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A B S T R A C T   

Objectives: Patient representation learning refers to learning a dense mathematical representation of a patient 
that encodes meaningful information from Electronic Health Records (EHRs). This is generally performed using 
advanced deep learning methods. This study presents a systematic review of this field and provides both qual
itative and quantitative analyses from a methodological perspective. 
Methods: We identified studies developing patient representations from EHRs with deep learning methods from 
MEDLINE, EMBASE, Scopus, the Association for Computing Machinery (ACM) Digital Library, and the Institute 
of Electrical and Electronics Engineers (IEEE) Xplore Digital Library. After screening 363 articles, 49 papers were 
included for a comprehensive data collection. 
Results: Publications developing patient representations almost doubled each year from 2015 until 2019. We 
noticed a typical workflow starting with feeding raw data, applying deep learning models, and ending with 
clinical outcome predictions as evaluations of the learned representations. Specifically, learning representations 
from structured EHR data was dominant (37 out of 49 studies). Recurrent Neural Networks were widely applied 
as the deep learning architecture (Long short-term memory: 13 studies, Gated recurrent unit: 11 studies). 
Learning was mainly performed in a supervised manner (30 studies) optimized with cross-entropy loss. Disease 
prediction was the most common application and evaluation (31 studies). Benchmark datasets were mostly 
unavailable (28 studies) due to privacy concerns of EHR data, and code availability was assured in 20 studies. 
Discussion & Conclusion: The existing predictive models mainly focus on the prediction of single diseases, rather 
than considering the complex mechanisms of patients from a holistic review. We show the importance and 
feasibility of learning comprehensive representations of patient EHR data through a systematic review. Advances 
in patient representation learning techniques will be essential for powering patient-level EHR analyses. Future 
work will still be devoted to leveraging the richness and potential of available EHR data. Reproducibility and 
transparency of reported results will hopefully improve. Knowledge distillation and advanced learning tech
niques will be exploited to assist the capability of learning patient representation further.   

1. Introduction 

In Electronic Health Records (EHRs), information regarding patient 
status is extensively documented. Therefore, EHR data provides a 
feasible mechanism to track patient health information and to make 
better decisions based on data-driven technologies. Unlike data in 
clinical trials or other biomedical studies, secondary data extracted from 
EHRs are not designed to answer a specific hypothesis. Instead, their 

primary goal is to monitor a patient. This results in the issue that EHR 
data have many challenging characteristics such as uncurated (data are 
not carefully chosen and thoughtfully organized or presented), poor- 
quality (data are rarely subject to data quality audits), high-dimensional 
(thousands of distinct medical events), sparse (lots of zero values), het
erogeneous (drawn from different resources), temporal (data are collected 
over time), incomplete (missing values), large-scale (a large volume of 
data), and multimodal (multiple data modalities). A wide variety of 
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studies have conducted predictive modeling of EHR data, which is a 
machine learning task that applies EHR data to construct a statistical 
model for the purpose of predicting a given clinical outcome of interest 
[1]. However, the complexity of EHR data discussed as above makes it 
difficult to directly use EHR raw data in machine learning models to 
achieve predictive modeling. 

A critical element in predictive modeling of EHR data is to effectively 
convert patient data from the raw EHR format to a machine learning 
representation—in other words, to transform patient data to meaningful 
information that can be further understood algorithmically. The effec
tiveness of predictive models for improving disease diagnosis, pheno
typing, and prognosis heavily depends on the quality of this feature 
representation. In machine learning, the task of representation learning 
is to learn and extract good feature representations from raw data 
automatically [2]. Patient representation learning is one particularly 
promising direction of combining representation learning and large EHR 
datasets. It refers to learning a mathematical description of patient data 
to find an appropriate way of transforming raw data into meaningful 
features. The patient representations built from many EHR data mo
dalities (including clinical narratives, lab tests, treatments, etc.) should 
be organized in a form that enables machine learning to learn effective 
prediction models for many tasks. 

This work investigates the methods of representation learning and 
the field of patient representation learning from EHRs through a meth
odological review of the literature. We collected data on 28 patient 
representation variables from 49 papers published in a diverse variety of 
venues, published up to December 2019. 

We seek to understand the following research questions:  

1. Resources: What are the resources available for learning patient 
representations? How is patient data transformed from raw input to 
important features? 

2. Methods: What representation learning methods are being contrib
uted? What kind of models and algorithms are used to develop pa
tient representations?  

3. Applications: What types of clinical problems and outcomes are 
addressed?  

4. Potential: How could these methods potentially contribute to diverse 
research communities? 

2. Background 

2.1. Patient learning data pipeline 

First, we briefly summarize the methods and resources that are 
commonly used in related studies (Fig. 1). The learning starts with raw 
patient data from either structured codes such as ICD-9, or unstructured 
data like clinical notes. After some initial embedding techniques to 
transform patient data into input features, deep learning models are 

utilized to create the patient representation. The learning model can be 
unsupervised, supervised, or self-supervised. The final step is to evaluate 
the learned representations by applying it to some clinical task(s), such 
as mortality, readmission, or a specific disease prediction. There are also 
some ways to visualize patient representations to provide some intuitive 
understanding or interpretation of the representation. The majority of 
studies in this field follow this pipeline to learn patient representations 
from EHR data and further evaluate on downstream tasks. 

2.2. Patient representation methods 

According to Bengio et al. [2], deep learning models are represen
tation learning methods with multiple layers, each with their own rep
resentations. The model starts with raw input, constructs non-linear 
modules that transform the representation at each layer into high-level, 
abstract representations. As already discussed, EHR data is high- 
dimensional and sparse. Thus, deep learning models are particularly 
well-suited to encode EHR data to learn patient representations. In this 
section, we will introduce the background of representation learning 
methods and how they are applied to learn patient representations. We 
describe five methods of representing a patient: vector-based, temporal 
matrix-based, graph-based, sequence-based, and tensor-based repre
sentations. For more detailed and technical interpretations of deep 
learning models, we recommend the review by LeCun et al. [3]. 

2.2.1. Vector-based patient representation 
In vector-based patient representation, every patient is represented 

by a mathematical vector. Models that attempt to construct vector-based 
patient representations are as follows: 

Fully connected deep neural network (fully connected DNN), 
originally inspired by biological neural networks, contain one or more 
hidden layers connected in a feed-forward manner [4]. Fully connected 
DNN are also known as multi-layer perceptrons (MLPs) or dense neural 
networks. Like the other neural network methods described below, they 
use backpropagation for supervised learning with non-linear activa
tions. Some early attempts for learning patient representation with 
neural networks have applied fully connected DNN approaches [5]. 
However, the majority of recent studies have considered this architec
ture as a baseline method [6]. 

