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ABSTRACT

When subjected to loads, granular materials tend to yield and exhibit some localized particle reorganizations. Due to the complex disordered
structure of granular materials, it is challenging to identify the key preexisting defects in the static, unloaded structure that eventually
promotes dynamical particle rearrangements once a load is applied. Here, based on discrete element simulations of an archetypal frictional
granular material model, we introduce a machine learning framework that pinpoints such structural defects with unprecedented accuracy.
We show that the optimal structural fingerprint of plastic flow defects depends on strain, wherein the plastic flow is governed by short-range
defects at low strain but become dominated by medium-range defects at high strain.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0068508

Under small deformations or loads, disordered materials, such as
glasses, gels, or granular materials, exhibit an initial reversible elastic
response.1–3 Beyond a certain critical threshold, they tend to feature
some heterogeneous, irreversible plastic particle reorganizations.4–6

Although, in crystalline materials, such a plastic flow is controlled by
lattice defects (e.g., dislocations),5,7 identifying the linkages between
structure and plastic reorganizations in non-crystalline systems is chal-
lenging—especially since structural defects are ill-defined in disordered
structures.8–10 In glasses, the “soft spots” (that is, the regions that pre-
sent high propensity for plastic reorganization) can be identified based
on the local energy, stress, or vibrational modes.11–13 However, such
approaches are not directly applicable to granular materials, wherein
particles interact by contact.14,15

Cubuk et al. introduced a machine-learned structural quantity
called “softness,” which is constructed so as to be correlated with parti-
cle rearrangements in disordered solids.9,16–20 However, this method
requires some level of intuition to define a “fingerprint” for particles,
that is, a set of heuristic features that are expected to influence their
propensity to reorganize.21 Although graph neural networks offer a
promising pathway to bypass the need for such handcrafted fea-
tures,21–23 such models are challenging to interpret.

In this Letter, we introduce a machine-learned descriptor of plas-
ticity, wherein the fingerprint, rather than being handcrafted, is con-
structed based on a large array of intuitive structural features
describing both the short-range and medium-range environment24 of
each particle. By taking the example of an archetypal frictional granu-
lar material model subjected to shear, we show that this approach pre-
dicts the particles’ dynamics based on the sole knowledge of their
initial static, unloaded structure. Importantly, our approach reduces
the need for intuition for the fingerprint and yields an unprecedented
accuracy, without compromising interpretability.

To illustrate our approach, we consider the canonical example of
a two-dimensional frictional granular material model that is subjected
to a pure shear deformation [see the inset in Fig. 1(a)]. In addition of
offering a simple, computationally efficient model, the two-
dimensional system chosen herein allows us to decrease the number of
degrees of freedom of the particles. The system comprises 10 000
spherical particles with a constant density of 2.5 g/cm3 (representative
of sand grains). To avoid any local crystallization, the simulated system
exhibits some degree of polydispersity, wherein the diameter of par-
ticles presents a uniform distribution with an average diameter
d¼ 1.35mm and a width Dd ¼ 0:70 mm.14 The interaction between
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particles is described by a Hookean contact model, where the particles
interact only by contact (when they overlap) via a repulsive linear
spring model (spring-dashpot interaction) and static friction.25 Details
on the interaction model are provided in the supplementary material.
The initial configuration is prepared by randomly placing the par-
ticles in a square box while ensuring the absence of any overlap.26,27

Prior to the shear deformation, the system is packed by imposing a
high hydrostatic pressure (1MPa) under periodic boundary condi-
tions.28 The system is then continuously relaxed by gradually
decreasing the pressure down to zero. Once relaxed, the system is
subjected to a pure shear deformation with a constant, fairly low

shear rate of 5� 10�4 s�1 following a standard athermal quasistatic
protocol.12,29,30 The time step is fixed at 1� 10�5 s. All simulations
are conducted with LAMMPS.31

Figure 1(a) shows the computed shear stress as a function of the
imposed shear strain. As expected, the system presents an initial fairly
elastic regime at low strain, before displaying a plastic response at
higher strain. Eventually, the granular system exhibits a plateau in
shear stress once the shear strain exceeds 5%, which indicates com-
plete yielding. We then further analyze the simulated trajectories to
track the dynamics of the particles during the shear deformation. To
isolate the local plastic particle reorganizations, we compute the cumu-
lative non-affine displacement undergone by each particle during the
deformation process.13 Indeed, the non-affine square displacement
D2
min metric has been extensively used to track plastic flow in disor-

dered phases.6,17,29 However, the conventional non-affine square dis-
placement eventually becomes non-informative as the system starts to
experience significant yielding since the structure becomes very differ-
ent from its initial state. Here, to ensure that the deformed configura-
tions are always compared to a meaningful reference, we adopt a
cumulative non-affine displacement D, which is defined, for each par-
ticle, as the sum of the non-affine displacements experienced during
small increments of strain:

D ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DD2

i;min

q
; (1)

where DD2
i;min is the incremental non-affine square displacement after

each small increment of strain i and n is the total number of strain
increments. A local cutoff value of 3d (where d is the average particle
diameter) is used to compute the local affine displacement field. The
incremental non-affine displacements are calculated every 1 s, that is,
with a strain increment of 5� 10�4.

