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Abstract

Metallocenium cations, used as a component in an anion exchange membrane of a

fuel cell, demonstrate excellent thermal and alkaline stability, which can be improved by

the chemical modification of the cyclopentadienyl rings with substituent groups. In this

work the relation between the bond dissociation energy (BDE) of the cobaltocenium

(CoCp+
2 ) derivatives, used as a measure of the cation stability, with chemistry-informed

descriptors obtained from the electronic structural calculations, is established. The

analysis of 12 molecular descriptors for 118 derivatives reveals a non-linear dependence

of the BDE on the electron donating-withdrawing character of substituent groups cou-

pled to the energy of frontier molecular orbitals. A chemistry-informed feed-forward

neural network trained using k-fold cross-validation over the modest dataset is able to

predict the BDE from the molecular descriptors with the mean absolute error of about

1 kcal/mol. The theoretical analysis suggests some promising modifications of cobal-

tocenium for experimental research. The results demonstrate that even for modest data

sets incorporation of the chemistry knowledge into the neural network architecture, e.g.
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through mindful selection and screening of the descriptors and their interactions, paves

the way to gain new insight into molecular properties.

1 Introduction

Polyelectrolyte-based anion-exchange membranes (AEMs) have a broad range of applica-

tions in energy conversion and storage devices, such as alkaline fuel cells, redox flow batteries,

electrodialysis and electrolyzers,1–3 due to their ability to bind small ions (like hydroxide,

halide, carbonate ions) and to their redox stability under operational potentials. Yet, the

development of advanced membranes with sufficient chemical stability and high anionic con-

ductivity under extremely harsh, highly basic conditions in alkaline fuel cells, remains an out-

standing challenge. Derivatives of cobaltocenium, i.e. of [bis(cyclopentadienyl)cobalt(III)]

CoCp+
2 , where Cp:=cyclopentadienyl, are regarded as promising AEM components (Fig. 1),

because of their excellent thermal and alkaline stability under operating conditions of fuel

cells.

Figure 1: The anion exchange membrane (AEM) of a fuel cell with the cobaltocenium
cation in a polymer side chain. Modifications of the cobaltocenium cation by one or two
substituent groups, Y and Y′, are considered, including Y′ =H (mono-substituted set), Y′ =Y
(di-substituted set) and Y′ = CH3 (hetero-substituted set).

For example, permethyl-CoCp+
2 has been found ultra-stable compared to the unsubsti-
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tuted CoCp+
2 , i.e. 8.5% degradation after six weeks (at 140◦ in 1 M NaOD/D2O solution)

for the former, while the latter compound fully degraded after one week.4 Degradation of

the substituted cobaltocenium cations has been also measured in the Tang group5 (Cl− as

a counterion, 80◦ in 5 M KOD/D2O solution) for five substituted species with one, two and

four methyl groups, and with either one or two tert-butyl groups per Cp ring. Increase in

the number of the substituent groups has led to increased stability of the cations for both

methyl and tert-butyl derivatives sequences, which is consistent with the electronic effect;

in addition, superior stability of the cobaltocenium with four tert-butyl groups compared to

the octa-methyl cobaltocenium (8.2% and 18.5% cation loss after 1025 hours, respectively)

has been attributed to the steric effect of the tert-butyl group. Given that the synthesis

and characterization of the full range of possible derivatives are impractical, to gain further

insight into the substituent effect on stability useful in IEM design, we have performed a

computational modeling study, described below.