Autoencoders are an unsupervised deep learning model that learns 
abstract representations from high-dimensional data, which is also a 
way of performing dimensionality reduction. An autoencoder learns to 
predict its input, but must compress the input signal through progres
sively smaller intermediate layers. The inner layer can be used as a low- 
dimensional representation. The variants of autoencoders include 
denoising [7], stacked denoising [8], variational [9], and contractive 
autoencoder [10]. Given the prior success of autoencoders for repre
sentation learning, their application to patient representation learning 
was first introduced by Miotto et al. [11], where a dense and general 

Fig. 1. Workflow of patient representation learning.  
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patient representation was derived with unsupervised three-layer 
stacked denoising autoencoders. 

Convolutional Neural Networks (CNNs) were specifically devel
oped for image processing [12]. Each module of the CNN contains a 
convolutional layer and a pooling layer. Those modules are stacked to 
construct a deep CNN. The convolutional layer uses a small neural 
network that slides across the image, allowing for the capture of local 
image properties irrespective of their location in the full image. How
ever, CNNs have been applied to more data types than just images, 
including text [13] and waveforms [14]. More advanced variants of 
CNN also attempt to incorporate temporal information in addition to the 
convolutional layer to model longitudinal patient data [15]. This is 
different from the variants of CNN in image processing fields such as 
VGGNet [16] and ResNet [17], which add more complex layers in the 
architecture. 

Word2vec originated from natural language processing to learn 
word embeddings from large-scale text resources [18]. There are two 
algorithms in word2vec: continuous bag of words (CBOW) predicts a 
target word given the surrounding context, and skip-gram predicts the 
surrounding context given a target word [19]. Both algorithms have just 
one hidden layer; thus, word2vec techniques are shallow networks 
compared with other deep learning methods. The variants of word2vec 
have been applied to learn representations from clinical codes [20], 
characterized by different assumptions and aimed to capture relation
ships between code sequences. 

2.2.2. Temporal matrix-based patient representation 
Temporal matrix-based patient representation constructs a two- 

dimensional matrix with one dimension related to time and the other 
dimension related to clinical events from the EHR. Nonnegative matrix 
factorization (NMF) is an algorithm for decomposing high-dimensional 
data from a set of nonnegative elements. NMF has been widely used in 
bioinformatics for clustering sources of variations [21,22]. There were 
also early attempts of applying NMF or its variants into EHR patient data 
representation [23–25,15], which are some of the earliest examples of 
constructing a mathematical representation for each patient. They also 
showed the challenges of using EHR data and demonstrated the feasi
bility of encoding the latent factors of temporal patient data by 
providing a one-to-one identifiable mapping between the patient matrix 
and the target label. 

2.2.3. Graph-based patient representation 
Graph-based patient representation constructs a compact graph for 

each patient where the nodes in the graph encode clinical events and the 
edges between the nodes encode relationships among the clinical events. 
One of the early works developing graph-based EHR representation was 
proposed by Liu et al. [26], where they designed a novel graph repre
sentation algorithm to learn distinct clinical events from EHR data that 
included temporal relationships among the events. Although their work 
was not developed based on deep learning, one such emerging appli
cation of deep learning into graph representation is the Graph Neural 
Network. 

Graph Neural Networks consist of a finite number of nodes and 
edges to connect data. Nodes contain information about entities, and 
edges contain relations between entities. Prominent methods of GNN 
include Directed Acyclic Graph [27], Graph Convolutional Network 
[28], Graph Attention Network [29], and node2vec embeddings [30]. 
GNNs attempt to learn graphical structures of EHR data that can infer 
the missing information through other representation mechanisms, 
therefore resulting in a more explainable representation. GNNs are 
particularly useful to introduce domain knowledge into the architecture. 
For instance, a few studies have employed hierarchical ICD-9 knowledge 
graphs as the graph model to enhance the interpretability and perfor
mance of the proposed method [27,31]. Other knowledge-based re
sources include adverse drug-drug interactions [32], and comorbidities 
[33]. 

2.2.4. Sequence-based patient representation 
Sequence-based patient representation produces a timestamped 

event sequential features for each patient. 
Recurrent Neural Networks (RNNs) were developed for processing 

sequential inputs such as language [34,35]. RNNs deal with a sequence 
of inputs one item at a time and transfer the hidden state of each input 
unit to the next input unit, so the current state implicitly contains in
formation about the entire sequence history. The common variants of 
RNN include Gated Recurrent Unit (GRU) and Long Short-Term Memory 
(LSTM), both designed to minimize the vanishing gradient problem. 
GRU adds a gating mechanism into the RNN [36]. LSTM is particularly 
useful for dealing with long-term dependencies [37]. Thanks to the 
advances in RNN architecture, many studies have applied RNNs to 
develop patient representations where they have focused on represent
ing patients using combinations or sequences of clinical codes. One such 
RNN-inspired approach is Doctor AI [38], where distributed vector 
representations of clinical codes are derived to represent patient 
trajectories. 

Although RNNs enable to sequential modeling, especially some 
variants of RNNs like LSTMs are effective in dealing with long de
pendencies, limitations of RNNs still persist. One notable limitation is 
that RNNs cannot be trained in parallel (which will increase training 
time). Also, RNNs only process information from one direction, and even 
bi-directional RNNs which encode from two directions are a simple 
concatenation of two directions. Therefore, the Transformer architec
ture equipped with self-attention and positional embeddings was 
introduced to achieve true bi-directional representation [39]. 

Recently, with the wide adoption of Transformer-based language 
models in NLP (e.g., GPT [40], BERT [41]), Transformers continue to be 
applied for patient representation learning and for clinical sequence 
modeling [42–45]. Similar to the use of RNNs to enable sequence 
modeling of EHR data, Transformers also encode each clinical event at 
every time stamp as a unit and an entire patient trajectory as a whole 
sequence. Unlike a RNN using recurrence to predict the next unit, the 
Transformer architecture considers the sequence of units as a whole and 
employs self-attention to learn the essential information from the entire 
sequence. 

2.2.5. Tensor-based patient representation 
Tensor-based patient representation is a method that represents each 

patient with a three-dimensional (or more) tensor consisting of events 
such as diagnoses and treatments. 

