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Inhibition of Lithium Dendrite Growth with Highly Concentrated
lons: Cellular Automaton Simulation and Surrogate Model with
Ensemble Neural Networks+

Tong Gao,? Ziwei Qian, ® Hongbo Chen, *° Reza Shahbazian-Yassar ¢ and Issei Nakamura *2

We have developed a lattice Monte Carlo (MC) simulation based on the diffusion-limited aggregation model that accounts
for the effect of the physical properties of small ions such as inorganic ions and large salt ions that mimic ionic liquids (ILs)
on lithium dendrite growth. In our cellular automaton model, molecular and atomistic details are largely coarse-grained to
reduce the number of model parameters. During lithium deposition, the cations of the salt and ILs form positively charged
electrostatic shields around the tip of the dendrites, and the anions of the salt and ILs form negative local potential lumps
in adjacent areas to the dendrite. Both of the effects change the distribution of the electrostatic potential and notably inhibit
dendrite formation between electrodes. The applied voltage and the physical properties of the salt ions and ILs, such as the
size of the ions, the size asymmetry between the cation and anion, the dielectric constant, the excluded volume of the ions,
and the model parameter 1, notably affect electric-field screening and hence the variation in the local potential, resulting in
substantial changes in the aspect ratio and the average height of the dendrites. Our present results suggest that the large
salts such as ILs more significantly inhibit the dendrite growth than the small ions, mainly because the ions highly dissociated
in ILs can participate in electrostatic shielding to a greater degree. To reduce the computational complexity and burden of
the MC simulation, we also constructed a surrogate model with ensemble neural networks.

I. Introduction
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Fig. 1 Lithium metal electrodeposition during the charging
process in a lithium-ion battery.

Lithium metal deposition is a phenomenon that occurs during
the charging and discharging of lithium-ion batteries. As the
battery is charged, lithium ions are released from the positive
cathode, travel through electrolytes, and are intercalated into
the graphene layers of the graphite (negative anode). During
this charge phase, deposits solidified on the surface of the
anode can form branching tree-like structures, the so-called
lithium dendrite (Fig. 1). The growth trend of the deposits is
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spatially uneven. Typically, needle-shaped or dendritic lithium
grows on the surface of the anode over many discharge-
recharge cycles. 2 If dendrites grow too long, some dendrites
may fall off and no longer participate in the reaction, which
brings irreversible capacity loss to the battery.3-> Additionally,
the grown dendrite may pierce the separator between the
cathode and anode, forming a short circuit and potentially
causing a catastrophic fire.5>7 To maintain the safety of lithium-
ion batteries, it is essential to identify the critical factors that
substantially affect the process of metal solidification in
electrolytes. Specifically, a general treatment to inhibit the
dendrite growth will not only help to improve the safety of Li-
but insights into the
electrodeposition process in the electrochemical industry.® °

ion batteries also give further
Nevertheless, this research objective remains challenging
because (1) there exist a wide choice of system parameters,
such as the size of ions, the size asymmetry between the ions in
electrolytes, dielectric constant, and applied voltage, and (2)
the reactions associated with the dendrite growth involve
multiple length and time scales. This complexity also often
complicates the computational modeling of the dendrite
formation under various environments, and thus a reduction in
the number of model parameters would also help in identifying
the optimal design of the electrolyte systems.

Over the past few decades, many studies have aimed to
improve the stability of the electrodes,19-13 the qualities of
electrolytes # 14-21 and separator materials,22- 23 and the charging
methods 2426 of lithium-ion batteries. Numerous researchers
have recently reported metal electrodepositions in ionic liquid



(IL)-containing electrolytes.® 15 27-23 Among others, an

experimental study by Pearson et al. 22 suggests that the ionic
strength plays an important role in causing substantial
differences in dendrite growth between ILs and conventional
organic liquid electrolytes. For example, the number of the
nuclei increases and the dendrite growth rate decreases as the
ionic strength is increased. Moreover, ILs increase the
electrolyte viscosity, thus retarding dendrite formation.
Similarly, our experimental observation of lithium dendrite in a
combination of 1M LiPF6 in EC/DMC electrolyte and 10% IL
[BMIM][TFSI] also showed remarkably uniform, unconventional
dendrite growth in Fig. S1t. Therefore, further theoretical
investigation of the effect of the ionic strength on the inhibition
of dendrite formation, particularly with the visualization of
dendrite growth and electrostatic potential maps, would
probably provide a deeper understanding of the inhibition
mechanism of dendrite growth.

Dendrite growth involves various physical and chemical
interactions that occur over multiple lengths and time scales3°.
Accordingly, various computational approaches, such as Monte
Carlo (MC) simulations,26 31 32 molecular dynamics (MD)
simulations,33 Brownian dynamics (BD) simulations,2® and
phase-field models,344° have been developed. For example,
Selis and Seminario performed classical MD simulations and
investigated the relationship between charging methods and
lithium dendrite formation in a nanobattery.33 However, the
time scale of the MD simulations is typically limited to the order
of nanoseconds and cannot adequately account for the
mechanism of mesoscopic or macroscopic metal dendrite
growth associated with salt ions and ILs. BD simulations are also
particle-based methods but can access longer time scales and
larger length scales. Aryanfar et al. presented a novel coarse-
grained MC model based on Brownian motions to explore the
effect of electric current density on dendrite formation.26
Nevertheless, BD typically assumes implicit solvents, is often
inadequate to account for strong electrostatic correlations, and
is normally well-defined for solid bodies with vast amounts of
collisions due to surrounding molecules within the momentum
relaxation time. Phase-field models are powerful tools to study
the nucleation and dendrite growth that occur on relatively
longer time scales and larger length scales.3*4° Nevertheless,
the model of the free energy often contains numerous
adjustable parameters and may be constructed somewhat
arbitrarily or empirically.3® Thus, the development of more
computationally tractable models with a relatively small
number of model parameters that account for metal dendrite
growth on the timescales beyond nanoseconds and the length
scales beyond nanometers would also be convenient and
beneficial from both the theoretical and experimental
viewpoints.