Our study is designed around experimentally relevant substitutions considered by the

Tang group, yielding a set of about 118 species. The resulting dataset is small by the

machine-learning standards, but a few promising approaches of combining the machine learn-

ing techniques with small data sets have been reported recently: some exploit the power of

transfer learning6,7 (a small dataset augments a related but different large dataset), and

some incorporate the domain knowledge into the neural network design, such as integrat-

ing deep learning algorithms with the d-band theory of chemisorption at transition-metal

surfaces.8 The latter approach, though less general, leads to interpetable machine learning

model, an obviously desirable feature.9 In some other examples of NN applications based on

small datasets10,11 (down to 211 and 176 experimental samples, respectively), the descrip-

tor screening and careful Deep NN and Artificial NN construction are performed to predict

OH− conductivity and stability of the anion exchange membranes depending on the polymer

composition. In this work, focused specifically on cobaltocenium derivatives, we take a sim-

pler approach of imparting chemical knowledge at an early stage through the selection and
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screening of the molecular descriptors, subsequently used in neural network models. This

strategy mitigates overfitting despite the small dataset size, and enables chemical insight

into the stability of cobaltocenium-hydroxide complexes.

The remainder of the paper is organized as follows. The system, its molecular represen-

tation and theoretical model are described in Section 2. The molecular descriptors and the

conventional and neural network analysis are discussed in Section 3. Summary and outlook

are presented in Section 4.

2 The computational model and methods

To generate a coherent dataset we start by establishing a well-defined and practical com-

putational model for the cobaltocenium derivatives relevant to experiments. The process

central to this model is the dissociation of the CoCp+
2 · · ·OH− complexes in aqueous envi-

ronment; one or both cyclopentadienyl (Cp) rings are modified by one out of 42 substituent

groups. The corresponding bond dissociation energy (BDE) is taken as a measure of the

cobaltocenium stability, which is supported by the correlation of the computed BDE with

the measured degradation of the cobaltocenium derivatives.5 The BDEs along with twelve

molecular properties (or features) are obtained from the electronic structure calculations,

and their correlations are analyzed firstly using the conventional linear regression analysis.

The results are rationalized in chemical terms and further used to develop the non-linear

Least Squares Fit (LSF) and the chemistry-informed feed-forward neural network (CIFNN)

models whose predictive performance is assessed through validation. The electronic structure

calculations are performed with Q-Chem 5.312 and Spartan’18;13 the deep neural network

models are implemented with PyTorch.14

In general, performance of an AEM depends on many factors including its morphol-

ogy, hydration level, ion concentration and temperature. Its fundamental component is the

polyelectrolyte consisting of the cations tethered or embedded into a polymeric chain and
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of the mobile hydroxide ions, all in the aqueous environment. The positive charge on the

cobaltocenium is balanced by the hydroxide anion, forming CoCp+
2 · · ·OH− complexes which

should dissociate as CoCp2OH → CoCp+
2 + OH−, enabling the desired OH− transport. An

alternative process which degrades an AEM is the bond dissociation of the cobaltocenium

cation itself, such as

CoCp2OH→ Cp + CoCpOH. (1)

Thus, the stability of the complexes with respect to the cobaltocenium dissociation is essen-

tial to a functioning AEM, and understanding the effect of possible synthetic modification

of the cobaltocenium as a tool of increasing its stability is highly desirable. The relevant

BDE is,

BDE = E(CoCpOH) + E(Cp)− E(CoCp2OH). (2)

Here and throughout CoCp+
2 and CoCp+ are referred to the cobaltocenium with or without

substitutions.

We have considered a set of mono- and di-substituted cobaltocenium cations covering a

range of electron-donating and electron-withdrawing substituent groups, Y, shown in Fig.

S1 and listed on the horizontal axes in Fig. 3. Y and Y′ label the substituent groups on

the two Cp rings (one per Cp) as illustrated on Fig. 1. Altogether, the dataset consists of

40 mono-substituted species (Y′=H) including the pristine cobaltocenium, 38 di-substituted

species of the type (Y′=Y) and 40 hetero-substituted species (Y′=CH3).

