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The new coronavirus disease 2019 (COVID-19) has become a global pandemic leading to over 180 million con-
firmed cases and nearly 4 million deaths until June 2021, according to the World Health Organization. Since the
initial report in December 2019 , COVID-19 has demonstrated a high transmission rate (with an R, > 2), a di-
verse set of clinical characteristics (e.g., high rate of hospital and intensive care unit admission rates, multi-organ
dysfunction for critically ill patients due to hyperinflammation, thrombosis, etc.), and a tremendous burden on
health care systems around the world. To understand the serious and complex diseases and develop effective
control, treatment, and prevention strategies, researchers from different disciplines have been making significant
efforts from different aspects including epidemiology and public health, biology and genomic medicine, as well
as clinical care and patient management. In recent years, artificial intelligence (AI) has been introduced into
the healthcare field to aid clinical decision-making for disease diagnosis and treatment such as detecting cancer
based on medical images, and has achieved superior performance in multiple data-rich application scenarios. In
the COVID-19 pandemic, AI techniques have also been used as a powerful tool to overcome the complex diseases.
In this context, the goal of this study is to review existing studies on applications of Al techniques in combating
the COVID-19 pandemic. Specifically, these efforts can be grouped into the fields of epidemiology, therapeutics,
clinical research, social and behavioral studies and are summarized. Potential challenges, directions, and open
questions are discussed accordingly, which may provide new insights into addressing the COVID-19 pandemic
and would be helpful for researchers to explore more related topics in the post-pandemic era.

1. Introduction of hospital beds, mechanical ventilation devices, and critical patient care

resources [6]. Therefore, there is an urgent need for new technologies

The unprecedented outbreak of new coronavirus disease 2019
(COVID-19) has put people around the world at risk. The COVID-19
pandemic in December 2019 has spread throughout the world quickly
because of a high transmission rate (with an R, value bigger than 2)
[1]. The scarcity of resources and the worry of overburdened health-
care systems have impelled majority governments to restrict traveling
or lockdown cities [2]. The COVID-19 pandemic has caused over 180
million confirmed cases and nearly 4 million deaths until June 2021,
according to the World Health Organization [3]. Scientists have identi-
fied the genome sequence of the virus and categorized it as a member
of the -CoV genera of the coronavirus family [4], which can attack the
human respiratory system, cause fever, cough, and other flu-like symp-
toms, and further affecting multiple tissues and organ systems [5]. In
addition, patients with COVID-19 may rapidly develop serious dysfunc-
tions and even critical illness, leading to a suddenly boosted requirement

to help clinicians and health care providers to address this pandemic.
Artificial intelligence (AI), advanced by the rapid development of
computer hardware and software and mathematics, includes a wide
range of techniques that allow computers to think and work like the
human brain to support decision making. Al techniques, especially the
machine learning (ML) and deep learning (DL), have demonstrated su-
perior performance in many real-world data applications ranging from
computer vision to natural language processing. In recent years, Al tech-
niques have also been introduced into the healthcare field and lead to a
novel rout to effectively derive knowledge in terms of disease conditions
from complex health data to improve human health care, such as clin-
ical decision-making [7-8]. In COVID-19, the increasing availability of
diverse types of data makes it promising to apply Al techniques to assist
us to overcome the pandemic [9]. In this context, significant efforts that
used Al to address COVID-19 have been drawn from different perspec-
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Figure 1. The overall framework of this review. We review four aspects (i.e., epidemiology, therapeutics, clinical research, social and behavioral studies) in terms
of applications of Al on COVID-19 pandemic. Also the challenges of each aspect are provided. Finally, the general challenges, directions, and open questions are
discussed on model interpretation, model security, model bias, privacy issue and model precision.

tives, including epidemiology and public health, biology and genomic
medicine, as well as clinical care and patient management, etc. In this
study, we discussed the applications of Al that mainly focused on ML
and DL techniques in COVID-19.

There are several previous studies in terms of using Al to combat
COVID-19 [10-14]. They generally have a specific focus on AI’s ap-
plications in epidemiology and therapeutics in COVID-19. Islam et al.
[11] reviewed 35 studies on the use of AI in COIVD-19 diagnosis, epi-
demic forecasting, and patient management. Hussain et al. [12] focuses
on big data, the Internet of Things (IoT), Al, cloud computing tech-
niques in fighting against the COVID-19 pandemic. In addition, Pham
et al. [13], Chen et al. [14], and Nguyen et al. [10] also discussed the
use of Al in vaccine and drug development. Compared to the previous
studies, we considered a broader spectrum of application areas of Al
in fighting the pandemic, including epidemiology, therapeutics, clin-
ical research, social and behavioral studies. In each field, we review
existing studies and detail how the AI techniques advanced COVID-19
study, but also discuss unsolved issues and challenges as well as po-
tential opportunities of Al in this field which may provide insights for
researchers to bridge the gap between the application of Al and health
care in the pandemic. The overall framework of this review is shown in
Figure 1.

References for this Review were obtained through searches of
PubMed, Scopus, Google Scholar, and Web of Science for papers. Key-
words included “COVID-19” “SARS-CoV-2”, “non-pharmaceutical public
health interventions”, “epidemic control”, “drug repositioning”, “drug
repurposing”, “network medicine”, “machine learning”, “artificial in-
telligence”, “convolutional neural networks”, “deep learning”, “subphe-
notyping”, “misinformation”, “social media”, “health impacts”, “public
health”, and “mental health”. The titles and abstracts were furtherly
checked for inclusion. Some relevant papers were also collected from
the reviews of citations referenced. Most of the reviewed articles were
published after June 2020. To clearly summarize these articles, they
were grouped into four categories according to the types of applications,
including (1) epidemiology, (2) therapeutics, (3) clinical research, and
(4) social and behavioral studies.
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2. Al in COVID-19 epidemiology

Al models have been involved in the epidemiology studies, mainly
focusing on the COVID-19 trend prediction. In particular, the involved
Al models include data-driven-based statistical models, epidemiology-
based compartment models, and individual-based agent models and hy-
brid models.

2.1. Data-driven-based statistical models

The data-driven-based statistical models mainly include regression-
based parametric or non-parametric models such as Auto-Regressive In-
tegrated Moving Average (ARIMA), Support Vector Regression (SVR),
Random Forest (RF), deep learning (DL) model like Recurrent Neu-
ral Network (RNN), and so on. For example, Parbat and Chakraborty
[15] used the SVR model to predict the COVID-19 trend to the total num-
ber of deaths, recovered cases, cumulative number of confirmed cases,
and number of daily cases using the Johns Hopkins epidemiological data
[16]. The proposed model was efficient and presented higher accuracy
than linear or polynomial regression methods. While building a pre-
dictive model for COVID-19 trend forecasting, these pure data-driven-
based statistical models typically only considered building relationships
between a dependent variable such as the number of deaths and inde-
pendent variables such as the number of days, but did not explicitly
consider the epidemiological characteristics of the infectious disease.

2.2. Epidemiology-based compartment models

Compartment models aim to divide entire populations into multiple
different compartments (i.e., states) such as susceptible, exposed, in-
fectious and recovered, and then apply ordinary differential equations
(ODEs) to model the transitions among these compartments. Two popu-
lar compartment models including Susceptible-Infected-Resistant (SIR)
[17] and Susceptible-Exposed-Infected-Removed (SEIR) [18] are used
to model the spread of infectious disease in terms of multiple previ-
ous epidemic outbreaks such as SARS [19] and the ongoing COVID-19
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pandemic [20-21]. Compared to data-driven-based statistical models,
the compartment models were built on the well-established mathemati-
cal/physical laws, which consider the epidemiological characteristics of
infectious disease and there is an assumption for the compartment mod-
els that the counts observed from these compartments have the poten-
tial to reflect reproduction numbers. Compartment models are still the
mainstream approach in epidemiological research of infectious diseases
[22]. However, the determination of parameters of the traditional com-
partment models is difficult and usually relies on predefined hypothe-
ses. The use of Al techniques has shown their strength in estimating the
optimal parameters of the compartment models, thus leading to a new
way to improve the compartment models in COVID-19 trend prediction
[23-24].

2.3. Individual-based agent models and hybrid models

Recently, several researchers have utilized fine-grained methods to
model a population through agent simulation for COVID-19 trend pre-
diction [25]. An individual-based agent model is to simulate a real envi-
ronment in an abstract representation to estimate the spread of epidemic
diseases, which has three main elements including the agent (e.g., per-
son), the factors of each agent (e.g., age), and the links between agents.
Rockett et al. [25] used an individual-based agent model to simulate the
spread of COVID-19 in an urban area by considering multiple agent fac-
tors including age, gender, smoking status, and isolation tendency. They
found that the non-pharmaceutical public health interventions, such as
staying home, hospital isolation policies, and preventing travel between
cities, have contributed to the reduction of the prevalence and the deaths
in COVID-19 pandemic.

