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Abstract—Smart distribution grid with multiple renewable
energy sources can experience random voltage fluctuations due
to variable generation, which may result in voltage violations.
Traditional voltage control algorithms are inadequate to handle
fast voltage variations. Therefore, new dynamic control methods
are being developed that can significantly benefit from the
knowledge of dominant voltage influencer (DVI) nodes. DVI
nodes for a particular node of interest refer to nodes that
have a relatively high impact on the voltage fluctuations at that
node. Conventional power flow-based algorithms to identify DVI
nodes are computationally complex, which limits their use in
real-time applications. This paper proposes a novel information
theoretic voltage influencing score (VIS) that quantifies the
voltage influencing capacity of nodes with DERs/active loads
in a three phase unbalanced distribution system. VIS is then
employed to rank the nodes and identify the DVI set. VIS is
derived analytically in a computationally efficient manner and
its efficacy to identify DVI nodes is validated using the IEEE
37-node test system. It is shown through experiments that KL
divergence and Bhattacharyya distance are effective indicators
of DVI nodes with an identifying accuracy of more than 90%.
The computation burden is also reduced by an order of 5, thus
providing the foundation for efficient voltage control.

Index Terms—voltage influencing score (VIS), voltage influ-
encer nodes, DERs, rank, analytical.

I. INTRODUCTION

HE power grid is evolving with the increasing integration

of renewable distributed energy resources (DERs). While
offering the benefits of reduced carbon footprint, DERs also
impose new technical challenges. Specifically, active con-
sumers with rooftop photovoltaics and distributed generation
are expected to alter their generation and usage patterns to
follow the trends of time-varying electricity prices [1]. This
in turn induces frequent power variations. The uncontrolled
operations of DERs under this condition leads to voltage
fluctuations in the distribution system. Grid operators have to
manage DERs’ operations to assure the reliability of the grid.
Therefore, various control algorithms have been considered
for regulating power injection/consumption across various
buses of the network to mitigate voltage fluctuations [2]—
[4]. However, traditional methods of voltage control involving
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voltage regulators, on-load tap changing transformers are slow
and inadequate to deal with bi-directional power flows and fast
dynamics. This necessitates the development of computation-
ally efficient and fast dynamic voltage control algorithms that
can handle the dynamics of power/voltage variation [S]-[7].
The speed of response to impending voltage issues and the
computational efficiency of these dynamic algorithms rely on
our ability to select the optimal set of nodes for control that
have the highest influence on the system voltage profile.

To this end, we introduce the notion of dominant voltage
influencer (DVI) nodes. Throughout this paper, we refer to
actor nodes as the nodes where power changes (due to DER
unit and/or load dynamics) and observation nodes represent
the set of nodes where voltage state is monitored. Thus, DVI
nodes for a particular observation node denote all those actor
nodes that have a relatively high impact on the voltage state
of that observation node compared to the rest of the actor
nodes. Hence, altering the actions of DVI nodes result in the
highest reduction in voltage issues at the observation node.
The nodes could be DVI because of their size (generation/load
capacity) and/or locations in the distribution network. Con-
ventional methods of identifying such DVI nodes involve
Monte-Carlo simulations using load flow algorithms. These
classical methods possess various drawbacks including (1)
high computational complexity, (2) numerical results with no
analytical insights, and (3) scenario dependent results with
no generalization. These factors limit the applicability of
conventional approaches in modern distribution systems. Thus,
there is a need to develop an analytical and computationally
efficient algorithm for identifying DVI nodes in three phase
unbalanced distribution systems, which in turn can be used to
develop effective voltage control algorithms.

For identifying DVI nodes, we need to quantify the impact
of actor nodes on other nodes of the network in terms of
voltage. Therefore, first, we develop a novel metric namely
voltage influence score (VIS) for quantifying the voltage
influencing capacity of an actor node on any arbitrary ob-
servation node. The VIS is based on an analytical method of
voltage sensitivity. Thereafter, the VIS is employed to rank the
actor nodes for any arbitrary observation node and identify
the most influential ones, i.e., DVI nodes. The proposed
approach allows us to identify DVI nodes without relying on
computationally expensive Monte-Carlo simulations thereby,
significantly reducing the computation time.

