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ABSTRACT

Objectives: Patient representation learning refers to learning a dense mathematical representation of a patient
that encodes meaningful information from Electronic Health Records (EHRs). This is generally performed using
advanced deep learning methods. This study presents a systematic review of this field and provides both qual-
itative and quantitative analyses from a methodological perspective.

Methods: We identified studies developing patient representations from EHRs with deep learning methods from
MEDLINE, EMBASE, Scopus, the Association for Computing Machinery (ACM) Digital Library, and the Institute
of Electrical and Electronics Engineers (IEEE) Xplore Digital Library. After screening 363 articles, 49 papers were
included for a comprehensive data collection.

Results: Publications developing patient representations almost doubled each year from 2015 until 2019. We
noticed a typical workflow starting with feeding raw data, applying deep learning models, and ending with
clinical outcome predictions as evaluations of the learned representations. Specifically, learning representations
from structured EHR data was dominant (37 out of 49 studies). Recurrent Neural Networks were widely applied
as the deep learning architecture (Long short-term memory: 13 studies, Gated recurrent unit: 11 studies).
Learning was mainly performed in a supervised manner (30 studies) optimized with cross-entropy loss. Disease
prediction was the most common application and evaluation (31 studies). Benchmark datasets were mostly
unavailable (28 studies) due to privacy concerns of EHR data, and code availability was assured in 20 studies.
Discussion & Conclusion: The existing predictive models mainly focus on the prediction of single diseases, rather
than considering the complex mechanisms of patients from a holistic review. We show the importance and
feasibility of learning comprehensive representations of patient EHR data through a systematic review. Advances
in patient representation learning techniques will be essential for powering patient-level EHR analyses. Future
work will still be devoted to leveraging the richness and potential of available EHR data. Reproducibility and
transparency of reported results will hopefully improve. Knowledge distillation and advanced learning tech-
niques will be exploited to assist the capability of learning patient representation further.

1. Introduction

primary goal is to monitor a patient. This results in the issue that EHR
data have many challenging characteristics such as uncurated (data are

In Electronic Health Records (EHRs), information regarding patient
status is extensively documented. Therefore, EHR data provides a
feasible mechanism to track patient health information and to make
better decisions based on data-driven technologies. Unlike data in
clinical trials or other biomedical studies, secondary data extracted from
EHRs are not designed to answer a specific hypothesis. Instead, their

not carefully chosen and thoughtfully organized or presented), poor-
quality (data are rarely subject to data quality audits), high-dimensional
(thousands of distinct medical events), sparse (lots of zero values), het-
erogeneous (drawn from different resources), temporal (data are collected
over time), incomplete (missing values), large-scale (a large volume of
data), and multimodal (multiple data modalities). A wide variety of
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studies have conducted predictive modeling of EHR data, which is a
machine learning task that applies EHR data to construct a statistical
model for the purpose of predicting a given clinical outcome of interest
[1]. However, the complexity of EHR data discussed as above makes it
difficult to directly use EHR raw data in machine learning models to
achieve predictive modeling.

A critical element in predictive modeling of EHR data is to effectively
convert patient data from the raw EHR format to a machine learning
representation—in other words, to transform patient data to meaningful
information that can be further understood algorithmically. The effec-
tiveness of predictive models for improving disease diagnosis, pheno-
typing, and prognosis heavily depends on the quality of this feature
representation. In machine learning, the task of representation learning
is to learn and extract good feature representations from raw data
automatically [2]. Patient representation learning is one particularly
promising direction of combining representation learning and large EHR
datasets. It refers to learning a mathematical description of patient data
to find an appropriate way of transforming raw data into meaningful
features. The patient representations built from many EHR data mo-
dalities (including clinical narratives, lab tests, treatments, etc.) should
be organized in a form that enables machine learning to learn effective
prediction models for many tasks.

This work investigates the methods of representation learning and
the field of patient representation learning from EHRs through a meth-
odological review of the literature. We collected data on 28 patient
representation variables from 49 papers published in a diverse variety of
venues, published up to December 2019.

We seek to understand the following research questions:

1. Resources: What are the resources available for learning patient
representations? How is patient data transformed from raw input to
important features?

2. Methods: What representation learning methods are being contrib-
uted? What kind of models and algorithms are used to develop pa-
tient representations?

3. Applications: What types of clinical problems and outcomes are
addressed?

4. Potential: How could these methods potentially contribute to diverse
research communities?

2. Background
2.1. Patient learning data pipeline

First, we briefly summarize the methods and resources that are
commonly used in related studies (Fig. 1). The learning starts with raw
patient data from either structured codes such as ICD-9, or unstructured

data like clinical notes. After some initial embedding techniques to
transform patient data into input features, deep learning models are

Data Input

Learning Approach
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utilized to create the patient representation. The learning model can be
unsupervised, supervised, or self-supervised. The final step is to evaluate
the learned representations by applying it to some clinical task(s), such
as mortality, readmission, or a specific disease prediction. There are also
some ways to visualize patient representations to provide some intuitive
understanding or interpretation of the representation. The majority of
studies in this field follow this pipeline to learn patient representations
from EHR data and further evaluate on downstream tasks.

2.2. Patient representation methods

According to Bengio et al. [2], deep learning models are represen-
tation learning methods with multiple layers, each with their own rep-
resentations. The model starts with raw input, constructs non-linear
modules that transform the representation at each layer into high-level,
abstract representations. As already discussed, EHR data is high-
dimensional and sparse. Thus, deep learning models are particularly
well-suited to encode EHR data to learn patient representations. In this
section, we will introduce the background of representation learning
methods and how they are applied to learn patient representations. We
describe five methods of representing a patient: vector-based, temporal
matrix-based, graph-based, sequence-based, and tensor-based repre-
sentations. For more detailed and technical interpretations of deep
learning models, we recommend the review by LeCun et al. [3].

2.2.1. Vector-based patient representation

In vector-based patient representation, every patient is represented
by a mathematical vector. Models that attempt to construct vector-based
patient representations are as follows:

Fully connected deep neural network (fully connected DNN),
originally inspired by biological neural networks, contain one or more
hidden layers connected in a feed-forward manner [4]. Fully connected
DNN are also known as multi-layer perceptrons (MLPs) or dense neural
networks. Like the other neural network methods described below, they
use backpropagation for supervised learning with non-linear activa-
tions. Some early attempts for learning patient representation with
neural networks have applied fully connected DNN approaches [5].
However, the majority of recent studies have considered this architec-
ture as a baseline method [6].

