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Abstract—Smart distribution grid with multiple renewable 
energy sources can experience random voltage fuctuations due 
to variable generation, which may result in voltage violations. 
Traditional voltage control algorithms are inadequate to handle 
fast voltage variations. Therefore, new dynamic control methods 
are being developed that can signifcantly beneft from the 
knowledge of dominant voltage infuencer (DVI) nodes. DVI 
nodes for a particular node of interest refer to nodes that 
have a relatively high impact on the voltage fuctuations at that 
node. Conventional power fow-based algorithms to identify DVI 
nodes are computationally complex, which limits their use in 
real-time applications. This paper proposes a novel information 
theoretic voltage infuencing score (VIS) that quantifes the 
voltage infuencing capacity of nodes with DERs/active loads 
in a three phase unbalanced distribution system. VIS is then 
employed to rank the nodes and identify the DVI set. VIS is 
derived analytically in a computationally effcient manner and 
its effcacy to identify DVI nodes is validated using the IEEE 
37-node test system. It is shown through experiments that KL 
divergence and Bhattacharyya distance are effective indicators 
of DVI nodes with an identifying accuracy of more than 90%. 
The computation burden is also reduced by an order of 5, thus 
providing the foundation for effcient voltage control. 

Index  Terms—voltage infuencing score (VIS), voltage infu-
encer nodes, DERs, rank, analytical. 

I. INTRODUCTION 

THE power grid is evolving with the increasing integration 
of renewable distributed energy resources (DERs). While 

offering the benefts of reduced carbon footprint, DERs also 
impose new technical challenges. Specifcally, active con-
sumers with rooftop photovoltaics and distributed generation 
are expected to alter their generation and usage patterns to 
follow the trends of time-varying electricity prices [1]. This 
in turn induces frequent power variations. The uncontrolled 
operations of DERs under this condition leads to voltage 
fuctuations in the distribution system. Grid operators have to 
manage DERs’ operations to assure the reliability of the grid. 
Therefore, various control algorithms have been considered 
for regulating power injection/consumption across various 
buses of the network to mitigate voltage fuctuations [2]– 
[4]. However, traditional methods of voltage control involving 
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voltage regulators, on-load tap changing transformers are slow 
and inadequate to deal with bi-directional power fows and fast 
dynamics. This necessitates the development of computation-
ally effcient and fast dynamic voltage control algorithms that 
can handle the dynamics of power/voltage variation [5]–[7]. 
The speed of response to impending voltage issues and the 
computational effciency of these dynamic algorithms rely on 
our ability to select the optimal set of nodes for control that 
have the highest infuence on the system voltage profle. 

To this end, we introduce the notion of dominant voltage 
infuencer (DVI) nodes. Throughout this paper, we refer to 
actor nodes as the nodes where power changes (due to DER 
unit and/or load dynamics) and observation nodes represent 
the set of nodes where voltage state is monitored. Thus, DVI 
nodes for a particular observation node denote all those actor 
nodes that have a relatively high impact on the voltage state 
of that observation node compared to the rest of the actor 
nodes. Hence, altering the actions of DVI nodes result in the 
highest reduction in voltage issues at the observation node. 
The nodes could be DVI because of their size (generation/load 
capacity) and/or locations in the distribution network. Con-
ventional methods of identifying such DVI nodes involve 
Monte-Carlo simulations using load fow algorithms. These 
classical methods possess various drawbacks including (1) 
high computational complexity, (2) numerical results with no 
analytical insights, and (3) scenario dependent results with 
no generalization. These factors limit the applicability of 
conventional approaches in modern distribution systems. Thus, 
there is a need to develop an analytical and computationally 
effcient algorithm for identifying DVI nodes in three phase 
unbalanced distribution systems, which in turn can be used to 
develop effective voltage control algorithms. 

For identifying DVI nodes, we need to quantify the impact 
of actor nodes on other nodes of the network in terms of 
voltage. Therefore, frst, we develop a novel metric namely 
voltage infuence score (VIS) for quantifying the voltage 
infuencing capacity of an actor node on any arbitrary ob-
servation node. The VIS is based on an analytical method of 
voltage sensitivity. Thereafter, the VIS is employed to rank the 
actor nodes for any arbitrary observation node and identify 
the most infuential ones, i.e., DVI nodes. The proposed 
approach allows us to identify DVI nodes without relying on 
computationally expensive Monte-Carlo simulations thereby, 
signifcantly reducing the computation time. 

Knowing the DVI set, one can focus on controlling the 
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dominant nodes within a cluster for ensuring the stability 
of voltage states for all nodes within that cluster. This is 
benefcial in the sense that minimal control actions would be 
required compared to any local control scheme such as [8]. 
Furthermore, the DVI set helps to effciently assign penalties 
to controllable nodes through a weight matrix. For example, 
assume a cluster in an unbalanced distribution system with N 
nodes. In a nutshell, power injections (∆S) at the DVI set 
n ∈ N  can be controlled over the control horizon T  by 1, X 

Min ∆ST R∆S 
t∈T 

where, R = RT  ≻ 0  is a diagonal weight matrix on control 
policies. That is, any control actions could have a cost asso-
ciated with it. Elements that belong to DVI nodes, i.e., Rn,n, 
can have lower penalties compared to non-DVI nodes within 
the cluster. Additionally, there could be a scenario where DVI 
nodes are not controllable. However, the voltage infuencing 
scores offer greater fexibility in choosing the nodes even 
if the top dominant nodes are not controllable. Moreover, 
in the application of network partitioning, non-controllable 
DVI nodes can also be valuable in defning clusters and thus 
indirectly participate in voltage control. 

Contributions: This paper proposes a novel approach to 
identify DVI nodes that can be used for network clustering 
and distributed control mechanisms in unbalanced distribution 
systems with DERs. The key contributions of this paper 
include: 
•  An analytical and computationally effcient method of 

identifying dominant voltage infuencer nodes is proposed 
which is valid for both balanced and unbalanced distri-
bution system. 