In addition, some hybrid models such as the combination of mech-
anistic disease transmission model and a curve-fitting model [26] and
the combination of the recurrent neural networks (RNN) model and an
improved susceptible-infected (ISI) model [24], have been used in the
COVID-19 trend prediction. These hybrid models mainly considered the
combination in terms of epidemiology model and ML techniques, which
not only capture the epidemiological characteristics of infectious dis-
ease but also enhance the ability to build the relationships between input
data and output data by a purely data-driven method. The epidemiology
model in a hybrid model is usually used to obtain information related to
COVID-19 trends such as infection rates, which are utilized as input fea-
tures for the AI prediction model. The hybrid models have also shown
great promise to accelerate the COVID-19 trend prediction.

2.4. Challenge and opportunities

The above summary shows that multiple Al-based epidemiology
models have been used to predict the spread of COVID-19 and obtain
some promising initial results. However, there remain several challenges
and opportunities for the improvement of predictive performance. These
include mainly the following:

(1) The spread of infectious disease like COVID-19 is usually complex
and influenced by multiple factors such as population density, demo-
graphic composition, weather conditions, non-pharmaceutical pub-
lic health interventions, medical resource disparities, city traffic
flows and so on [27-31]. Researchers need to consider how to com-
bine these factors and set different weights for them. Investigating
the impact of individual factors on the spread of the COVID-19 trend
is also an interesting topic.

The epidemiology-based compartment models are sensitive to the
initial values of model parameters such as infectious population,
hospitalized population, and dead population. The determination of
initial values of these parameters is usually based on the public re-
ported data (including confirmed cases and recovered cases). How-
ever, the reported cases may not be very correct and usually much
fewer than their real numbers because of multiple kinds of reasons
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such as the test capability [32]. Although integrating data-driven
machine learning methods can relieve the dependence of initial val-
ues and improve the predictive performance, the regular (weekly or
daily) updating for AI models to reflect changing dynamics is chal-
lenging because of more and more confirmed cases that need more
train time.

Several mutations of COVID-19 are more transmissible [33]. The mu-
tated viruses may have higher fatalities, influencing the patterns of
the spread of infectious diseases. Incorporating mutation to build
predictive models for the COVID-19 trend is important [34] but it is
rarely discussed.

Building hybrid models by combining multiple predictive models
is a good method for improving the accuracy of predictive models.
However, most previous hybrid COVID-19 trend predictive models
mainly use the output of one model as the input feature of another
model. Building a voting mechanism from many different predictive
models would be beneficial for predictive performance.

3

-
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3. Al in COVID-19 therapeutics: drug discovery

There are two common strategies for the development of drugs to
treat diseases including traditional drug development (de novo drug dis-
covery) and drug repurposing [35]. The traditional drug development
method starts with building novel chemical compounds based on molec-
ular units and needs multiple steps including preclinical research, safety
review, clinical study, FDA review, and FDA postmarket safety monitor-
ing, which usually take more than 10 years and over $ 1 billion to bring
a drug to market [36]. Compared to traditional drug development meth-
ods, the drug repurposing technique is usually used to identify drugs for
emerging and challenging diseases treatment based on approved or in-
vestigating existing drugs, which can significantly reduce development
timelines and a large number of costs [37]. During the current COVID-19
pandemic, drug repurposing is a very promising approach for discover-
ing effective drugs from existing ones to treat patients with COVID-19
[38]. There are three common strategies for finding drugs in terms of
new use by drug repurposing method, including through serendipity, us-
ing experimental screening platforms, and computational methods [39].
The serendipity drug repurposing is based on specific pharmacologi-
cal insights in the lab and clinic. The experimental method based on
drug repurposing is usually to bind assays to identify relevant target in-
teractions using some techniques such as affinity chromatography and
mass spectrometry, which is costly and time-consuming [40]. A compu-
tational method based on drug repurposing is mainly data-driven, which
involves systematic analysis on multiple types of large-scale data such
as gene expression, chemical structure, genotype or proteomic data, or
electronic health records (EHRs) to acquire meaningful interpretations
for repurposing hypotheses [39]. This method provides a great chance
for identifying drugs quickly [41].

3.1. Computational drug repurposing

The methods of computational drug discovery can roughly be di-
vided into two categories: Structure-based and ML-based drug dis-
covery. Structure-based drug discovery, one of most popular meth-
ods in discovering antiviral drugs, which uses a computational high-
throughput ensemble docking technique and obtains the binding affini-
ties by physics-based equations [42]. The ML-based drug discovery at-
tempts to use ML techniques to obtain the representations of drugs or
diseases, and then measure the similarities of these entities or build pre-
dictive models to obtain the relationships between a drug and disease
[35]. During the COVID-19 pandemic, the process of simulations and
docking in structure-based drug discovery needs to be refined and repro-
duced because there are multiple new experimental three-dimensional
structures of the S protein and other viral targets [43]. Researchers have
started using ML techniques instead of structure-based drug discovery



Z. Xu, C. Su, Y. Xiao et al.

Intelligent Medicine 2 (2022) 13-29

Drug repurposing on regular data structure

+ The vector representation of molecule (the presence
or absence of a particular molecular feature)

(T [ T T T

+ The matrix representation of molecule (Coulomb
matrix)

260 ic7 1550 125 IG5 5B
337 735 40 82 38 38

—> 55 40 05 035 05 056
Artificial intelligence (Al) DU 52 1051 IO 1o3] [
based drug repurposing 55 38 056 043 05 056

55 38 05 043 056 05

Molecule database « The sequence ion of molecule (si

molecular input line entry system codes)

Using DL models to obtain relations between drugs and virus

« FNN + RNN
i:to ReR3
et OO0+
IO -
NP Predicting links of
"y drug and COVID-

ERETTT T 7T BT 1 5]

o
H
H

19 and
candidate drugs for
treating COVID-19

Input unit (OHidden neuron OOulpul neuron

* CNN

Coulomb Convolutional
matrix layer

Pooling and fully
connected layers

Drug repurposing on irregular data structure
Gene-Gona

Gene-Patnway

N .

S % o0 ot 4 /d
B Ny
L) e Y
¥ \Y
; "mo %0«’“" 04 =
% < 2 5

03 ™~

‘Symptom

Sco-Efiect Dietay Supplement Ingrecent

Medical knowledge graph

O s m«u:ﬂ)e G«O | ) potmay
S A B 7 TN ”
(¢}

Using graph embedding to obtain the low dimensional
vector representations of nodes (e.g., drugs) in graph

+ Graph embedding

Computing the
similarity of drugs
and COVID-19, and

obtaining candidate
@ (2 drugs for treating
v ID-19

@ ) CovI
frvrR
. \2

Embedding space

Figure 2. A general framework of ML (machine learning) and DL (deep learning) based drug repurposing. FNN: feedforward neural network; CNN: convolutional

neural network; RNN: Recurrent neural network.

to predict drug binding and find candidate drugs due to the superior-
ity of ML [44]. In MLbased drug repurposing, the representation of the
structure of drug and disease is key for training ML models. Drug re-
purposing using regular and irregular data structure representations is
discussed as follows. A general framework of ML-based drug repurpos-
ing is demonstrated in Figure 2.

3.1.1. Drug repurposing on regular data structure

Regular data structures including vector, sequence, and matrix have
been used for drug repurposing with different DL architectures [39]. For
vector representation of drugs or diseases, a fully connected feedforward
neural network (FNN) architecture is usually used to build a predictor
or classifier [45]. In FNN, the input variables and output targets are con-
nected by multiple layers with neurons. Each neuron from the preceding
layer is connected to all neurons from the subsequent layer, and those
connections are assigned different weights, which are trained and opti-
mized through prediction loss and backpropagation. There are several
FNN based drug repurposing studies [46-48] that profile data samples as
vector representations. For example, Aliper et al. [46] used vector rep-
resentations to build transcriptomic profiles for 678 different drugs and
then built an FNN model to classify various drugs into therapeutic cat-
egories. The FNN model showed better performance compared to other
computational methods such as naive Bayes, SVM, and RF. However, if
the information of drug or disease is stored in the chemical image, using
the FNN method is challenging as it involves a large number of weights
in training FNN.

The matrix representation of drugs mainly refers to chemical images,
which contain more molecular structure information. In this context,
the advanced CNN [49], a preferred DL model specifically designed to
obtain insights from those images, could be a promising approach to
address the tasks. CNN can build relationships between the pixels in im-
ages and final predictive targets by multiple layers of nonlinear trans-
formations [50]. A CNN typically consists of three layers: a convolution
layer, a pooling layer, and a fully connected layer. CNN has been applied
to explore drug function based on chemical images [51]. For example,
Wallach et al. [52] used a CNN to build a predictive architecture, Atom-
Net, to predict molecular binding affinity to proteins, which obtained
an AUC >0.9 on 57.8% of the targets in the DUDE benchmark. Ragoza
et al. [53] used CNN to build a protein-ligand scoring system to clas-
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sify compound poses as binders or non-binders. A grid representation of
protein—ligand structures was used as input to the CNN model, which
showed better discrimination than AutoDock Vina scoring [54] in terms
of pose prediction and virtual screening.