To examine the electronic structure of a few hundred complexes and dissociation frag-

ments one needs an atomistic model which is realistic, unambiguous and computationally

practical. A basic DFT gas-phase description of the cobaltocenium-hydroxide complex re-

sults in a deprotonation of one of the Cp rings, which is not expected in the aqueous IEM

environment. The addition of up to six explicit water molecules stabilizes the CoCp+
2 OH−

complex, but the BDE values show significant variation on their number, most likely due

to increased chances of trapping in the local minima (Fig. 2). Thus, for consistency within
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the computed data, we settle on representing the aqueous environment within the Polarized

Continuum Model (PCM),15 which also prevents deprotonation of Cp, and reduces ambigu-

ity in the geometry minimization. The van der Waals radius of Co was set to 2.0 Å,16 the

Q-Chem default radii have been used otherwise. Additional information on the CoCp+
2 OH−

dissociation in PCM is given in Table S2.
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Figure 2: (a) Optimized structures (top views) for systems consisting of the unsubstituted
CoCp+

2 , OH− and n water molecules n = [0, 6] and (b) the corresponding BDEs as a function
of n, computed at B3LYP-D3/6-31G* level in gas phase.

The density functional theory (DFT) is employed for practical reasons. After testing

several popular functionals and basis sets, the B3LYP-D3 functional17–19 combined with m6-

31G*20 for Co and 6-31G** for C, O, H and other atoms are chosen: this reproduces the

previously reported BDE trend21 for the multi-substituted derivatives of CoCp+
2 (Fig. S2)

and yields the BDE of 110.4 kcal/mol for the unsubstituted CoCp+
2 in gas phase, which is

in better agreement with the experimental value of 105.4± 3.5 kcal/mol,22 compared to the

method of Ref.21 Within this model, the mono-, di- and hetero-substituted cobaltocenium-

hydroxide complexes dissociate into C5H4Y and C5H4Y
′CoOH, where Y′ = {H, Y, CH3} (ex-

ceptional case: when Y=C(CH3)3 and Y′= CH3, it dissociates to C5H4Y
′ and C5H4YCoOH).

In agreement with Ref.22 the lowest energy spin-states for CoCp+
2 , CoCp+ and Cp are the

singlet, quartet and doublet, respectively. Additional calculations performed at the MP2

level (Table S1) yield the same spin-states.
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3 Results and discussion

3.1 The molecular properties and their correlation to the BDE

The electronic structure calculation provides a wealth of information about a molecule,

including those relevant to its stability. Since we work with a modest set of 118 molecules, we

have carefully selected twelve chemically-meaningful properties, computed at the geometries

optimized in solvent unless stated otherwise. Using abbreviations HOMO and LUMO for

the highest occupied molecular orbital and the lowest unoccupied molecular orbitals, respec-

tively, these properties, or molecular descriptors, include those of the substituted complexes,

dissociation fragments and of the substituent groups themselves: (1) the solvation energy

of CoCp2OH, Esolv; (2) its dipole moment, µ; (3) the distance between Co and O of the

hydroxide, dCoO; (4) the distance between the center-of-mass for the carbons of two Cp

rings, dCp; (5) the HOMO and (6) LUMO energies of the complexes, (7) the HOMO and

(8) LUMO energies of the CoCpOH, (9) the HOMO and (10) LUMO of the Cp’s. Esolv

quantifies stabilization due to solvent; µ, dCoO and dCp are the ’gross’ features related to

the reactivity and stability; the half-sum and the difference of the HOMO/LUMO energies

are related to the Fermi-level and the chemical hardness both associated with the stability

of a molecule. To characterize the electron donating (ED) and electron-withdrawing (EW)

properties of the substituent groups and capture their effect on the complex stability, we also

include (11) the polarizability, α, of a substituent and, finally, (12) the Hirshfeld charge, H,

induced by a substituent on a ’probe’ molecule. The latter, less-commonly-used property

was considered for either benzene or Cp used as such probes. The Hirshfeld charge is defined

as the sum of atomic charges on C6H5/C5H4 of a substituted benzene/Cp, and has been

shown to be less basis-dependent compared to the Mulliken or Lowdin charges.23 As seen

in Fig. 3, both versions of the H-charge display a similar correlation with the generally

accepted ranking of the ED/EW character of the substituents. The full cobaltocenium data

set is listed in Tables S3-S5. Having a realistic chemically meaningful target accuracy for the
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Figure 3: The sum of the Hirshfeld charges on C6H5 and C5H4 of C6H5Y and C5H4Y as a
function of substituents, Y, arranged from the strongest electron donating to the strongest
electron withdrawing effect according to the general organic chemistry.