Autoencoders are an unsupervised deep learning model that learns
abstract representations from high-dimensional data, which is also a
way of performing dimensionality reduction. An autoencoder learns to
predict its input, but must compress the input signal through progres-
sively smaller intermediate layers. The inner layer can be used as a low-
dimensional representation. The variants of autoencoders include
denoising [7], stacked denoising [8], variational [9], and contractive
autoencoder [10]. Given the prior success of autoencoders for repre-
sentation learning, their application to patient representation learning
was first introduced by Miotto et al. [11], where a dense and general
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Fig. 1. Workflow of patient representation learning.
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patient representation was derived with unsupervised three-layer
stacked denoising autoencoders.

Convolutional Neural Networks (CNNs) were specifically devel-
oped for image processing [12]. Each module of the CNN contains a
convolutional layer and a pooling layer. Those modules are stacked to
construct a deep CNN. The convolutional layer uses a small neural
network that slides across the image, allowing for the capture of local
image properties irrespective of their location in the full image. How-
ever, CNNs have been applied to more data types than just images,
including text [13] and waveforms [14]. More advanced variants of
CNN also attempt to incorporate temporal information in addition to the
convolutional layer to model longitudinal patient data [15]. This is
different from the variants of CNN in image processing fields such as
VGGNet [16] and ResNet [17], which add more complex layers in the
architecture.

Word2vec originated from natural language processing to learn
word embeddings from large-scale text resources [18]. There are two
algorithms in word2vec: continuous bag of words (CBOW) predicts a
target word given the surrounding context, and skip-gram predicts the
surrounding context given a target word [19]. Both algorithms have just
one hidden layer; thus, word2vec techniques are shallow networks
compared with other deep learning methods. The variants of word2vec
have been applied to learn representations from clinical codes [20],
characterized by different assumptions and aimed to capture relation-
ships between code sequences.

2.2.2. Temporal matrix-based patient representation

Temporal matrix-based patient representation constructs a two-
dimensional matrix with one dimension related to time and the other
dimension related to clinical events from the EHR. Nonnegative matrix
factorization (NMF) is an algorithm for decomposing high-dimensional
data from a set of nonnegative elements. NMF has been widely used in
bioinformatics for clustering sources of variations [21,22]. There were
also early attempts of applying NMF or its variants into EHR patient data
representation [23-25,15], which are some of the earliest examples of
constructing a mathematical representation for each patient. They also
showed the challenges of using EHR data and demonstrated the feasi-
bility of encoding the latent factors of temporal patient data by
providing a one-to-one identifiable mapping between the patient matrix
and the target label.

2.2.3. Graph-based patient representation

Graph-based patient representation constructs a compact graph for
each patient where the nodes in the graph encode clinical events and the
edges between the nodes encode relationships among the clinical events.
One of the early works developing graph-based EHR representation was
proposed by Liu et al. [26], where they designed a novel graph repre-
sentation algorithm to learn distinct clinical events from EHR data that
included temporal relationships among the events. Although their work
was not developed based on deep learning, one such emerging appli-
cation of deep learning into graph representation is the Graph Neural
Network.

Graph Neural Networks consist of a finite number of nodes and
edges to connect data. Nodes contain information about entities, and
edges contain relations between entities. Prominent methods of GNN
include Directed Acyclic Graph [27], Graph Convolutional Network
[28], Graph Attention Network [29], and node2vec embeddings [30].
GNNs attempt to learn graphical structures of EHR data that can infer
the missing information through other representation mechanisms,
therefore resulting in a more explainable representation. GNNs are
particularly useful to introduce domain knowledge into the architecture.
For instance, a few studies have employed hierarchical ICD-9 knowledge
graphs as the graph model to enhance the interpretability and perfor-
mance of the proposed method [27,31]. Other knowledge-based re-
sources include adverse drug-drug interactions [32], and comorbidities
[33].
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2.2.4. Sequence-based patient representation

Sequence-based patient representation produces a timestamped
event sequential features for each patient.

Recurrent Neural Networks (RNNs) were developed for processing
sequential inputs such as language [34,35]. RNNs deal with a sequence
of inputs one item at a time and transfer the hidden state of each input
unit to the next input unit, so the current state implicitly contains in-
formation about the entire sequence history. The common variants of
RNN include Gated Recurrent Unit (GRU) and Long Short-Term Memory
(LSTM), both designed to minimize the vanishing gradient problem.
GRU adds a gating mechanism into the RNN [36]. LSTM is particularly
useful for dealing with long-term dependencies [37]. Thanks to the
advances in RNN architecture, many studies have applied RNNs to
develop patient representations where they have focused on represent-
ing patients using combinations or sequences of clinical codes. One such
RNN-inspired approach is Doctor Al [38], where distributed vector
representations of clinical codes are derived to represent patient
trajectories.

Although RNNs enable to sequential modeling, especially some
variants of RNNs like LSTMs are effective in dealing with long de-
pendencies, limitations of RNNs still persist. One notable limitation is
that RNNs cannot be trained in parallel (which will increase training
time). Also, RNNs only process information from one direction, and even
bi-directional RNNs which encode from two directions are a simple
concatenation of two directions. Therefore, the Transformer architec-
ture equipped with self-attention and positional embeddings was
introduced to achieve true bi-directional representation [39].

Recently, with the wide adoption of Transformer-based language
models in NLP (e.g., GPT [40], BERT [41]), Transformers continue to be
applied for patient representation learning and for clinical sequence
modeling [42-45]. Similar to the use of RNNs to enable sequence
modeling of EHR data, Transformers also encode each clinical event at
every time stamp as a unit and an entire patient trajectory as a whole
sequence. Unlike a RNN using recurrence to predict the next unit, the
Transformer architecture considers the sequence of units as a whole and
employs self-attention to learn the essential information from the entire
sequence.

2.2.5. Tensor-based patient representation

Tensor-based patient representation is a method that represents each
patient with a three-dimensional (or more) tensor consisting of events
such as diagnoses and treatments.

