �= r

(s)
j+1, then q

(s+1)
j+1 = max{z ∈ L+

T
(s)
j

(r(s)j+1, c
(s)
j+1) |

z ≤ q
(s)
j+1} ≥ q

(s+zj)
j ≥ x. Therefore, in either case, we have q

(s+1)
j+1 ≥ q

(s+1+zj)
j .

Case (2): If r
(s+1+zj)
j �= r

(s+zj)
j , then q

(s+1+zj)
j = y′. In this case, we have

H
T

(s+zj)
j−1

(r(s+zj)
j + 1, c

(s+zj)
j − 1) ≤ y′ ≤ q

(s+zj)
j . Since H

T
(s)
j

(r(s)j+1 + 1, c
(s)
j+1 − 1)

is smaller or equal to q
(s+zj)
j , we have that r

(s+1)
j+1 �= r

(s)
j+1. Therefore, q

(s+1)
j+1 =

max{z ∈ L+
T

(s)
j

(r(s)j+1, c
(s)
j+1) | z ≤ q

(s)
j+1}. By induction, we have q

(s+zj)
j ≤ q

(s)
j+1;

thus, q
(s+1)
j+1 ≥ q

(s+zj)
j ≥ y′ = q

(s+1+zj)
j . This completes the proof. �

Lemma 3.26. With the notations as above, let 0 ≤ j ≤ e − 1, 0 ≤ s < αj+1

and Cb([T
(s)
j , (r, c)]) = [T (s+1)

j , (r′, c − 1)] for some r, c, r′. Then, in T
(s+1)
j ,
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column c − 1 is the rightmost column with nonzero arm excess and (r′, c − 1)
is the topmost cell in column c − 1 with nonzero arm excess.

Proof. In any pathj , consider the arm excess of its columns. Those with column
index c such that d(rj , cj) < c < cj started with arm excess 0, then changed
to arm excess 1 when the insertion path passed through that column, and
immediately decreased to 0.

Thus, the q
(s)
j that is being moved to cell (r′, c − 1) is always at the

rightmost column containing nonzero arm excess. When c − 1 > d(rj , cj), the
arm excess of the column c − 1 is exactly 1, (r′, c − 1) is also the topmost
cell containing an arm. For c − 1 = d(rj , cj), the path pathj has reached its
destination. At that point, any column to the right of d(rj , cj) has 0 arm excess.
It follows from Lemma 3.25 that the cell (r(αj)

j , c
(αj)
j ) is also the topmost cell

containing an arm (Figs. 7, 8, 9, 10). �

Proposition 3.27. The tableau T
(s+1)
j is a semistandard hook-valued tableau for

all 0 ≤ j ≤ e − 1 and for all 0 ≤ s < αj+1.

Proof. We only need to check that the q in Step 2 of Definition 3.19 is greater
or equal to the hook entry and arm of the cell q is to be inserted into. When
q is the only arm element, it is obvious that q is greater or equal to the hook
entry.

The case when q is not the only arm element can only happen when we
reach the destination column of the path. By the proof of Lemma 3.25, we have
that for q

(s)
j+1 ≥ q

(s+zj)
j for s ≥ 1 and for j, such that d(rj , cj) = d(rj+1, cj+1).

Hence, the statement follows by setting k = αj+1. �

Before we define the “inverse” of the uncrowding map U : HVT(λ) →
�μ⊇λSVT(μ) × F̂(μ/λ), we need to restrict our domain to a subset Kλ of
�μ⊇λSVT(μ)×F̂(μ/λ), as the image of U is not all of �μ⊇λSVT(μ)×F̂(μ/λ).
We define

Kλ(μ) :={(S, F ) ∈ SVT(μ) × F̂(μ/λ) | weight(T (s)
j ) = weight(S),

∀ 0 ≤ j ≤ e − 1,∀ 0 ≤ s ≤ αj+1},

Kλ :=
⊔

μ⊇λ

Kλ(μ).

Remark 3.28. From the perspective of the uncrowding map, the set-valued
tableau S in Example 3.20 cannot be obtained from a shape (1, 1) hook-valued
tableau via the uncrowding map as explained in Remark 3.21. We say the cell
(1, 2) in S practices social distancing. In this case

⎛

⎝
3
2
1

3
2

,
1

⎞

⎠ /∈ K(1,1).