•  This work introduces a VIS metric that quantifes the 
voltage infuencing capacity of nodes with DERs/active 
loads, and a computationally effcient method to compute 
it. 

•  Compared to [9], this work has three major advancements 
(1) the probabilistic model of voltage fuctuations is 
derived for a three phase unbalanced distribution systems; 
(2) The voltage infuencing capacity is quantifed for each 
pair of nodes; (3) In addition to identifying the most 
dominant node, this work provides ranks of all dominant 
infuencer nodes based on their VIS; 

•  Reference [10] is our foundational work on deriving 
an analytical form of voltage change distribution. The 
VIS metric proposed in this work is a function of the 
information-theoretic distance between analytical voltage 
change distributions. 

•  The effectiveness of proposed method is evaluated on the 
standard unbalanced IEEE 37-node test system yielding 
an accuracy of more than 90% with the computation 
complexity reduced by an order of 5 compared to a classic 
load fow based approach. 

1Problem constraints and exact formulations are omitted for the sake of 
simplicity. The aim is to illustrate the usefulness of DVI nodes in effciently 
penalizing non-DVI nodes. 

The paper is organized as follows. Section II presents a 
conventional method to identify DVI nodes followed by an 
analytical method of voltage sensitivity analysis. Section III 
computes probability distributions of voltage change. Various 
information theoretic indicators of the DVI nodes are proposed 
in Section III, which are used to compute VIS. The perfor-
mance of the proposed approach is tested using the IEEE 37-
node test system in Section IV. Conclusions and future-work 
are presented in Section V. 

II. BACKGROUND 

This section introduces the conventional approach to iden-
tify Dominant voltage infuencer (DVI) nodes in a power 
distribution network. Then, the fundamental analytical expres-
sions of voltage sensitivity are discussed which are later used 
to model voltage fuctuations for identifying DVI nodes. 

A. Related work 

Various control algorithms are proposed in the literature for 
regulating voltage fuctuations in the distribution system. Pri-
marily, the control algorithms can be broadly categorized into 
two main categories: (1) centralized [2], [3], [11], [12], and (2) 
decentralized [4], [13], [14] control approaches. Centralized 
voltage control algorithms are generally based on classical 
power fow solution, which can be computationally expensive 
for real time applications. For instance, authors in [11] provide 
a control algorithm using dominant generator nodes. However 
[11] only considers deterministic power change scenarios 
and does not provide any quantifcation of voltage infuence 
while determining dominant generators. Similarly, authors in 
[15] propose a new AC optimal power fow formulation that 
effciently regulates voltage in distribution systems. It has been 
shown that the proposed method results in minimal curtail-
ment of real and reactive power while regulating voltages. 
On the other hand, decentralized voltage control methods 
trade-off performance for reduced computational complexity. 
The speed, complexity and performance of both centralized 
and decentralized algorithms rely on the size and space of 
control actions. In modern distribution systems, the change 
in power consumption or injections due to multiple active 
consumers necessitates the need for analyzing a large number 
of scenarios, expanding the size and space for determining 
optimal control actions. This may further increase the compu-
tational complexity of traditional voltage control algorithms. 
Other approaches to bring voltage to safe operational limits 
in distribution systems involve the installation of additional 
control devices such as, static-var compensators [16], [17], 
dynamic voltage restorers [18], and grid-edge volt-var con-
trollers [19]. Despite their effectiveness in voltage control, 
the installation of additional devices in the system can be 
expensive. Therefore, a practical and economical solution to 
regulate voltage fuctuations is to utilize smart grid edge 
devices like PV inverters. To this end, multiple dynamic 
algorithms have been proposed to control inverters and loads 
to regulate voltages [5]–[7]. In [5], authors randomly select 
and shut down the thermostatically controlled loads during the 
time of high voltage unbalance. Similarly, [7] proposes a data-
driven voltage control algorithm to regulate voltage violations 
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by minimizing power injections at nodes with over voltage 
violations. In a nutshell, all these prior works use heuristic 
based methods to identify nodes whose generations need to be 
curtailed. However, such irrational selection is not desirable in 
terms of yielding optimal solution and providing fairness to 
all generators participating in a transactive energy market. 

Furthermore, there are some efforts where system is par-
titioned into smaller clusters and control is implemented 
for each cluster in a distributed manner [8], [20]–[22]. The 
concept of virtual power plants is also shown to help voltage 
regulation in distribution systems with the presence of DERs 
and battery storage systems (BSS) [23]. In [20], [21], for 
instance, authors propose a new clustering method based on 
voltage sensitivity with respect to power fuctuation due to 
BSS. However, this method is scenario specifc since the 
location of BSS in the system is fxed. Another sensitivity 
based zonal voltage control method is proposed in [22] where 
all nodes in a particular cluster are assumed to participate 
in power curtailment for voltage control. This is diffcult 
to implement as it is not economical or even feasible for 
utilities to have access to control all nodes. There are some 
approaches which also include topological data for system 
clustering [8], [24], [25]. For the approach in [8] to work, 
the nodal Q-V sensitivities must be computed to iteratively 
evaluate the modality index for each cluster [26]. Nevertheless, 
the computational complexity of this method increases with 
the size of the system as computing the Q-V based modality 
index of each cluster is based on forming the adjacency matrix 
of the system. Additionally, the entire body of prior work on 
identifying dominant nodes of voltage fuctuations does not 
consider stochasticity associated with DER power injections 
or user load variations. 

To address these demerits of existing approaches, analyti-
cal and computationally effcient approaches to identify DVI 
nodes that have relatively high infuence on the voltage state 
of critical nodes are needed. The work in this paper addresses 
this essential research gap using a new information theoretic 
voltage infuencing index that is applicable to three-phase 
unbalanced systems. 