Tensor Decomposition is the high-order extension of matrix
decomposition that seeks to decompose high-dimensional tensors into
products of low-dimensional factors [46]. The CANDECOMP/PARAFAC
alternating Poisson regression (CP-APR) algorithm is one of the repre-
sentative methods that are well-studied for tensor decomposition, trying
to express a tensor as the sum of a finite number of rank-one tensors
[47]. Compared with traditional dimensionality reduction methods,
tensor decomposition is unique in having the capability of managing
multi-aspect features in multiple dimensions and is versatile enough to
incorporate domain knowledge into the operation [48]. These advan-
tages have made tensor decomposition a promising modeling approach
to learn abstract patient representations from EHR data and provide
good interpretability and scalability [49]. Each tensor is constructed of
patient-level data, with three different factors including a patient factor,
and two other factors related to clinical events (i.e., diagnosis with
medication, or diagnosis with procedure). Each tensor constitutes a
phenotype with a weighted sum of rank-one tensor from the outer
product of three factor vectors. A tensor-based patient representation
allows for the capture of complex interactions and relationships between
clinical events (especially phenotypes, comorbidities, and medications)
that are not evident in flattened EHR data [50].
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3. Materials and methods

Papers that are eligible for inclusion in this review are characterized
by (a) focus on patient representation learning, (b) use of patient data
from longitudinal EHRs, and (c) utilization of deep learning or neural
network models. Notably, we consider studies using deep learning as
one criterion because the unique characteristics of EHR data (as dis-
cussed in Introduction) make deep learning a feasible data-driven so-
lution to generate robust representation simultaneously from diverse
resources compared with other techniques. It is likely that, at least in the
next few years, most advances in patient representation will utilize deep
learning approaches.

These criteria were applied to generate keyword searching queries
for literature database search. Five databases consisting of PubMed,
EMBASE, Scopus, the Association for Computing Machinery (ACM)
Digital Library, and the Institute of Electrical and Electronics Engineers
(IEEE) Xplore Digital Library were queried on December 31, 2019. The
search consists of the following combination of keywords:

(“deep learning” OR “neural network”) AND patient AND (vector OR
representation OR embedding OR vec) AND (“electronic health records”
OR ehr OR “electronic medical records” OR emr).

As for publication characteristics, we limit our search to English-
language research articles with the publication time range from 2000
to 2019 and only focus on peer-reviewed journals and conference pro-
ceedings (i.e., posters and preprints are not included). For study char-
acteristics, only study designs related to developing a deep learning- or
neural network-based patient representation from electronic health re-
cords are considered. The study outcome should also apply the learned
representation to downstream evaluations of clinical predictions. In
terms of exclusion criteria, studies such as review papers and proceeding
summaries are excluded. Studies that use patient data other than EHRs
are also excluded.

Duplicates were removed and additional records were added using a
snowballing strategy. The additional records were subsequently traced
from references of the included papers and personal readings. Next, the
articles were uploaded to Rayyan [51] and screened for title and ab-
stract. Two authors (YS, JD) screened the articles under a blind format.
At the full-text screening step performed on Zotero [52], each study was
read in full by one author (YS) to validate the final relevancy.

As a result, 363 papers were queried at the beginning, including 349
articles retrieved from the five databases, and 14 additional records
identified through snowballing. At deduplication, 54 duplicate records
were removed and 309 records remained. At the step of title and abstract
screening, 199 records were excluded because the topic is not relevant
(n = 114), they are traditional predictive modeling of the single task
(28), they are not peer-reviewed or original research papers (26 studies
are not research, 5 preprints), no deep learning is used (12), no evalu-
ation of the patient representations (7), and there is no EHR data (7).

After these exclusions, 110 papers went through to the next
screening step (full text screening) to determine the relevancy of each
study. At this step, 61 papers were excluded due to no patient repre-
sentation being developed (n = 37), no deep learning method being used
(8), no EHR data being used (7), no evaluation (6), and only containing
abstracts (3). Finally, this left 49 articles to be included in this work. A
detailed literature selection procedure (PRISMA diagram) [53] is shown
in Fig. 2. Based on the variables extracted from 49 publications, some
interesting findings are worthy of being highlighted and discussed in the
following sections.

We performed data extraction from the final included papers
considering the following variables:

e Publication date: the date on which this paper was published by the
conference or journal.
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Keyword search:

(“deep learning” OR “neural network”)
AND patient AND (vector OR
representation OR embedding OR vec)
AND (“electronic health records” OR ehr
OR “electronic medical records” OR emr)

Database search Other sources

n=349 n=14

Deduplication Excluded at deduplication (n=54)

n=363
Excluded at screening (n=199)
114 no PRL 7 no evaluation
Screening 28 only prediction 7 no EHR
26 not research 5 preprint
=309 12 no DL

Full-text review Excluded at full-text (n=61)

37 no PRL 6 no evaluation
n=110 8no DL 3 only abstract
7 not EHR

Data Collection

n=49

Fig. 2. PRISMA flowchart for including articles in this review. (PRL: Patient
Representation Learning. DL: Deep Learning. EHR: Electronic Health Records.)

Publication venue: the conference or journal where this paper was
published.

Representation learning approach: this contains two items including
the proposed deep learning model(s) and additional attributes to
enhance the model.

Patient data type: what modality of EHR data was used? For instance,
structured code from diagnoses/procedures/medications tables, nu-
merical values from lab measurements, or unstructured data from
clinical notes/images/waveforms.

e EHR resources: where does the patient EHR data came from? For
example, publicly available datasets or a private local hospital data
warehouse? What is the size/duration?

Preprocessing methods: what is the format of the input data that was
fed into the model architecture? In other words, how the EHR raw
data was preprocessed into numerical data?

Clinical outcome tasks: main clinical tasks for evaluating learned
patient representation.

Evaluation metrics: quantitative measure of the performance of
prediction/clustering/regression on clinical outcome tasks.
Interpretability: the degree to which a human can understand the
model’s result or learned patient representations.

Objective functions: the loss function when optimizing the models.
e Computational resources: for instance, deep learning frameworks
and computational platforms (GPU).

Code reproducibility: reproducibility of the results/instructions on
open-source platforms.

4. Results
4.1. Publication characteristics

First, we look at the publication numbers over time in Fig. 3. The
volume of studies is currently growing rapidly each year (almost 3 times
in 2017 over 2016). Although there is a slight decrease from 2018 to
2019, we think this is because we exclude preprints at the first step of
screening. Apart from the publication date, we also outline the major
research communities that have contributed to the topic. Table 1 lists
the top conferences or journals that have published this topic in three
main communities. The conferences or journals include, but are not
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Table 1
Selection of conferences/journals publishing the included studies.