Figure 1(b) shows the distribution of the computed cumulative
non-affine displacement D for a shear strain of 5%, that is, at the
beginning of the macroscopic yielding regime [see Fig. 1(a)]. We
observe that the distribution is centered around a low displacement
value (i.e., D¼ 0.56mm). This corresponds to the population of par-
ticles that do not exhibit any significant non-affine reorganization dur-
ing the shear deformation. However, we note that the distribution also
exhibits a long tail toward large displacement values [see Fig. 1(b)].
This suggests that a small portion of the particles feature some signifi-
cant rearrangements, in agreement with previous studies.32,33 In the
following, we classify particles as “mobile” (soft) or “immobile” (hard)
when their cumulative non-affine displacement D is larger or lower
than the critical displacement threshold D0 ¼ 1:135 mm, respectively
(where D0 is equal to 81% of the average particle diameter d). Based
on this threshold, about 2% of the particles are classified as mobile.
However, the following analysis does not significantly depend on the
arbitrary choice of this threshold displacement (see the supplementary
material).

We then adopt ML to derive a machine-learned structural finger-
print of plasticity, i.e., that is correlated with the propensity for par-
ticles to be mobile or immobile. The original softness approach uses as
inputs some two- and three-body order parameters, which come with
the advantage of offering a generic description of disordered networks,
using a formalism that is transferable to various systems and scales.9

In contrast, here, we use as input features a series of intuitive particle-

FIG. 1. (a) Computed stress–strain curve of the simulated granular material when
subjected to a pure shear deformation. The inset shows the spatial distribution of
the resulting cumulative non-affine displacement D for a shear strain c ¼ 5%. The
red dashed vertical line indicates the beginning of macroscopic yielding. (b)
Distribution of the cumulative non-affine displacement D for a shear strain c ¼ 5%.
The data are fitted by a Gaussian distribution (grey area), and the right-tail deviation
from the Gaussian distribution is highlighted in blue. The red dashed vertical line
indicates the threshold (D0) that is used herein to discriminate immobile (low dis-
placement) from mobile (high displacement) particles.
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level structural properties, which are specifically selected so as to be
the most informative for the system considered herein. Although this
set of features is less transferable than those considered in the original
softness approach, it has the advantage of offering a more condensed
(i.e., lower dimensionality) and interpretable description of the struc-
ture of the present granular system (see below). These features are
detailed in the supplementary material (see Fig. S2) and can be classi-
fied into different categories: (i) connectivity (e.g., number of contact
points with neighbors), (ii) radial environment (e.g., average distance
with neighbors), (iii) angular environment (e.g., average angle formed
with neighbors), (iv) packing (e.g., Voronoi volume), and (v) medium-
range order (wherein, for a central particle, the values of the previous
features are recalculated for each of its first-coordination neighbors).
Altogether, this results in a total of 76 features for each particle. We
then conduct a feature selection analysis to identify the most influen-
tial structural properties to be used as inputs (see below). Here, we
deliberately restrict the choice of the features to those that are simple,
intuitive, easily interpretable and that can be solely computed from the
static initial configuration (before any shearing is applied) although
some features like local inversion symmetry have a strong influence on
softness.34,35 Overall, we envision that this “dictionary” of structural
features could serve as a universal fingerprint to characterize the short-
and medium-range order of particles in disordered networks.

Using the previous features as inputs, we train a classifier aiming
to categorize particles as mobile or immobile. For each particle, the
input feature vector is calculated based on the initial configuration of
the system (before any load) and the output class (mobile or immo-
bile) is determined from its cumulative non-affine displacement after a
shear strain c ¼ 5%, i.e., after 100 s of dynamics. All the features are
standardized prior to any training. Consequently, the obtained weights
are unitless and their magnitude can be directly compared to estimate
the relative influence of each input feature. The dataset is then ran-
domly split into training (80%) and test (20%) sets. In contrast with
the original softness approach,9 we adopt logistic regression,36 which
offers great model simplicity, accuracy, and interpretability.37 Detail
on hyperparameters optimization is provided in the supplementary
material. Finally, we use backward elimination to conduct a feature
selection analysis,38 wherein the number of features is gradually
reduced so as to maximize the test set accuracy of the model (see Fig.
S4). Eventually, 24 features are selected. Although some features
indeed exhibit some level of correlation, the pair correlation coeffi-
cients remain fairly low (see Fig. S5). These trends are also stable upon
independent training repetitions of the model. This suggests that the
mapping that is learned by the classifier is not notably affected by the
interdependency of the input features. For purposes of statistical aver-
aging, the model is then trained and tested based on 200 random
train/test splits.