In addition, few studies focused on modeling the molecular sequence
of drugs to identify new therapeutic implications. In this context, the re-
current neural networks (RNNs) [55], a kind of DL model for sequence
data modeling, are usually involved. In an RNN, a recurrent neuron
is used to address each element of a sequence at each timestamp and
it integrates the historical information of the current element, which
is obtained from the output of the previous timestamp. Several stud-
ies used RNN to generate simplified molecular-input line-entry system
(SMILES) with desirable properties such as a quantitative estimate of
drug-likeness (QED) [56]. By fine tuning of a pre-trained RNN, Olive-
crona et al. [57] solved the issue in terms of a combination of handwrit-
ten rules for undesirable structure penalties. In addition, RNN architec-
tures have been applied to generate focused molecule libraries for drug
discovery by building sequence profiles for molecules based on SMILES
codes [58]. Gao et al. [59] designed a hybrid of RNN and graph-based
CNN model to identify drug-target interactions based on amino acids
sequences and chemical structures.

3.1.2. Drug repurposing on irregular data structure

Irregular data structure-based drug repurposing mainly involves net-
work medicine [60-61] and graph representation learning [62]. Typi-
cally, a biomedical network or biomedical knowledge graph was first
built. Then graph-based AI models, such as network embedding or
deep graph neural networks, were used to learn low-dimensional repre-
sentations for nodes and edges while preserving the graph structure.
Finally, novel drug implications (e.g., potential drug-disease associa-
tions or drug-target interactions) discovery can be done by link pre-
diction based on those representations [38,63]. For example, Sosa et al.
[64] plotted a large and heterogeneous knowledge graph, the Global
Network of Biomedical Relationships (GNBR), including drug, disease,
and gene (or protein) entities. They used graph embedding techniques
to predict the links between drugs and diseases and obtained perfor-
mance with an AUROC value of 0.89 on a gold-standard test set. Zeng
et al. [65] built a COVID-19 knowledge graph, CoV-KGE, to identify drug
candidates for treating the SARS-CoV-2 virus from 24 million PubMed
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research articles (Table 1). Amazon’s Amazon Web Services (AWS) com-
puting resources and graph embedding techniques were used on the
built knowledge graph that contained 15 million edges, 39 types of rela-
tionships among nodes including drugs, diseases, proteins/genes, path-
ways, and expression, and finally discovered 41 repurposable drugs such
as tetrandrine, nadide, estradiol, and so on. Some representative knowl-
edge graph-based studies are shown in Table 2.

3.2. Challenge and opportunities

Although computational drug repurposing has shown large poten-
tial for identifying effective drug candidates for treating COVID-19 in-
fections, there remain challenges and opportunities for improving the
efficiency of discovering drugs. Following are the main challenges and
opportunities.

(1) The current dataset for computational drug discovery is very small.
Although a gigantic collection of GDB-17 has 166 billion compounds,
it is only a tiny fragment of the chemical universe [66]. The ML
methods may show poor performance when the model encounters
compounds that the molecules have not been seen in train sets. The
structure-based drug discovery needs accurate crystal structures to
obtain better matching results in terms of proteins with drugs [44].
Building a larger and better dataset that contains more kinds of ac-
curate crystal structures is beneficial for drug discovery, which may
need more time, money and expertise.

The Biomedical knowledge graph (BKG)-based approaches for drug
development typically rely on the quality of the BKG used. Different
resources were used to build the BKGs in different projects, which
may hence produce bias during discovering the promising repur-
posing drug candidates of COVID-19. Efforts such as by Heteionet
[67] and our BKG [68] aiming at incorporating and harmonizing
data from diverse medical domains and resources to build compre-
hensive BKGs. However, there is no golden standard to evaluate their
quality. This may limit the reliability of the identified therapeutic
implications.

Computational data scientists need to work closely with chemists or
doctors, which is very crucial for better outcomes. For example, ex-
tracting a broad range of properties of molecules based on domain
knowledge from chemical experts helps obtain a complete represen-
tation of molecules; then feeding them to ML models can improve
model performance. Few clinicians and medical school students may
need manually reviewed clinical reports to aid model training during
BKG building, which may involve bias. More domain experts should
work on them and the model developer should iteratively combine
feedback from doctors who utilized the developed tool.

(2

(3)

4. Al in COVID-19 clinical research

The studies of AI in COVID-19 clinical research can roughly be di-
vided into two types (Table 3): the diagnostic and prognostic prediction
of COVID-19 and the subphenotyping of COVID-19. For the former, re-
searchers use ML techniques to build classifiers to identify or predict
whether patients are suffering from COVID-19 or to assess different lev-
els of severity of COVID-19. For the latter, researchers focus on using
clustering methods to identify sub-groups, and further investigate the
different characteristics such as hospitalization, intensive services, and
death of these sub-groups.

4.1. The diagnostic and prognostic prediction in COVID-19

Early and rapid identification of COVID-19 is urgently needed
[69-70], which is important not only for immediate management and
treatment of individual patient care but also provides guildance for pub-
lic health in terms of patient isolation and COVID-19 containment [71].
A COVID-19 virus-specific reverse transcriptase-polymerase chain reac-
tion (RT-PCR) test is widely utilized to detect the COVID-19 virus [72].
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However, this test usually takes up to two days to inform final results,
and serial tests may be considered to exclude the possibility of false-
negative results, which may underestimate the situation of the COVID-
19 pandemic, hindering government control in terms of disease trans-
mission and healthcare workforce [71]. Recently, researchers have used
data-driven methods to build classifiers with historical medical infor-
mation for diagnosis or prediction. In particular, researchers have used
image or non-image medical information to build classifiers. For image-
based studies, they trained classifiers with ML methods using extracted
features from medical images, such as human lung CT scan images, chest
X-ray, and ultrasound images, or use DL models to build classifiers on
raw medical images. For non-image-based studies, they extracted EHR
information such as routine lab tests and integrated ML models to train
a classifier or build a score system using selected predictors. A general
framework of using AI techniques for COVID-19 patients’ prediction is
shown in Figure 3.

4.1.1. Image-based predictive modeling in COVID-19

Three common types of images including CT images, chest X-rays,
and ultrasound images are used to build classifiers to perform COVID-
19 diagnosis. With a more accurate tool in CT scans, CT images usu-
ally contain more information that is useful for COVID-19 diagnosis [5].
Most previous CT image- based studies mainly use CNN for COVID-19
diagnosis [5, 73-75]. For example, Xu et al. [73] used a CNN architec-
ture to extract lung CT image spatial features from 618 CT images for
diagnosing COVID-19, influenza-A viral pneumonia, and healthy cases.
Although CT image is a valuable component for COVID-19 diagnosis, CT
imaging usually takes more time than X-ray imaging and causes more
harm for patients because of more radiation exposure. In addition, com-
pared to CT imaging machines, the equipment for X-ray is cost-effective
and easy to operate, which attracted researchers’ attention to COVID-19
diagnosis [76-79]. For example, Wang et al. [77] built a hybrid model
with CNN and SVM for diagnosing COVID-19 on two datasets including
1,102 and 625 chest X-ray images and obtained an accuracy of 99.33%
and 95.02% of accuracy, respectively. More recently, clinicians reported
that lung ultrasound images can show higher sensitivity than by chest X-
rays in diagnosing pneumonia in some cases [80-81]. Due to the charac-
teristics of a more widely available, lower cost, more safe, and real-time
ultrasound imaging technique, using lung ultrasound images for diagno-
sis of COVID-19 is gaining wide popularity [82-83]. Roy et al. [83] used
lung ultrasound images to predict disease severity using a deep network
by integrating spatial transformer networks and CNN, which showed
accurate prediction and localization of COVID-19 imaging biomarkers.
These previous studies with images mainly use DL techniques to extract
spatial information and build classifiers, which need more samples for
training classifiers to obtain the best performance. Data augment tech-
niques face the challenge of the lack of medical images for COVID-19
diagnosis [79, 84]. Loey et al. [84] used a generative adversarial net-
work (GAN) with deep transfer learning-based data augmentation tech-
niques to strengthen original 306 chest X-ray images to 8100 images for
COVID-19 detection.