The (S, F ) in Example 3.24 is in K(3,2,1)(5, 3, 2).
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−
− − a
−
−
−
−−

−
−

Vb−→

−
−−
−
− a
−
−−

−
−

−
− − a

−
−−

−
k
−

Vb−→

−
−−

−
−−

−
a
− k

Figure 7. Left: case (1A): (r̃, c + 1) is not in h. Right: case
(1B): (r̃, c + 1) is in h

Definition 3.29. We can now define the crowding map C for any partition λ as
follows:

C : Kλ −→ HVT(λ)

(S, F ) �→ T (0)
e .

Proposition 3.30. The image of the uncrowding map U : HVT(λ) → �μ⊇λSVT

(μ) × F̂(μ/λ) is a subset of Kλ. Moreover, we have C ◦ U = 1HVT(λ).

Proof. We show that if h̃ = Vb(h), where h ∈ HVT, Vb is as defined in Def-
inition 3.2 and h̃ is obtained by moving some letter(s) from the cell (r, c) to
(r̃, c+1) (potentially adding a box), then Cb([h̃, (r̃, c+1)]) = [h′, (r′, c)] satisfies
[h′, (r′, c)] = [h, (r, c)].

We follow the notation used in Definitions 3.2 and 3.19. Thus a = max(Ah(r, c)).
We have that Hh(r̃, c) ≤ a. If cell (r + 1, c) is in h, then Hh(r + 1, c) > a.
Case (1): r̃ �= r.
Case (1A): If cell (r̃, c + 1) is not in h, then h′ is obtained by adding cell
(r̃, c+1) and moving a from Ah(r, c) to Hh(r̃, c+1). Under the action of Cb, by
Step (1), b = a and r′ = r. Cb appends a to Ah̃(r, c) and removes cell (r̃, c+1),
which recovers h.
Case (1B): If cell (r̃, c+1) is in h, then k ∈ L+h (r̃, c+1) is the smallest number
that is greater than or equal to a in column c + 1. h′ is obtained by removing
a from Ah(r, c), replacing k with a, and attaching k to Ah(r̃, c + 1). Under
the action of Cb, by Step (1), we can see that m = k, b = a, and r′ = r. By
Step (1), q = b = a, and a is appended to Ah̃(r, c) and q = a in Lh̃(r̃, c + 1) is
replaced with m = k. In the end, m is removed from Ah̃(r̃, c + 1). We recover
h.
Case (2): r̃ = r. Let � = max(L+h (r, c)).
Case (2A): If cell (r, c + 1) is not in h, Vb adds cell (r, c + 1), removes the part
of Lh(r, c) that is greater than a to Lh(r, c + 1), and moves a from Ah(r, c) to
Hh(r, c + 1). Under the action of Cb, by Step 1, m = a and b = �. Thus, r′ = r.
By Step 3(a)ii, we move Lh̃(r, c + 1) into Lh̃(r, c) and we recover h.
Case (2B): If cell (r, c + 1) is in h, h̃ is obtained by moving the part of Lh(r, c)
that is greater than a to Lh(r, c + 1), moving a from Ah(r, c) to Hh(r, c + 1),
and appending k to Ah(r, c+1). Under the action of Cb, by Step 1, m = k and
b = �. Then, r′ = r and q = a. By Step 3(a)i, we move the set {x ∈ Lh̃(r, c) |
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�
∗
−
− − a

Vb−→ −
−−

�
∗
a

�
∗
−
− − a

−
−
k

Vb−→
−
−−

−
−
�
∗
a k

Figure 8. Left: Case (1A): (r, c+1) is not in h. Right: Case
(1B): (r, c + 1) is in h

a < x ≤ k} from Lh̃(r, c+1) into Lh̃(r, c), which is the set that was moved from
cell (r, c) by Vb. Removing k from Ah̃(r, c + 1) and setting Hh̃(r, c + 1) = k, we
recover h.