Tensor Decomposition is the high-order extension of matrix 
decomposition that seeks to decompose high-dimensional tensors into 
products of low-dimensional factors [46]. The CANDECOMP/PARAFAC 
alternating Poisson regression (CP-APR) algorithm is one of the repre
sentative methods that are well-studied for tensor decomposition, trying 
to express a tensor as the sum of a finite number of rank-one tensors 
[47]. Compared with traditional dimensionality reduction methods, 
tensor decomposition is unique in having the capability of managing 
multi-aspect features in multiple dimensions and is versatile enough to 
incorporate domain knowledge into the operation [48]. These advan
tages have made tensor decomposition a promising modeling approach 
to learn abstract patient representations from EHR data and provide 
good interpretability and scalability [49]. Each tensor is constructed of 
patient-level data, with three different factors including a patient factor, 
and two other factors related to clinical events (i.e., diagnosis with 
medication, or diagnosis with procedure). Each tensor constitutes a 
phenotype with a weighted sum of rank-one tensor from the outer 
product of three factor vectors. A tensor-based patient representation 
allows for the capture of complex interactions and relationships between 
clinical events (especially phenotypes, comorbidities, and medications) 
that are not evident in flattened EHR data [50]. 
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3. Materials and methods 

Papers that are eligible for inclusion in this review are characterized 
by (a) focus on patient representation learning, (b) use of patient data 
from longitudinal EHRs, and (c) utilization of deep learning or neural 
network models. Notably, we consider studies using deep learning as 
one criterion because the unique characteristics of EHR data (as dis
cussed in Introduction) make deep learning a feasible data-driven so
lution to generate robust representation simultaneously from diverse 
resources compared with other techniques. It is likely that, at least in the 
next few years, most advances in patient representation will utilize deep 
learning approaches. 

These criteria were applied to generate keyword searching queries 
for literature database search. Five databases consisting of PubMed, 
EMBASE, Scopus, the Association for Computing Machinery (ACM) 
Digital Library, and the Institute of Electrical and Electronics Engineers 
(IEEE) Xplore Digital Library were queried on December 31, 2019. The 
search consists of the following combination of keywords: 

(“deep learning” OR “neural network”) AND patient AND (vector OR 
representation OR embedding OR vec) AND (“electronic health records” 
OR ehr OR “electronic medical records” OR emr). 

As for publication characteristics, we limit our search to English- 
language research articles with the publication time range from 2000 
to 2019 and only focus on peer-reviewed journals and conference pro
ceedings (i.e., posters and preprints are not included). For study char
acteristics, only study designs related to developing a deep learning- or 
neural network-based patient representation from electronic health re
cords are considered. The study outcome should also apply the learned 
representation to downstream evaluations of clinical predictions. In 
terms of exclusion criteria, studies such as review papers and proceeding 
summaries are excluded. Studies that use patient data other than EHRs 
are also excluded. 

Duplicates were removed and additional records were added using a 
snowballing strategy. The additional records were subsequently traced 
from references of the included papers and personal readings. Next, the 
articles were uploaded to Rayyan [51] and screened for title and ab
stract. Two authors (YS, JD) screened the articles under a blind format. 
At the full-text screening step performed on Zotero [52], each study was 
read in full by one author (YS) to validate the final relevancy. 

As a result, 363 papers were queried at the beginning, including 349 
articles retrieved from the five databases, and 14 additional records 
identified through snowballing. At deduplication, 54 duplicate records 
were removed and 309 records remained. At the step of title and abstract 
screening, 199 records were excluded because the topic is not relevant 
(n = 114), they are traditional predictive modeling of the single task 
(28), they are not peer-reviewed or original research papers (26 studies 
are not research, 5 preprints), no deep learning is used (12), no evalu
ation of the patient representations (7), and there is no EHR data (7). 

After these exclusions, 110 papers went through to the next 
screening step (full text screening) to determine the relevancy of each 
study. At this step, 61 papers were excluded due to no patient repre
sentation being developed (n = 37), no deep learning method being used 
(8), no EHR data being used (7), no evaluation (6), and only containing 
abstracts (3). Finally, this left 49 articles to be included in this work. A 
detailed literature selection procedure (PRISMA diagram) [53] is shown 
in Fig. 2. Based on the variables extracted from 49 publications, some 
interesting findings are worthy of being highlighted and discussed in the 
following sections. 

We performed data extraction from the final included papers 
considering the following variables:  

• Publication date: the date on which this paper was published by the 
conference or journal.  

• Publication venue: the conference or journal where this paper was 
published.  

• Representation learning approach: this contains two items including 
the proposed deep learning model(s) and additional attributes to 
enhance the model.  

• Patient data type: what modality of EHR data was used? For instance, 
structured code from diagnoses/procedures/medications tables, nu
merical values from lab measurements, or unstructured data from 
clinical notes/images/waveforms.  

• EHR resources: where does the patient EHR data came from? For 
example, publicly available datasets or a private local hospital data 
warehouse? What is the size/duration?  

• Preprocessing methods: what is the format of the input data that was 
fed into the model architecture? In other words, how the EHR raw 
data was preprocessed into numerical data?  

• Clinical outcome tasks: main clinical tasks for evaluating learned 
patient representation.  

• Evaluation metrics: quantitative measure of the performance of 
prediction/clustering/regression on clinical outcome tasks.  

• Interpretability: the degree to which a human can understand the 
model’s result or learned patient representations.  

• Objective functions: the loss function when optimizing the models.  
• Computational resources: for instance, deep learning frameworks 

and computational platforms (GPU).  
• Code reproducibility: reproducibility of the results/instructions on 

open-source platforms. 

4. Results 

4.1. Publication characteristics 

First, we look at the publication numbers over time in Fig. 3. The 
volume of studies is currently growing rapidly each year (almost 3 times 
in 2017 over 2016). Although there is a slight decrease from 2018 to 
2019, we think this is because we exclude preprints at the first step of 
screening. Apart from the publication date, we also outline the major 
research communities that have contributed to the topic. Table 1 lists 
the top conferences or journals that have published this topic in three 
main communities. The conferences or journals include, but are not 

Fig. 2. PRISMA flowchart for including articles in this review. (PRL: Patient 
Representation Learning. DL: Deep Learning. EHR: Electronic Health Records.) 

Y. Si et al.                                                                                                                                                                                                                                        



Journal of Biomedical Informatics 115 (2021) 103671

5

limited to, AMIA Symposium, AMIA Joint Summit, Conference on In
formation and Knowledge Management (CIKM), Journal of the Amer
ican Medical Informatics Association (JAMIA), Journal of Biomedical 
Informatics (JBI), BMC Medicine, Scientific Data, Scientific Reports, NPJ 
Digital Medicine, Neural Information Processing Systems (NeurIPS), 
Knowledge Discovery and Data Mining (KDD), Machine Learning for 
Health Care (NeurIPS_ML4H), and Association for the Advancement of 
Artificial Intelligence (AAAI). 