4.1.2. Non-image based predictive modeling in COVID-19
Non-image-based classification of COVID-19 focuses on using EHR
information to diagnose COVID-19, which consists of two types of stud-
ies: score system-based and ML-based COVID-19 diagnosis. For the
former, researchers seek to identify important predictors, assign to
their scores, sum these scores, and discriminate the severity of disease
[85-86]. For example, Liang et al. [85] built a predictive risk score
(COVID-GRAM) system, which included 10 important predictive factors
that were screened from 72 potential predictors among epidemiologi-
cal, clinical, laboratory, and imaging variables, to estimate the risk of
developing critical illness for patients with COVID-19 admitted to the
hospital. One limitation of these studies is that more professional clin-
ical knowledge or experience is needed for selecting important predic-
tors. Recently, the latter method was widely used for COVID-19 diagno-
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Reference

Task

Data source & size

Model

Result

Parbat et al. (May 2020)
[15]

Zeynep Ceylan (April
2020) [145]

Benvenuto et al.
(February 2020) [146]

Rodriguez et al.
(September 2020) [147]

Singh et al. (September
2020) [148]

Zheng et al. (July 2020)
[24]

Huang et al. (May 2021)
[22]

Liu et al. (May 2021)
[149]

Tian et al. (July 2020)
[150]

Zou et al. (May 2020)
[23]

Friedman et al. (May
2021) [151]

Predict the total number of
deaths, recovered cases,
cumulative number of confirmed
cases, and number of daily cases.

Estimate the prevalence of
COVID-19 in Italy, Spain, and
France.

Predict the epidemiological trend
of the prevalence and incidence
of COVID-2019

Real-time COVID-19 forecasting
including incidence and
cumulative weekly deaths and
Incidence daily hospitalizations.

Predict the spread of COVID-19

Predict the development and
spread of the COVID-19

Forecast the trend of COVID-19
pandemics under the influence of
reopening policies.

Investigate the influence
(reproduction number) of
non-pharmaceutical public health
interventions on COVID-19
epidemics in the United States

Compare the effect of mild
interventions in Shenzhen and
countries in the United States

Forecast the spread of COVID-19

Predict mortality of patients with
COVID-19

Johns Hopkins Github repository (https://
github.com/CSSEGISandData/COVID-19)
between 01/03/2020-30/04/2020

cases: 35,043

deaths: 1,147

recovered patients: 8,889.

The data of COVID-19 collected from the WHO
website
(https://www.who.int/emergencies/diseases/
novel-coronavirus-2019/situation-reports/)
between 21/02/2020-15/04/2020

Italy: mean prevalence case 57,262, mean
incidence case 3,009;

Spain: mean prevalence case 54,075, mean
incidence case 3,521;

France: mean prevalence case 30,233, mean
incidence case 2,092.

the Johns Hopkins epidemiological data
(https://gisanddata.maps.arcgis.com/apps/
opsdashboard/index.html)

Johns Hopkins University (JHU)
COVID Tracking Project
(https://covidtracking.com)

Data collected from Kaggle website
(https://www.kaggle.com/imdevskp/covid19-
corona-virus-india-dataset)

Data covered 15 States of India.

Data collected from the national and provincial
health commissions, and dxy.com website
(Real-time data API for COVID-19 epidemic)
(https://lab.isaaclin.cn/nCoV/zh)

Hospitalization and cumulative morality of
COVID-19.

Houston, Texas,

May 1, 2020 - June 29, 2020

COVID Tracking Project
(https://covidtracking.com)

Daily cumulative confirmed cases of COVID-19
in Shenzhen, China and the countries in the
United States (https:
//github.com/CSSEGISandData/COVID-19)
The Johns Hopkins University Center for
Systems Science and Engineering; The New York
Times data; The data from most states between
03/22/2020 and 05/10/2020.

More than 40,000 cases.

Public data:
https://github.com/pyliu47/covidcompare.

Support vector regression
model

Auto-Regressive Integrated
Moving Average (ARIMA)
model

Auto-Regressive Integrated
Moving Average (ARIMA)
model

DeepCOVID including data
module, prediction module,
and explainability module
based on deep learning
model

Random Forest and Kalman
Filter

Hybrid AI Model based on
susceptible-infected (ISI)
model and RNN model

Risk-stratified SIR-HCD

A generalized linear model
(GLM)

A synthetic control method
with a modified selection of
control variables and the
proposed SIHR model
SuEIR model

SEIR model, Dynamic
Growth, SIKJalpha.

The proposed model was
efficient and has higher
accuracy (more than 87%)
than linear or polynomial
regression methods.

ARIMA (0,2,1), ARIMA
(1,2,0), and ARIMA (0,2,1)
showed the best prediction
performance (more than 82%
accuracy) for Italy, Spain,
and France, respectively.

ARIMA (1,0,4) and ARIMA
(1,0,3) showed the best
performance in terms of
determining the prevalence
and incidence of
COVID-2019, respectively.
The proposed model was
used in CDC COVID-19
Forecast Hub (since April
2020).

The proposed model showed
good performance in terms of
short-term estimation, but
not so good for long-term
forecasting.

The proposed model
acquired the lower mean
absolute percentage errors in
Wuhan (0.52%), Beijing
(0.38%), Shanghai (0.38%),
and countrywide (0.86%) for
the next 6 days.

The proposed model obtained
lower mean squared error
(MSE) and higher prediction
accuracy compared to other
models, and supports
counterfactual analysis.
Different NPIs showed
different levels of
reproduction numbers.

The stay-at-home played the
most important role and
contributed approximately
51% (95% CI: 46%—57%).
The gathering ban (more
than 50 people) was not very
important, which only
contributed 7% (2%—11%).
Implementing the early mild
interventions has the
potential to subdue the
epidemic of COVID-19.

The proposed model has
been adopted by the CDC for
COVID-19 death forecasts.

Seven predictive models that
showed better performance
which had a median absolute
percent error of 7% to 13%
at six weeks.
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Reference

Task

Data source & size

Model

Result

Murray et al. (March
2020) [152]

Hsiang et al. (September
2020) [153]

Li et al. (January 2021)
[154]

Wang et al. (May 2021)
[155]

Rockett et al. (July
2020) [25]

Alzu’bi et al. (December
2020) [25]

Brauer et al. (May 2021)
[156]

Jr et al. (October 2020)
[157]

Predict hospital bed-days,
ICU-days, ventilator-days and
deaths

Investigate the effect (rate of
transmission) of
non-pharmaceutical public health
interventions on COVID-19
epidemics in China, South Korea,
Italy, Iran, France and the United
States

Predict the epidemic trends in
terms of future confirmed cases
within 7 days

Investigate the impact of the
temperature and relative
humidity on effective
reproductive number in
COVID-19 epidemics

Revealing COVID-19 transmission
in Australia

Investigate the effect of
non-pharmaceutical public health
interventions on COVID-19
epidemics

Estimated global access to
handwashing with soap and
water

Investigate the effect of social
distancing mandates and levels of
mask use

Data from local government, national
government, and WHO websites were used.

COVID-19 data collected from government
reports, policy briefings and news articles
(https://github.com/bolliger32/gpl-covid)

Coronavirus Update (Live):
(https://www.worldometers.info/coronavirus/)
Coronavirus (COVID-19) Lockdown Tracker
Aura Vision. (https://auravision.ai/covid19-
lockdown-tracker/)

List of countries and dependencies by
population: (https://en.wikipedia.org/
w/index.php?title=List_of countries_and_
dependencies_by_population&oldid=960653268)
Records of 69,498 patients from Chinese
National Notifiable Disease Reporting System
and 740,843 confirmed cases from COVID-19
database of JHU CSSE (https:
//github.com/CSSEGISandData/COVID-19/).
Data collected from infected patients during the
first 10 weeks of COVID-19 containment in
Australia, which reported by New South Wales
(NSW) Ministry of Health

Coronavirus data collected from two urban
neighborhoods separated by crossings.

1,000 persons.

Observational surveys in the context of the
Global Burden of Diseases, Injuries, and Risk
Factors Study in terms of access to a
handwashing station with available soap and
water for 1,062 locations from 1990 to 2019.
COVID-19 case and mortality data from 1
February 2020 to 21 September 2020 in the
United States

A statistical model based on
parametrized Gaussian error

function

Reduced-form econometric
model

A transfer learning method
called ALeRT-COVID using
attention-based RNN
architecture

Fama-Macbeth Regression
[34]

Agent-based model

Agent-based model by
extending the SIR model

Spatiotemporal Gaussian

process regression modeling

SEIR model

They forecasted total beds
(64,175), ICU beds (17,380),
ventilators (19,481), deaths
(81,114) at the peak of
COVID-19 in the United
States between March to
June 2020.

The proposed model showed
the interventions can reduce
the rate of transmission and
delay on the order of 61
million confirmed cases
across 6 countries.

ALeRT-COVID obtained a
higher prediction in terms of
future confirmed cases

High temperature and
humidity can make
contributions to the
reduction of the transmission
of COVID-19.

The predictions from ABM
were concordant with the
local transmission rates.