BDE of ∼ 2 kJ/mol, 8 species with the BDEs below 3 kJ/mol have been excluded from the

modeling (Table S6). An additional data set (Table S6) was generated for the di-substituted

rhodocenium complexes (RhCp2OH) employing fit-SBKJC effective core potential and the

matching basis method with the B3LYP-D3 functional. The van der Waals radius of 2.0 Å

has been used for Rh in the PCM.16 The lowest energy spin-states for RhCp+
2 and RhCp+ are

the singlet and doublet, respectively. The BDEs for all substituted RhCp+
2 OH− complexes

are higher by about 20 kJ/mol than the cobaltocenium counterparts.

3.2 Modeling stability of complexes

To unravel the BDE dependence on molecular descriptors we start by computing the

Pearson linear correlation coefficients for the 38 di-substituted species. The coefficients are

listed in Table 1 using H-charge on benzene. For the cobaltocenium the highest correla-

tion of the BDE is with the LUMO (0.531) energy and with the Hirshfeld charge (0.625),

but surprisingly not with the HOMO. These correlations are even higher (0.836 and 0.867

respectively) for the rhodocenium complex. This can be understood as follows: the consid-

ered substituent groups are charge-neutral and, therefore, relative to the electron-donating

H atom, they have the EW effect.23 Upon the substitution of the H-atom of the pristine
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CoCp+
2 , an electron is pulled from the HOMO level of CoCp+

2 which is ’transformed’ into

the LUMO level of the substituted CoCp+
2 . For the ED group, we would expect the opposite,

i.e. an electron is pulled from an ED group to the LUMO of the pristine CoCp+
2 , correlating

with the HOMO of the substituted complex. Therefore, the BDE is sensitive to the HOMO

or LUMO energy modulated by H, and it is useful to incorporate a switching function of

H into the functions modeling dependence of the BDE on the HOMO/LUMO energies. A

logistic function f(H) – effectively a one-layer network – with adjustable parameters k and

H0 –

f(H) =
1

1 + e−k(H−H0)
, (3)

is used in the following Least Square Fit (LSF) models.24

Table 1: Correlation coefficients of the BDE with the descriptors for CoCp+
2 OH− and

RhCp+
2 OH−.

complex Esolv µ dCoO dCp EHOMO ELUMO α H
CoCp+

2 OH− -0.213 -0.094 0.266 -0.009 -0.109 0.531 0.146 -0.625
RhCp+

2 OH− -0.179 0.002 0.240 0.334 0.392 0.836 0.490 -0.867

Since the full cobaltocenium data set includes mono-, di- and hetero-substituted species

with distinct derivative groups Y and Y′ = {H, Y, CH3} on the two Cp rings, some stability

models include the HOMO/LUMO energy of the fragments. The following fitting functions
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have been considered:

ŷ1 : = c0 + (c1 + c2f(H(2)))E
(1)
HOMO + (c3 + c4f(H(2)))E

(1)
LUMO, (4)

ŷ′1 : = c0 + c1E
(1)
HOMO + c2E

(1)
LUMO + c3H

(2), (5)

ŷ2 : = c0 +
(
c1 + c2f(H(2)

)
)E

(2)
HOMO +

(
c3 + c4f(H(2))

)
E

(2)
LUMO

+
(
c5 + c6f(H(3))