4.2. Study characteristics 

Pertinent study characteristics of the 49 reviewed publications are 
reported in the following sub-sections, and also summarized in Sup
plementary Table 1. These study characteristics enable to qualify the 
scientific validity and applicability of each study, which reveals the in
adequacies and gaps of current research fields, and would be potentially 
useful to inform the need for new study designs for future research in 
patient representation learning. 

4.2.1. Learning scenarios 
We find that, among the 49 included studies, the majority (n = 30) 

applied supervised approaches to learning the representation. Here one 
would train and optimize the representation with some target or 
objective, usually focusing on phenotyping or other clinical outcomes. 
Unsupervised learning was applied in 11 studies. Unlike supervised 
learning, unsupervised learning does not require labels. This would 
include the use of autoencoders, which function by reconstructing the 
data from its raw input. In all forms of unsupervised learning, patient 
representations are learned separately from the prediction task. Since no 
labels are required, unsupervised learning is more likely to benefit from 
large EHR datasets. 

Self-supervised methods were used by 8 studies. Unlike supervised 
learning that relies on labels for a target task, or unsupervised learning 
that has no label-driven objectives, self-supervised learning frames a 
learning scenario as predicting a subset of information using the 

remaining data. Essentially this enables the use of models that are 
commonly used for supervised tasks (including many deep learning 
models) in a setting that does not have the labels of interest for the target 
task. With self-supervised learning, the patient representation is ob
tained similar to word embeddings in NLP studies, where a target word 
is predicted with its contextual information. Since patient representa
tions are themselves largely intended as intermediate steps to a final 
prediction task (usually done via supervised learning), learning the 
representations in a self-supervised manner provides many of the ben
efits of unsupervised learning (no manual curation of labels) while still 
allowing for the use of powerful deep learning methods (e.g., trans
formers) that can otherwise be considered supervised. The self- 
supervised tasks included in this review are mainly used for clinical 
code representation learning, where clinical codes are ordered sequen
tially, and the codes in between are masked and predicted using the 
context of clinical codes nearby, similar to the algorithms of skip-gram 
and CBOW used to learn word embeddings [19]. 

4.2.2. Patient data types 
In terms of patient data types in EHRs, among the 49 studies, 37 

papers used structured codes (i.e., diagnosis codes, procedure codes, 
medication codes) to build the representation, while 6 papers used un
structured notes. The remaining 6 papers used both structured codes and 
unstructured notes jointly. Though combining heterogeneous resources 
is promising, we noticed these studies were not really combining the raw 
data fully from the two modalities into the same model. Instead, they 
only used a subset of data from one modality [6,11,54–57]. One such 
method is to simplify clinical notes by using topic models to represent 
unstructured resources [6,11,55]. 

4.2.3. Preprocessing methods 
Although not many studies emphasized the preprocessing steps used 

to transfer raw input data into the model, we assume this is because deep 
learning does not necessarily need heavy manual work for preprocess
ing. However, we still extract the preprocessing approach and workflow 
of each study because we consider this an essential step towards rep
resenting a patient. Among 37 studies learning from structured codes, 
the majority (n = 27) generate one-hot vectors for the input data, and 
the frequency of a given code is used in 5 studies [11,48,58–60]. For 
inputs from multiple resources, input vectors are concatenated before 
feeding them into the architecture [14]. Normalized formats of patient 
data are also important to learn an effective representation. For instance, 
z-score is applied to convert data from continuous variables to discrete 
one-hot vectors [55,57,61]. For both structured codes and unstructured 
notes, standardized vocabularies including FHIR [6] and UMLS CUIs 
[62,63] are introduced to transfer raw tokens into unique phrases to 
reduce the sparsity of the input data. 

4.2.4. Learning models and architectures 
A primary interest of this study is the types of deep learning models 

that the proposed methods used as the foundation to learn patient rep
resentations. We plot the number of papers that have applied each deep 
learning model as the foundation architecture, and also differentiate 
studies with different data input types, shown in Fig. 4 and Table 2. In 
total, there are 13 studies (structured: 8; unstructured: 1; combined: 4) 
that have applied an LSTM model to develop patient representations, 
which is the most common architecture. CNNs are the next with 11 
studies (structured: 7; unstructured: 2; combined: 2). GRU is also com
mon with 11 studies (all structured EHR data). This result is reasonable 
since both CNN and RNN architectures are utilized to learn local or 
sequential information from large-scale data and to find the nuance of 
variance within the data. 

Although the methods of learning patient representations are all 
built upon deep learning models, many unique architectures were 
introduced, and additional learning modules have been applied to 
capture the characteristics of EHR data. To improve performance and 

Fig. 3. Publication counts over time.  

Table 1 
Selection of conferences/journals publishing the included studies.  

Community Conference/ 
Journal 

Name (# Papers) 

Informatics Conference AMIA Summit (1), AMIA Symposium (1), 
others (4)  

Journal JBI (3), JAMIA (1) 
Medicine Journal NPJ Digital Medicine (1), Scientific Reports 

(2), PLoS ONE (1) 
Computer 

Science 
Conference KDD (8), AAAI (4), CIKM (3), NeurIPS_ML4H 

(4), IEEE-related (7), others (7)  
Journal JMLR (2)  
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provide a degree of interpretability to the model, an attention mecha
nism is adopted in 13 studies [6,14,27,31,43,57,64,72,76–78,80,88]. A 
hierarchical knowledge graph has been incorporated into learning rep
resentations in 6 studies [27,31–33,81,91]. 

Sequential order between clinical events has been considered in the 
architecture in 27 studies. The majority of them have applied RNN (i.e., 
LSTM, GRU) to model sequential order with time-series patient data 
from diagnoses or measurements. Specifically, RNN adopts hidden states 
to carry information from the previous step to the next, which attempts 
to transmit sequential order between clinical events. Clinical events at 
each timestamp (i.e., diagnoses at each visit, or lab measures at every 
hour) are fed into every unit of the RNN, and the hidden state at this time 
point is updated with the hidden states from the previous timestamp and 
additional input from the current timestamp. Along these lines, 
sequential information from discrete event time-series can be trans
mitted to the final prediction target. The remaining 22 studies have not 
considered sequential information, based on varied ways of pre
processing patient data. For instance, deep learning models that fail to 
process sequential orders such as CNNs or autoencoders are applied in 
the architecture [73,98], the patient EHR data are only derived from 
clinical notes [62,90], and the patient EHR data are represented with 
one-hot encoding or frequency counts [11]. 

An interesting observation when speculating about what the “ideal” 
architecture for learning patient representations would be is that deep 
learning models are not mutually exclusive from each other. The best 
aspects of each model can be combined into a joint deep learning ar
chitecture. For instance, RNNs can assist with autoencoders to learn 
unsupervised representations while improving their ability to capture 
sequential clinical events [61,67,74,75]. CNNs can also be combined 
with RNNs to learn multifaceted patient representations [14,55,72]. 