B. Conventional approach to identify DVI nodes 

The DVI nodes for an observation node are the nodes that 
have high impact on the voltage fuctuations at the observation 
node. An actor node can be a DVI due to association of two 
factors: (1) location of the actor node, i.e. phase and bus of 
the distribution network, and (2) generation/load capacity of 
DER/loads connected at the actor node which infuences the 
variance of power change at that node. Generally, simulation-
based scenario analysis is used as a major planning tool to 
identify DVI nodes. A typical approach involves following 
steps [9]: 

1) Step 1- Compute variance of voltage change at each 
phase of observation node due to all actor nodes: The 
variance of voltage change at each phase of the observation 
node is computed by running multiple power fow based 
Monte-Carlo simulations with varying power, which captures 
temporal variation of generations. 

2) Step 2- Calculate reduction in variance of voltage 
change at the observation node due to each actor node by 
setting power drawn/injected by the actor node as zero: This 
step requires repetition of Step 1 for each actor node after 
setting the variance of actor node as zero. 

3) Step 3- Rank actor nodes based on the reduction in 
variance caused by the removal of the corresponding actor 
node:: Actor nodes are ranked in an ascending order with 
topmost and bottommost rank assigned to those actor node 
that causes maximum and minimum reduction in variance of 
voltage change at the observation node, respectively. 

This scenario-based method incurs high computational com-
plexity, which grows with the size of the network. Specifcally, 
the complexity arises at two hierarchical levels. At the core of 
this approach, we have load fow runs, whose computation 
using NR-based method is of complexity O(n3)  where n 
represents the size of the distribution network [10]. At a high 
level, multiple power change scenarios are simulated to obtain 
voltage change distributions for steps 1 and 2 of the approach. 
Each such scenario involves a load fow computation, thus one 
ends up running thousands of load fows. In our experiment, a 
hundred thousand scenarios are simulated to compute voltage 
change distribution for each actor node at step 2. The compu-
tational effort is also demonstrated via execution times in the 
Results section. Therefore, to counter computational burden, 
various information-theoretic metrics are explored in the next 
section that can identify DVI nodes in a computationally 
effcient manner and can be used as a tool in various power 
system operations. 

Algorithm 1 Proposed method to identify DVI nodes 

Input: Distribution Network with the target observation node. 
Output: Ranked actor nodes for the input observation node. 

1: Compute distribution of voltage change at the input ob-
servation node due to each actor node at a time. 

2: Compute distribution of voltage change at the input ob-
servation node due to aggregate effect of all actor nodes. 

3: Find statistical distance between the distributions com-
puted in steps 1 & 2. 

4: Compute VIS for each pair of observation and actor nodes. 
5: Rank actor nodes in the ascending order based on their 

respective VIS. 
6: return ranks and VIS of actor nodes for an input 

observation node. 

C. Analytical VSA 

In a three phase distribution system, change in power at any 
one phase of the node causes change in voltage at all phases of 
all the other nodes. Traditional methods of voltage sensitivity 
analysis (VSA) are computationally complex and less generic. 
Therefore, we developed a computationally effcient method 
of VSA in [10], [27]. For an unbalanced power distribution 
system, change in complex voltage ∆VO  at an observation 
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node (O) due to change in complex power at multiple actor background section. In the second step, we compute distances 
nodes can be approximated as: 

∆Sa⋆Zaa  ∆Sb⋆Zab 
A  OA  A OA 

  

  

between the probability distribution due to each actor node 
and the distribution due to the aggregate effect of all actor 
nodes. The Third step utilizes the distances to compute voltage+ ∆Sc⋆Zac 

A  OA 
V c⋆ 
A 

∆V a 
O  +V a⋆ 

A  V b⋆ 
AX infuencing score (VIS) for each pair of observation and actor 

  
  

  
  ∆Sa⋆Zba  ∆Sb⋆Zbb  ∆Sc⋆Zbc 

A  OA  A OA  A OA∆V b 
O  ≈ −  +  +  ,  nodes. Finally, for each observation node, all the actor nodesV a⋆ 

A  V c⋆ 
AV b⋆ 

A 
AϵÃ  are ranked based on the computed VIS. The actor node whose∆Sa⋆Zca  ∆Sb⋆Zcb  ∆Sc⋆Zcc 

A  OA  A OA  A OA+ +  voltage change distribution is nearest to the aggregate voltage∆V c 
O  V a⋆ 

A  V c⋆ 
AV b⋆ 

A 
(1) 

where a, b  and c  represent the three phases. V a  and ∆Sa 
A A 

represent complex voltage and power changes at the phase a 
of the actor node A, respectively; Z  denotes the impedance 
matrix including self and mutual line impedance of the shared 
path between observation node and actor node from the source 
node. Ã  is the set of all actor nodes. Eqn. (1) follows 
superposition law and voltage change is aggregated due to the 
power change of each actor nodes. For a single actor node, the 
voltage change at any phase (say phase a) of an observation 
node O  can be decomposed into real (∆V a,r) and imaginaryOA 
components (∆V a,i ) as:OA " 

change distribution is deduced as the major infuencer of 
voltage change for that particular observation node. Likewise, 
all actor nodes are ranked based on the ascending order of 
their distances. The complete procedure is summarized in the 
Algorithm 1. 

A. Probabilistic model of voltage fuctuations 

This section provides a probabilistic model of voltage 
change in a three-phase unbalanced distribution system, which 
consist of multiple spatially distributed actor nodes with PVs 
and active consumers. Random change in power at actor nodesRaa  Xaa  )(V a,r(∆P a  +∆Qa  )A OA  A OA  A∆V a,r ≈ −OA  +  due to intermittent renewable generation causes random volt-

(V a,r  a,i)2 + (V  )2 
A A 

(2) 
age fuctuations. Therefore, probability distribution is needed 
to quantify voltage change under such stochastic scenarios. 