Now, we have proven Cb([h̃, (r̃, c+1)]) = [h′, (r′, c)] = [h, (r, c)]. It follows
that for any (S, F ) = U(h), we have that T

(s)
j is semistandard and has the same

weight as S for all 0 ≤ j ≤ e − 1, for all 0 ≤ s ≤ αj+1. Thus, image(U) ⊂ Kλ

and C ◦ U = 1HVT(λ). �

Proposition 3.31. Kλ is a subset of the image of U : HVT(λ) → �μ⊇λSVT(μ)×
F̂(μ/λ). Moreover, U ◦ C = 1Kλ

.

Proof. Let (S, F ) ∈ Kλ, then for all 0 ≤ j < e and for all 0 ≤ s < αj+1,
Cb([T

(s)
j , (r, c)]) = [T (s+1)

j , (r′, c−1)] for some r, c, r′. We show that Vb(T
(s+1)
j ) =

T
(s)
j for all 0 ≤ j < e and for all 0 ≤ s < αj+1. Following the notation in Def-

inition 3.2, we first locate the rightmost column that contains nonzero arm
excess, and then determine the topmost cell in row r̃ in that column with
nonzero arm excess. We denote by a the largest arm element in that cell.

By Lemma 3.26, in T
(s+1)
j , column c − 1 is the rightmost column with

nonzero arm excess and (r′, c − 1) is the topmost cell in column c − 1 with
nonzero arm excess.
Case (1): r′ = r. In this case, either cell (r + 1, c − 1) does not exist in T

(s)
j , or

H
T

(s)
j

(r + 1, c − 1) > b.

Case (1A): A
T

(s)
j

(r, c) = ∅. m = H
T

(s)
j

(r, c) and b = max(L+
T

(s)
j

(r, c)). Since

r′ = r, q = m, T
(s+1)
j is obtained by appending m to A

T
(s)
j

(r, c − 1), moving

L
T

(s)
j

(r, c) into L
T

(s)
j

(r, c − 1), and removing cell (r, c) from T
(s)
j . Note that

everything in L
T

(s)
j

(r, c) is greater than m and everything in L
T

(s)
j

(r, c − 1) is
smaller or equal to m.

For the Vb action, we have a = m and b is the greatest letter in L
T

(s+1)
j

(r, c−
1). Since every letter in T

(s+1)
j (r′′, c) is smaller than m for r′′ < r, we have

r̃ = r. Vb acts on T
(s+1)
j by adding the cell (r, c), setting the hook entry to be

m, and moving (m, b] ∩ L
T

(s+1)
j

(r, c − 1) to L
T

(s+1)
j

(r, c). Then, we recover T
(s)
j .
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−
−−

b
∗
m

Cb−→
b
∗
−
− − m

−
−−

−
b
∗
q m

Cb−→
b
∗
−
− − q

−
m

Figure 9. Left: Case (1A): A
T

(s)
j

(r, c) = ∅. Right: Case (1B):

A
T

(s)
j

(r, c) �= ∅

−
−−
−
− m
−
−−

−
−

Cb−→

−
− − m
−
−
−
−−

−
−

−
−−

−
−−

−
b
−m

Cb−→

−
− − b

−
−−

−
m
−

Figure 10. Left: case (2A): A
T

(s)
j

(r, c) = ∅. Right: case (2B):

A
T

(s)
j

(r, c) �= ∅

Case (1B): A
T

(s)
j

(r, c) �= ∅. m is the only element in A
T

(s)
j

(r, c), q = H
T

(s)
j

(r, c)

and b = max{x ∈ L+
T

(s)
j

| x ≤ m}. T
(s+1)
j is obtained by appending q to

A
T

(s)
j

(r, c − 1), setting H
T

(s)
j

(r, c) to be m, deleting A
T

(s)
j

, and moving {x ∈
L

T
(s)
j (r,c)

| q < x ≤ m} to L
T

(s)
j

(r, c − 1).

For the Vb action, a = q and b is the greatest letter in L
T

(s+1)
j

(r, c − 1).

Since every letter in T
(s+1)
j (r′′, c) is smaller than q for r′′ < r and m ≥ q,

r̃ = r. Vb acts on T
(s+1)
j by setting H

T
(s+1)
j

(r, c) = q, A
T

(s+1)
j

(r, c) = m, and

moving (q, b] ∩ L
T

(s+1)
j

(r, c − 1) to L
T

(s+1)
j

(r, c). We recover T
(s)
j .