Community Conference/ Name (# Papers)
Journal
Informatics Conference AMIA Summit (1), AMIA Symposium (1),
others (4)
Journal JBI (3), JAMIA (1)
Medicine Journal NPJ Digital Medicine (1), Scientific Reports
(2), PLoS ONE (1)
Computer Conference KDD (8), AAAI (4), CIKM (3), NeurIPS_ML4H
Science (4), IEEE-related (7), others (7)
Journal JMLR (2)

limited to, AMIA Symposium, AMIA Joint Summit, Conference on In-
formation and Knowledge Management (CIKM), Journal of the Amer-
ican Medical Informatics Association (JAMIA), Journal of Biomedical
Informatics (JBI), BMC Medicine, Scientific Data, Scientific Reports, NPJ
Digital Medicine, Neural Information Processing Systems (NeurIPS),
Knowledge Discovery and Data Mining (KDD), Machine Learning for
Health Care (NeurIPS_ML4H), and Association for the Advancement of
Artificial Intelligence (AAAI).

4.2. Study characteristics

Pertinent study characteristics of the 49 reviewed publications are
reported in the following sub-sections, and also summarized in Sup-
plementary Table 1. These study characteristics enable to qualify the
scientific validity and applicability of each study, which reveals the in-
adequacies and gaps of current research fields, and would be potentially
useful to inform the need for new study designs for future research in
patient representation learning.

4.2.1. Learning scenarios

We find that, among the 49 included studies, the majority (n = 30)
applied supervised approaches to learning the representation. Here one
would train and optimize the representation with some target or
objective, usually focusing on phenotyping or other clinical outcomes.
Unsupervised learning was applied in 11 studies. Unlike supervised
learning, unsupervised learning does not require labels. This would
include the use of autoencoders, which function by reconstructing the
data from its raw input. In all forms of unsupervised learning, patient
representations are learned separately from the prediction task. Since no
labels are required, unsupervised learning is more likely to benefit from
large EHR datasets.

Self-supervised methods were used by 8 studies. Unlike supervised
learning that relies on labels for a target task, or unsupervised learning
that has no label-driven objectives, self-supervised learning frames a
learning scenario as predicting a subset of information using the
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remaining data. Essentially this enables the use of models that are
commonly used for supervised tasks (including many deep learning
models) in a setting that does not have the labels of interest for the target
task. With self-supervised learning, the patient representation is ob-
tained similar to word embeddings in NLP studies, where a target word
is predicted with its contextual information. Since patient representa-
tions are themselves largely intended as intermediate steps to a final
prediction task (usually done via supervised learning), learning the
representations in a self-supervised manner provides many of the ben-
efits of unsupervised learning (no manual curation of labels) while still
allowing for the use of powerful deep learning methods (e.g., trans-
formers) that can otherwise be considered supervised. The self-
supervised tasks included in this review are mainly used for clinical
code representation learning, where clinical codes are ordered sequen-
tially, and the codes in between are masked and predicted using the
context of clinical codes nearby, similar to the algorithms of skip-gram
and CBOW used to learn word embeddings [19].

4.2.2. Patient data types

In terms of patient data types in EHRs, among the 49 studies, 37
papers used structured codes (i.e., diagnosis codes, procedure codes,
medication codes) to build the representation, while 6 papers used un-
structured notes. The remaining 6 papers used both structured codes and
unstructured notes jointly. Though combining heterogeneous resources
is promising, we noticed these studies were not really combining the raw
data fully from the two modalities into the same model. Instead, they
only used a subset of data from one modality [6,11,54-57]. One such
method is to simplify clinical notes by using topic models to represent
unstructured resources [6,11,55].

4.2.3. Preprocessing methods

Although not many studies emphasized the preprocessing steps used
to transfer raw input data into the model, we assume this is because deep
learning does not necessarily need heavy manual work for preprocess-
ing. However, we still extract the preprocessing approach and workflow
of each study because we consider this an essential step towards rep-
resenting a patient. Among 37 studies learning from structured codes,
the majority (n = 27) generate one-hot vectors for the input data, and
the frequency of a given code is used in 5 studies [11,48,58-60]. For
inputs from multiple resources, input vectors are concatenated before
feeding them into the architecture [14]. Normalized formats of patient
data are also important to learn an effective representation. For instance,
z-score is applied to convert data from continuous variables to discrete
one-hot vectors [55,57,61]. For both structured codes and unstructured
notes, standardized vocabularies including FHIR [6] and UMLS CUIs
[62,63] are introduced to transfer raw tokens into unique phrases to
reduce the sparsity of the input data.

4.2.4. Learning models and architectures

A primary interest of this study is the types of deep learning models
that the proposed methods used as the foundation to learn patient rep-
resentations. We plot the number of papers that have applied each deep
learning model as the foundation architecture, and also differentiate
studies with different data input types, shown in Fig. 4 and Table 2. In
total, there are 13 studies (structured: 8; unstructured: 1; combined: 4)
that have applied an LSTM model to develop patient representations,
which is the most common architecture. CNNs are the next with 11
studies (structured: 7; unstructured: 2; combined: 2). GRU is also com-
mon with 11 studies (all structured EHR data). This result is reasonable
since both CNN and RNN architectures are utilized to learn local or
sequential information from large-scale data and to find the nuance of
variance within the data.

Although the methods of learning patient representations are all
built upon deep learning models, many unique architectures were
introduced, and additional learning modules have been applied to
capture the characteristics of EHR data. To improve performance and
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Fig. 4. Deep learning architectures used in the included studies.

Table 2
Correspondence between patient data types and deep learning models.

Patient Input Data Type

DL Models Structured Unstructured ~ Combined
LSTM [14,58,61,64-68] [69] [6,54,55,57]
CNN [14,33,66,68,70-72] [63,73] [54,55]
GRU [31,38,72,74-81]
Autoencoder [61,67,74,75,82,83] [84] [11]
word2vec [59,85-87] [56]
FFNN [88,89] [6,54]
Tensor Decomposition [48,58]
Deep Averaging Network [62,90]
Graph NN [27,32,91]
Restricted Boltzmann [60]

Machines
Transformer [43]

provide a degree of interpretability to the model, an attention mecha-
nism is adopted in 13 studies [6,14,27,31,43,57,64,72,76-78,80,88]. A
hierarchical knowledge graph has been incorporated into learning rep-
resentations in 6 studies [27,31-33,81,91].