Along the lines of a simulation method consisting of a
minimal set of model parameters, Chen and Jorné developed a
lattice simulation model for metal dendrite formation by
considering zinc electrodeposition,®© given that the diffusion-
limited aggregation (DLA) model captures the pattern formation
of the dendrite growth. This hypothesis is legitimate because
the DLA model serves as an algorithm (or a cellular automaton
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51,52) that simulates the solidification in which the microscopic
reaction mechanisms are largely unknown and/or practically
intractable. For example, the super-rough dynamics of tumor
growth were discovered to exhibit the linear molecular beam
epitaxy universality class,>3-55 a feature which can be simulated
by the DLA (or Eden) model.%¢ In the study by Chen and Jorné,
the electrodeposition and morphology of zinc dendrites in a
two-dimensional battery were observed. The fractal dimension
determined by digitizing photographs was 1.7 and was
consistent with the value 1.71 calculated by the simulations
using the DLA model originally developed for a dielectric
breakdown proposed by Niemeyer et al.5? Thus, despite the
drastic simplification of the coarse-grained lattice model, the
agreement between theory and experiment is remarkable.
Unfortunately, however, this lattice-simulation model has not
been substantially developed over the past decades, and thus
the application of the simulation model to salt-doped liquids
and highly concentrated ions remains limited.

In this paper, we study the effect of small salt ions and large
salt ions that mimic ILs on dendrite growth by considering the
height and aspect ratio of the dendrite. We develop the DLA
model on the lattice originally proposed by Niemeyer et al. to
mimic lithium dendrite growth in electrolytes, mainly motivated
by the model feasibility for zinc dendrite.5© Moreover, it is well
known that although the DLA model (or cellular automaton
model) largely simplifies or ignores reaction mechanisms on
atomistic and molecular scales, it often captures the
macroscopic formation pattern of solidification. Likewise, our
present cellular automaton model for electrodepositions does
not contain many atomistic and molecular details regarding the
reaction mechanism of the metal solidification, yet it provides a
convenient tool to investigate how the electrostatic
interactions affect dendrite formation with a minimal set of
model parameters and thus to identify a possible mechanism
for the dendrite inhibition caused by the small salt ions and ILs.
Regarding the thermodynamic ensemble of ion configurations,
we employ the lattice model of large ions with the excluded
volume by Borukhov et al.>8 This lattice model accounts for the
electrical double layer near charged surfaces. In this
manuscript, we consider the dendrite growth to be limited to
two-dimensional systems for computational simplicity.

Nevertheless, the generalization of the MC simulations with
various model parameters and the achievement of good
statistical convergence with a large number of samples are not
easy tasks in general. Moreover, we are aware that like other
simulation techniques for dendrite formation, the present
lattice MC simulation model may still involve a limitation on the
direct comparison between the simulation and experimental
data because real systems are typically larger than the
simulation length scale, and the entire description of the
electrostatic nature on the nanoscales regarding the dendrite
formation is often significantly challenging. Thus, we also need
a generic, tractable method that provides the design principle
of electrochemical devices for the dendrite inhibition in
electrolytes. To this end, we also considered a surrogate model
using ensemble neural networks (ENNs) in machine learning

This journal is © The Royal Society of Chemistry 20xx



dendrite
» candidate

Fig. 2 2D schematic illustration of the lattice model. The blue circles describe the
lithium dendrites, whereas the white circles describe dendrite candidates (or
solvents) and salt ions, respectively.

techniques, as ENNs, or their variant, have proved to be useful
tools that can outperform a single NN in various studies 59-63,
We show that our ENNs reasonably captures the non-
monotonic trends of the MC simulation results, even though the
number of simulation samples at each data point is decreased
from the order of 200 to 20. Thus, our surrogate model serves
as a convenient tool that enables fast characterization and
design of the electrolytes with dendrite formation.

Il. Model and Simulation Methods

Our lattice model based on the DLA algorithm consist of a
cathode at the top, an anode at the bottom, and an electrolyte
between them. The gist of the lattice DLA model includes the
idea that when the reaction mechanism of microscopic events
is intractable, the algorithm that solidification over the coarse-
grained, mesoscopic length scales occurs at the lattice points is
assumed. The validity of the model is often checked against bulk
values such as the fractal dimension and the scaling law of the
growth rate of solidification. Here, the molar concentration of
the lithium ion in Li-ion batteries typically falls in the range of
0.1 to 1 [M]. In this case, the volume fractions of the lithium ion
fall in the range of 0.00013 to 0.0013, and the molar
concentrations are significantly smaller than those of other
ionic species. For example, when the volume fraction of the
added salt is 0.2, the ratio of the molar concentration of the
lithium ion to that of the added salt falls in the range of 0.8 to 8
%. In other words, the contribution of the ionic strength of the
lithium ion to those of the added salt is relatively insignificant.
Thus, as an analog of the DLA model for the zinc dendrite
formation39, we treat the lithium ions dissolved in electrolytes
as implicit (background) ions. The distance between each lattice
point is 2 A, and the lattice size is NxN, where N = 51. We fix the
potentials of the anode (or dendrite) and cathode to 0V and 0.5
V (unless otherwise noted), respectively. The periodic boundary
condition is used in the direction parallel to the electrodes (see
Fig. 1). Here, note that normal lithium-dendric branches
typically grow over the micrometer scales. However, the
repetition of significantly inhibited dendrite growth in ionic
liquids shown in the subsequent section is likely to occur with
increasing the system size, mainly because highly branching
growths are considerably inhibited and do not appear beyond
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Fig. 3 Lattice occupancy of asymmetric particles in the lattice model.