Case (2): r′ �= r.
Case (2A): A

T
(s)
j

(r, c) = ∅. Note that in this case, Cb will move m somewhere

else and remove the cell (r, c). Since weight(T (s+1)
j ) = weight(T (s)

j ), we must

have that L
T

(s)
j

(r, c) = ∅. So b = q = m. T
(s+1)
j is obtained from T

(s)
j by

appending m to A
T

(s)
j

(r′, c − 1) and removing the cell (r, c).

For the Vb action, a = m. Since every letter in T
(s+1)
j (r′′, c) is smaller

than m for r′′ < r, a new cell (r, c) is added, r̃ = r. Vb acts on T
(s+1)
j by

moving m to H
T

(s+1)
j

(r, c). We recover T
(s)
j .
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Case (2B): A
T

(s)
j

(r, c) �= ∅. m is the only element in A
T

(s)
j

(r, c), q = b =

max{x ∈ L+
T

(s)
j

(r, c) | x ≤ m}. T
(s+1)
j is obtained by appending b to A

T
(s)
j

(r′, c−
1), replacing b in L

T
(s)
j

(r, c) with m, and removing m from A
T

(s)
j

(r, c).

For the Vb action, a = b. Since every letter in T
(s+1)
j (r′′, c) is smaller than

b for r′′ < r, m is the smallest letter that is greater or equal to b in column c.
Hence, r̃ = r. Vb acts on T

(s+1)
j by removing b from A

T
(s+1)
j

(r′, c−1), replacing

m in L
T

(s+1)
j

(r, c) with b, and attaching m to A
T

(s+1)
j

(r, c). We recover T
(s)
j .

Therefore, we have Vb(T
(s+1)
j ) = T

(s)
j for all 0 ≤ j ≤ e − 1, for all

0 ≤ s < αj , and V(T (0)
j+1) = T

(0)
j . It follows that we also recover the recording

tableau F . Thus, U(T (0)
e ) = (S, F ). �

Corollary 3.32. The uncrowding map U is a bijection between HVT(λ) and Kλ

with inverse C.
3.6. Alternative Uncrowding on Hook-Valued Tableaux

In Sect. 3.2, we defined an uncrowding map sending hook-valued tableaux to
pairs of tableaux with one being set-valued and the other being column-flagged
increasing. As hook-valued tableaux were introduced as a generalization of
both set-valued tableaux and multiset-valued tableaux, it is natural to ask if
there is an uncrowding map taking hook-valued tableaux to pairs of tableaux
with one being multiset-valued. In this section, we provide such a map.

Definition 3.33. The multiset uncrowding bumping Ṽb : HVT → HVT is de-
fined by the following algorithm:
(1) Initialize T as the input.
(2) If the leg excess of T equals zero, return T.
(3) Find the topmost row that contains a cell with nonzero leg excess. Within

this column, find the cell with the largest value in its leg. (This is the
rightmost cell with nonzero leg excess in the specified row.) Denote the
row index and column index of this cell by r and c, respectively. Denote
the cell as (r, c), its largest leg entry by �, and its rightmost arm entry
by a.

(4) Look at the row above (r, c) (i.e. row r+1) and find the leftmost number
that is strictly greater than �.

• If no such number exists, attach an empty cell to the end of row
r +1 and label the cell as (r +1, c̃), where c̃ is its column index. Let
k be the empty character.

• If such a number exists, label the value as k and the cell containing
k as (r + 1, c̃) where c̃ is the cell’s column index.

We now break into cases:
(a) If c̃ �= c, then remove � from LT (r, c), replace k with �, and attach k to

the leg of LT (r + 1, c̃).
(b) If c̃ = c, then remove [�, a] ∩ AT (r, c) from AT (r, c) where [�, a] ∩ AT (r, c)

is the multiset {z ∈ AT (r, c) | � ≤ z ≤ a}. Remove � from LT (r, c), insert



294 J. Pan et al.

[�, a] ∩AT (r, c) into AT (r + 1, c̃), replace the hook entry of (r + 1, c̃) with
�, and attach k to LT (r + 1, c̃).

(5) Output the resulting tableau.