Sequential order between clinical events has been considered in the
architecture in 27 studies. The majority of them have applied RNN (i.e.,
LSTM, GRU) to model sequential order with time-series patient data
from diagnoses or measurements. Specifically, RNN adopts hidden states
to carry information from the previous step to the next, which attempts
to transmit sequential order between clinical events. Clinical events at
each timestamp (i.e., diagnoses at each visit, or lab measures at every
hour) are fed into every unit of the RNN, and the hidden state at this time
point is updated with the hidden states from the previous timestamp and
additional input from the current timestamp. Along these lines,
sequential information from discrete event time-series can be trans-
mitted to the final prediction target. The remaining 22 studies have not
considered sequential information, based on varied ways of pre-
processing patient data. For instance, deep learning models that fail to
process sequential orders such as CNNs or autoencoders are applied in
the architecture [73,98], the patient EHR data are only derived from
clinical notes [62,90], and the patient EHR data are represented with
one-hot encoding or frequency counts [11].

An interesting observation when speculating about what the “ideal”
architecture for learning patient representations would be is that deep
learning models are not mutually exclusive from each other. The best
aspects of each model can be combined into a joint deep learning ar-
chitecture. For instance, RNNs can assist with autoencoders to learn
unsupervised representations while improving their ability to capture
sequential clinical events [61,67,74,75]. CNNs can also be combined
with RNNs to learn multifaceted patient representations [14,55,72].

4.2.5. Patient data resource

We have observed the recent success in the image processing field
built upon the curation of a very large image dataset, ImageNet [92]. In
this review, we investigated the resources of available EHR data that are
large-scale and publicly available to advance research. Although it may
be hard to access EHR data due to privacy concerns, a large publicly
available clinical dataset can push representation performance to a scale
similar to that of image processing by giving researchers a common
benchmark to build on prior work. We observed that the prominent
dataset in 49 included studies is the Medical Information Mart for
Intensive Care (MIMIC-III) [93], where 22 out of 49 studies have used
this dataset. Because MIMIC-III has both structured and unstructured
data, clinical outcomes studied using MIMIC-III are widely varied,
including mortality prediction, disease diagnoses, phenotype pre-
dictions, readmission, and length-of-stay forecasting. Other publicly
available datasets that have been used to develop patient representa-
tions are: the Parkinson Progression Marker Initiative (PPMI)
[67,74,94], the Alzheimer’s disease neuroimaging initiative (ADNI)
[74,95], the i2b2 obesity challenge [62,63,90,96], and eICU Collabo-
rative Database [42,97]. We summarize the public datasets and their
corresponding clinical applications in Table 3. Considering the public
datasets for each clinical task, the most popular is MIMIC-III for disease
predictions (n = 10). Private datasets from local clinical data ware-
houses were used in 27 of the 49 studies. The detailed description of
local hospital datasets can be found in Supplementary Table 2. A total of
9 studies have applied their methods on two or more datasets (i.e.,
private or public).

4.2.6. Clinical outcomes and applications

Studies involving patient representation learning evaluate their
representations based on risk predictions. The general assumption is that
a more advanced and robust patient representation would improve the
performance of predictive models. Table 4 illustrates the clinical out-
comes addressed among the 49 papers. We categorize main clinical tasks
for each paper into seven types: disease prediction (n = 31), mortality
prediction (12), length-of-stay forecasting (8), admission prediction (7),
patient subtyping (4), intervention prediction (5), and medical cost
forecasting (3). To show the generalizability of the study, the majority of
works have applied two or more clinical outcomes to evaluate the rep-
resentations, resulting in a number of studies that have sizable overlap in
terms of outcomes studied. The most common clinical tasks (31 studies)
are disease diagnosis predictions, which is to predict whether the patient
will develop a given condition. Mortality prediction is the second most
common task with 12 studies.

Rather than focusing on predictive tasks, patient representations can
be potentially useful for clustering patients based on similarity, which
can be used to identify patient subtypes, among other things. Patient
subtyping is helpful for studying certain types of diseases, including
Parkinson’s Disease. However, very few studies have focused on patient
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Table 3
Benchmark dataset and clinical outcome applications.
Public Resource Description Patient Data Patient Application Tasks Paper
Type Count
MIMIC-III A critical care database, including de-identified patient Structured; ~46,000 Mortality Prediction [14,43,57,58,61,65,73,771]
data with ~ 60,000 Intensive Care Unit (ICU) Unstructured
admissions [93]
Disease Prediction [27,31,43,54,56,57,59,91,98,99]
Admission Prediction [77,88]
Length-of-stay Prediction [14,43,73]
Patient Similarity [58]
24-hour decompensation [14,43,61]
Intervention Prediction [32,54,55,65,98]
(ventilation, prescription,
lab test order, etc.)
PPMI A longitudinal patient dataset comprising clinical and Structured ~1000 Patient subtyping [67,74]
behavioral variables, imaging, and specimen data of
Parkinson’s disease patients. [94]
ADNI A longitudinal patient dataset consisting of Structured ~600 Patient subtyping [74]
assessments collected from selected patients in varied
stages of Alzheimer’s Disease. [95]
i2b2 obesity 1237 discharge summaries from the Partners Unstructured ~1000 Phenotype Prediction [62,63,90]
challenge HealthCare Research Patient Data Repository. Each
discharge summary was annotated with patient disease
status corresponding to obesity and fifteen
comorbidities of obesity. [96]
elCU A combination of multiple critical care units across the  Structured ~139,000 Mortality medication, and [42]
Collaborative United States. The data covers patients who were diagnosis predictions
Database admitted to critical care units in 2014 and 2015. [97]
MIMIC-III: https://mimic.physionet.org/.
PPMLI: http://www.ppmi-info.org/.
ADNI: http://ida.loni.usc.edu/.
eICU: https://eicu-crd.mit.edu/about/eicu/.
Table 4
Clinical outcome of interests with evaluation metric(s) and prediction period level.
Evaluation Tasks (# Evaluation Metrics Time periods Papers

paper)

Disease Prediction AUROC, AUPRC, Accuracy, Top K Recall/ Year-level,

(€39] Precision visit-level
Mortality Prediction AUROC, AUPRC, F1, Accuracy 24-hour,
12 month-level
Length-of-stay AUROC, AUPRC, F1, Accuracy, MSE, MAPE 12-hour, 24-
Prediction (8) hour
Admission AUROC, AUPRC, Accuracy, Top K Recall/ Month-level,
Prediction (7) Precision year-level

Patient Subtyping Significant difference among different Visit-level

(€] groups; NMI, MSE, Sparsity and Similarity

Intervention Jaccard, Recall, Precision, F1 24-hour
Prediction (5)

Medical Cost (3) R-squared, RMSE Year-level

[6,11,27,31,33,38,43,54,56,57,59,60,62-64,66,67,69-72,75,76,80,81,83,86,89-91,98]

[6,14,43,57,58,61,65,73,75,77,85,98]

[6,14,43,73,82,83,85,87]

[6,38,48,77-79,88]

[67,70,74,79]

[32,54,55,65,98]

[48,85,87]

subtyping (n = 4). We assume this is because patient subtyping is not
like other prediction tasks such as mortality and disease predictions that
have straightforward label information. Typically, a data-driven tech-
nique is required to differentiate between different subtypes. For
instance, the technique of measuring the distance of two patient repre-
sentation vectors is to calculate the similarity; thus, to decide whether
the two patients belong to the same subtype. Zhang et al. [100] proposed
a data-driven subtyping method with LSTM and Dynamic Time Warping
to first transform patients into temporal representations and then
calculate the similarity of every patient pair.