# 
a,iXaa  Raa(∆P a  − ∆Qa  )(V  )A  OA  A OA  A  − . . .  ,  Here, we implement the frst step of the proposed approach,(V a,r  a,i)2 + (V  )2 

A A  i.e., derive the probability distributions of voltage change at 
any observation node due to random power change at a single 
actor node as well as due to the aggregate effect of all actor 
nodes. Let ∆Sa  be change in complex power at phase a  ofA 

" 
a,i∆V  ≈OA 

Xaa  Raa  )(V a,r(∆P a  − ∆Qa  )A OA  A OA  A− −
a,i(V a,r)2 + (VA  )2 
A  the actor node A. Then, using eqn. (1), the voltage change at 

phase-a of an observation node O  can be expressed as: 
# (3)a,iRaa  Xaa(∆P a  +∆Qa  )(V  )A OA  A OA  A  − . . .  , 

(V a,r  a,i)2 + (V  )2 
A A 

= ∆V a,r  a,i∆V a  + j∆V  (4)OA  OA  OA, 
where ∆P a  and ∆Qa

A  are the real and reactive power changeA 
at phase-a of the actor node A, Raa  and Xaa 

OA  are resistanceOA 
and reactance of shared line between observation node O and X −1 

[∆PA
h(Ru∆V a,r 

OA =  OAcos(ωA) − Xu 
OAsin(ωA))actor node A. It is proved by Corollary 2 in our fundamental |V h|Awork that the error in our approximation of voltage change h,u 

(i.e., eqns. (2) and (3)) is always upper bounded [10]. Hence, 
A(R

u 
OAcos(ωA))],+∆Qh 

OAsin(ωA) + Xu X −1this approximation scales very accurately with the size of the 
a,i  [∆P h 

OAsin(ωA) + Xu 
A(R

u 
OAcos(ωA))+∆Vnetwork and can be leveraged for deriving voltage change = OA  |V h|Ah,udistributions, and consequently identifying the DVI nodes in 

a three-phase unbalanced distribution system. 

III. PROPOSED FRAMEWORK 

As can be seen from the previous section, the conventional 
method of identifying DVI nodes is computationally complex, 
which limits its use in real-time operation of power system. 
Therefore, we propose the use of information-theoretic dis-
tance metrics as potential indicators of DVI nodes. Funda-
mentally, the proposed approach consists of four steps. In 
the frst step, we obtain probability distributions of voltage 
change at an observation node due to each actor node as 
well as due to the aggregate presence of all actor nodes. 
These distributions are derived in a computationally effcient 
way by employing the analytical expressions discussed in the 

∆Qh
A(X

u 
OAcos(ωA))]OAsin(ωA) − Ru 

(5) 

˜ ˜  ˜ ˜where h ϵ H  and u ϵ U . The sets H  and U  denote differ-
ent phases (i.e., a, b, c) and different phase sequences (i.e., 
aa, ab, ac), respectively. ∆P h  and ∆Qh  are the active andA A 
reactive power changes, respectively. Rh  , Xh  are the re-OA  OA 
sistance and reactance of shared path between the observation 
node O  and actor node A  from the source node. ωA  is the 
impedance angle for phase-a. V h  denotes the base voltageA 
of actor node A. For brevity, the derivation is shown for 
phase a. However, the same steps can be followed with the 
corresponding phase quantities to derive expressions for other 
phases. The real and imaginary parts of voltage change can 

0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Kansas State University. Downloaded on May 05,2022 at 04:28:19 UTC from IEEE Xplore.  Restrictions apply. 

http://www.ieee.org/publications_standards/publications/rights/index.html


 

a,ia,ia,ra,r
µµµµ OOAAOOAA

5 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3149144, IEEE 
Transactions on Power Systems 

further be simplifed as, " 
∆V a,r  Caa,r 

A + Daa,r  ab,r= ∆P a  ∆Qa
A + C  ∆Pb

b+OA  OA  OA  OA  # 
ab,r 

b + Cac,r  + Dac,rD  ∆Qb  ∆P c  ∆Qc  ,OA  OA  c  OA  c " (6) 
a,i  aa,i  aa,i  ab,i∆V  =  C  ∆PA

a + D  ∆QA
a  + C  ∆Pb

b+OA  OA  OA  OA  # 
ab,i  ac,i  ac,iD  ∆Qb

b + C  ∆P c + D  ∆Qc  ,OA  OA  c  OA  c 

Eqn. (6) is further written in compact form as, 

∆V a,r = Ca,r T∆SA,OA  OA  (7)Ta,i  a,i∆V  = C  ∆SA,OA  OA 

where, 

Ca,r T 
= [Caa,r  Daa,r  ab,r  ab,r  Cac,r  Dac,rC D  ]OA  OA  OA  OA  OA  OA  OA 

a,i T 
= [Caa,i  Daa,i  Cab,i  Dab,i  Cac,i  Dac,iC  ]OA  OA  OA  OA  OA  OA  OA 

The constants C  and D  are the functions of the line 
impedances and base voltages as explained in eqn. (4). For 
brevity, the exact expressions are omitted from here and are 
provided in the Appendix A. Then, the power change vector 
can be written as, 

∆SA = [∆PA
a ,  ∆Qa  , ∆P b  , ∆Qb  , ∆P c  , ∆QA

c  ]T 
A A  A A 

Thus, because of random power changes at each actor node, 
the power change vector ∆SA  is a random vector with meanP 
vector µ∆SA  and covariance matrix . The covarianceP ∆SA 
matrix ∆SA 

quantifes the correlation of power changes 
among various phases of a particular actor node A. The diag-
onal elements denote variances of power change at each phase 
and off-diagonal elements contain the correlation between the 
power changes. Thus, it can be seen from (22) that the voltage 
change at an observation node O  due to actor node A  is the 
weighted combination of random vector ∆SA, where weights

TT a,i(i.e., Ca,r  and C  ) are constant terms. Invoking theOA  OA 
Lindeberg-Feller central limit theorem, it can be shown that 

a,ithe ∆V a,r  and ∆V  converges in distribution to a GaussianOA  OA 
random variables, i.e., 