4.2.5. Patient data resource 
We have observed the recent success in the image processing field 

built upon the curation of a very large image dataset, ImageNet [92]. In 
this review, we investigated the resources of available EHR data that are 
large-scale and publicly available to advance research. Although it may 
be hard to access EHR data due to privacy concerns, a large publicly 
available clinical dataset can push representation performance to a scale 
similar to that of image processing by giving researchers a common 
benchmark to build on prior work. We observed that the prominent 
dataset in 49 included studies is the Medical Information Mart for 
Intensive Care (MIMIC-III) [93], where 22 out of 49 studies have used 
this dataset. Because MIMIC-III has both structured and unstructured 
data, clinical outcomes studied using MIMIC-III are widely varied, 
including mortality prediction, disease diagnoses, phenotype pre
dictions, readmission, and length-of-stay forecasting. Other publicly 
available datasets that have been used to develop patient representa
tions are: the Parkinson Progression Marker Initiative (PPMI) 
[67,74,94], the Alzheimer’s disease neuroimaging initiative (ADNI) 
[74,95], the i2b2 obesity challenge [62,63,90,96], and eICU Collabo
rative Database [42,97]. We summarize the public datasets and their 
corresponding clinical applications in Table 3. Considering the public 
datasets for each clinical task, the most popular is MIMIC-III for disease 
predictions (n = 10). Private datasets from local clinical data ware
houses were used in 27 of the 49 studies. The detailed description of 
local hospital datasets can be found in Supplementary Table 2. A total of 
9 studies have applied their methods on two or more datasets (i.e., 
private or public). 

4.2.6. Clinical outcomes and applications 
Studies involving patient representation learning evaluate their 

representations based on risk predictions. The general assumption is that 
a more advanced and robust patient representation would improve the 
performance of predictive models. Table 4 illustrates the clinical out
comes addressed among the 49 papers. We categorize main clinical tasks 
for each paper into seven types: disease prediction (n = 31), mortality 
prediction (12), length-of-stay forecasting (8), admission prediction (7), 
patient subtyping (4), intervention prediction (5), and medical cost 
forecasting (3). To show the generalizability of the study, the majority of 
works have applied two or more clinical outcomes to evaluate the rep
resentations, resulting in a number of studies that have sizable overlap in 
terms of outcomes studied. The most common clinical tasks (31 studies) 
are disease diagnosis predictions, which is to predict whether the patient 
will develop a given condition. Mortality prediction is the second most 
common task with 12 studies. 

Rather than focusing on predictive tasks, patient representations can 
be potentially useful for clustering patients based on similarity, which 
can be used to identify patient subtypes, among other things. Patient 
subtyping is helpful for studying certain types of diseases, including 
Parkinson’s Disease. However, very few studies have focused on patient 

Fig. 4. Deep learning architectures used in the included studies.  

Table 2 
Correspondence between patient data types and deep learning models.   

Patient Input Data Type 

DL Models Structured Unstructured Combined 

LSTM [14,58,61,64–68] [69] [6,54,55,57] 
CNN [14,33,66,68,70–72] [63,73] [54,55] 
GRU [31,38,72,74–81]   
Autoencoder [61,67,74,75,82,83] [84] [11] 
word2vec [59,85–87]  [56] 
FFNN [88,89]  [6,54] 
Tensor Decomposition [48,58]   
Deep Averaging Network  [62,90]  
Graph NN [27,32,91]   
Restricted Boltzmann 

Machines 
[60]   

Transformer [43]    
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subtyping (n = 4). We assume this is because patient subtyping is not 
like other prediction tasks such as mortality and disease predictions that 
have straightforward label information. Typically, a data-driven tech
nique is required to differentiate between different subtypes. For 
instance, the technique of measuring the distance of two patient repre
sentation vectors is to calculate the similarity; thus, to decide whether 
the two patients belong to the same subtype. Zhang et al. [100] proposed 
a data-driven subtyping method with LSTM and Dynamic Time Warping 
to first transform patients into temporal representations and then 
calculate the similarity of every patient pair. 

Evaluation metrics are mainly dependent on the prediction task. We 
summarize the metrics for the above clinical outcomes in Table 4. 
Typically, for prediction tasks, AUROC, AUPRC, Precision, Recall, F1- 
measure, and Accuracy are the most used. Metrics including Top_
K_Recall or Top_K_Precision (ranking metrics from information 
retrieval), are adopted particularly for predicting full sets of diagnoses 

where K is the number of diseases. In addition, for regression tasks that 
involve predicting a real-valued quantity (i.e., medical cost, readmission 
forecasting), Root Mean Squared Error (RMSE), Mean Absolute Per
centage Error (MAPE) and Goodness-of-Fit R-squared are utilized. 

Another evident observation stands out when we look into the time 
periods for the evaluation, that is how to select appropriate observation 
and prediction periods. Normally, clinical events in the observation 
period are accumulated to construct the samples for training, while 
clinical events in the prediction period are considered as the gold 
standard for evaluation. We discover an interesting connection that the 
design of observation and prediction periods are highly correlated with 
the clinical outcome tasks that are evaluated. Table 4 shows the time 
period for prediction with corresponding clinical tasks. Prediction tasks, 
such as disease, readmission, patient subtyping, and medical cost fore
casting, generally extend observation windows for long time periods. 
Month-level [69,88], year-level [11,48,66,78,80], and visit-level 

Table 3 
Benchmark dataset and clinical outcome applications.  

Public Resource Description Patient Data 
Type 

Patient 
Count 

Application Tasks Paper 

MIMIC-III A critical care database, including de-identified patient 
data with ~ 60,000 Intensive Care Unit (ICU) 
admissions [93] 

Structured; 
Unstructured 

~46,000 Mortality Prediction [14,43,57,58,61,65,73,77]     

Disease Prediction [27,31,43,54,56,57,59,91,98,99]     
Admission Prediction [77,88]     
Length-of-stay Prediction [14,43,73]     
Patient Similarity [58]     
24-hour decompensation [14,43,61]     
Intervention Prediction 
(ventilation, prescription, 
lab test order, etc.) 