)
E

(3)
HOMO +

(
c7 + c8f(H(3))

)
E

(3)
LUMO, (6)

ŷ′2 : = c0 + c1E
(2)
HOMO + c2E

(2)
LUMO + c3E

(3)
HOMO + c4E

(3)
LUMO + c5H

(2) + c6H
(3), (7)

ŷ3 : = c0 + c1E
(1)
HOMO + c2E

(1)
LUMO

+
(
c3 + c4f(H(2))

)
E

(2)
HOMO +

(
c5 + c6f(H(2)

)
E

(2)
LUMO

+
(
c7 + c8f(H(3))

)
E

(3)
HOMO +

(
c9 + c10f(H(3))

)
E

(3)
LUMO. (8)

In Eqs (4-8), the superscripts (i = 1, 2, 3) refer to Co(C5H4Y
′)(C5H4Y), and to CoC5H4Y

′ and

C5H4Y fragments, respectively. The LSFs {ŷ′i} are linear, while the LSFs {ŷi} incorporate

the non-linear switching function of Eq. (3). Both versions of H (defined either on the

benzene probe or on the Cp probe) are considered.

For each model, the parameters {c1 . . . } and {k(2), H(2)
0 , k(3), H

(3)
0 } for the LSF minimize

the mean square error (MSE),

MSE =
1

K

∑
k

(yk − ŷk)2. (9)

The parameter values are listed in Tables S8 and S9. The LSFs of Eqs (4) and (5) are per-

formed for the di-substituted derivatives (38 species), while LSFs of Eqs (6-8) are performed

for the mono- and di-substituted derivatives (78 species), referred to as the training set of

each case. The predictive properties of the fragment based LSFs are evaluated by computing

the BDE of the hetero-substituted set of the derivatives (40 species), referred to as the testing

set. The resulting errors, including the root mean square (RMS) error, RMS = (MSE)1/2,

are listed in Table 2.

10



Table 2: The mean square error (MSE) and the root mean square (RMS) error of the LSF
models.

model H train MSE train RMS test MSE test RMS
[(kcal/mol)2] [kcal/mol] [(kcal/mol)2] [kcal/mol]

LSF1 ŷ1 C6H5 31.850 5.644 - -
C5H4 35.280 5.940 - -

LSF1 ŷ′1 C6H5 35.205 5.933 - -
C5H4 41.199 6.419 - -

LSF2 ŷ2 C6H5 6.590 2.567 15.930 3.991
C5H4 10.082 3.175 18.473 4.298

LSF2 ŷ′2 C6H5 8.570 2.927 17.191 4.146
C5H4 13.743 3.707 22.168 4.708

LSF3 ŷ3 C6H5 5.294 2.301 11.347 3.369
C5H4 7.956 2.821 11.299 3.361

Let’s evaluate the performance of the three types of the LSF models, involving the frontier

MO energies of the complex (LSF1), fragments (LSF2), and complex + fragments (LSF2).

Our first observation is that H defined on benzene as a probe gives better accuracy than the

one defined on Cp, which is rationalized as follows: while Cp is obviously more relevant to

the cobaltocenium than benzene, being a radical Cp is unevenly disturbed by the substituent

groups, and is therefore not as a good EW/ED property probe as the benzene ring. The

second observation is that both, the training and the testing errors, are reduced as we go

from LSF1 to LSF3. The third observation is that the RMS in models with the switching

function are lower than that in the linear models by about 1 kcal/mol. The reduction of

the training error is expected as we introduce additional fitting parameters. The reduction

in testing MSE and RMS is encouraging, as it means that there is not much over-fitting.

However, the training error is 2-3 times smaller than the testing error in all cases, which

means that these models are not sufficiently accurate. Furthermore, in the LSF models the

training and testing data sets are comprised of the distinct families of species, i.e. mono-

and di-substituted for training, and hetero-substituted derivatives for testing. The accuracy

of the fit and predictions is expected to improve upon bias-free partitioning of the data

into training and testing sets. Both shortcomings – the limitations of the analytic form of

the LSF and the training/testing partition bias – are overcome by the Chemistry-Informed
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Feed-forward Neural Network (CIFNN).