The trained logistic regression classifier yields a hyperplane that
discriminates mobile from immobile based on the initial structure of
the granular system. We obtain an average accuracy of 72% and 71%
and a weighted F1 score of 0.816 and 0.815 for the training and test
sets, respectively. To illustrate the recall of the classifier, Fig. 2(a) shows
the positions of the particles that are predicted to be mobile together
with the ground-truth cumulative non-affine displacement field. We
observe that the particles that are predicted to be mobile are indeed
largely located within soft regions associated with large cumulative
non-affine displacements. Importantly, our model offers an increase in

accuracy as compared that offered by the original softness approach.
Although this increase in accuracy is limited, it is significant since, in
turn, our model uses fewer input features (24 vs 54 for the original
softness approach). The lower dimensionality of the model is key to
limit the “curse of dimensionality” and reduce the risk of overfitting
when training the classifier (see the supplementary material). These
results confirm that, in the case of the system simulated herein, the
dynamics of the particles under load is largely encoded in its initial
structure (before any load is applied). As shown in the inset (see the
supplementary material) in Fig. 2(b), the structure-dynamics relation-
ship is too complex to be described by a single intuitive structural
metric. The fact that there does not exist a perfect mapping between

FIG. 2. (a) Spatial distribution of the cumulative non-affine displacement (D) of the
particles in the simulated granular material under a shear strain c ¼ 5%. For com-
parison, the particles that are predicted to be “mobile” based on their local structure
by the present machine learning classifier model are indicated in black. (b) Average
non-affine displacement D of the particles in the training and test sets (at c ¼ 5%)
as a function of their initial softness (calculated from their initial local structure). The
solid line is to guide the eye.
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non-affine displacement and softness fields is a manifestation of the
fact that our model does not exhibit a 100% classification accuracy.

The softness S of each particle is then defined as the orthogonal
distance from the hyperplane of its position in the feature space.
Mobile (soft) and immobile (hard) particles are associated with S> 0
and S< 0, respectively. Figure 2(b) shows the average cumulative non-
affine displacement D of the particles (averaged per bin of softness) as
a function of their initial softness S. Interestingly, we find that, in addi-
tion of properly classifying the mobile and immobile particles, the dis-
tance from the decision boundary hyperplane (i.e., the softness S) is
itself highly correlated with the displacement of the particles—for both
the training and test sets. That is, the propensity for the particles to
exhibit reorganizations upon shear increases with softness and vice
versa. In that regard, it is notable that, despite being subjected to a
shear strain of 5% and total dynamics of 100 s, the system largely keeps
the memory of the machine-learning softness metric (which is com-
puted based on the initial structure of the system, before any load is
applied).

Next, we focus on the interpretation of the classifier. The decision
boundary hyperplane determined by logistic regression can be
expressed in terms of the n features xi,

Xn
i¼1

bi � xi þ b0 ¼ 0; (2)

where b0 is the intercept and bi are the logistic regression parameters
associated with each feature. Here, since all the features are standard-
ized, the parameters bi are directly indicative of the weight of each
feature—wherein the axes associated with the most influential features
(large jbij) are the most orthogonal to the hyperplane. The signs of the
parameters bi also indicate whether the associated features have a posi-
tive or negative influence on the propensity for the particles to be
mobile. Hence, the linear nature of the classifier adopted herein allows
us to directly quantify the influence of each feature.

Figure 3(a) shows the absolute value of the weights of the 10
most influential features. Note that the features calculated within the
medium-range order of the particles (see above) are denoted as M().
Overall, this interpretation analysis offers a series of insights, e.g.,
mobile particles tend to exhibit low contact numbers, larger distance
with neighbors, and large local free space (see the supplementary
material). Overall, we find that all the features have a notable influence
on the classification—since non-influential features are already filtered
out during the feature selection process. Note that none of these fea-
tures would be a robust descriptor of particle reorganizations on its
own. This illustrates the interest of the present machine learning
approach—since the structure-dynamics relationship is too complex
to be described by a single intuitive structural metric. Here, we find
that the classifier is dominated by medium-range order structural fea-
tures. Specifically, the average first- and second-shell coordination
numbers of the neighbors of a central particle feature the largest influ-
ence. This can be understood from the fact that particles having an
excess of neighbors tend to exhibit irregular, unstable local environ-
ments, wherein the neighbors form an irregular “zig zag” path rather
than a well-defined circle (see Fig. S11 for an illustration of this fea-
ture). Such local instability promotes particle rearrangements under
load. This indicates that, for this total strain (5%), the propensity for
particles to rearrange is primarily encoded in their initial medium-

range order structure while, in turn, their initial short-range order
structure has little influence, if any.