one- or two-nanometer length scales in the present simulations.
Such relatively homogeneous geometry would also be largely
maintained in larger systems because the pattern formation in
the DLA model exhibits fractal structure. Moreover, the Debye
screening lengths (S 1 A) in our simulations are significantly
smaller than the system size. Thus, the system size is sufficiently
large to consider the electrostatic correlations and the local
growth mechanism of the dendrite. Nevertheless, the complete
macroscopic pattern of the dendrite formation may also be
further studied via other physical models such as the phase field
model and Brownian dynamics simulation by accounting for the
local growth mechanism derived from the present simulation
model.

We illustrate our lattice system in Fig. 2. The blue circles
represent the deposited lithium metals forming the lithium
dendrite. The dendrite blobs stem from the negative electrode
and thus have the same potential as that of the negative
electrode. The white circles indicate the empty site for the
candidate for the lithium dendrite in our MC method. Salt ions
can also occupy those empty sites. The electric potential ¢, ; at
the lattice point (i,j) consists of the electric potential q,')iE_j
produced by the electrodes and the Coulomb potential q,')ic_j
produced by the ions (treated as an explicit particle) as follows:

iy =+ bf; (1)

Note that the growth of the lithium dendrite indicates changes
in the shape of the anode surface. Accordingly, the electrostatic
field between the electrodes also changes due to the change in
the boundary condition of the electrostatic potential on the
anode. With these altered boundary conditions due to the
geometric changes, we need to solve Laplace’s equation 26

A2pF =0 (2)
Here, we write Eq. (2) on the lattice in the following form 57:
_ (¢iE+1,j + i+ Df i+ ¢fj—1)

¢FJ - 4 (3)

Here, ¢f1; , di1,; » Pfj+1 , and @f;_, designate the
electrostatic potentials of four neighboring lattice points
around the (i, j) site. We note that the lattice model of Chen and
Jorné included the effect of the electrical conductivity k of
water according to the modified Laplace equation, V-
[k(P) ()] = 0 50. However, the analysis of experimental data
suggested that the electrical conductivity of water was about
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Fig. 4 lon distributions from the electrodes for the dendrite-free simulation. The
diameter of the cation (anion) is 2 A. (a) Distance from the anode vs. the number N, (N.)
of the cations (anions). N=11 and the lattice occupancy of the ions is 76 %. (b) Distance
from the anode vs. the ratio of N, to N.. N=51 and the lattice occupancy of the ions is 60
%.

1% of that of the dendrite, and the effect on the lattice model
is insignificant. Given this situation, we do not consider the
electrical conductivity k in the present study. Concomitantly,
this model simplification also enables us to explore the minimal
effect to inhibit dendrite formation.

The Coulomb potential ¢fjwith the dielectric constant ¢ is
given by

1 Ax
4mreye - E (4)
where gy is the k-th ionic charge and 1y, is the distance between
the lattice point (i, j) and the k-th ion. Fig. 3 illustrates the lattice
occupancy of the ions with diameter d = 4 A and d = 2 A. The
ions cannot be overlapped due to the effect of the excluded
volume. A further remark about the treatment with the
electrostatic interactions is discussed in the subsection, “A
remark about the DLA model as a cellular automaton”.

We perform the MC update according to the local potential
¢;,j- This algorithm includes two update processes regarding
the ion configuration and the dendrite growth. Our MC
simulation causes the concentration gradient and the electric
field gradient along the lines of the continuum theory for ion
diffusion in Ref 4. Here, we note that the computational cost of
solving Eq. (2) for the trial configuration for the MC update by
interaction is nominal because the solution is very close to the
original potential (i.e., the initial guess). The DLA algorithm of
the nucleation (or the pattern formation) at the lattice point
(Z,j) in Refs. 30 and 57 assumes the following heuristic growth
probability:

Cc _
;=

_ (¢

= (5)
Sin(@i)"

Di,j

Eq. (5) indicates the nucleation probability that the empty
lattice point adjacent to the occupied lattice point is converted
to the new dendrite point caused by the lithium deposition. The
denominator represents the sum of the electrostatic potentials
of all dendrite candidates (i.e., empty points adjacent to the
occupied points). When ¢; ; < 0, we set the probability to zero,
assuming that the electron is unlikely to transfer from the
electrode to the lithium ions in the negative potential area. The
exponent 7 is the model parameter suggested by Niemeyer et
al. 37 and associates the local potential with the nucleation
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Fig. 5 ENN for the prediction of lithium dendrite growth. Each neuron contains an
activation function.

probability. Experiments show that different metals have
different values of the fractal dimension of the dendrites 5.
Thus, the exponent 1 can be determined by the fractal
dimension observed in experiments. For example, 1 for the zinc
dendrite may be fixed to reproduce the observed fractal
dimension 1.7.5° However, we are not aware of the fractal
dimension of the lithium dendrite and therefore vary the values
in the present study.