Knowing the DVI set, one can focus on controlling the
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dominant nodes within a cluster for ensuring the stability
of voltage states for all nodes within that cluster. This is
beneficial in the sense that minimal control actions would be
required compared to any local control scheme such as [8].
Furthermore, the DVI set helps to efficiently assign penalties
to controllable nodes through a weight matrix. For example,
assume a cluster in an unbalanced distribution system with N
nodes. In a nutshell, power injections (AS) at the DVI set
n € N can be controlled over the control horizon T by !,

Min » " ASTRAS

teT

where, R = RT = 0 is a diagonal weight matrix on control
policies. That is, any control actions could have a cost asso-
ciated with it. Elements that belong to DVI nodes, i.e., I2,, 5,
can have lower penalties compared to non-DVI nodes within
the cluster. Additionally, there could be a scenario where DVI
nodes are not controllable. However, the voltage influencing
scores offer greater flexibility in choosing the nodes even
if the top dominant nodes are not controllable. Moreover,
in the application of network partitioning, non-controllable
DVI nodes can also be valuable in defining clusters and thus
indirectly participate in voltage control.

Contributions: This paper proposes a novel approach to
identify DVI nodes that can be used for network clustering
and distributed control mechanisms in unbalanced distribution
systems with DERs. The key contributions of this paper
include:

« An analytical and computationally efficient method of
identifying dominant voltage influencer nodes is proposed
which is valid for both balanced and unbalanced distri-
bution system.

e This work introduces a VIS metric that quantifies the
voltage influencing capacity of nodes with DERs/active
loads, and a computationally efficient method to compute
it.

« Compared to [9], this work has three major advancements
(1) the probabilistic model of voltage fluctuations is
derived for a three phase unbalanced distribution systems;
(2) The voltage influencing capacity is quantified for each
pair of nodes; (3) In addition to identifying the most
dominant node, this work provides ranks of all dominant
influencer nodes based on their VIS;

o Reference [10] is our foundational work on deriving
an analytical form of voltage change distribution. The
VIS metric proposed in this work is a function of the
information-theoretic distance between analytical voltage
change distributions.

« The effectiveness of proposed method is evaluated on the
standard unbalanced IEEE 37-node test system yielding
an accuracy of more than 90% with the computation
complexity reduced by an order of 5 compared to a classic
load flow based approach.

Problem constraints and exact formulations are omitted for the sake of
simplicity. The aim is to illustrate the usefulness of DVI nodes in efficiently
penalizing non-DVI nodes.
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The paper is organized as follows. Section II presents a
conventional method to identify DVI nodes followed by an
analytical method of voltage sensitivity analysis. Section III
computes probability distributions of voltage change. Various
information theoretic indicators of the DVI nodes are proposed
in Section III, which are used to compute VIS. The perfor-
mance of the proposed approach is tested using the IEEE 37-
node test system in Section IV. Conclusions and future-work
are presented in Section V.

II. BACKGROUND

This section introduces the conventional approach to iden-
tify Dominant voltage influencer (DVI) nodes in a power
distribution network. Then, the fundamental analytical expres-
sions of voltage sensitivity are discussed which are later used
to model voltage fluctuations for identifying DVI nodes.

A. Related work

Various control algorithms are proposed in the literature for
regulating voltage fluctuations in the distribution system. Pri-
marily, the control algorithms can be broadly categorized into
two main categories: (1) centralized [2], [3], [11], [12], and (2)
decentralized [4], [13], [14] control approaches. Centralized
voltage control algorithms are generally based on classical
power flow solution, which can be computationally expensive
for real time applications. For instance, authors in [11] provide
a control algorithm using dominant generator nodes. However
[11] only considers deterministic power change scenarios
and does not provide any quantification of voltage influence
while determining dominant generators. Similarly, authors in
[15] propose a new AC optimal power flow formulation that
efficiently regulates voltage in distribution systems. It has been
shown that the proposed method results in minimal curtail-
ment of real and reactive power while regulating voltages.
On the other hand, decentralized voltage control methods
trade-off performance for reduced computational complexity.
The speed, complexity and performance of both centralized
and decentralized algorithms rely on the size and space of
control actions. In modern distribution systems, the change
in power consumption or injections due to multiple active
consumers necessitates the need for analyzing a large number
of scenarios, expanding the size and space for determining
optimal control actions. This may further increase the compu-
tational complexity of traditional voltage control algorithms.
Other approaches to bring voltage to safe operational limits
in distribution systems involve the installation of additional
control devices such as, static-var compensators [16], [17],
dynamic voltage restorers [18], and grid-edge volt-var con-
trollers [19]. Despite their effectiveness in voltage control,
the installation of additional devices in the system can be
expensive. Therefore, a practical and economical solution to
regulate voltage fluctuations is to utilize smart grid edge
devices like PV inverters. To this end, multiple dynamic
algorithms have been proposed to control inverters and loads
to regulate voltages [S]-[7]. In [5], authors randomly select
and shut down the thermostatically controlled loads during the
time of high voltage unbalance. Similarly, [7] proposes a data-
driven voltage control algorithm to regulate voltage violations
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by minimizing power injections at nodes with over voltage
violations. In a nutshell, all these prior works use heuristic
based methods to identify nodes whose generations need to be
curtailed. However, such irrational selection is not desirable in
terms of yielding optimal solution and providing fairness to
all generators participating in a transactive energy market.