Finally, we explore how the influence of each structural feature
depends on the applied shear strain. We compute the cumulative non-
affine displacement of the particles at different strains, ranging from
1% to 5% with an increment of 1%. Five independent classifiers are
trained to predict the mobile/immobile class of the particles for each
strain while using the same initial structure for the input features. The
hyperparameters of each classifier are independently optimized so as
to maximize the test set accuracy. For consistency, the five classifiers
are trained by using the same 24 structural features as inputs, which
are reselected based on their overall influence for each of the five
strains. All the classifiers exhibit a satisfactory average test set accuracy
(> 65%, see the supplementary material).

Figure 3(b) shows the evolution of the influence of the most
informative features as a function of strain. Interestingly, we find that

FIG. 3. (a) Ranking of the 10 structural features that are the most influential in the
classifier (for a shear strain c ¼ 5%). The notation M() denotes that the features
are calculated in the medium-range order of the particles (see the text and the sup-
plemental material). Features highlighted in black and red are positively and nega-
tively correlated with softness, respectively. (b) Variation of the influence of select
features on the classifier as a function of the imposed shear strain. The notation
M() denotes that the features are calculated in the medium-range order of the par-
ticles (see the text).
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the relative influence of the features is notably different at low and
high strain. Note that a weight of 0.20 separates top-10 features (i.e.,
influential features) from most other features (i.e., weakly influential
features), which tend to have a weight lower than 0.10. Specifically, we
observe that the features describing the very short-range order of the
particles (number of contact points and local free volume fraction) are
largely influential at low strain (i.e., during the early dynamics of the
particles) but become weakly influential at high strain. In contrast, the
influence of medium-range order features (e.g., average coordination
numbers of the neighbors) tend to gradually increase upon increasing
strain. This indicates that, upon shearing, the dynamics of the particles
gradually shifts from being short-range-order- to medium-range-
order-dominated.

This can be understood as follows. At low strain, the low elastic
energy provided to the system only enables the rearrangement of par-
ticles featuring short-range defects (e.g., coordination mismatch and
large local free space)—since such localized rearrangements are associ-
ated with fairly low energy barriers. Such local rearrangements “reset”
the short-range order structure of the particles, so that the particles
that are mobile at low strain tend to lose the memory of their initial
short-range order. As strain increases, such initial short-range defects
get exhausted. In turn, at higher strain c, the available elastic energy
(which roughly scales with c2) becomes large enough to induce collec-
tive reorganizations enabled by medium-range order soft spots, associ-
ated with larger energy barriers. Eventually, the available elastic energy
resulting from the imposed strain (c > 5%) becomes large enough to
result in the complete yielding of the system.

We envision that the influential structural features identified
herein and summarized in Fig. 3(a) could be compared with results
obtained from x-ray tomography, which can be used to track the
dynamics of grains in granular materials. Specifically, the fact that par-
ticle rearrangement is promoted by the existence of unstable local
environments echoes the fact that highly distorted coplanar tetrahedra
have been noted to enhance plasticity.39 In addition, revealing the key
structural features that are the most influential in governing the
dynamics of the particles could offer useful insights to engineer novel
materials with either enhanced plasticity (to increase their toughness)
or, in contrast, improved stability.

Overall, these results highlight the fact that, in the case of the pre-
sent two-dimensional archetypical granular material, the load-induced
particle dynamics is largely encoded in its static initial structure, before
any load is applied. However, the structure-dynamics relationship is
complex and cannot be fully described by a single intuitive structural
metric. In that regard, machine learning offers a powerful tool to “find
needles in haystacks,” that is, to construct structural descriptors that
exhibit maximum correlation with dynamics. Importantly, in contrast
to “black-box” machine learning models presenting low interpretabil-
ity, the present classifier offers a series of useful physical insights.
Specifically, the present results reveal that, in the case of the present
system, the particle dynamics gradually transitions from being domi-
nated by the short-range to the medium-range order structure of the
particles. Additional studies are needed to confirm that these results
also apply to more complex three-dimensional granular materials or
different loading conditions (e.g., different state of stress or deforma-
tion rates). We envision that the present machine learning framework
(including the introduced dictionary of structural features and the
interpretable classifier model) is generic to disordered systems and

could be applied to other load conditions (e.g., creep and vibrations)
or material (e.g., glass and colloidal gels).

See the supplementary material for the details about hyperpara-
meter selection for the machine learning method.
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