Here we write the total potential energies of the system
before and after updating the positions of the ions as U,;; and
Upew, respectively. If the trial update decreases or does not
change the potential energy, we accept the new state;
otherwise, we accept the new state if a uniform random

number becomes smaller than the Boltzmann distribution

_Wnew=Uoid)
e kT

. The dendrite growth is significantly slower than
the translational motion of the ions in the electrolytes.
Accordingly, we consider the ratio of the trial update of the

----- Training Loss
—— Validation Loss

6 & 1p 15 20 25 30 15
Epoch

Q 50 100 150 200 250

Epoch
(b}
Fig. 6 Sub-NN system. (a) Architecture of our sub-NN with one input layer, two hidden

layers, and one output layer, consisting of 4,32,32, and 2 neurons, respectively. The
first hidden layer and the output layer include the ReLU activation function, whereas
the activation function in the second hidden layer can be the sine function. (b) Sub-
NNs’ training loss and validation loss decrease with epochs during the training process.
The inset shows an example of bad training.

dendrite growth to that of the ion positions to be 1:500. It
should also be noted that the present DLA algorithm is a
clustering method to account for the fractal pattern of
solidification and does not involve the explicit timescale of the
deposition process.3% 57

To examine the model applicability for highly concentrated
ions, we performed dendrite-free simulations with the
dielectric constant € =20 for small [Fig. 4 (a)] and large [Fig. 4

This journal is © The Royal Society of Chemistry 20xx
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Fig. 8 Snapshot of the potential map for 1 % salts. The color bars indicate the potential
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difference from the anode potential. The brighter the color, the larger the potential. The
dielectric constants of the electrolytes are (a) ¢ =80 and (b) € = 20. Blue and yellowish-
green particles represent the cations and anions, respectively.

(b)] systems. Here, this dielectric constant compares favorably
with the values of many common ILs and polar solvents. Overall,
the results show the following two key features for large ions
with excluded volume: the monolayer adsorption of the
counterions near the electrodes and the recovery of the bulk
density at a distance of a few monolayers from the electrodes.
This fact is analogous to the results of the mean-field
approximation 38 for ions with excluded volume and a molecular
dynamics simulation ©¢ for ILs in a dielectric continuum.

A remark about the DLA model as a cellular automaton: The
present lattice model is considered a cellular automaton, in
which a minimal assigned rule on a regular grid of cells yields a
qualitative feature of physical phenomena. Typically, cellular
automata involve model parameters to reproduce a certain
degree of complexity in targeted growth mechanisms 51 52,
Here, note that our present treatment of the electrostatic
interactions does not account for the effects of image charges
(or induced surface charges) and the diffusion of the lithium
ions near the dendrites, whereas these factors may also affect
the dendrite growth. However, we assume that the electrostatic
interactions due to these effects are electrically screened to a
large degree by the highly concentrated ions, and thus the
effects are relatively weaker. Therefore, we attribute the two
effects to the model parameter n for our cellular automaton
model, as the consistency between the present computational
algorithm for implicit-metal ion models and the observed fractal
dimension of zinc dendrites was demonstrated by Chen and
Jorné 39,

This journal is © The Royal Society of Chemistry 20xx
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Ensemble neural network: We employed 20 samples for
each volume fraction to train our ENNs using Keras ¢7. These
samples are split into three parts: training, validation, and test
datasets. As illustrated in Fig. 5, our ENN consists of an
ensemble of 8 sub-NNs (Fig. 6) that have identical architecture
with different activation functions. They are combined using
linear regression. The topology of sub-NNs is 4-32-32-2, which
represents the number of neurons in an input layer, the first
hidden layer, the second hidden layer, and an output layer,
respectively. We evaluated the model by the mean squared
error (MSE) of the predicted value () and the target value (y)
(also referred to as a loss function) as follows:

MSE (6)

_ X -9)?
B n

The neurons are fully connected between the neighboring
layers, and each connection has a weight. The weights of all sub-
NNs are randomly initialized and are optimized by minimizing
the loss function. For the activation functions, we used RelU,
Gaussian, tanh, sigmoid, and trigonometric functions [Fig. 6(a)].
To reduce overfitting the model, we performed the early
stopping of training with a patience setting of 20 epochs. Fig.
6(b) shows the training loss and validation loss of a well-trained
sub-NN during the training process. The training and validation
loss stop when the early stop condition is satisfied. We
employed the dielectric constant (&), model parameter (77),
voltage (V), and volume fraction (¢) for the input variables and
the average height (H) and aspect ratio (A) for the output layer.

lll. Results and Analysis

In the subsequent subsections, we consider two cases as
follows: (1) For symmetric ions, we set the grid size (2 A) to the
cation diameter d, and the anion diameter d_ . (2) For
asymmetric ions, we consider (d,, d_) = (4 A, 2 A)and (2 A, 4
A). The amount of the salts is represented by the lattice
occupancy that indicates the ratio of the number of the lattice
sites occupied by the salt ions to the number of the total lattice
sites. The objective of the present study is to examine how the
dendrite surface grows with the salt ions. Thus, in addition to
the calculation of the average height of the dendrite at a given
MC step, we calculate the aspect ratio H/L of the dendrite to
characterize the dendrite morphology, where H and L designate
the height and width of dendrites, respectively (Fig. 7). For
example, when the dendrite shape is relatively flat with a wider
length and smaller height, the aspect ratio becomes small. We
take a statistical average of 200 samples for each data point.