∆V a,r  D  a,r  = Ca,r T 
, σa,r 2 = Ca,r T P 

Ca,r→ N (µ  µ∆SA  )OA  OA  OA  OA  OA  ∆SA  OA 

a,i  D  a,i  a,i T a,i 2  a,i T P  a,i∆V  ∼ N (µ  = C  , σ  = C  ∆SA 
C  ),OA  OA  OA  µ∆SA  OA  OA  OA 

(8) 

a,r  a,iwhere, µ  and µ  are the mean vectors of real andOA  OA 
2imaginary parts of voltage change, respectively. σa,r  andOA 

σa,i 2 
are the variances of real and imaginary parts of voltageOA 

change, respectively. For investigating the relationship between 
the real and imaginary parts of the voltage change, a new 
bivariate random vector is defned, " " ##� � � � 

∆V a,r  a,r  σa,r 2 
ka 

OA  OA  OA  OA 
a,i  ∼ N  µ 

a,i  ,  2  ,  (9)
∆V  µ ka  a,i 

OA  OA  σOA  OA 

= Ca,r T P a,iwhere, ka  C  is the covariance betweenOA  OA  ∆SA  OA 
the real and imaginary parts of the voltage change due to single 
actor node A. Eqn. (9) provides the probability distribution of 
voltage change at a particular observation node due to single 
actor node A. A similar approach can be used to compute 
individual voltage change distributions due to each actor node 
in the network. Now, we need to obtain the voltage change 
distribution due to the aggregate effect of all actor nodes. 
Using the superposition property in (1), the voltage change 
due to cumulative effect of power changes at multiple actor 
nodes can be expressed as [10], 

LX 
∆V a,r  ∆V a,r=  (10)O  OA , 

A=1 

where L is the number of actor nodes. By leveraging (22), the 
net voltage change can be written as, 

NX 
∆V a,r  Ca,r T 

O  =  OA  ∆SA 
6×1 

A=1 
1×6 

= [Ca,rT
Ca,rT 

. . . Ca,r  T
][∆S1∆S2 . . . ∆SN ]

T 
O1  O2  ON 

= Ca,rT 
∆SO 
6N×11×6N 

(11) 
Twhere Ca,r  and ∆S  are the long vectors, composed of aO 

constant term and the power change vector corresponding to 
each actor node, respectively. Similarly, the imaginary part of 
voltage change can be written as, 

NX T Ta,i  a,i  a,i∆V  =  C  ∆SA = C  ∆SO  OA  O  (12)
6N×16×1  1×6NA=1 

1×6 

The equations (11) and (12) possess a similar form as that of 
(22), i.e., the net voltage change is the weighted combination 
of power change vector ∆S. Here, weight Ca,r  is a constantO 
vector comprising of line impedances and node base voltages, 
whereas, ∆S  comprises of power change at all phases of 
all actor nodes. Now, invoking the same Lindeberg-Feller 

a,icentral limit theorem, the real ∆V a,r  and imaginary ∆VO O 
part of aggregate voltage change can be shown to converge in 
distribution to a Gaussian random variables with the following 
parameters: 

∆V a,r  D  a,r = Ca,rT 
µ∆S , σ

a,r2 
= Ca,rT P 

Ca,r→ N (µ  )O O  O  O  O  ∆S  O 
T 2  T Pa,i  D  a,i  a,i  a,i  a,i  a,i∆V  → N (µ  = C µ∆S , σ  = C C  )O O  O  O  O  ∆S  O 

(13) 

Similar to the single actor node case, the correlations between 
the real and imaginary parts of net voltage change is captured 
by defning a new random vector as: " " ##� � � � 

∆V a,r  a,r  σa,r2 
ka 

O  O O O 
a,i  ∼ N  µ 

a,i  ,  2  (14)
∆V  µ ka  a,i 

O  O O  σO 

= Ca,rT P a,iwhere, ka  C  is the covariance between theO  O  ∆S  O 
real and imaginary parts of net voltage change. Equations (9) 
and (14) provide the probability distribution due to single actor 
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node and the aggregation of multiple actor nodes, respectively. 
It is worth noting that the voltage change expressions in equa-
tion (13) are valid for any number of actor nodes. Further, the 
proposed method to determine voltage change is suffciently 
general for PV generation with any arbitrary distribution. 
This is because the derivation of the voltage change utilizes 
standard statistical results that are valid for any probability 
distribution. Precisely, eqn. (12) computes voltage change in 
the real part of phase a (∆V a,r) as the weighted sum of theO 
power changes in the actor nodes. Here, even if each element 
of ∆S representing PV generation changes is not Gaussian, we 
can still invoke Lindeberg-Feller central limit theorem [4], to 
show that the weighted sum of the elements of ∆S converges 
in distribution to a Gaussian. Therefore, the distributions of 
the real and imaginary parts of voltage change will always 
converge to a normal which eventually leads to a Nakagami 
distribution for the magnitude of voltage change. The next sub-
section focuses on computing the statistical distances between 
these distributions and presents the procedure to rank the actor 
nodes. 

B. Information theoretic metrics as DVI indicators 

This sub-section implements the second step of our pro-
posed approach, i.e., calculate statistical distances between 
the probability distributions (derived in earlier sub-section), 
and rank the actor nodes based on the computed distances. 
The information theoretic distance metrics which are potential 
indicators of DVI nodes are defned frst. 

1) Kullback-Liebler distance: Kullback-Liebler (KL) dis-
tance quantifes how much one probability distribution differs 
from another probability distribution. KL divergence between 
two multivariate Gaussian distributions (N0  and N1) of di-
mension k  with means (µ0  and µ1) and covariance matricesP P 
( and ) can be written as:0 1  " 

1  P−1 P 
DKL(N0||N1) =  tr(  1 02  # (15)PP−1  |  |

+(µ1 − µ0)T (µ1 − µ0) − k + ln  P1  )1  |  |0 

where tr(.) indicates trace of the matrix. Here, the KL distance 
between the distributions of voltage change at the observation 
node due to change in power at an actor node A (∆VOA) and 
due to change in power at all actor nodes (∆VO) is given by" 

1  P−1  P 
DKL(∆VOA||∆VO) =  tr(  ∆V a  ∆V a 

O  OA2  P # P−1  |  ∆V a  |
a a  a a  O+(µO − µOA)

T 
1  (µO − µOA) − 2 + ln  P )  , 

|  |∆V a 
OA 

(16) P P 
where ∆V a  and ∆V a  are the covariances of ∆VOA  and 

OA  O 
∆VO, respectively. 