The models LSF2 and LSF3 are generalized to the CIFNN models by putting the same

molecular descriptors into a neural network structure, noticing that the non-linear LSF

models, in fact, incorporate a single ’neuron’ through the sigmoid function of H. The input

variable X,

X = [E
(1)
HOMO,E

(1)
LUMO,E

(2)
HOMO,E

(2)
LUMO,E

(3)
HOMO,E

(3)
LUMO, H

(2), H(3)], (10)

consists of 8 descriptors used in the LSF3 model. Then, the n-level CIFNN3 is given explicitly

by

h1 = W T
1 X + b1, (11)

hj = σ (Wjhj−1 + bj) , j = 2, ..., n, (12)

ho = W T
o hn + bo ∈ RN , (13)

where hi, i = 1, ..., n is the i-th hidden layer, ho is the output, N is the total number of

derivatives in training set, Wo,Wi and bo, bi, i = 1, ..., n are weights and bias of the model.

The activation function in Eq. (12) is chosen among tanh and variants of the ReLU functions.

CIFNN2 is obtained by assigning zero to variable E
(1)
HOMO and E

(1)
LUMO. Applying CIFNN2

and CIFNN3 to the two version of H (computed for C6H5 and C5H4 probes) we develop

a total of four neural network models. The BDEs and descriptors in the data set of 118

cobaltocenium samples are standardized using Z-score method.25 The samples are randomly

divided into the training set (K = 106) and the testing set (12). The k-fold cross validation26

is used for a bias-free partitioning of the data via multiple random selections. By comparing

the models obtained from different partitions (9 subsets as training set + 1 subset as testing

set), the 10-fold cross validation process selects the best performing one as the final solution

which presumably reduces the generalization error on new data. In the training process, the

cost function is defined as the MSE of the BDE. In the cross-validation, the best model is
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chosen according to the relative MSE (RMSE) on the test set,

RMSE :=

∑K
k=1 (yk − ŷk)2∑K
k=1 (yk − ȳ)2

, ȳ =
1

K

K∑
k=1

yk. (14)

Two other metrics, mean absolute error (MAE) and mean relative error (MRE) are also used

to evaluate the performance:

MAE =
1

K

∑
k

|yk − ŷk|, MRE =
1

K

∑
k

|yk − ŷk|
|yk|

× 100%. (15)

After extensive numerical experiments, we choose 5 hidden layers with PReLu as the

activation function in each layer in the CIFNN models. Adam optimizer27,28 is used to

minimize the MSE in PyTorch. L2 regularization and early stopping26 are employed during

the training process to avoid overfitting. The hyperparameters of the neural networks shown

in Table S10, are chosen by the grid search method.26 We finalize the machine-learned,

neural network model using the following criteria: (i) we choose the model with RMSE on

the training set < 0.1, if no such model satisfies it, we choose the one with the smallest

RMSE on the training set; (ii) we choose the model with the smallest RMSE on the test set

using the 10-fold validation approach among all the hyperparameters searched. The results

are summarized in Table 3. According to the MRE in testing, the C6H5 case outperforms

the C5H4 case by 1.04%, 0.62% in CIFNN2 and CIFNN3 model respectively, and CIFNN3

outperforms CIFNN2 by 0.99%, 1.41%, respectively. All of these are consistent with the LSF

results. To further examine the generalization error of the neural network models, we examine

the relative error of each training and test instance ei =
|yi − ŷi|
|yi|

×100%, i = 1, · · · ,m, where

m is the size of training or test points, in its frequency map. The frequency map of the relative

error for the CIFNN3 model in the C6H5 case, given in Fig. 4, shows that rare events in

large relative errors can occur, but with a very low frequency in both training and testing.