Mechanism of dendrite inhibition

Before we present each simulation result, we will discuss the
primary mechanism that substantially suppresses the dendrite
formation observed in our simulations. Note that a tip with a
sharp edge on the metal electrode exhibits a stronger electrical
field 8. Thus, lithium ions tend to be deposited preferentially
around the pointy regions of the dendrite, compared to
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Fig. 9 Effects of the ionic charge, the dielectric constant, the parameter 1, and the
applied voltage on dendrite growth for the symmetric ions (d, = d_). The x-axis is the
lattice occupancy of the salts or uncharged particles. (H) designates the average height
calculated after 2x107 MC steps. The applied voltage is 0.5 V in (a) — (f) and (i) — (I). The
dielectric constants are € = 80, unless otherwise noted. Insets in the figures in the left
column: the anode (black), cathode (black), lithium dendrites (red), cations (light blue),
anions (blue), and uncharged particles (silver). Insets on the right: lithium dendrites
(green), cations (blue), anions (yellowish-green), and uncharged particles (silver).

rounded or smooth regions. This is referred to as “tip effect”
(Fig. 7a). Accordingly, the dendrite solidification near the pointy
regions tends to grow rapidly and form tree-like structures.
However, when ILs are added, the cations tend to accumulate
near the pointy regions of the dendrite, forming a layer of
positive charges that cause electrostatic shielding (Fig. 7b).
These positively charged layers repel incoming Li ions from the
pointy regions, and accordingly cause the Liions to be deposited
more preferentially on the adjacent area of the pointy regions.
Thus, this deposition mechanism suppresses the rapid growth
of the pointy regions of the lithium dendrite and leads to a
relatively uniform formation of the dendrite. The anions
clustered near the dendrite structure lower the local potential
of the regions for dendrite candidates, and accordingly, this
mechanism enhances the inhibition of the dendrite growth.

Symmetric ions withd, = d_

We first illustrate the electric potential map for 1 % salt
concentration with no dendrite formation in Fig. 8. When the
dielectric constant is high (Fig. 8a), the color gradually becomes
brighter from the anode to the cathode, indicating a moderate
change in the electric potential between the cathode and
anode. The cations (blue) and anions (yellowish-green) are
isolated from each other. However, ion pairing and ion
clustering occur as the dielectric constant decreases to € = 20
(Fig. 8b). The spatial changes in the color gradation between the
cathode and anode becomes relatively more inhomogeneous.
These preliminary results suggest that both the ion aggregation
and the resultant spatial inhomogeneity of the electric potential
may become critical in considering the dendrite growth.

We now consider the dendrite formation (Fig. 9). In Fig. 9a
and Fig. 9b, the black line indicates that the addition of tiny
amounts of salt ions (<5 %) causes significant decreases in the
aspect ratio and average height (H). However, the changes in
both the aspect ratio and average height (H) with increasing
salt concentration vary non-monotonically, and thus there
appear to be optimal values of salt concentration to maximize
the uniformity of the dendrite shape and to inhibit the dendrite
growth. Here, we attribute the rise from the local minima
around 2 % of the volume fraction to increases in the number
of ion pairs that do not participate in electrostatic shielding.
Moreover, to consider the significance of the electrostatic
interactions for dendrite growth relative to that of the excluded
volume interactions, we eliminate the ionic charges on the salt
ions. In other words, for comparison, we replace the salt ions
with uncharged particles. However, the addition of the
uncharged particles (1) does not substantially decrease the
aspect ratio unless the volume fraction exceeds about 50 % (Fig.

This journal is © The Royal Society of Chemistry 20xx
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Fig. 11 Effects of the ionic charge, the dielectric constant, the parameter 1, and the
applied voltage on dendrite growth for the asymmetric ions (d.: d_= 2:1). The x-axis is
the lattice occupancy of the salts or uncharged particles. (H) designates the average
height calculated after 2x107 MC steps. The applied voltage is 0.5 V in (a) — (f). The
dielectric constants are & = 80, unless otherwise noted. The color classification is the
same as that in Fig. 9.

9a) and (2) causes no noteworthy change in the average height
(H) (Fig. 9b). These results suggest that the large inhibition of
dendrite growth arises primarily from the effect of the
electrostatic interactions.

Importantly, the salt ions cause the spatial gradient of the
electric potential to be more locally inhomogeneous but more
globally isotropic than the uncharged counterparts do. This is
particularly notable in the regions around the dendrite (see the
insets in Fig. 9b) Here, note the basic rule that the tip of the
dendrite tends to grow to the brighter regions for the positive,
higher electric potential. However, due to the global uniformity
of the potential gradient near the dendrite, such a dendritic
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formation becomes notably more isotropic. Thus, we suggest
that this effect facilitates the lateral growth of the dendrite,
significantly flattening the dendrite shape.