The policies including
staying home and hospital
isolation policies, and
preventing travel between
cities made contributions to
the reduction of the
prevalence and the deaths.
The handwashing access
should be considered when
building the forecasting
models of COVID-19 in terms
of low-income counties.
Keeping universal mask use
was enough to relieve the
worst effects of epidemic
resurgences in multiple states
in the United States. Keeping
social distancing was helpful
for reducing the number of
deaths for patients with
COVID-19.

sis [72, 87-89]. Yang et al. [72] built a gradient boosting decision tree
(GBDT) model to predict an individual’s COVID-19 infection status using
three demographic information (i.e., age, sex, race) and 27 routine lab
tests, which obtained an AUC of 0.854. With the advance of DL and the
availability of EHR information, the DL architectures are gaining more
attention for diagnosing COVID-19. Liang et al. [90] built a feedforward
neural network-based DL survival model to predict the risk of COVID-
19 patients developing critical illness using 74 baseline clinical features
at admission from 1,590 patients in 575 medical centers. The proposed
model was validated on three separate cohorts including 1,393 patients
and showed a high concordance index of 0.890, 0.852, and 0.967.

4.2. The subphenotyping of patients with COVID-19

Clinical subphenotyping involves dividing patients who share a phe-
notype into several clusters [91]. Patients in the same cluster have
similar characteristics such as demographics, clinical characteristics,

19

treatments, comorbidities, and outcomes, which differentiate the clus-
ter from other clusters [92]. The identification of subphenotypes helps
understand the pathophysiology of critical care syndromes and can lead
to personalized treatment and management [93]. Recently, data-driven
subphenotyping has been explored for multiple diseases such as sepsis
[94], asthma, and allergies [95]. A general framework of using Al tech-
niques for subphenotyping patients is shown in Figure 4.

The studies of COVID-19 subphenotyping can roughly be divided
into two categories: static subphenotyping and dynamic subphenotyp-
ing. For the former, the researchers first extract patient clinical vari-
ables presenting at admission to the emergency department, hospitaliza-
tion, or ICU, and then use clustering methods such as hierarchical clus-
tering method, consensus cluster analysis method, and self-organizing
map (SOM) to identify clusters, and finally investigate the character-
istics such as comorbidities and outcomes of these clusters [96-100].
For example, Su et al. [99] employed an agglomerative hierarchical
clustering model and 30 routinely clinical variables to identify 4 sub-


https://github.com/bolliger32/gpl-covid
https://www.worldometers.info/coronavirus/
https://auravision.ai/covid19-lockdown-tracker/
https://en.wikipedia.org/w/index.php?title=List_of_countries_and_dependencies_by_populationceoldid=960653268
https://github.com/CSSEGISandData/COVID-19/

Z. Xu, C. Su, Y. Xiao et al.

Table 2 The summary of studies in terms of the applications of Al in drug repurposing

Intelligent Medicine 2 (2022) 13-29

Reference

Method

Data source & size

Number of identified
drug candidates

Identified drug candidates

Zhou et al. (March 2020)
[158]

Zeng et al. (July 2020)
[65]

Gysi et al. (May 2021)
[61]

Wang et al. (May 2021)
[159]

Zhang et al.
(February 2021) [160]

Gordon et al. (April
2020) [161]

Beck et al. (March 2020)
[162]

Mall et al. (July 2020)
[163]

Network-based method
(drug-target network; human
protein—protein interaction
network)

Knowledge-graph
and deep learning

Network-based method including
network proximity, network
diffusion, and AI-Net

Knowledge-graph
and deep learning

Knowledge-graph
and deep learning

Network-based method

Knowledge-graph
and deep learning

Knowledge-graph
and deep learning

DrugBank database (v4.3), Therapeutic Target
Database (TTD), PharmGKB database,
ChEMBL (Sv20), BindingDB, and
IUPHAR/BPS Guide to PHARMACOLOGY.
And other 18 bioinformatics and systems
biology databases including 351,444 unique
PPIs (edges or links) connecting 17,706
proteins (nodes).

24 million Pubmed research articles. A built
knowledge graph contains 15 million edges,
39 types of relationships among nodes
including drugs, diseases, proteins/genes,
pathways, and

expression.

21 public databases for compiling
protein-protein interactions (PPI) data
including 18,505 proteins and 327,924
interactions between them;

DrugBank database for obtaining drug-target
information including 26,167 interactions
between 7,591 drugs and their 4,187 targets.
25,534 peer-reviewed scientific articles.

PubMed, LitCovid, COVID-19.

The built knowledge graph has 131,355 nodes
and 2558,935 relations.

Public sources such as An interactive
protein-protein interaction map
https://kroganlab.ucsf.edu/network-maps;
databases such as ChEMBL [PMID:
27,899,562], ZINC[PMID: 26,479,676] and
IUPHAR/BPS Guide to Pharmacology [PMID:
31,691,834].

Drug Target Common (DTC) database and
BindingDB database.

MOSES, ChEMBL, UniProt, PubChem and
NCBI.

16 drug candidates
and 3 drug
combinations

41

41

69

19

Candidates:

Irbesartan; Toremifene; Camphor;
Equilin; Mesalazine;
Mercaptopurine; Paroxetine;
Sirolimus; Carvedilol; Colchicine;
Dactinomycin; Melatonin;
Quinacrine; Eplerenone; Emodin;
Oxymetholone.

Combinations: sirolimus plus
dactinomycin, mercaptopurine
plus melatonin, and toremifene
plus emodin.

Tetrandrine, Nadide, Estradiol,
and so on (see Table 1 of this
reference)

Auranofin, Azelastine, Digoxin,
and Vinblastine.

Connecting 41 drugs based on
Benazepril, Losartan, and
Amodiaquine.

Paclitaxel, SB 203,580, Alpha
2-antiplasmin, Metoclopramide,
and Oxymatrine.

Silmitasertib,

Bafilomycin Al,

Haloperidol,

Loratadine,

Entacapone, and so on.(see
Supplementary Tables 5 and 6 of
this reference)

Atazanavir, Remdesivir,
Efavirenz, Ritonavir, and
Dolutegravir.

Remdesivir, lopinavir, Ritonavir,
and Hydroxychloroquine (see
Table 3 of this reference)

Prediction of

COVID-19 Patients

Image based predictive
modeling in COVID-19

Lung CT and Chest X-ray
images

% 6% R

Non-Image based predictive
modeling in COVID-19

Vital signs

4 (it

Lab tests

Model pre-training

Model training

Prediction

Model testing

Common models: CNN,
ResNet-101, DenseNet121,
and ResNet-50

Extracting features
based on feature
engineering

Model training

=2

Pneumonia

4

Model testing

Common models: RF,
GBDT, SVM, and LASSO

=5

M

Figure 3. A general framework of using ML (machine learning) and DL (deep learning) techniques in COVID-19 diagnostic and prognostic prediction.
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Reference

Task

Data source & size

Method

Results

Su et al. (March 2021)
[164]

Liang et al. (May 2021)
[85]

Burn et al. (October

2020) [165]

Roth et al. (May 2021)
[166]

Williams et al. (May
2021) [86]

Liang et al. (July 2020)
[90]

Yang et al. (December
2020) [167]

Zhang et al. (June 2020)
[5]

Wang et al.
(May 2020) [75]

Ozturk et al. (June 2020)
[78]

Chen et al.
(October 2020) [87]

Xu et al.
(October 2020) [73]

Explore albumin level between
patients with COVID-19 and
patients with sepsis.

Estimate the risk of developing
critical illness for patients with
COVID-19

Explore the characteristics of
patients with COVID-19 and
influenza

Investigate the characteristics of
patients with COVID-19 in terms
of in-hospital mortality in the
United States

Predict hospitalization, intensive
services, and death for patients
with COVID-19

Predict the risk of COVID-19
patients developing critical illness

Investigate population drifting in
terms of COVID-19 patients

Diagnose COVID-19

Diagnose COVID-19

Diagnose COVID-19

Predict the severity of COVID-19

Diagnose COVID-19

308 patients with COVID-19 and 363 patients
with Sepsis

72 potential predictors were considered from
1,590 patients with COVID-19 in the 575
hospitals of 31 provincial administrative
regions in China as of January 31, 2020.
34,128 adult patients with COVID-19 and
84,585 patients with influenza

(United States: 8,362, South Korea: 7,341,
Spain: 18,425)

20,736 adults with a diagnosis of COVID-19 in
the US between March and November 2020.

The cohort for model development has More
than 2 million patients diagnosed with
influenza or flu-like symptoms any time prior
to 2020.

The cohort for model validation included
43,061 COVID-19 patients form South Korea,
Spain and the United States.

74 baseline clinical features at admission from
1,590 patients with COVID-19 in the 575
hospitals of 31 provincial administrative
regions in China as of January 31, 2020.

21 routine blood tests from 5,785 patients in
ED of New York Presbyterian Hospital/Weill
Cornell Medical Center (NYPH/WCMC)
between March 11 and June 30,2020.