Definition 3.34. The multiset uncrowding insertion Ṽ : HVT → HVT is defined
as Ṽ(T ) = Ṽd

b (T ), where the integer d ≥ 1 is minimal, such that shape(Ṽd
b (T ))/

shape(Ṽd−1
b (T )) �= ∅ or Ṽd

b (T ) = Ṽd−1
b (T ).

Definition 3.35. Let T ∈ HVT(λ) with leg excess α. The multiset uncrowding
map

Ũ : HVT(λ) →
⊔

μ⊇λ

MVT(μ) × F(μ/λ)

is defined by the following algorithm:

(1) Let P̃0 = T and let Q̃0 be the flagged increasing tableau of shape λ/λ.
(2) For 1 ≤ i ≤ α, let P̃i+1 = Ṽ(P̃i). Let r be the index of the topmost

row of P̃i containing a cell with nonzero leg excess and let r̃ be the row
index of the cell shape(P̃i+1)/shape(P̃i). Then, Q̃i+1 is obtained from Q̃i

by appending the cell shape(P̃i+1)/shape(P̃i) to Q̃i and filling this cell
with r̃ − r.

Define Ũ(T ) = (P̃ (T ), Q̃(T )) := (P̃α, Q̃α).

Example 3.36. Let T be the hook-valued tableau

T =

79

233
8
78

1
3
223

7
4

.

Then, we obtain the following sequence of tableaux Ṽi
b(T ) for 0 ≤ i ≤ 2 = d

when computing the first multiset uncrowding insertion:

79

233
8
78

1
3
223

7
4

→

9
78
233 78

1
3
223

7
4

→

9
78
233 78

1
3
223

7
4

= Ṽ(T ).

Continuing with the remaining multiset uncrowding insertions, we obtain
the following sequences of tableaux for the multiset uncrowding map:

79

233
8
78

1
3
223

7
4

→

9
78
233 78

1
3
223

7
4

→

9
78 8
233 77

1
3
223 4

→

9
8
77 8
233 337
1 22 4

= P̃ (T ),
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→

2

→

2

2
→

4

2

2 = Q̃(T ).

Proposition 3.37. Let T ∈ HVT. Then, Ũ(T ) is well defined.

Proof. The statement follows from a similar argument to the proofs found in
Corollary 3.7 and Lemma 3.9. �

Similar to the uncrowding map U , the multiset uncrowding map Ũ inter-
wines with the corresponding crystal operators.

Theorem 3.38. Let T ∈ HVT.
(1) If fi(T ) = 0, then fi(P̃ (T )) = 0.
(2) If ei(T ) = 0, then ei(P̃ (T )) = 0.
(3) If fi(T ) �= 0, we have fi(P̃ (T )) = P̃ (fi(T )) and Q̃(T ) = Q̃(fi(T )).
(4) If ei(T ) �= 0, we have ei(P̃ (T )) = P̃ (ei(T )) and Q̃(T ) = Q̃(ei(T )).

Proof. The proof follows similarly to those found in Proposition 3.12,
Lemma 3.13, and Theorem 3.14. �

4. Applications

In this section, we provide the expansion of the canonicalGrothendieck polyno-
mials Gλ(x;α, β) in terms of the stable symmetric Grothendieck polynomials
Gμ(x;β = −1) and in terms of the dual stable symmetric Grothendieck poly-
nomials gμ(x;β = 1) using techniques developed in [1]. We first review the
basic definitions and Schur expansions of the two polynomials.

Recall from (1.1) that the stable symmetric Grothendieck polynomial is
the generating function of set-valued tableaux

Gμ(x;−1) =
∑

S∈SVT(μ)

(−1)|S|−|μ|xweight(S).

Its Schur expansion can be obtained from the crystal structure on set-valued
tableaux [13]

Gμ(x;−1) =
∑

S∈SVT(μ)
ei(S)=0 ∀i

(−1)|S|−|μ| sweight(S).

Definition 4.1. The reading word word(S) = w1w2 · · · wn of a set-valued tableau
S ∈ SVT(μ) is obtained by reading the elements in the rows of S from the top
row to the bottom row in the following way. In each row, first ignore the small-
est element of each cell and read all remaining elements in descending order.
Then, read the smallest elements of each cell in ascending order.
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Example 4.2. The reading word of P (T ) in Example 3.6 is word(P (T )) =
8675423362111567.