Next, we consider the effect of the dielectric constant on the
dendrite growth (Fig. 9c and Fig. 9d). As in Fig. 9a and Fig. 9b,
sharp decreases in the aspect ratio Fig. 9c) and average height
(Fig. 9d) from 0 % to 5 % occur. Here, the difference in the

Fig. 10 Snapshots of the dendrite structure with different n values for 60% symmetric ILs
and the dielectric constant € = 20. The light blue and blue points correspond to the
cations and anions, respectively.

dielectric constant does not notably change the overall trend of
the aspect ratio and the average height when the lattice
occupancy of the saltionsis < 40 %. However, when the volume
fraction exceeds about 40 %, the effect of the dielectric
constant becomes distinct. It is not entirely clear why
decreasing the dielectric constant to € = 20 causes the local
maximum point to shift to the region at the lower salt
concentration. Nevertheless, the potential map in the inset
shows that the dendrite in the electrolyte with ¢ = 20 is
surrounded by the black regions that indicate that the electric
potential is lower than that of the anode. Thus, as indicated by
Eq. (5), these negative potential spots appear to inhibit the
dendrite growth.

Fig. 9e and Fig. 9f show the effect of the model parameter n

in Eq. (5) on the dendrite growth. The average height (Fig. 9f) is
significantly affected by the n value, whereas the changes in
aspect ratios are relatively insignificant. Moreover, the
difference in the trend of the average height among the lines
(Fig. 9f) changes non-monotonically. That is, the results change
as “black” = “red” > “blue” = “purple” when increasing the n
value from 0 to 2. Fig. 9f also indicates that the decrease in the
average height when increasing the salt concentration is
monotonic when 1 = 0.5. Thus, in terms of the Li-ion battery
design, we do not need to be concerned about the optimal salt
concentration that maximally inhibits the dendrite growth.
Fig. 10 illustrates the significance of the value 1 for the dendrite
growth at 60 % salt concentration. The results also suggest that
it is important to evaluate the 1 value [or the accurate form of
the probability in Eqg. (5)] using more atomistic models that
account for the probability of dendrite deposition.

In Fig. 9g and Fig. 9h, we change the applied voltage from 0.5
V to 5.0 V. In the case of large voltages such as 5.0 V, we
observed the charge separation between the conducting plates,
as illustrated by the inset of Fig. 9g. The overall trends of both
the aspect ratio and average height remain similar when the
applied voltage is changed. However, notable non-monotonic
variations in these values occur when the salt concentration
exceeds about 40 %. Accordingly, 0.5 V becomes the optimal
operating voltage to inhibit the average height.
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Fig. 12 Effects of the ionic charge, the dielectric constant, the parameter 1, and the
applied voltage on dendrite growth for the asymmetric ions (d.: d_= 1:2). The x-axis is
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height calculated after 2X107 MC steps. The applied voltage is 0.5 V in (a) — (f). The
dielectric constants are € = 80, unless otherwise noted. The color classification is the
same as that in Fig. 9.

In Fig. 9i-l, we also consider relatively larger symmetric ions
and their uncharged counterparts with d = 4 A to study the size
effect. These large ions also mimic an IL. Interestingly, unlike the
result in Fig. 9b, the larger uncharged particles promote the
dendrite inhibition (Fig. 9j), probably due to the larger excluded
volume. Nevertheless, the ions more significantly inhibit the
dendrite growth. Moreover, unlike the result in Fig. 9b, the
inhibition trend is nearly monotonic. Therefore, ILs would be
more tractable in designing Li-ion batteries.

Note that changes in the 1 cause substantial differences in
the aspect ratio and average height (Fig. 9k and Fig. 9l). As in the
case of Fig. 9f, n = 0.5 gives rise to a significant inhibition of the
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average height, and the inhibition effect is even more
significant. Note that the overall trends of the aspect ratio and
average height are the same among the different n values.
Thus, we suggest that a choice of the 1 value does not alter our
conclusion obtained in the present study.

To conclude this subsection, we briefly summarize the
mechanism of the dendrite growth with the symmetric small
ions as follows: (1) Small amounts of salt ions enhance
electrostatic shielding near the dendrite and particularly its
pointy regions, and accordingly the dendrite growth s
significantly inhibited. (2) Increasing the salt concentration
enhances ion clustering, and such ionic aggregates reduce the
number of ions that participate in electrostatic shielding.
Accordingly, ion clustering weakens the driving force for the
inhibition of the dendrite growth until a very high salt
concentration such as 80 % is reached. Our results and
simulation animation suggest that when the salt concentration
is very high, small ion clusters tend to aggregate and to form
larger clusters, coherently moving over the entire system. These
ions do not tightly bind to each other, and the ion clusters do
not live as independent charge-neutral objects. Such large
clusters widely cover the dendrite surface and yield the effect
of electrostatic shielding. (3) Alternatively, the large ions that
mimic ILs significantly inhibit ion clustering, and this effect
continues to inhibit the dendrite growth more significantly than
the small ions do. This result would probably rationalize the
remarkably uniform, unconventional dendrite growth observed
in our experiment in Fig. S1t. Nevertheless, the current
observation is on the macroscopic scale, whereas our
simulation is on the nanometer scale. Thus, further study to
bridge the gap between the length scales is required.

Asymmetricions withd, = 2d_

In this subsection, we demonstrate that the size asymmetry
between the cation and anion can be critical to inhibit the
dendrite growth. We consider the cation and anion diameters
to be 4 A and 2 A, respectively.

Both the aspect ratio (Fig. 11a) and average height (Fig. 11b)
decrease upon the addition of small amounts of salt ions.
However, unlike the symmetric uncharged particles in Fig. 9a,
the aspect ratio does not notably change even when the salt
concentration is as high as 80%. Importantly, these variations
are monotonically decreasing and nearly reach plateaus. Thus,
we do not need to be concerned about identifying the optimal
salt concentration to inhibit the dendrite growth. The inhibition
trend for the asymmetric ions is relatively simpler to control
than for the small symmetric ions. Here, we observed in the
snapshots that ion pairing and clustering are relatively
weakened, probably because the cations are large. Thus, we
attribute the observed plateaus in the aspect ratio and average
height to this size effect.