2) Bhattacharyya distance: Bhattacharyya (BC) distance 
measures the similarity of two probability distributions. It is 
related to the Bhattacharyya coeffcient which is a measure 
of the amount of overlap between two statistical samples. BC 

distance between the distributions of voltage change at the 
observation node due to change in power at an actor node A 
(∆VOA) and due to change in power at all actor nodes (∆VO) 
can be expressed as: 

1  P a a  a aDBC (∆VOA||∆VO) =  (µO − µOA)
T (µ  − µ  )O  OA8  P 

1  | |  (17) 
+  ln( q )P P2  | ||  |∆V a  ∆V a 

O  OA P P P ∆V a +  ∆V a 
O  OAwhere =  2 

C. Voltage Infuencing score (VIS) 

The infuence of an actor node on an observation node 
needs to be quantifed for identifying its rank among all actor 
nodes. In this regard, we devise a novel index to quantify 
voltage infuencing capacity, i.e., Voltage infuencing score 
(VIS). For a given network scenario, i.e., the location of 
actor nodes with the variance of power change from historical 
data, the distances between voltage change distributions at an 
observation node due to each actor node and due to aggregate 
effect of all actor nodes are used to rank the actor nodes. Here, 
these distances are employed to compute the VIS between any 
pair of observation and actor node as: 

1 1−D(A,O)  D(S,O)
V IS(O, A) =  ,  (18)1 1−D(A ′ ,O)  D(S,O) 

where D(A, O)  is the statistical distance between the voltage 
change distribution at an observation node O due to aggregate 
effect of all actor nodes and when actor node A  is solely 
present in the system. D(S, O)  is the statistical distance 
between source node and observation node. The distance can 
be computed with any of the metrics described in the earlier 
subsection. For an observation node O, the lower the distance, 
the more the actor node A  contributes to aggregate voltage 
change and consequently the more infuencing the actor node 
is and vice-versa. Therefore, the VIS is expressed in terms 
of inverse of distance. To provide an absolute sense to the 
score, VIS is normalized with minimum and maximum values. 
For a particular observation node, the ideal location of actor 
node A ′  for minimum distance would be the same observation 
node location. On the other hand, the maximum distance 
location would always be the source node as it has minimum 
infuence on voltage fuctuations of any observation node. 
These minimum and maximum distances are used to normalize 
VIS as shown in eqn. (18). 

In the fnal step of the proposed approach, VIS is leveraged 
for ranking the actor nodes. The nodes are ranked in an 
ascending order based on VIS. The topmost (Rank 1) and 
bottom-most (Rank L  for the case of L  actor nodes) ranks 
will be assigned to the actor nodes in the following way: 

Rank 1 : arg max V IS(O, A) 
A  (19)

Rank L : arg min V IS(O, A) 
A 

It is worth to note that the proposed approach can work 
with any other information theoretic metric (Frechet distance, 

0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Kansas State University. Downloaded on May 05,2022 at 04:28:19 UTC from IEEE Xplore.  Restrictions apply. 

http://www.ieee.org/publications_standards/publications/rights/index.html


 

 

 

 

37 35 32 33 34 

36 29 30 31 

28 

26  25 

27 

23  21 

10 11 13 14 18 19  20 22 

24 12 17 15 16 ­­­­­­­

7 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3149144, IEEE 
Transactions on Power Systems 

Fig. 1: Modifed IEEE 37-node network 

Jensen-Shannon distance, etc.), and for illustration purposes, 
the method is evaluated with two metrics (KL divergence & 
Bhattacharyya distance) in the results section. 

IV. RESULTS AND DISCUSSION 

The effcacy of the proposed method in identifying dominant 
voltage infuencer nodes is evaluated in this section. The 
baseline method is the conventional Monte-Carlo simulation-
based approach, and both algorithms are implemented in the 
modifed IEEE 37-node test system as shown in fgure 1. 
This test network is chosen as it denotes a typical unbalanced 
distribution system and is used by many researchers for 
illustrating the effciency of their methods [10], [27]. The 
nominal voltage of the test system is 4.8  kV. A scenario is 
generated with 15  actor nodes distributed randomly in the 
IEEE 37-node network. Change in real and reactive power 
at 15 actor nodes is modeled as zero-mean Gaussian random 
vector. Generally, Gaussian distribution is used to validate 
statistical frameworks, and it has been considered as a common 
assumption in many prior works related to distribution systems 
[7], [28]. Moreover, the probability distribution of power/load 
changes in a power distribution system including PV/wind 
power changes have also been shown to sometimes follow a 
Beta distribution [29], [30]. Therefore, the proposed approach 
is validated for both Gaussian and Beta distribution. It is worth 
noting that the proposed approach is generic for any choice of 
actor node and power change distributions, and the simulated 
case-studies are merely a way to illustrate its performance. 
Three different PV sizes are considered in this case study. 
The mean and variance of real and reactive power change of 
all three kinds of PV capacities along with their location and 
phase information are as follows: � � � �! 