Example 4.3. The highest weight set-valued tableaux of shape (2) are

1 1 , 1
2
1 ,

1

3
2
1

,

1

4
3
2
1

, . . . ,

which gives the Schur expansion

G(2)(x;−1) = s2 − s21 + s211 − s2111 ± · · · .

The dual stable symmetric Grothendieck polynomials gμ(x; 1) are dual
to Gμ(x;−1) under the Hall inner product on the ring of symmetric functions.

Definition 4.4. A reverse plane partition of shape μ is a filling of the cells in
the Ferrers diagram of μ with positive integers, such that the entries are weakly
increasing in rows and columns. We denote the collection of all reverse plane
partitions of shape μ by RPP(μ) and the set of all reverse plane partitions by
RPP.

The evaluation ev(R) of a reverse plane partition R ∈ RPP is a composi-
tion α = (αi)i≥1, where αi is the total number of columns in which i appears.
The reading word word(R) is obtained by first circling the bottommost oc-
currence of each letter in each column, and then reading the circled letters
row-by-row from top to bottom and left to right within each row.

Example 4.5. Consider the reverse plane partition

R = 1 2

1 1 3
∈ RPP((3, 2)).

By circling the bottommost occurrence of each letter in each column, we
obtain

R = 1 2©
1© 1© 3©

, ev(R) = (2, 1, 1), word(R) = 2113.

Lam and Pylyavskyy [10] showed that the dual stable symmetric
Grothendieck polynomials gμ(x; 1) are generating functions of reverse plane
partitions of shape μ

gμ(x; 1) =
∑

R∈RPP(μ)

xev(R).

They also provided the Schur expansion of the dual stable symmetric
Grothendieck polynomials [10, Theorem 9.8]

gμ(x; 1) =
∑

F

sinnershape(F ),

where the sum is over all flagged increasing tableaux whose outer shape is μ.
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Example 4.6. When μ = (μ1) is a partition with only one row, we have
g(μ1)(x; 1) = s(μ1).

The flagged increasing tableaux of outer shape (2, 1, 1) are

,

1

,

2

,

2

1

.

Hence, g211(x; 1) = s211 + 2s21 + s2.

According to [1], a symmetric function fα over the ring R is said to have
a tableaux Schur expansion if there is a set of tableaux T(α) and a weight
function wtα : T(α) → R, so that

fα =
∑

T∈T(α)

wtα(T )sshape(T ).

Furthermore, any symmetric function with such a property has the following
expansion in terms of Gμ(x;−1) and gμ(x; 1).

Theorem 4.7. [1, Theorem 3.5] Let fα be a symmetric function with a tableaux
Schur expansion fα =

∑
T∈T(α) wtα(T )sshape(T ) for some T(α). Let S(α) and

R(α) be defined as sets of set-valued tableaux and reverse plane partitions,
respectively, by

S ∈ S(α) if and only if P (word(S)) ∈ T(α), and

R ∈ R(α) if and only if P (word(R)) ∈ T(α),

where P (w) is the RSK insertion tableau of the word w. We also extend wtα
to S(α) and R(α) by setting wtα(X) := wtα(P (word(X))) for any X ∈ S(α)
or R(α). Then, we have

fα =
∑

R∈R(α)

wtα(R)Gshape(R)(x;−1), and

fα =
∑

S∈S(α)

wtα(S)(−1)|S|−|shape(S)|gshape(S)(x; 1).

Proposition 4.8. The canonical Grothendieck polynomials have a tableaux Schur
expansion.

Proof. Recall the uncrowding map on set-valued tableaux of Definition 3.1

USVT : SVT(μ) −→
⊔

ν⊇μ

SSYT(ν) × F(ν/μ).

By Corollary 3.32, we have a bijection

U : HVT(λ) → Kλ =
⊔

μ⊇λ

Kλ(μ).