This indicates the deep neural models can be used as a predictive model for the BDE with

a low probability that it may fail. Overall, the advantage of the CIFNN models over the
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chemistry-informed LSF models is quite significant. All CIFNNs yield comparable errors

in training and testing of ∼ 1 kcal/mol (outperforming LSF models by a factor of three),

demonstrating that feeding the molecular properties into neural networks with a bias-free

partition strategy is very effective. In order to examine the robustness of the CIFNN models

coupled with k-fold validation in making predictions, we repeated the analysis on several

randomly selected subsets of data, consisting of 80% of the original data. Our results do not

show any deterioration in the generalization error when the size of the dataset is reduced.

Table 3: Performance of the neural network models. The errors for the nonlinear LSF2 and
LSF3 models defined by Eqs (6) and (8), respectively are listed for comparison.

Model H RMSE RMSE train MRE train MAE test MRE test MAE
train test [%] [kcal/mol] [%] [kcal/mol]

CIFNN2 C6H5 0.088 0.044 7.609 1.171 6.663 1.009
C5H4 0.013 0.054 2.266 0.373 7.703 1.082

CIFNN3 C6H5 0.082 0.035 8.938 1.323 5.672 0.863
C5H4 0.036 0.040 5.545 0.857 6.292 0.883

LSF2 C6H5 19.278 3.416
C5H4 19.403 3.604

LSF3 C6H5 16.148 2.738
C5H4 15.748 2.663

4 Conclusions

In summary, we have analyzed the dependence of the chemical stability of substituted

cobaltocenium CoCp+
2 , on the computed molecular descriptors using both nonlinear chemistry-

informed regression and deep feed forward neural network models. The data set of 118

derivatives based on 42 substituent groups characterized by a range of electron-donating

and electron-withdrawing properties is constructed and analyzed. We have considered 12

carefully chosen chemistry-informed descriptors of the complexes and relevant fragments in-

cluding the key electronic structure (e.g. HOMO and LUMO energy), geometric (e.g. Co

to hydroxide distance), and physical (e.g. dipole moment) properties of the molecules. We

have observed that the BDE correlates nonlinearly with the HOMO and LUMO energies.
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(a) (b)

(c) (d)

Figure 4: (a) The training and (b) testing errors and the frequency maps of (c) the training
and (d) testing relative errors of the CIFNN3 model with the H-charge defined on C6H5.
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Therefore, within the non-linear regression analysis we have modulated the dependence of

the BDE on the HOMO and LUMO by a sigmoid function of the Hirshfeld charge, which

yielded test MAE of ∼ 3 kcal/mol. The chemical insight gained from the nonlinear regression

motivates the use of CIFNN models, which reduce the error to ∼ 1 kcal/mol.

The main conclusions from this study are: (i) the Hirshfeld charge is a useful measure

of the electron withdrawing-donating character of the substituent groups, with the benzene

ring probe leading to better fitting and predictions. (ii) While the models based on the

properties of the complexes, fragments and derivatives (LSF3 and CIFNN3) yield slightly

lower errors, the models which do not involve the complexes (LSF2 and CIFNN2) are pre-

ferred, because the electronic structure calculations are significantly (by a factor of ∼ 10)

cheaper for the fragments than for the complexes due to both, the scaling of the DFT cost

with the system size, and simpler geometry minimization for smaller systems. (iii) Taken

together, our modeling suggests that the stability of metallocenium species is enhanced by

the electron-donating substituents. Experimental studies verifying the conclusions and mod-

eling approach by integrating chemistry knowledge into the neural network structure will be

reported in the near future.

Overall, this work demonstrates that the general concept of incorporating the domain

(chemical) insight into the neural network structure extends application of the machine learn-

ing techniques to small data sets, ultimately leading to better predictive models compared

to the conventional regression analysis that are useful in designing chemical experiments.
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