0 1.5  − 0.05 
∆SA ∼ N  , ,

0  −0.05  0.25 

A ϵ {7c , 8a , 12c , 27b , 28c}� � � �! 
0 3  − 0.1 

∆SA ∼ N  , ,
0  −0.1 0.5  (20) 

A ϵ {7b , 18a , 22c , 34b , 36b}� � � �! 
0 4.5  − 0.2 

∆SA ∼ N  , ,
0  −0.2 0.75 

The change in power across different actor nodes can be 
correlated because of environmental factors. The DERs such 
as PVs and wind turbines are expected to exhibit a similar gen-
eration profle due to their geographical proximity. Further, the 
real and reactive power of inverter-based DERs is negatively P 
correlated. The underlying covariance structure can be∆S 
estimated based on historical or irradiance-related data. The 
base loads on the test network are the same as mentioned 
in the IEEE PES Distribution system analysis subcommittee 
report. For actor nodes, the variance of change in real power 
and reactive power are present in the diagonal elements 
of covariance matrices as shown in eqn. (20). Thus, three 
approximate PV sizes which are simulated in our experiments 
are 45  kW, 38  kW and 35  kW. The off-diagonal elements 
of the covariance matrices capture the covariance between 
real and reactive power. These covariance of each actor nodes 
are combined to form the covariance matrix of power changeP 
vector which corresponds to all actor nodes. Here, the∆S 
correlation coeffcient between ∆P ’s and ∆Q’s for different 
actor nodes within the same phase is kept same and covariance 
between cross-phase terms is assumed to be zero. However, 
the proposed approach is quite general to accommodate other 
covariance structures as well. The variance of nodes other than 
the actor nodes is set to zero. 

Table I: Observation node 7 Table II: Observation node 16 

Node MC KL BC 
7 1 1 1 
9 0.577 0.163 0.129 
12 0.543 0.150 0.117 
22 0.530 0.127 0.096 
14 0.516 0.137 0.106 
26 0.441 0.092 0.067 
28 0.350 0.084 0.060 
8 0.042 0.065 0.045 
17 0.026 0.050 0.033 
27 0.001 0.043 0.029 

Node MC KL BC 
14 1 1 1 
22 0.919 0.840 0.808 
18 0.782 0.170 0.133 
12 0.613 0.576 0.533 
9 0.426 0.422 0.373 
7 0.209 0.290 0.242 
17 0.146 0.230 0.186 
8 0.020 0.111 0.083 
26 0.001 0.176 0.138 
28 0.001 0.164 0.128 

A. VIS for ranking DVI nodes 

To assess the performance of the proposed approach in iden-
tifying DVI nodes, VIS for two arbitrary observation nodes 
(i.e., 7, 16) are computed using two different distance metrics 
namely KL divergence (eqn. (15)) and Bhattacharyya distance 
(eqn. (16)). The results obtained by using the proposed ap-
proach is validated against ground truth values. The baseline 
approach to compute true DVI nodes is based on Monte-Carlo 
simulations (MCS) of load fow as explained in Section II-
A. Initially, the variance of voltage change magnitude at a 
given observation node is computed due to the presence of all 
actor nodes. Multiple power change scenarios are simulated 
by running 100000  MCS with load fow method. Then, the 
reduction in the variance of the magnitude of voltage change 
is determined by setting the variance to zero for each actor 
node sequentially. Again, for each actor node case, different 
MCS are executed. Finally, the actor nodes are ranked based 
on the reduction in variance they bought when the variance of 
power change at the corresponding actor node is set to zero. 

A ϵ {9c , 14c , 26c , 30a , 31a}  Tables I and II tabulates the VIS for observation nodes 7 
where superscript over actor nodes, i.e., {a, b, c}  represent and 16, respectively. MC, KL and BC refers to baseline MCS 
respective phases of actor nodes at which power is varying. approach, proposed KL divergence and Bhattacharyya distance 
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based methods, respectively. Node in the tables refers to actor 
node. It can be inferred that the VIS for the most dominant 
actor node is 1  and it decreases as we move to lower rank 
nodes. For observation node-7 with KL distance metric, there 
is a small difference in VIS between nodes 22 and 14 implying 
that they exhibit almost equal voltage infuencing capacity. 
However, there is a considerable difference when it comes 
to nodes 14  and 26. Thus, VIS allows us to quantitatively 
differentiate between dominant infuencer nodes. 

B. Ranking of DVI nodes with VIS 

DVI nodes are identifed by ranking nodes based on VIS. 
Table III tabulate the top 10 dominant voltage infuencer nodes 
for observation nodes 7 and 16, respectively. 

Table III: DVI nodes for observation nodes 7 and 16 

Rank → 
Metric ↓  1 2 3 4 5 6 7 8 9 10 

Observation node -7 
MC 7 9 12 22 14 26 28 8 17 27 
KL 7 9 12 14 22 26 28 8 17 18 
BC 7 9 12 14 22 26 28 8 17 18 

Observation node -16 
MC 14 22 18 12 9 7 17 8 26 28 
KL 14 22 12 9 7 17 26 18 28 8 
BC 14 22 12 9 7 17 26 18 28 8 

According to Table III, the MC method indicate that the 
actor nodes 7 and 14 are Rank-1 nodes for observation node 
7  and 16, respectively. The assignment of Rank-1 nodes is 
carried out correctly by both the metrics of the proposed 
approach. The reasons for rank-1 allocation are (1) the high 
variance of power change and (2) proximity of actor nodes to 
the given observation node in the IEEE 37-node test system. 

Apart from rank-1, utilities might be interested in identi-
fying other dominant nodes which are next to rank-1. In this 
regard, we use Top-N accuracy, which can be defned as, 

|{Predicted Top-N nodes} ∩ {True Top-N nodes}| 
,  (21)

N 
where N  is the desired number based on the applications. 
The Top-5 and Top-10 accuracy results are presented for 
observation nodes 7  and 16  in Table IV. The last column 
of the table denotes the mean accuracy when all the nodes 
of the IEEE-37 node network act as observation nodes. It 
can be observed that distance metrics KL and BC have 
fairly good identifcation accuracy, and the mean accuracy is 
more than 90%. Apart from Rank-1 node, our approach also 
provides the correct sequence of actor nodes when compared 
to baseline MC approach. However, in some positions, the 
order of actor nodes is fipped or offset by one or two units. 
This is because, the corresponding actor nodes have an equal 
infuencing capacity for that particular observation node. For 
instance, in the case of observation node 7, the position of 
actor nodes 22  and 14  are fipped. However, this is not a 
major concern here, as we are more interested in correctly 
identifying nodes lying in a particular band (i.e., Top-5, Top-
10) rather than their exact order. The power at the Top-5 or 
Top-10 actor nodes can be effciently regulated to mitigate 
voltage violations. 