Evaluation metrics are mainly dependent on the prediction task. We
summarize the metrics for the above clinical outcomes in Table 4.
Typically, for prediction tasks, AUROC, AUPRC, Precision, Recall, F1-
measure, and Accuracy are the most used. Metrics including Top_-
K Recall or Top_K Precision (ranking metrics from information
retrieval), are adopted particularly for predicting full sets of diagnoses

where K is the number of diseases. In addition, for regression tasks that
involve predicting a real-valued quantity (i.e., medical cost, readmission
forecasting), Root Mean Squared Error (RMSE), Mean Absolute Per-
centage Error (MAPE) and Goodness-of-Fit R-squared are utilized.
Another evident observation stands out when we look into the time
periods for the evaluation, that is how to select appropriate observation
and prediction periods. Normally, clinical events in the observation
period are accumulated to construct the samples for training, while
clinical events in the prediction period are considered as the gold
standard for evaluation. We discover an interesting connection that the
design of observation and prediction periods are highly correlated with
the clinical outcome tasks that are evaluated. Table 4 shows the time
period for prediction with corresponding clinical tasks. Prediction tasks,
such as disease, readmission, patient subtyping, and medical cost fore-
casting, generally extend observation windows for long time periods.
Month-level [69,88], year-level [11,48,66,78,80], and visit-level
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predictions [31,38,56,59,64,70,71,76] are prevalent for those tasks.
Take disease prediction as an example, a number of studies extracted
diagnoses from the first visit and then predicted diagnoses in the next
visit (i.e., visit-level observation) [31,38,56,59,64,70,71,76]. On the
contrary, for those outcomes that happen in hospital, such as inpatient
mortality [14,57,61,65], length-of-stay [14,83], and intervention pre-
diction [32,55,65], observation windows at hour level are developed.
Specifically, 24 hours are common as these tasks are immediate and
physicians make decisions instantly. Rajkomar et al., [6] assessed two
periods for mortality prediction (i.e.,12-hour and 24-hour) and showed
that, if the deep learning model and other parameters remained the
same, the prediction made 24 hours after admission attained a slightly
better performance than that of 12 hours. This outcome is reasonable
because more training features were accumulated with a longer time of
observation. However, we assume this is a trade-off between time and
accuracy, because the decision for this type of demanding task should be
up-to-date as well.

4.2.7. Objective function

Only a few papers have reported the loss function applied in the
study. We find that cross-entropy loss (or logarithmic loss) was the most
common objective function for optimization. Aside from traditional
cross-entropy loss, a weighted loss function was applied to account for
an imbalanced-class dataset [55]. For regression tasks, mean squared
error (MSE) loss and mean absolute error (MAE) loss were mainly per-
formed [43]. What’s more, studies developing patient representations
with several learning objectives conduct a unified loss function with
different targets being optimized jointly. For instance, a masked binary
cross-entropy loss was employed for a multi-task architecture [43,69].
Doctor Al [38] has a joint loss function containing the cross-entropy loss
from diagnosis predictions and the squared loss for the prediction of
time duration for a single patient.

4.2.8. Interpretability

While patient representations may be relatively low-dimensional
(often less than 500 dimensions), these collections of continuous
numbers can be particularly abstruse and difficult for humans to inter-
pret [101].

Visualization techniques are often performed to construct qualitative
clusters of patient cohorts to provide an intuitive interpretation of the
learned representations [102]. Such techniques for patient representa-
tions include t-Distributed Stochastic Neighbor Embedding (t-SNE)
[103], Multidimensional Scaling (MDS) [104], Principal Component
Analysis (PCA) [105], and Uniform Manifold Approximation and Pro-
jection (UMAP) [106]. Among these four methods, t-SNE has developed
into the standard tool in this field due to its capability of revealing
clusters in data. Ideally, patients typically from test sets associated with
different labels, are projected and clustered into distinct groups. We
observed 8 papers visualized with t-SNE to interpret the representations
[14,27,31,60,66,73,75,79], and one study visualized with MDS [70].
Apart from projecting representations, interpretability can be provided
by visualization methods including a heatmap of features [33,67,78],
visualizing attention weights [57,72,76,80,88], and case study (expla-
nation by examples) [32].

4.2.9. Computational resources and reproducibility

With the rapid improvements in computational resources, GPU-
accelerated techniques have been exploited to train deep learning
models faster and more efficiently. Because the literature in this study is
from recent years (2015-2019), we observe the majority (29 out of 49)
have reported the computational resources along with the deep learning
frameworks. The reported deep learning frameworks include Theano (n
= 12), TensorFlow (7), PyTorch (6), and Keras (4).

The need for reproducibility of scientific results has been growing in
awareness in biomedicine in recent years. This is also true in this field of
research because we want to ensure that the patient representations are
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generalizable and reproducible across multiple institutions. Unfortu-
nately, reproducibility in patient representation learning is difficult due
to the variety of data resources, learning methods and architectures, and
data preprocessing steps. Another major difficulty in data sharing is
related to privacy concerns as inappropriate access to sensitive patient
data might lead to patients’ identity disclosure. While there are machine
learning techniques that preserve data privacy [107-111], it is often
impossible to share patient data due to privacy issues. Thus, providing
workflow and computer code associated with publications is becoming
increasingly common to enable the reproducibility of the method, if not
the full work. One such open-source platform, GitHub, manages a robust
infrastructure that is appropriate for sharing the full suite of interme-
diate experiments such as programming code, statistical results, etc.
Therefore, we consider papers that provide code as one measurement of
reproducibility. Among the 49 included papers, 20 of them have pro-
vided code links. Notably, the source code of RETAIN [80], based on
Theano, has been starred on Github more than 100 times and forked
over 50 times, and it has been redeveloped in other deep learning
frameworks (TensorFlow, Keras). RETAIN was also commonly used as
baselines in the subsequent series of advanced models (i.e., GRAM [27],
Dipole [76], Health-ATM [72]). Thus, we anticipate that sharing open-
source resources and code would motivate researchers to further
explore innovations in a more scientific manner.