532,506 human lung CT scan images from
3,777 patients, China Consortium of Chest CT
Image Investigation (CC-CCII)

Lung CT images: 5,372 patients from seven
cities or provinces in China.

X-ray images: 127 COVID-19 cases, 500
no-finding, 500 pneumonia.
The Cohen JP and the ChestX-ray8 databases

52 features from 362 patients with COVID-19
including 214 non-severe and 148 severe
cases in China.

618 CT images in total.

219 samples from 110 patients with
COVID-19;

224 samples from 224 patients with IAVP;
175 samples from 175 healthy cases.
These samples are from China.

Chow’s test, linear
mixed-effects models,
Fisher’s exact test, t-test, and
Wilcoxon rank-sum test

Least Absolute Shrinkage and
Selection Operator (LASSO)
and Logistic Regression (LR)
models

Data-driven approach

A multiple mixed-effects
logistic regression

Data-driven approach

Feedforward neural network.

Density-based spatial
clustering of applications
with noise (DBSCAN) and the
Unified manifold
approximation and
projection (UMAP), t-test,
Fisher’s exact test.

CNN

A fully automatic DL model
(DenseNet121-FPN)

CNN

CNN

Two phases of alterations in
albumin levels for patients
with COVID-19 were found,
which were not presented
with patients with sepsis.
AUC=0.88 (95% CI,
0.84-0.93) on a validation
cohort with 710 patients.

Compared to patients with
influenza, patients with
COVID-19 were more male,
younger, and with fewer
comorbidities and lower
medication use.

The mortality rates for
patients with COVID-19 were
different between the months
of March and April and later
months in 2020, which were
not fully explained by
changes in age, sex,
comorbidities, and disease
severity.

The ranges of AUC on
validation in terms of three
outcomes including
hospitalization, intensive
services, and death were
0.73-0.81, 0.73-0.91, and
0.82-0.90, respectively.

The proposed model was
validated on three separate
cohorts including 1,393
patients and showed the
concordance index of 0.890,
0.852, and 0.967,
respectively.

The number of SARS-CoV-2
patients with the COVID-19
HRP became less and less
from March to June 2020.

Internal validation:
Accuracy=92.49%;
External validation:
Accuracy=90.70%.

AUC 0.87 and 0.88 on two
validation sets in
distinguishing COVID-19
from other pneumonia and
AUC 0.86 in distinguishing
COVID-19 from viral
pneumonia.

An accuracy of 98.08% for
classifying COVID-19 and
No-findings and 87.02% for
classifying COVID-19,
No-findings, and Pneumonia.
95% accuracy when
considering all features and
99% accuracy when only
using top 10 important
features selected by Gini
impurity.

Accuracy = 86.7%
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Reference

Task

Data source & size

Method

Results

Avila et al. (June 2020)
[88]

An et al. (October 2020)
[89]

Mei et al. (May 2020)
[71]

Ardakani et al. (June
2020) [74]

Yang et al. (November
2020) [72]

Roy et al. (August 2020)
[83]

Narin et al. (May 2020)
[76]

Jain et al. (September
2020) [79]

Wang et al. (November
2020) [77]

Loey et al. (April 2020)
[84]

Li et al. (September
2020) [100]

Zhou et al. (April 2020)
[168]

Su et al. (July 2020)
[102]

Predict COVID-19

Predict mortality for patients
with COVID-19

Diagnose COVID-19

Diagnose COVID-19

Predict COVID-19

Diagnose COVID-19

Diagnose COVID-19

Diagnose COVID-19

Diagnose COVID-19

Detect COVID-19

Diagnose COVID-19;
Identify subphenotypes

Identify subphenotypes

Identify subphenotypes

510 patients including 73 positives for
COVID-19 and 437 negatives were from the
emergency department of Hospital Israelita
Albert Einstein (HIAE, Sdo Paulo, Brazil).

Sociodemographic and medical information
from 10,237 patients with COVID-19 in a
nationwide

Korean cohort.

CT scan images and non-image information
such as demographic and laboratory tests
from 905 patients between 17 January 2020
and 3 March 2020 from 18 medical centers in
13 provinces in China.

1,020 CT images from 108 patients in Iran
University of Medical Sciences (IUMS)
hospital.

Demographic information (i.e., age, sex, race)
and 27 routine lab tests from 3,356
SARS-CoV-2 RT-PCR tested patients.

These tests were from NYPH/WCM dataset.
Italian COVID-19 Lung Ultrasound DataBase:
277 lung ultrasound videos from 35 patients,
corresponding to 58,924 images.

341 images from COVID-19 patients, 2,800
normal chest images, 1,493 viral pneumonia
and 2,772 bacterial chest X-ray images
1,832 X-ray images strengthened from
original 1,215 X-ray images by using data
augmentation techniques

Two datasets including 1,102 and 625 chest
X-ray images, respectively.

8,100 chest X-ray images strengthened from
original 306 chest X-ray images by using data
augmentation techniques.

Public dataset: 413 patients with COVID-19
and 1,071 patients with influenza

Mexican Government COVID-19 open data
including 778,692 COVID-19 patients.

NYP-WCMC eligible 318 patients extracted
from 1,661 patients with COVID-19 and
NYP-LMH eligible 84 patients extracted from
458 patients with COVID-19.

Gaussian Naive Bayes (NB)

LASSO, SVM and RF

CNN-+MLP

CNN (ResNet-101)

Gradient boosting decision
tree (GBDT)

Spatial Transformer
Networks and CNN

CNN

CNN (ResNet-50)

CNN and SVM
GAN with deep transfer
learning

XGBoost model;
a self-organizing map (SOM)

meta-clustering technique

Dynamic time warping and
hierarchical agglomerative
clustering method

100% sensitivity and 22.6%
specificity, 76.7% for both
sensitivity and specificity,
and 0% sensitivity and 100%
specificity when prior values
were set to 0.9999, 0.2933,
0.001, respectively.

The LASSO model obtained
best AUC (0.962 (0.945-
0.979)), and identified
several significant predictors
such as old age and
preexisting DM or cancer.
AUC=0.92 on a test set with
279 patients.

AUC = 0.994,
Sensitivity = 100%,
Specificity = 99.02%,
Accuracy = 99.51%.
AUC = 0.854 (95% CI:
0.829-0.878).

Accurate prediction and
localization of COVID-19
imaging biomarkers in three
tasks including frame-based
classification, video-level
grading and pathological
artifact segmentation.
96.1%, 99.5%, and 99.7%
accuracy on three datasets,
respectively.
Training-validation-testing:
accuracy, recall, and
precision were 99.77%,
97.14%, and 97.14%,
respectively.

5-fold cross validation:
average accuracy, sensitivity,
specificity, precision, and
F1-score were 98.93%,
98.93%, 98.66%, 96.39%,
and 98.15%, respectively.
99.33%, and 95.02%
accuracy on two datasets,
respectively.

Testing sets: 100% accuracy;
Validation set: 99.9%
accuracy.

Sensitivity = 92.5%;
Specificity = 97.9%;
Identified 4 subphenotypes
which showed much
difference in terms of gender
distribution and levels of CRP
and serum immune cells.
Identify 3 clusters which
showed different recovery
rates

Discovered distinct
worsening and recovering
subphenotypes within three
strata including mild,
intermediate, and severe
strata.
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Reference

Task

Data source & size

Method

Results

V.Bhavani (December
2020) [103]

Lascarrou et al. (March
2021) [97]

Legrand et al. (October
2020) [96]

Schinkel et al. (February
2021) [98]

Su et al. (July 2021) [99]

Identify subphenotypes

Identify subphenotypes

Identify subphenotypes

Identify subphenotypes

Identify subphenotypes

696 hospitalized patients in University of
Chicago Medicine

416 COVID-19 patients with moderate to
severe ARDS at 21 intensive care units in
Belgium and France.

608 patients in at eight teaching hospitals of
the Assistance Pub- lique-Hépitaux de Paris

2,019 patients collected from COVID Predict
project in the Netherlands.

Development cohort with 8,199 patients and
internal and external validation cohorts both
with 3,519 patients. Those patients were from
five major medical centers in New York City
(NYC), between March 1 and June 12, 2020.

Group-based trajectory
modeling (GBTM)

Hierarchical clustering
method

Consensus cluster analysis
method

Consensus cluster analysis
method

Data-driven (agglomerative
hierarchical clustering
model)

Discovered 4 subphenotypes
which were different in
experiencing cytokine storm,
coagulopathy, and cardiac
and renal injury.