Table IV: Identifcation accuracy of DVI nodes 

Node →  obs. node-7 obs. node-16 Mean 
Accuracy ↓  (%) (%) all nodes (%) 

Top-5 100 80 91 
Top-10 90 100 93 

Furthermore, to get the overall infuencing capacity of actor 
nodes, one can compute the mean VIS. For each actor node, 
the mean of VIS is taken across all observation nodes of 
the network. It can be observed From Table V that actor 
nodes 17  and 30  have maximum and minimum infuencing 
capacity among all the actor nodes present in the network. 
This assignment is because of their topological position in the 
distribution network and the magnitude of power variance due 
to associated DER units or load variation. 

Table V: Average VIS of actor nodes 

Nodes VIS Nodes VIS Nodes VIS 
7 0.220 17 0.444 28 0.156 
8 0.220 18 0.304 30 0.154 
9 0.212 22 0.349 31 0.189 

12 0.258 26 0.163 34 0.378 
14 0.300 27 0.166 36 0.427 

Table VI: Running time of various approaches 

Time 
Metric 

Running time 
Top-5 (s) 

MC 12039 
KL 0.92 
BC 0.96 

C. DVI nodes for Non-Gaussian distribution of power change 

The proposed framework is generic and can be applied 
for power variations following any distribution with fnite 
mean and variance. Therefore, along with the Gaussian, the 
proposed method is also evaluated for the case of power 
changes following a Beta distribution. The shape and scale 
parameters of the Beta distribution are chosen as 2  and 5, 
respectively. Here, power is varied at 5  actor nodes namely 
7, 8, 14, 17, 22. The magnitudes of power variation and corre-
lation structure are kept the same as described earlier for the 
Gaussian scenario. Table VII represents the ranking of all actor 
nodes for observation node 8 when power change follows the 
Beta distribution. It can be seen that the assignment of the 
Rank-1 node is carried out correctly by both the information-
theoretic metrics, which further reinforces the merit of our 
approach. 

Table VII: DVI nodes for observation node-8 

Rank → 
Metric ↓  1 2 3 4 5 

MC 8 7 17 22 14 
KL 8 7 17 22 14 
BC 8 7 17 14 22 
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D. Computational complexity of proposed method 

Apart from correctly identifying the dominant voltage in-
fuencing nodes, the proposed approach offers a considerable 
computational advantage over the conventional approaches. 
Table VI reports the execution time of various approaches 
to identify Top-5 actor nodes for the observation node 7. 
It can be seen that the proposed approach involving any of 
the two distance metrics is multiple order faster than that 
of the conventional approach, which takes around 3.2  hrs. 
All the experiments are conducted on a machine with Intel 
i7 processor running at 2.2 GHz. This results demonstrates 
the computational advantage of the proposed approach over 
conventional methods. 

The proposed approach of identifying DVI nodes can en-
hance voltage control strategies in multiple ways. One of the 
approaches is based on system partitioning, where a set of 
effective actor nodes is used for control actions. Our approach 
helps to identify such set of actor nodes in a computation-
ally effcient manner. Given a particular scenario of power 
change in the system, one can determine the set of common 
observation nodes for which a particular actor node induces 
the maximum impact on voltage profles. Therefore, the set of 
common observation nodes can form a cluster and it is cost 
effective to control power variations on the most dominant 
actor node to quickly restore voltages to their safe operational 
limits within that cluster. Along with clustering, our method 
of ranking nodes can also be used for optimal allocations 
of DERs or fault current limiters which involves sensitivity 
analysis. These control and asset allocation strategies will 
be investigated as part of our future work. Furthermore, the 
proposed approach is performance (voltage infuence score) 
driven hence can also assist network-based approaches to 
effciently identify critical nodes in a distribution network [31], 
[32]. 

V. CONCLUSION AND FUTURE WORK 

The conventional methods to identify dominant voltage 
infuencer nodes (DVI) are Monte-Carlo simulation-based that 
are computationally expensive. Therefore, this work focuses 
on an analytical approach and proposes statistical distance 
metrics to devise VIS that quantifes voltage infuencing ca-
pacity of actor nodes. The VIS is then leveraged to identify 
the DVI nodes. The proposed framework computes VIS not 
solely on the basis of correlation between change in power at 
the actor node and change in voltage at the observation node, 
but it also relies on the magnitude of voltage variation that is 
being caused due to power change at actor nodes. Effectiveness 
and computational effciency of the proposed method are 
illustrated by comparing the results with conventional method 
of identifying DVI nodes using Monte-Carlo simulations in 
IEEE 37-node test system. From the results, it can be inferred 
that the proposed statistical distance metrics effectively predict 
the DVI nodes while substantially reducing the execution 
time. The error in modeling the probability distribution would 

DVI nodes for voltage control at strategic locations, identi-
fying most infuencer DERs that are responsible for voltage 
fuctuations, among others. Employing DVI nodes for network 
partitioning and effcient control applications will be pursued 
as part of our future work. 
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APPENDIX 

The real and imaginary parts of voltage change (equation 
(6) can be expressed as, 

∆V a,r = Ca,r T∆SA,OA  OA  (22)Ta,i  a,i∆V  = C  ∆SA,OA  OA 

where, 
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where Rh  , Xh  are the resistance and reactance of sharedOA  OA 
path between the observation node O and actor node A from 
the source node. h denotes the self or mutual impedance terms 
of a particular phase, for instance aa, ab, ac of phase a. 
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