5. Discussion
5.1. Growing importance

In this review, we provide an overview of the current research into
EHR patient representation learning. A total of 363 articles were
assessed, with 49 studies from 2015 to 2019 meeting the full criteria for
review. We observe a growing trend of developing deep learning-based
patient representations from EHRs. The earliest attempt of learning
patient representations with deep learning used Restricted Boltzmann
Machines, proposed in 2015 [60]. An increasing number of works
continued to contribute to improving the representation power of deep
learning-derived representations.

Notable observations are identified throughout the review and can
be addressed to the four questions we proposed at the end of
Introduction.

1. Resources: We investigated that the resources of available EHR data
are quite limited due to privacy concerns. The most prominent
dataset is the Medical Information Mart for Intensive Care (MIMIC-
III), where 22 out of 49 studies used this dataset.

2. Methods: Learning was mainly performed in a supervised manner
optimized with cross-entropy loss. Recurrent Neural Networks were
the most common deep learning model.

3. Applications: Disease prediction was the most common application
and evaluation. We also identified a wide variety of clinical out-
comes being addressed, including mortality prediction, admission
prediction, length-of-stay forecasting, patient subtyping, interven-
tion prediction, and medical cost forecasting.

4. Potential: Enhancements in patient representation learning tech-
niques will be continuously growing for powering patient-level EHR
analyses. We anticipate that researchers from diverse communities
will leverage the richness and potential of EHR data, and will assist
the capability of learning patient representation further.

Furthermore, analyses and evidence from data extractions of the 49
included papers suggest the importance and feasibility of learning
comprehensive representations of patient EHR data. Studies that forego
any attempt to utilize patient representations as an intermediate struc-
ture lose out on several advantages. Most notably, many representation
learning models utilize—through unsupervised or self-supervised lear-
ning—very large amounts of EHR data. In contrast, traditional
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predictive models focus on just the labeled information needed for the
single task they are trained on. This is similar in essence to the difference
between discriminative and generative machine learning models, where
the latter attempt to model the full distribution of the data. Since learned
representations attempt to gain a cohesive picture of a patient’s data,
these models may very well be more robust to small changes in the data
distribution (e.g., when porting a model to a new institution without re-
training). The extent to which this may be true requires further inves-
tigation, but it is worth noting that the field of natural language pro-
cessing has become dominated recently by transformer-based models
[41] that essentially follow this approach. Contextual word represen-
tations are learned on large corpora in a self-supervised manner (“pre-
training™) and then those representations form the basis on which pre-
diction models are built (“fine-tuning™).

The capability to develop effective patient representations from
EHRs derives primarily from how to model the pertinent characteristics
of EHR data. For instance, recent clinical events are more likely to
contribute to the final label compared to earlier events [80]. Another
challenge is that clinical events may be correlated with each other (i.e.,
diagnoses lead to treatments, disease co-occurrence) [32,81].
Leveraging this inherent structure is a key factor to improving the rep-
resentation. This has resulted in a wide range of methods that can
complement deep learning models to enhance representation power.
These methods include developing additional components to models for
capturing a hierarchical representation from event-level, to visit-level,
to patient-level [81,112]; for encoding the longitudinal factors be-
tween clinical events [65,77]; for incorporating domain knowledge into
the representation [27,31-33,91]; and for adopting multiple modalities
of EHR data [11,14,57].

5.2. Future directions

Building upon current promising trends in learning meaningful pa-
tient representations, we believe the growth will continue, and the
challenges of EHR data can be addressed in the following directions. We
highlight a limited number of works published after the end of the re-
view period (i.e., since January 2020) to exemplify these promising
directions.

5.2.1. Methodology

With the pace of deep learning models diffusing into patient repre-
sentation learning, algorithm and model development continues to
enhance in order to adequately consider and model EHR data [113].
Some pilot works have applied advanced methods to model contextu-
alized information into the learning architecture, such as the trans-
former model [39]. For instance, Choi et al. [42] proposed the Graph
Convolutional Transformer (GCT) to learn hidden patterns of EHR data.
This work is an advancement over works like MiME [81] in that GCT can
capture hidden logical relationships between structured EHR data (e.g.,
which diagnoses lead to which treatment) that are completely missing in
the raw data. There is also a recent NLP study attempting to show the
expressive power of transformers in that they can be universal approx-
imators of sequence-to-sequence aggregators with compact support
[114], though this study was not in the clinical domain. Another
groundbreaking technique fueled by language models highlights the
potential to learn generic representations from raw data. Ethan et al.
[115] proposed language model-based representations to learn struc-
tured data from EHRs. Si et al. [116] applied pre-training and fine-
tuning techniques to learn general and transferable clinical language
representations. Li et al. [44], inspired from the architecture of BERT,
proposed BHERT, a transformer model for structured data in electronic
health records. BHERT is scalable to perform well across a wide range of
downstream predictions.

Advanced learning techniques including transfer learning, multi-task
learning, and meta-learning can combat data scarcity and label insuffi-
ciency to some extent. One of the earliest attempts to learn patient
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representations, Doctor AI [38], also demonstrated the impact of
transfer learning from large-scale clinical data (i.e., 263,706 patients in
Sutter Health) to tasks with relatively small amounts of data (i.e., 2,695
patients in MIMIC-III). Furthermore, with the success of multi-task
learning in the open domain, such as in image processing and NLP, a
growing number of studies also highlighted the potential and feasibility
of properly integrating multiple related tasks to learn meaningful pa-
tient representations [73,89]. The concept of meta-learning is similar to
transfer learning in that it takes advantage of information from other
related high-resource domains. We have included a recent novel study in
this review work, known as MetaPred [66]. MetaPred applied an
optimization-based meta learning built on Model Agnostic Meta
Learning (MAML) [117] in clinical scenarios. Because insufficient data is
an obstacle for machine learning to solve many clinical problems, such
as diagnosing rare conditions, we hope to leverage as many related
datasets and knowledge resources as possible. Progress of advanced
techniques for learning patient representations are responsible to take
knowledge base into account to ensure the clinical relevance of prob-
lems and solutions [118].