[32,54,55,65,98]  

PPMI A longitudinal patient dataset comprising clinical and 
behavioral variables, imaging, and specimen data of 
Parkinson’s disease patients. [94] 

Structured ~1000 Patient subtyping [67,74]  

ADNI A longitudinal patient dataset consisting of 
assessments collected from selected patients in varied 
stages of Alzheimer’s Disease. [95] 

Structured ~600 Patient subtyping [74]  

i2b2 obesity 
challenge 

1237 discharge summaries from the Partners 
HealthCare Research Patient Data Repository. Each 
discharge summary was annotated with patient disease 
status corresponding to obesity and fifteen 
comorbidities of obesity. [96] 

Unstructured ~1000 Phenotype Prediction [62,63,90]  

eICU 
Collaborative 
Database 

A combination of multiple critical care units across the 
United States. The data covers patients who were 
admitted to critical care units in 2014 and 2015. [97] 

Structured ~139,000 Mortality medication, and 
diagnosis predictions 

[42] 

MIMIC-III: https://mimic.physionet.org/. 
PPMI: http://www.ppmi-info.org/. 
ADNI: http://ida.loni.usc.edu/. 
eICU: https://eicu-crd.mit.edu/about/eicu/. 

Table 4 
Clinical outcome of interests with evaluation metric(s) and prediction period level.  

Evaluation Tasks (# 
paper) 

Evaluation Metrics Time periods Papers 

Disease Prediction 
(31) 

AUROC, AUPRC, Accuracy, Top K Recall/ 
Precision 

Year-level, 
visit-level 

[6,11,27,31,33,38,43,54,56,57,59,60,62–64,66,67,69–72,75,76,80,81,83,86,89–91,98] 

Mortality Prediction 
(12) 

AUROC, AUPRC, F1, Accuracy 24-hour, 
month-level 

[6,14,43,57,58,61,65,73,75,77,85,98] 

Length-of-stay 
Prediction (8) 

AUROC, AUPRC, F1, Accuracy, MSE, MAPE 12-hour, 24- 
hour 

[6,14,43,73,82,83,85,87] 

Admission 
Prediction (7) 

AUROC, AUPRC, Accuracy, Top K Recall/ 
Precision 

Month-level, 
year-level 

[6,38,48,77–79,88] 

Patient Subtyping 
(4) 

Significant difference among different 
groups; NMI, MSE, Sparsity and Similarity 

Visit-level [67,70,74,79] 

Intervention 
Prediction (5) 

Jaccard, Recall, Precision, F1 24-hour [32,54,55,65,98] 

Medical Cost (3) R-squared, RMSE Year-level [48,85,87]  
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predictions [31,38,56,59,64,70,71,76] are prevalent for those tasks. 
Take disease prediction as an example, a number of studies extracted 
diagnoses from the first visit and then predicted diagnoses in the next 
visit (i.e., visit-level observation) [31,38,56,59,64,70,71,76]. On the 
contrary, for those outcomes that happen in hospital, such as inpatient 
mortality [14,57,61,65], length-of-stay [14,83], and intervention pre
diction [32,55,65], observation windows at hour level are developed. 
Specifically, 24 hours are common as these tasks are immediate and 
physicians make decisions instantly. Rajkomar et al., [6] assessed two 
periods for mortality prediction (i.e.,12-hour and 24-hour) and showed 
that, if the deep learning model and other parameters remained the 
same, the prediction made 24 hours after admission attained a slightly 
better performance than that of 12 hours. This outcome is reasonable 
because more training features were accumulated with a longer time of 
observation. However, we assume this is a trade-off between time and 
accuracy, because the decision for this type of demanding task should be 
up-to-date as well. 

4.2.7. Objective function 
Only a few papers have reported the loss function applied in the 

study. We find that cross-entropy loss (or logarithmic loss) was the most 
common objective function for optimization. Aside from traditional 
cross-entropy loss, a weighted loss function was applied to account for 
an imbalanced-class dataset [55]. For regression tasks, mean squared 
error (MSE) loss and mean absolute error (MAE) loss were mainly per
formed [43]. What’s more, studies developing patient representations 
with several learning objectives conduct a unified loss function with 
different targets being optimized jointly. For instance, a masked binary 
cross-entropy loss was employed for a multi-task architecture [43,69]. 
Doctor AI [38] has a joint loss function containing the cross-entropy loss 
from diagnosis predictions and the squared loss for the prediction of 
time duration for a single patient. 

4.2.8. Interpretability 
While patient representations may be relatively low-dimensional 

(often less than 500 dimensions), these collections of continuous 
numbers can be particularly abstruse and difficult for humans to inter
pret [101]. 

Visualization techniques are often performed to construct qualitative 
clusters of patient cohorts to provide an intuitive interpretation of the 
learned representations [102]. Such techniques for patient representa
tions include t-Distributed Stochastic Neighbor Embedding (t-SNE) 
[103], Multidimensional Scaling (MDS) [104], Principal Component 
Analysis (PCA) [105], and Uniform Manifold Approximation and Pro
jection (UMAP) [106]. Among these four methods, t-SNE has developed 
into the standard tool in this field due to its capability of revealing 
clusters in data. Ideally, patients typically from test sets associated with 
different labels, are projected and clustered into distinct groups. We 
observed 8 papers visualized with t-SNE to interpret the representations 
[14,27,31,60,66,73,75,79], and one study visualized with MDS [70]. 
Apart from projecting representations, interpretability can be provided 
by visualization methods including a heatmap of features [33,67,78], 
visualizing attention weights [57,72,76,80,88], and case study (expla
nation by examples) [32]. 

4.2.9. Computational resources and reproducibility 
With the rapid improvements in computational resources, GPU- 

accelerated techniques have been exploited to train deep learning 
models faster and more efficiently. Because the literature in this study is 
from recent years (2015–2019), we observe the majority (29 out of 49) 
have reported the computational resources along with the deep learning 
frameworks. The reported deep learning frameworks include Theano (n 
= 12), TensorFlow (7), PyTorch (6), and Keras (4). 

The need for reproducibility of scientific results has been growing in 
awareness in biomedicine in recent years. This is also true in this field of 
research because we want to ensure that the patient representations are 

generalizable and reproducible across multiple institutions. Unfortu
nately, reproducibility in patient representation learning is difficult due 
to the variety of data resources, learning methods and architectures, and 
data preprocessing steps. Another major difficulty in data sharing is 
related to privacy concerns as inappropriate access to sensitive patient 
data might lead to patients’ identity disclosure. While there are machine 
learning techniques that preserve data privacy [107–111], it is often 
impossible to share patient data due to privacy issues. Thus, providing 
workflow and computer code associated with publications is becoming 
increasingly common to enable the reproducibility of the method, if not 
the full work. One such open-source platform, GitHub, manages a robust 
infrastructure that is appropriate for sharing the full suite of interme
diate experiments such as programming code, statistical results, etc. 
Therefore, we consider papers that provide code as one measurement of 
reproducibility. Among the 49 included papers, 20 of them have pro
vided code links. Notably, the source code of RETAIN [80], based on 
Theano, has been starred on Github more than 100 times and forked 
over 50 times, and it has been redeveloped in other deep learning 
frameworks (TensorFlow, Keras). RETAIN was also commonly used as 
baselines in the subsequent series of advanced models (i.e., GRAM [27], 
Dipole [76], Health-ATM [72]). Thus, we anticipate that sharing open- 
source resources and code would motivate researchers to further 
explore innovations in a more scientific manner. 