Identified 3 subphenotypes
which have different
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Figure 4. A general framework of using Al techniques for the subphenotyping of patients with COVID-19. SOM: Self-Organizing Map; HAC: Hierarchical Agglomer-

ative Clustering.

phenotypes among 8,199 patients with COVID-19 and validated them
on internal and external cohorts both with 3,519 patients. There were
many differences among discovered subphenotypes in terms of demo-
graphics, clinical variables, comorbidities, clinical outcomes, and med-
ication treatments. Li et al. [100] used the SOM method and identified
four subphenotypes on 48 clinical variables from 398 patients. These
four discovered subphenotypes showed different characteristics. These
static variable- based subphenotyping studies mainly identify the short-
term subphenotypes, which may ignore the information in terms of the
progress of disease and treatment. Although previous studies have dis-
covered several subphenotypes, static assessments of COVID-19 may be
incomplete due to the variable presentation to healthcare after develop-
ing symptoms and the evolution of organ failure in critical care [101].

For the dynamic subphenotyping, the researchers considered the tra-
jectory of variables during a long- term period such as three days and
used trajectory-based clustering methods such as dynamic time warping
(DTW) [102] and group-based trajectory modeling (GBTM) to identify
clusters [103]. For example, Bhavani et al. [103] used the dynamic tra-
jectories of COVID-19 patient temperature to identify subphenotypes.
The differential pattern of temperature change may provide cues to a
varied underlying inflammatory response to infection. However, this
study only used the trajectory of a single variable, which may ignore
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the influence of other organ dysfunction. To consider trajectory from
multiple organ dysfunction can refine the understanding of the natu-
ral history of COVID-19 in response to standard of care treatment and
define patterns of disease that may benefit from novel therapeutic strate-
gies [104]. Su et al. [102] used the trajectory of sequential organ failure
assessment that described dysfunctions in six organs including respi-
ration, coagulation, liver, cardiovascular, central nervous system, and
renal system to identify subphenotypes among the critically ill patients
with COVID-19. They discovered distinct worsening and recovering sub-
phenotypes within different baseline severity strata. Compared to base-
line severity of illness, demographics and comorbidities, dynamic in-
flammatory markers and ventilator variables showed significant differ-
ence between worsening and recovering subphenotypes. These dynamic
variable-based subphenotyping studies consider the longitudinal vari-
able trajectories and have demonstrated great promise to achieve unique
insights into the multiorgan dysfunction.

4.3. Challenge and opportunities

Although clinical research including building predictive models and
subphenotyping COVID-19 patients has been paid more attention and
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promising initial results have been obtained, there are some challenges
or opportunities. A few are mentioned here below.

(1) Most of the previous clinical research in COVID-19 mainly used
structured information such as demographics, lab tests, vital signs, to
build the representation of patients for ML modeling. Unstructured
information such as clinical notes, the reports of CT scan images may
contain more detailed information for COVID-19 diagnosis. For ex-
ample, Obeid et al. [105] performed text information analysis based
on patients’ self-reported symptoms to predict COVID-19 infection
risk by a word embedding-based CNN. The unstructured information
can be used as complementary information for structured informa-
tion [106]. Integrating structured and unstructured information can
completely represent the patient and improve model performance.
How to integrate this information still needs to be investigated by
researchers.

For COVID-19 subphenotyping studies, validating the discovered
subphenotypes on external sites is very important. However, the dis-
tribution difference between derivation cohort and validation cohort
such as the size of cohort or heterogeneity of risk factors may gen-
erate different subphenotypes. Designing a method to measure the
discrepancy of distribution and integrating them into an ML model
may make contributions for identifying subphenotypes.

Current static variables-based subphenotyping studies mainly iden-
tify subphenotypes for patients at admission to the emergency de-
partment or ICU. These discovered subphenotypes may be too early
for those patients, which may ignore the progress of COVID-19.
Choosing proper time such as the first six hours after admission for
subphenotyping patients may be able to avoid premature phenotyp-
ing [94].

Although dynamic-based COVID-19 subphenotyping considered the
longitudinal trajectories and has the potential to obtain a compre-
hensive understanding in terms of the natural history of COVID-
19, it is still challenging to set a proper time interval for extract-
ing features and building a representation for each patient based on
trajectory.

(2

—

@3

—

(4

-

5. Al in COVID-19 on behavioral and social sciences

The outbreak of COVID-19 produced an impact on people’s daily
behavior. Several specific topics including information search behavior
change, the impact of misinformation, psychosocial impacts, mobility
network, and contact tracing have been investigated. In particular, for
information search behavior change, researchers want to know what
kinds of key information would be searched popularly by citizens dur-
ing the COVID-19 pandemic. For example, Bento et al. [107] investi-
gated information-seeking responses to the first COVID-19 case public
announcement in a state. They found more people searched informa-
tion in terms of “coronavirus”, “coronavirus symptoms”, and “hand san-
itizer” after the first case announcement, which increased by about 36%
(95% CI: 27% - 44%) on the day immediately and fell back to the base-
line level in less than a week or two. The information about community-
level policies such as quarantine and personal health strategies such as
grocery delivery was not paid more attention, which indicated the study
period was relatively early in the epidemic and there were limited elab-
orate policies from public discourse.

Investigating the information search behavior change can help the
government to take proper measures. However, there is a large amount
of misinformation in terms of COVID-19, which may mislead people’s
decisions [108-110]. Bursztyn et al. [111] discovered the relation-
ship between misinformation and health outcomes based on the two
most popular cable news shows (including Hannity and Tucker Carlson
Tonight in the United States). An epidemiological model was used to
measure the magnitudes in terms of treatment effects, which highlighted
the relevance of externalities. Bursztyn et al. reported that misinfor-
mation on mass media had significant social consequences. In order to
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identify low credibility news, Zhou et al. [112] constructed a repository
based on 2,029 articles from about 2,000 news publishers and 140,820
tweets, which included multiple types of information on coronavirus,
such as textual, visual, temporal, and network information. Several ML
methods-based predictive models were built for identifying fake news
and obtaining competitive performance.

Investigating social media can find the cues in terms of psychosocial
impacts during COVID-19 [113-115]. Saha et al. [116] discovered the
temporal and linguistic changes in symptomatic mental health and sup-
port expressions during the COVID-19 pandemic by comparing Twitter
streaming posts collected in 2020 and 2019. They found no significant
increase in terms of people’s mental health symptoms and support ex-
pressions during the COVID-19 period. Linguistic analyses showed that
people express more concerns in terms of the COVID-19 crisis. Zhang
etal. [117] built a fusion classifier that integrated the DL model, psycho-
logical text features, and demographic information to investigate the re-
lationships between feature and depression signals. The proposed model
demonstrated an accuracy of 78.9% and has been used to analyze the de-
pression level of different groups of people on Twitter in terms of three
US states (New York, California, and Florida). These researchers found
that people in Florida had a substantially lower level of depression.

In addition, investigating the spread patterns of cases and tracking
individuals’ movements are useful for controlling the spread of COVID-
19. Chang et al. [31] used a metapopulation susceptible-exposed-
infectious-removed (SEIR) model based on fine-grained and dynamic
mobility networks to investigate the spread of COVID-19 in 10 US
metropolitan areas. The built SEIR model can fit a real case trajectory
and reveals that setting specific occupancy for different points of inter-
est is more effective than uniformly restricting mobility. With the wide
use of smartphones, developing apps can facilitate the tracking of in-
dividuals’ movements. Ahmed et al. [118] introduced three different
kinds of smartphone contact tracing apps based on different ways of us-
ing servers and storing data, including centralized, decentralized, and
hybrid architecture contact tracing apps. These apps have been used
to identify and trace all recent contacts of newly discovered infected
individuals.

5.1. Challenge and opportunities

Although more and more researchers have paid attention to behav-
ioral and social sciences during the COVID-19 pandemic, the following
challenges or opportunities remain.

(1) The bias of data source: most previous studies used social media data
from multiple sources such as different news publishers or Tweet
posts. There may be bias for those news publishers. Identifying those
biases and integrating them into the model may help in detailed
analysis. In addition, there are other types of data such as image
and video, which can be integrated with text information to provide
more insights for the analysis of COVID-19.

Data privacy for tracing apps: although current apps have used some
techniques such as decentralized contact tracing to keep privacy,
a fully decentralized architecture has not been proposed [118]. A
technique of using a peer-to-peer network may facilitate privacy-
preserving information sharing amongst the user devices.
Behavioral changes in different groups such as old and young groups
may be different during the COVID-19 pandemic [119]. Interesting
findings may show if researchers perform more fine-grained analysis.
The government would take proper measures to assist those who may
suffer from severe health problems such as depression or anxiety in
different groups.

Most previous studies on behavioral changes mainly focused on pa-
tients with COVID-19. Currently, with more and more citizens get-
ting vaccinated, investigating the changes in mental health problems
after vaccination may be interesting.
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6. Discussion: existing challenges and potential future directions

In previous sections, we reviewed studies using Al to address the
COVID-19 pandemic from epidemiology, therapeutics, clinical research,
social and behavioral aspects, and discussed the potential challenges and
opportunities for each kind of application. This section will discuss exist-
ing challenges, potential directions, and open questions from a general
perspective.