5.2.2. Data sources

Despite the richness and potential of EHR data, few studies take full
advantage of the heterogeneity of EHR data. Instead, many only use a
subset of the data. For instance, many studies use diagnosis codes to
represent patients, and ignore the real-valued measurements associated
with the diagnoses, such as lab test values. Unstructured data, addi-
tionally, are often overlooked when developing patient representations
(only 12 out of 49 studies used unstructured data). Future work will still
be devoted to leveraging rich, yet varied, information in EHRs. One
technique known as deep learning-based multimodal representation
learning can be exploited to narrow the heterogeneity of EHR data
among different modalities. Recently, a joint representation learning
strategy named HORDE was proposed by Lee et al. [119], which applies
several graphical modules to embed different types of data sources
dynamically from EHR data.

The cause of many diseases is very complicated. Many factors,
including inherited genetics, living environments, daily diets, and
habits, have an impact on disease development. Just relying on the
phenotype and medical history information in the EHR would generally
fail to effectively represent the patient’s full health status. Therefore,
integrating multi-source information, e.g. genomics and clinical imag-
ing, would be critical for accurate patient representation learning as well
as the associated downstream clinical tasks [120]. Although most cur-
rent work focuses on a single type of data, there are also some pilot
works that are trying to harmonize multiple types of data. Cheerla et al.
[121] developed a multimodal deep learning method to predict the
survival of pan-cancer prognosis using clinical, multi-omics, and histo-
pathology data together. Some researchers are also investigating the
linkage of imaging to genetic data [122] and EHR to genetic data [123]
for clinical outcome prediction and disease heritability estimation.
These works show the enormous potential to integrate multi-source in-
formation to effectively model patient health status [22]. All these data
sources can expand the set of features that potentially contribute to fine-
grained patient representations.

5.2.3. Multi-Institutional data

Ethical and legal issues with regards to the use of EHR patient data
for research, including Al, are well known. The problems lie in the trade-
off between the privacy of patient data and data access for research. Yet
learning representations from multiple institutions is critical to
achieving both scalability and generalizability. Privacy-preserving al-
gorithms and constrained domain adaptation settings are developed to
compensate for this tradeoff to some degree [124]. Distributed learning
and federated learning are such paradigms that enable the safe use of
data from multiple institutions by only learning mathematical parame-
ters [125] and avoiding any instance that might trace back to a specific
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patient. Distributed learning is an algorithm that, in a parallelized
fashion, iteratively learns a single model on separate datasets and ob-
tains the shared model as if data were centralized [126]. Federated
learning is a machine learning technique to train different models on
multiple decentralized datasets, in contrast to traditional machine
learning in which all samples are combined [127,128]. They both
attempt to collaboratively train while keeping all the training data at
their original institutions. The difference between the two learning
paradigms is that distributed learning trains a separate model for each
split of the data, and each separate model is transferred to a centralized
model, while federated learning trains individual models on heteroge-
neous datasets. Many existing studies have exploited distributed
learning and federated learning across multiple institutions in fields
such as medical image processing [129,130], clinical decision support
[131], and clinical oncology [132], to facilitate privacy-preserving
multi-centric rapid learning of health care. We also observe some pilot
studies applying federated learning and distributed learning to learn
patient representations in this review. Li et al. [59] proposed a method
that can learn clinical code representations from different EHR data-
bases by adding distributed noise contrastive estimation. Liu et al. [90]
proposed a federated learning framework to pre-train on MIMIC-III
notes and predict clinical outcomes related to obesity. The adoption of
distributed and federated learning shows that there are emerging tech-
nologies to manage privacy concerns and facilitate scientific research
without directly sharing data.

5.3. Limitations

A potential limitation of this review is incomplete retrieval of rele-
vant studies that meet the inclusion criteria. As a wide variety of
methods to represent patients are included, it is challenging to conduct
an inclusive search strategy with an automatic query by keyword
searching. There is, unfortunately, no MeSH term that covers patient
representation. We mitigated this issue by working cooperatively with
experienced librarians and applying snowballing search strategies from
the included publications. It is also challenging to differentiate our
included studies with numerous works of predicting one clinical
outcome end-to-end with deep learning. To achieve this, we ensured at
the full-text review step that all the papers that are included specifically
mentioned patient representation or embedding, and that their goal was
learning representations at a patient level, not merely a model that
maximized performance on a specific disease. In addition, we do not
include manuscripts [133-136] that can only be found as preprints on
arXiv or bioRxiv. All these limitations would pose a potential threat to
selective bias in publication trends.

Another limitation is that our review fails to answer all technical
questions. Due to the lack of transparency and reproducibility of re-
ported results, many studies in our review claim state-of-the-art results,
but few can be verified by external parties. This might be a barrier for
future model development and would slow the pace of improvement.
Even though MIMIC-III is widely used as a benchmark dataset, not many
generic pipelines for benchmarking machine learning studies are
available. Prior works have proposed different components in addition
to the deep learning models to improve representation ability and pre-
dictive performance. However, it is still unclear which approach works
best for representing EHR data. Therefore, one future direction to
mitigate this limitation is to more comprehensively investigate different
methods and conduct comparative studies using a common set of shared
clinical benchmark datasets. Some recent comparative studies such as
Ayala Solares et al. [137], Sadati et al. [138], and Min et al. [139]
provided some surprising observations in terms of how to choose the
best representation learning methods. For instance, Min et al. [139]
conducted a case study of applying different machine learning methods
to represent Chronic Obstructive Pulmonary Disease (COPD) patient
claim data to predict readmission. They have shown some contradictory
observations that medical problems are unlike problems in NLP and
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image processing, merely applying complex deep learning without
incorporating medical knowledge does not necessarily result in better
performance. Therefore, in the future, we would encourage such studies
to be conducted across a variety of patient representation use cases.

6. Conclusion

Deep representation learning has led to a wide variety of innovations
in the process of modeling EHR patient data. As deep learning models
benefit largely from the model capabilities to address the challenges of
EHR data, deep patient representation learning is a promising direction
to acquire powerful, robust, and precise representations. By adopting
advanced learning techniques in addition to the model architecture,
patient representation learning attempts to further address issues related
to patient data and promote scientific research. We conducted a sys-
tematic review of this work and discussed the current research scenarios
pertinent to patient representation learning. We believe a growing
number of advanced methods will be continuously developed to learn
meaningful patient representations, and that these representations will
play a greater and greater role in clinical prediction tasks.
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