5. Discussion 

5.1. Growing importance 

In this review, we provide an overview of the current research into 
EHR patient representation learning. A total of 363 articles were 
assessed, with 49 studies from 2015 to 2019 meeting the full criteria for 
review. We observe a growing trend of developing deep learning-based 
patient representations from EHRs. The earliest attempt of learning 
patient representations with deep learning used Restricted Boltzmann 
Machines, proposed in 2015 [60]. An increasing number of works 
continued to contribute to improving the representation power of deep 
learning-derived representations. 

Notable observations are identified throughout the review and can 
be addressed to the four questions we proposed at the end of 
Introduction.  

1. Resources: We investigated that the resources of available EHR data 
are quite limited due to privacy concerns. The most prominent 
dataset is the Medical Information Mart for Intensive Care (MIMIC- 
III), where 22 out of 49 studies used this dataset.  

2. Methods: Learning was mainly performed in a supervised manner 
optimized with cross-entropy loss. Recurrent Neural Networks were 
the most common deep learning model.  

3. Applications: Disease prediction was the most common application 
and evaluation. We also identified a wide variety of clinical out
comes being addressed, including mortality prediction, admission 
prediction, length-of-stay forecasting, patient subtyping, interven
tion prediction, and medical cost forecasting. 

4. Potential: Enhancements in patient representation learning tech
niques will be continuously growing for powering patient-level EHR 
analyses. We anticipate that researchers from diverse communities 
will leverage the richness and potential of EHR data, and will assist 
the capability of learning patient representation further. 

Furthermore, analyses and evidence from data extractions of the 49 
included papers suggest the importance and feasibility of learning 
comprehensive representations of patient EHR data. Studies that forego 
any attempt to utilize patient representations as an intermediate struc
ture lose out on several advantages. Most notably, many representation 
learning models utilize—through unsupervised or self-supervised lear
ning—very large amounts of EHR data. In contrast, traditional 

Y. Si et al.                                                                                                                                                                                                                                        



Journal of Biomedical Informatics 115 (2021) 103671

9

predictive models focus on just the labeled information needed for the 
single task they are trained on. This is similar in essence to the difference 
between discriminative and generative machine learning models, where 
the latter attempt to model the full distribution of the data. Since learned 
representations attempt to gain a cohesive picture of a patient’s data, 
these models may very well be more robust to small changes in the data 
distribution (e.g., when porting a model to a new institution without re- 
training). The extent to which this may be true requires further inves
tigation, but it is worth noting that the field of natural language pro
cessing has become dominated recently by transformer-based models 
[41] that essentially follow this approach. Contextual word represen
tations are learned on large corpora in a self-supervised manner (“pre- 
training”) and then those representations form the basis on which pre
diction models are built (“fine-tuning”). 

The capability to develop effective patient representations from 
EHRs derives primarily from how to model the pertinent characteristics 
of EHR data. For instance, recent clinical events are more likely to 
contribute to the final label compared to earlier events [80]. Another 
challenge is that clinical events may be correlated with each other (i.e., 
diagnoses lead to treatments, disease co-occurrence) [32,81]. 
Leveraging this inherent structure is a key factor to improving the rep
resentation. This has resulted in a wide range of methods that can 
complement deep learning models to enhance representation power. 
These methods include developing additional components to models for 
capturing a hierarchical representation from event-level, to visit-level, 
to patient-level [81,112]; for encoding the longitudinal factors be
tween clinical events [65,77]; for incorporating domain knowledge into 
the representation [27,31–33,91]; and for adopting multiple modalities 
of EHR data [11,14,57]. 

5.2. Future directions 

Building upon current promising trends in learning meaningful pa
tient representations, we believe the growth will continue, and the 
challenges of EHR data can be addressed in the following directions. We 
highlight a limited number of works published after the end of the re
view period (i.e., since January 2020) to exemplify these promising 
directions. 

5.2.1. Methodology 
With the pace of deep learning models diffusing into patient repre

sentation learning, algorithm and model development continues to 
enhance in order to adequately consider and model EHR data [113]. 
Some pilot works have applied advanced methods to model contextu
alized information into the learning architecture, such as the trans
former model [39]. For instance, Choi et al. [42] proposed the Graph 
Convolutional Transformer (GCT) to learn hidden patterns of EHR data. 
This work is an advancement over works like MiME [81] in that GCT can 
capture hidden logical relationships between structured EHR data (e.g., 
which diagnoses lead to which treatment) that are completely missing in 
the raw data. There is also a recent NLP study attempting to show the 
expressive power of transformers in that they can be universal approx
imators of sequence-to-sequence aggregators with compact support 
[114], though this study was not in the clinical domain. Another 
groundbreaking technique fueled by language models highlights the 
potential to learn generic representations from raw data. Ethan et al. 
[115] proposed language model-based representations to learn struc
tured data from EHRs. Si et al. [116] applied pre-training and fine- 
tuning techniques to learn general and transferable clinical language 
representations. Li et al. [44], inspired from the architecture of BERT, 
proposed BHERT, a transformer model for structured data in electronic 
health records. BHERT is scalable to perform well across a wide range of 
downstream predictions. 

Advanced learning techniques including transfer learning, multi-task 
learning, and meta-learning can combat data scarcity and label insuffi
ciency to some extent. One of the earliest attempts to learn patient 

representations, Doctor AI [38], also demonstrated the impact of 
transfer learning from large-scale clinical data (i.e., 263,706 patients in 
Sutter Health) to tasks with relatively small amounts of data (i.e., 2,695 
patients in MIMIC-III). Furthermore, with the success of multi-task 
learning in the open domain, such as in image processing and NLP, a 
growing number of studies also highlighted the potential and feasibility 
of properly integrating multiple related tasks to learn meaningful pa
tient representations [73,89]. The concept of meta-learning is similar to 
transfer learning in that it takes advantage of information from other 
related high-resource domains. We have included a recent novel study in 
this review work, known as MetaPred [66]. MetaPred applied an 
optimization-based meta learning built on Model Agnostic Meta 
Learning (MAML) [117] in clinical scenarios. Because insufficient data is 
an obstacle for machine learning to solve many clinical problems, such 
as diagnosing rare conditions, we hope to leverage as many related 
datasets and knowledge resources as possible. Progress of advanced 
techniques for learning patient representations are responsible to take 
knowledge base into account to ensure the clinical relevance of prob
lems and solutions [118]. 