In contrast to the results in Fig. 9, we observed nearly
monotonically decreasing functions in Fig. 11c-h. The results are
almost unchanged compared to the changes in the dielectric
constant, the model parameter 1, and the applied voltage,
except for Fig. 11g. As in the case of the symmetric ions (Fig. 9),

This journal is © The Royal Society of Chemistry 20xx



Table 1 Training, validation, and test errors of different ENNs. The MAPE is shown in parentheses.

Training Error

13.582 (25.6%)
13.593 (24.6%)

Validation Error

13.646 (24.8%)
13.965 (24.2%)

Test Error

15.323 (29.4%)
14.959 (28.8%)

#sub-NNs Topology Activation Functions in the sub-NN

(ID number)

8(1) 4-32-32-2 relu-X-relu, X=sine, cosine, sigmoid, gaussian
8(2) 4-32-32-2 relu-X-relu, X=relu, cosine, sigmoid, gaussian
8(3) 4-32-32-2 relu-X-relu, X=sine, tanh, sigmoid, gaussian
8(4) 4-32-32-2 relu-X-relu, X=sine, relu, sigmoid, gaussian

13.356 (24.7%)
13.573 (25.5%)

13.348 (23.9%)
13.863 (26.0%)

Table 2 Training, validation, and test errors of the sub-NNs in No.4 ENN. The MAPE is shown in parentheses.

Sub-NN (No.4) Topology Activation Functions

1 4-32-32-2 relu-X-relu, X = sine

2 4-32-32-2 relu-X-relu, X = sine

3 4-32-32-2 relu-X-relu, X = relu

4 4-32-32-2 relu-X-relu, X = relu

5 4-32-32-2 relu-X-relu, X = sigmoid
6 4-32-32-2 relu-X-relu, X = sigmoid
7 4-32-32-2 relu-X-relu, X = Gaussian
8 4-32-32-2 relu-X-relu, X = Gaussian

Training Error
506.762 (60.8%)
506.761 (59.9%)
507.018 (100%)
17.232 (25.0%)
14.942 (26.0%)
14.520 (24.0%)
15.175 (23.9%)
15.528 (25.2%)

Validation Error
486.218 (60.8%)
486.217 (60.0%)
486.466 (100%)
18.275 (26.9%)
15.282 (28.0%)
15.728 (25.8%)
15.658 (25.9%)
15.524 (26.8%)

14.998 (29.0%)
14.823 (29.0%)

Test Error
495.212 (61.0%)
495.210 (60.2%)
495.465 (100%)
18.838 (27.7%)
16.785 (28.9%)
16.814 (26.7%)
17.162 (26.6%)
17.186 (27.5%)

the decrease in the average height is maximized whenn = 0.5
(Fig. 11f). Specifically, unlike the symmetric ions, the effect of
the applied voltage on the average height (H) is relatively
insignificant over nearly the entire salt concentrations (Fig.
11h). These results also suggest that the inhibition of dendrite
growth can be relatively easier when the cation size is large
enough to weaken ion pairing and clustering. Probably due to
this fact, ILs would serve as a good substance to substantially
inhibit and flatten the dendrite growth.

Asymmetric ions with 2d, = d_

Finally, we consider the cation and anion diameters to be 2 A
and 4 A, respectively. The overall trends of the results in Fig. 12
are very similar to those in Fig. 11. Nevertheless, unlike the
results in Fig. 11, the effect of the dielectric constant on the
aspect ratio and average height (H) becomes insignificant (Fig.
12c and Fig. 12d). Moreover, the increase in the voltage slightly
increases the dendrite growth (Fig. 12g and Fig. 12h). Thus, we
suggest from the strong similarity between Fig. 11 and Fig. 12
that a critical factor to inhibit dendrite growth is not to change
the type of the size asymmetry in ILs, but instead, to decline ion
pairing and clustering.

Ensemble neural networks for symmetric ions withd, = d_

Finally, we construct a surrogate model that accounts for the
lithium dendrite growth via training datasets derived from the
MC simulations. We use the dielectric constant &, the model
parameter 7, the voltage V, and the volume fraction ¢ for the
input and set the aspect ratio and the average height in the
output layer. In the present study, one hidden layer is not
sufficient to capture the training datasets, especially for the
non-monotonic trend of the results, but two hidden layers are
adequate. From the calculation of the MSE, we also empirically
found that the sub-NN with 32 neurons per hidden layer serves
as a good architecture.

Table 1 and Table 2 show the architectures of our ENNs and sub-
NNs, respectively, with their training, validation, and test errors. We
trained 4 ENNs with different activation functions (Table 1). Table 2
shows the architecture of sub-NNs of No.4 ENN in Table 1 as an
example. Here, the chance of overfitting tends to decrease as the
difference between the training error and validation error is
decreased. Note that some sub-NNs are poorly trained with an error
of about 500, yet the corresponding ENN outperforms any sub-NNs
and thus provides a good prediction with relatively small errors.
Thus, the ENNs can efficiently avoid the local minimum in the MSE
that is more likely to occur in a single NN. Despite the large MSE
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Fig. 13 Comparison between the MC simulation and No.5 sub-NN in Table 2 for the
average height and the aspect ratio. The solid lines indicate the prediction from the sub-
NN in the range of 1% to 80% volume fraction of salts. The squares indicate the statistical
averages calculated from the same datasets of the MC simulations as those used in Fig.
9c-h.



values, the sub-NNs with the sine functions are essential to capture
the non-monotonic feature of the simulation results. Such a large
MSE value is tamed when incorporated into the ENN.