Note that Kλ ⊆ ⊔
μ⊇λ SVT(μ) × F̂(μ/λ). Denote

φλ(S) = |{F ∈ F̂ | (S, F ) ∈ Kλ}|.
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Note that sometimes φλ(S) = 0.
Given H ∈ HVT(λ), we have U(H) = (S, F ) ∈ SVT(μ) × F̂(μ/λ) for

some μ ⊇ λ and |μ| = |λ| + a(H). We can also obtain USVT(S) = (T,Q) ∈
SSYT(ν) × F(ν/μ) for some ν ⊇ μ and |ν| = |H|. The weights of H,S
and T are the same. When H is highest weight, that is ei(H) = 0 for all
i, then S and T are also of highest weight and weight(H) = shape(T ). De-
note by HVTh(λ),SVTh(λ),SSYTh(λ) the subset of highest weight elements in
HVT(λ),SVT(λ),SSYT(λ), respectively.

Applying [8, Theorem 4.6] and the above correspondence, we obtain

Gλ(x;α, β) =
∑

H∈HVTh(λ)

αa(H)β�(H)sweight(H)

=
∑

μ⊇λ

∑

(S,F )∈Kλ(μ)

α|μ|−|λ|β|S|−|μ|sweight(S)

=
∑

μ⊇λ

∑

S∈SVTh(μ)

φλ(S)α
|μ|−|λ|β|S|−|μ|sweight(S)

=
∑

μ⊇λ

∑

ν⊇μ

∑

T∈SSYTh(ν)

∑

Q∈F(ν/μ)

φλ(U−1
SVT(T, Q))α|μ|−|λ|β|ν|−|μ|sweight(T )

=
∑

μ⊇λ

∑

ν⊇μ

∑

T∈SSYTh(ν)

α|μ|−|λ|β|ν|−|μ| ∑

Q∈F(ν/μ)

φλ(U−1
SVT(T, Q))sshape(T )

=
∑

T∈T(λ)

wtλ(T )sshape(T ),

where T(λ) = {T ∈ SSYTh(ν) | ν ⊇ λ} and

wtλ(T ) =
∑

μ:λ⊆μ⊆shape(T )

α|μ|−|λ|β|shape(T )|−|μ| ∑

Q∈F(shape(T )/μ)

φλ(U−1
SVT(T,Q)).

�

Note that Proposition 4.8 in particular implies that the canonical
Grothendieck polynomials are Schur positive. This was known from [8], but
here an explicit tableaux formula is given.

Corollary 4.9. The canonical Grothendieck polynomials have Gμ(x;−1) and
gμ(x; 1) expansions

Gλ(x;α, β) =
∑

R∈R(λ)

wtλ(R)Gshape(R)(x;−1),

Gλ(x;α, β) =
∑

S∈S(λ)

wtλ(S)(−1)|S|−|shape(S)|gshape(S)(x; 1).

Example 4.10. We compute the first two terms in G(2)(x;α, β) = s2 + βs21 +
2αs3 + 2αβs31 + · · · . The semistandard Young tableaux involved are

T((2)) =

⎧
⎪⎨

⎪⎩ 1 1
, 2

1 1
,

1 1 1
, 2

1 1 1
, . . .

⎫
⎪⎬

⎪⎭
.
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Labelling the tableaux T1, T2, T3, T4, . . . , we have wt(2)(T1) = 1,wt(2)(T2) =
β,wt(2)(T3) = 2α,wt(2)(T4) = 2αβ. Next, we compute the elements in R((2))
and S((2)) that correspond to T1 and T2

{R ∈ R((2)) | P (word(R)) = T1} =
{

1 1
, 1

1 1
, 1 1

1 1
,

1

1

1 1
, . . .

}

{R ∈ R((2)) | P (word(R)) = T2} =
{ 2

1 1
, 1 2

1 1
,

2

1

1 1
,

2

2

1 1
, . . .

}

{S ∈ S((2)) | P (word(S)) = T1} =
{ 1 1 }

{S ∈ S((2)) | P (word(S)) = T2} =
{ 2

1 1
, 1

2
1

}
.

Applying the expansion formulas, we obtain

G(2)(x;α, β) =(G(2)(x;−1) + G(21)(x;−1) + G(22)(x;−1) + G(211)(x;−1) + · · · )
+ β(G(21)(x;−1) + G(22)(x;−1) + 2G(211)(x;−1) + · · · ) + · · ·

G(2)(x;α, β) =g(2)(x; 1) + β(g(21)(x; 1) − g(2)(x; 1)) + · · · .
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