6.1. Model interpretation

Model interpretation is very important in the medical domain be-
cause model outputs (e.g., diagnosis) without reasonable reasons make
no sense to clinicians [120]. Different types of models may need dif-
ferent types of explainability. Previous models for COVID-19 analysis
can be divided into two types: models built on ML and non-ML tech-
niques. For models built on non-ML techniques such as using risk scores,
it is not very difficult to explain final results by investigating each risk
variable and other related clinical EHR information, which can be seen
as intrinsic interpretability [121]. For example, Liang et al. [85] built
a predictive risk score (COVID-GRAM) system, which used 10 impor-
tant factors from the epidemiological, clinical, laboratory, and imaging
variables, to estimate the risk of developing critical illness for patients
with COVID-19 admitted to the hospital. When interpreting the COVID-
GRAM, clinicians only check scores of specific variables among these
10 factors. In addition, clinicians may modify their assessment if they
find some values of variables are abnormal. Intrinsically interpretable
models based on non-ML techniques can provide better interpretabil-
ity for clinicians; however, building models based on risk factors is not
easy because more professional knowledge is necessary for developers
to choose important risk factors.

With a larger amount of EHR, an increasing number of ML mod-
els have been used in clinical applications. For models based on ML
techniques, the interpretability can be seen as post hoc interpretation
[121]. There are two directions for obtaining interpretable ML model-
ing. One is to derive explainable tools that show the contribution of
input features to the final output. Several explainable tools such as local
interpretable model-agnostic (LIME) [122] and Shapley Additive Expla-
nation [123] have been developed to determine the feature contribu-
tions by assigning importance scores. Adding attention mechanisms to
hidden layers in DL models can also contribute to model interpretabil-
ity [124]. Another key aspect is to interpret complex models based on
multiple relatively simple models. For example, outputting the results
of each convolutional layer of CNN in identifying specific regions of an
image may provide cues for explaining final output results [125]. In
addition, considering different levels of explainability in different appli-
cations may be sensible [121]. For example, clinicians may be relatively
comfortable utilizing black-box models for some specific clinical appli-
cations (e.g., image analysis) that clinicians can readily intervene in.
On the other hand, applying the black-box model to address unexplored
problems may cause less comfort for clinicians.

6.2. Model security

Though ML models have been widely used in COVID-19 related ap-
plications, increasing evidence has shown that existing ML models could
be fooled by adversarial examples and hence it is hard to obtain desir-
able performance [126-127]. Adversarial examples are models’ inputs
that are intentionally designed to make a mistake such as misclassifica-
tion for identifying COVID-19 cases on medical IoT (Internet of Things)
devices, which may poison the learning or the inference processes, and
further compromising the security of ML models [128]. Recently, adver-
sarial examples have been one of the most popular research topics in ML
communities [129]. Although few studies in terms of adversarial exam-
ples have been conducted, two directions may be necessary for inves-
tigating the detection and defense mechanisms in terms of the COVID-
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Table 4 An example of a binary classification problem based on machine
learning in terms of whether a loan would be returned using n + 1 attributes

Variable_1 Variable_2 Variable_n Q Label (Y)
Client_1 F11 F12 Fln Q1 1
Client_2 F21 F22 F2n Q2 0
Client. m Fml Fm2 Fmn Qm 1

Q is a sensitive variable such as the user’s race. Labels “0” and “1” represent
“Returned” and “Defaulted”, respectively.

19 DL poisoning process. One is to employ blockchain techniques to
address adversarial example attacks on COVID-19 applications. For ex-
ample, Nassar et al. [130] utilized blockchain to save benign attributes
and parameters of each DL model, and furtherly transfer them to ex-
plainable AI for high-level users to check whether a particular model
is compromised or not. Another is to study transferable adversarial ex-
amples [131], which can show better defense mechanisms against in-
ference and model poisoning. Additionally, applying real-world attacks
to test DL models and using industry standards such as IBM Adversar-
ial Robustness Toolbox (ART) [132] to estimate and defend DL models
against adversarial threats should be encouraged.

6.3. Model bias

Al techniques have become more ubiquitous for users to make or
assist decisions in multiple domains such as recruiting (screening job
applicants), banking (credit ratings/loan approvals), and judiciary (re-
cidivism risk assessments). However, bias concern has been drawn more
attention recently by researchers in terms of whether the learned scor-
ing function in the ML model can make fair decisions in those real-world
applications [133]. The bias in ML can be seen as the phenomenon of
observing results that the learned model is systematically prejudiced
across different groups defined by sensitive variables such as race or
gender [134]. The bias may give rise to discrimination for protected
groups and lead policymakers to make unfair decisions in real-world ap-
plications [135]. Detecting the bias and reducing its likelihood in model
design and execution would play more critical roles in creating a fair
treatment for specific populations [136].

The bias in ML that may cause discrimination can be roughly di-
vided into three types [137-138], namely disparate treatment, disparate
impact, and disparate mistreatment. To better understand the different
types of bias, we take an example (Table 4) in terms of a binary classi-
fication problem where the ML model learns whether a loan would be
returned using n + 1 attributes, of which Q is a sensitive variable such as
the user’s race. For disparate treatment, it can be detected if the chang-
ing of a user’s predicted label depends on the changing of the sensitive
variable. The above example shows that the learned algorithm predicts
positive labels for repaying a loan for the White user population and
a negative one for the Black user population. Removing the sensitive
variable during model training is a way to avoid the dependence on the
sensitive variable. For disparate impact, it can be discovered whether the
fraction of positive (negative) labels for the different sensitive groups is
different. In terms of the above example, it means more percentage of
Black people were classified as defaulters as compared to the White peo-
ple. Removing the sensitive variable from the dataset is not an excellent
way to prevent the disparate impact because other related features such
as zip code may cause this issue. Checking the training dataset and mak-
ing sure there is not much imbalance in terms of positive and negative
samples may help prevent disparate impact. For disparate mistreatment,
it can be detected if there is a difference in terms of the proportion of ac-
curate labels for different sensitive groups [138]. This bias was found by
Propublica in the Northpointe algorithm [139], which misclassified in-
nocent Black defenders as reoffending at twice the rate as White people.
Keeping the same percentages of accurate labels for all sensitive groups
is useful for rectifying the mistreatment. The objective of ML is to op-
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timize a cost function by minimizing the difference between function
outputs and real results. Adding the constraints to the objective func-
tion by considering the above-mentioned bias can avoid discrimination.
A trade-off between fairness and accuracy should be considered when
adding constraints.

6.4. Privacy issue and model precision

Privacy concerns are very important in applications of ML for health-
care. The “differential privacy” technique has been used to ensure model
and data privacy in a single dataset [140-141]. For example, Chaud-
huri et al. [142] proposed differential private approaches to preserve
parameters obtained from logistic regression models or support vector
machines (SVMs). However, it remains challenging for most AI mod-
els to address two issues: (1) more parameters to be safeguarded in DL
models; (2) keeping privacy when integrating data from multiple sites.
To maintain a balance between privacy and model precision, federated
learning (FL) [143], a framework of constructing a central parameter
server to train a global model based on the parameters from multiple
local sites that store their own sensitive data, has attracted more atten-
tion and offer immense promise when integrating fragmented health-
care data from multiple medical sites with privacy-protection. More re-
cently, Swarm Learning (SL) [144], a decentralized ML framework that
integrates edge computing, blockchain-based peer-to-peer networking
and dynamic central coordinator, has been paid more attention. Warnat-
Herresthal et al. [144] used the SL framework to perform predictions in
terms of COVID-19, tuberculosis, leukemia and lung pathologies to il-
lustrate the feasibility of SL. Under the SL framework, a shared global
model is trained with a dynamic central coordinator that aggregates pa-
rameters’ from local sites keeping their sensitive data. Blockchain-based
peer-to-peer networking is used to keep parameters privacy during data
transferring. Thus, data and parameters offer double protection in SL,
which can go beyond FL in real-world applications. Although the perfor-
mance of FL and SL models is usually better than the model trained on
single local sites, there exists ample scope for improvement compared to
the central model trained by aggregating data from all local sites with-
out any consideration of privacy. How to improve model performance
remains an important problem. In addition, most applications using the
FL and SW framework mainly focus on disease risk prediction that is rel-
atively simple. Employing these models for more complex applications
such as medical treatment and providing medication prescripts may be
more worth exploring.

7. Conclusion

In this study, we reviewed existing studies on using Al techniques
to deal with COVID-19 pandemic- related problems from four aspects
including epidemiology, therapeutics, clinical research, social and be-
havioral studies. All the results available in that previous literature
demonstrated the applicability and great promise of Al in addressing
the COVID-19 pandemic. Also, some challenges, directions, and open
questions are provided in this review, which may immensely help re-
searchers to explore more related topics in the future.
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