The MSE is a standard error when evaluating NNs’ performance,
but relative errors can also serve as a measure to analyze the
performance. Thus, we also provide the mean absolute percentage

error (MAPE) %0%2 |y;5/| in the tables. No. 1 and No. 2 sub NNs in

Table 2 include large errors, yet their relative errors are smaller than

100%. The relative errors appear to be large because the training
data for each volume fraction consists of only 20 samples and
includes large statistical fluctuation. Here, we remark that reducing
the relative error instead of the absolute error may cause significant
inconsistency between the qualitative features of the predicted and
targeted data. Thus, in this study, the relative error should be viewed
as a measure to consider how efficiently the ENNs can predict the
“true” statistical average out of noisy information.

We plotted the predicted average heights and the aspect ratio of
lithium dendrites in Fig. 13 and Fig. 14. In Fig. 13, we compared the
MC simulation result with one of the excellent sub-NNs (No.5 sub-
NN in Table 2) containing the sigmoid function for the activation
function in the second layer. Note that we used only 20 samples for
each volume fraction (i.e., each data point in the figures) to train
each sub-NN. Still, our ENNs can reasonably capture and predict the
non-monotonic trend of both the average height and the aspect
ratio. Fig. 14 shows the comparison between the MC simulation
result with the prediction from No. 4 ENN in Table 1. Other ENNs also
provide similar consistencies between the MC simulation and ENN
prediction. Although some sub-NNs may have large errors, their
combination with good sub-NNs tends to provide a robust, relatively
accurate ENN. Overall, we suggest that although a single NN can be
employed as a surrogate model for the MC simulations, the ENNs are
not sensitive to initial weights and are robust against the choice of
the activation functions, compared to a single NN.

IV. Summary and Conclusion

We have developed the DLA model proposed by Niemeyer 57
and later developed for zinc dendrite growth by Chen and Jorné
50, The present study was also motivated by our recent
experimental observation regarding remarkably uniform,
unconventional lithium dendrite growth in Fig. S1t. Despite the
simple algorithm of the growth patterns, the original toy model
accounts for the fractal dimensions observed for dielectric
breakdown and zinc dendrite. In other words, the model
contains an adjustable parameter that controls the growth
probability, but it can be fixed when the fractal dimension is
determined in experiments. The present study relies on the
strong applicability of the model to the pattern formation due
to the electrostatic fields. Thus, we applied the algorithm of the
pattern formation to metal dendrite growth in salt-containing
liquids between the conducting plates. The main conclusion in
our study is summarized as follows: (1) The addition of salt ions
can significantly flatten the dendrite shape and inhibit the
dendrite growth, primarily due to electrostatic shielding near
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Fig. 14 Comparison between the MC simulation and ENN prediction for the average
height and the aspect ratio. The symbols and lines are defined as in Fig. 13.

the pointy regions of the dendrite. (2) It is critical to weaken ion
pairing and clustering in electrolytes to inhibit the dendrite
growth. Our results show that small salt ions appear to have
difficulty achieving this requirement and lead to the undesirable
non-monotonic behavior of the dendrite growth as a function
of the salt concentration. However, large salts such as ILs can be
dissociated near the operating temperatures to a great degree
to solve this issue. (3) The size asymmetry that occurs when
either the cation or the anion is large (4 A or larger) affects the
dendrite’s shape and growth, primarily because ion pairing and
clustering are significantly inhibited. In this case, the inhibition
of the dendrite growth is not significantly affected by changes
in the dielectric constant and applied voltage. The overall
conclusion from (1) to (3) remains unchanged when 0< 7 <2,
and appears to hold true in general. Thus, we suggest that ILs
be a prospective material to inhibit metal dendrite formation.
Among others, the present simulations suggest that ILs with
large size asymmetry between the cation and anion serve as a
good electrolyte in lithium-ion batteries, as consistent with our
experimental observation for lithium deposits under 1M LiPF6
in EC/DMC + 10% [BMIMI][TFSI] in ESIT. Concomitantly, the 2D
growth appears to be more constrained than the 3D growth. In
the case of a 3D model, the dendrite growth in the new lateral
direction may easily occur when the ions inhibit the longitudinal
growth of the dendrite toward the cathode. Still, this lateral
growth appears to facilitate the uniformity of the dendrite
surface. Thus, we anticipate that our overall conclusion remains
unchanged even in a 3D model.

Finally, we considered a surrogate model that accounts for the
MC simulations using ENNSs. In our study, we found that a single
NN can be consistent with the MC simulation results, but ENNs
with sub-NNs can be more robust against the choice of the
activation functions and can easily be trained from various
initial weights. This is mainly because the ENNs can be trained
well when poor sub-NNs are combined with good sub-NNs.

This journal is © The Royal Society of Chemistry 20xx



Importantly, unlike 200 samples for the average of the MC
simulation results for each volume fraction (i.e., each data
point), we used only 20 samples for training. Thus, our
surrogate model serves as an alternative to the computationally
demanding MC simulations.
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