5.2.2. Data sources 
Despite the richness and potential of EHR data, few studies take full 

advantage of the heterogeneity of EHR data. Instead, many only use a 
subset of the data. For instance, many studies use diagnosis codes to 
represent patients, and ignore the real-valued measurements associated 
with the diagnoses, such as lab test values. Unstructured data, addi
tionally, are often overlooked when developing patient representations 
(only 12 out of 49 studies used unstructured data). Future work will still 
be devoted to leveraging rich, yet varied, information in EHRs. One 
technique known as deep learning-based multimodal representation 
learning can be exploited to narrow the heterogeneity of EHR data 
among different modalities. Recently, a joint representation learning 
strategy named HORDE was proposed by Lee et al. [119], which applies 
several graphical modules to embed different types of data sources 
dynamically from EHR data. 

The cause of many diseases is very complicated. Many factors, 
including inherited genetics, living environments, daily diets, and 
habits, have an impact on disease development. Just relying on the 
phenotype and medical history information in the EHR would generally 
fail to effectively represent the patient’s full health status. Therefore, 
integrating multi-source information, e.g. genomics and clinical imag
ing, would be critical for accurate patient representation learning as well 
as the associated downstream clinical tasks [120]. Although most cur
rent work focuses on a single type of data, there are also some pilot 
works that are trying to harmonize multiple types of data. Cheerla et al. 
[121] developed a multimodal deep learning method to predict the 
survival of pan-cancer prognosis using clinical, multi-omics, and histo
pathology data together. Some researchers are also investigating the 
linkage of imaging to genetic data [122] and EHR to genetic data [123] 
for clinical outcome prediction and disease heritability estimation. 
These works show the enormous potential to integrate multi-source in
formation to effectively model patient health status [22]. All these data 
sources can expand the set of features that potentially contribute to fine- 
grained patient representations. 

5.2.3. Multi-Institutional data 
Ethical and legal issues with regards to the use of EHR patient data 

for research, including AI, are well known. The problems lie in the trade- 
off between the privacy of patient data and data access for research. Yet 
learning representations from multiple institutions is critical to 
achieving both scalability and generalizability. Privacy-preserving al
gorithms and constrained domain adaptation settings are developed to 
compensate for this tradeoff to some degree [124]. Distributed learning 
and federated learning are such paradigms that enable the safe use of 
data from multiple institutions by only learning mathematical parame
ters [125] and avoiding any instance that might trace back to a specific 
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patient. Distributed learning is an algorithm that, in a parallelized 
fashion, iteratively learns a single model on separate datasets and ob
tains the shared model as if data were centralized [126]. Federated 
learning is a machine learning technique to train different models on 
multiple decentralized datasets, in contrast to traditional machine 
learning in which all samples are combined [127,128]. They both 
attempt to collaboratively train while keeping all the training data at 
their original institutions. The difference between the two learning 
paradigms is that distributed learning trains a separate model for each 
split of the data, and each separate model is transferred to a centralized 
model, while federated learning trains individual models on heteroge
neous datasets. Many existing studies have exploited distributed 
learning and federated learning across multiple institutions in fields 
such as medical image processing [129,130], clinical decision support 
[131], and clinical oncology [132], to facilitate privacy-preserving 
multi-centric rapid learning of health care. We also observe some pilot 
studies applying federated learning and distributed learning to learn 
patient representations in this review. Li et al. [59] proposed a method 
that can learn clinical code representations from different EHR data
bases by adding distributed noise contrastive estimation. Liu et al. [90] 
proposed a federated learning framework to pre-train on MIMIC-III 
notes and predict clinical outcomes related to obesity. The adoption of 
distributed and federated learning shows that there are emerging tech
nologies to manage privacy concerns and facilitate scientific research 
without directly sharing data. 

5.3. Limitations 

A potential limitation of this review is incomplete retrieval of rele
vant studies that meet the inclusion criteria. As a wide variety of 
methods to represent patients are included, it is challenging to conduct 
an inclusive search strategy with an automatic query by keyword 
searching. There is, unfortunately, no MeSH term that covers patient 
representation. We mitigated this issue by working cooperatively with 
experienced librarians and applying snowballing search strategies from 
the included publications. It is also challenging to differentiate our 
included studies with numerous works of predicting one clinical 
outcome end-to-end with deep learning. To achieve this, we ensured at 
the full-text review step that all the papers that are included specifically 
mentioned patient representation or embedding, and that their goal was 
learning representations at a patient level, not merely a model that 
maximized performance on a specific disease. In addition, we do not 
include manuscripts [133–136] that can only be found as preprints on 
arXiv or bioRxiv. All these limitations would pose a potential threat to 
selective bias in publication trends. 

Another limitation is that our review fails to answer all technical 
questions. Due to the lack of transparency and reproducibility of re
ported results, many studies in our review claim state-of-the-art results, 
but few can be verified by external parties. This might be a barrier for 
future model development and would slow the pace of improvement. 
Even though MIMIC-III is widely used as a benchmark dataset, not many 
generic pipelines for benchmarking machine learning studies are 
available. Prior works have proposed different components in addition 
to the deep learning models to improve representation ability and pre
dictive performance. However, it is still unclear which approach works 
best for representing EHR data. Therefore, one future direction to 
mitigate this limitation is to more comprehensively investigate different 
methods and conduct comparative studies using a common set of shared 
clinical benchmark datasets. Some recent comparative studies such as 
Ayala Solares et al. [137], Sadati et al. [138], and Min et al. [139] 
provided some surprising observations in terms of how to choose the 
best representation learning methods. For instance, Min et al. [139] 
conducted a case study of applying different machine learning methods 
to represent Chronic Obstructive Pulmonary Disease (COPD) patient 
claim data to predict readmission. They have shown some contradictory 
observations that medical problems are unlike problems in NLP and 

image processing, merely applying complex deep learning without 
incorporating medical knowledge does not necessarily result in better 
performance. Therefore, in the future, we would encourage such studies 
to be conducted across a variety of patient representation use cases. 

6. Conclusion 

Deep representation learning has led to a wide variety of innovations 
in the process of modeling EHR patient data. As deep learning models 
benefit largely from the model capabilities to address the challenges of 
EHR data, deep patient representation learning is a promising direction 
to acquire powerful, robust, and precise representations. By adopting 
advanced learning techniques in addition to the model architecture, 
patient representation learning attempts to further address issues related 
to patient data and promote scientific research. We conducted a sys
tematic review of this work and discussed the current research scenarios 
pertinent to patient representation learning. We believe a growing 
number of advanced methods will be continuously developed to learn 
meaningful patient representations, and that these representations will 
play a greater and greater role in clinical prediction tasks. 
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