Furthermore, there are some efforts where system is par-
titioned into smaller clusters and control is implemented
for each cluster in a distributed manner [8], [20]-[22]. The
concept of virtual power plants is also shown to help voltage
regulation in distribution systems with the presence of DERs
and battery storage systems (BSS) [23]. In [20], [21], for
instance, authors propose a new clustering method based on
voltage sensitivity with respect to power fluctuation due to
BSS. However, this method is scenario specific since the
location of BSS in the system is fixed. Another sensitivity
based zonal voltage control method is proposed in [22] where
all nodes in a particular cluster are assumed to participate
in power curtailment for voltage control. This is difficult
to implement as it is not economical or even feasible for
utilities to have access to control all nodes. There are some
approaches which also include topological data for system
clustering [8], [24], [25]. For the approach in [8] to work,
the nodal Q-V sensitivities must be computed to iteratively
evaluate the modality index for each cluster [26]. Nevertheless,
the computational complexity of this method increases with
the size of the system as computing the Q-V based modality
index of each cluster is based on forming the adjacency matrix
of the system. Additionally, the entire body of prior work on
identifying dominant nodes of voltage fluctuations does not
consider stochasticity associated with DER power injections
or user load variations.

To address these demerits of existing approaches, analyti-
cal and computationally efficient approaches to identify DVI
nodes that have relatively high influence on the voltage state
of critical nodes are needed. The work in this paper addresses
this essential research gap using a new information theoretic
voltage influencing index that is applicable to three-phase
unbalanced systems.

B. Conventional approach to identify DVI nodes

The DVI nodes for an observation node are the nodes that
have high impact on the voltage fluctuations at the observation
node. An actor node can be a DVI due to association of two
factors: (1) location of the actor node, i.e. phase and bus of
the distribution network, and (2) generation/load capacity of
DER/loads connected at the actor node which influences the
variance of power change at that node. Generally, simulation-
based scenario analysis is used as a major planning tool to
identify DVI nodes. A typical approach involves following
steps [9]:

1) Step I- Compute variance of voltage change at each
phase of observation node due to all actor nodes: The
variance of voltage change at each phase of the observation
node is computed by running multiple power flow based
Monte-Carlo simulations with varying power, which captures
temporal variation of generations.

2) Step 2- Calculate reduction in variance of voltage
change at the observation node due to each actor node by
setting power drawn/injected by the actor node as zero: This
step requires repetition of Step 1 for each actor node after
setting the variance of actor node as zero.

3) Step 3- Rank actor nodes based on the reduction in
variance caused by the removal of the corresponding actor
node:: Actor nodes are ranked in an ascending order with
topmost and bottommost rank assigned to those actor node
that causes maximum and minimum reduction in variance of
voltage change at the observation node, respectively.

This scenario-based method incurs high computational com-
plexity, which grows with the size of the network. Specifically,
the complexity arises at two hierarchical levels. At the core of
this approach, we have load flow runs, whose computation
using NR-based method is of complexity O(n3) where n
represents the size of the distribution network [10]. At a high
level, multiple power change scenarios are simulated to obtain
voltage change distributions for steps 1 and 2 of the approach.
Each such scenario involves a load flow computation, thus one
ends up running thousands of load flows. In our experiment, a
hundred thousand scenarios are simulated to compute voltage
change distribution for each actor node at step 2. The compu-
tational effort is also demonstrated via execution times in the
Results section. Therefore, to counter computational burden,
various information-theoretic metrics are explored in the next
section that can identify DVI nodes in a computationally
efficient manner and can be used as a tool in various power
system operations.

Algorithm 1 Proposed method to identify DVI nodes

Input: Distribution Network with the target observation node.
Output: Ranked actor nodes for the input observation node.
1: Compute distribution of voltage change at the input ob-
servation node due to each actor node at a time.
2: Compute distribution of voltage change at the input ob-
servation node due to aggregate effect of all actor nodes.
3: Find statistical distance between the distributions com-
puted in steps 1 & 2.
4: Compute VIS for each pair of observation and actor nodes.
5: Rank actor nodes in the ascending order based on their
respective VIS.
6: return ranks and VIS of actor nodes for an input
observation node.

ermission. See http://www.ieee.or

C. Analytical VSA

In a three phase distribution system, change in power at any
one phase of the node causes change in voltage at all phases of
all the other nodes. Traditional methods of voltage sensitivity
analysis (VSA) are computationally complex and less generic.
Therefore, we developed a computationally efficient method
of VSA in [10], [27]. For an unbalanced power distribution
system, change in complex voltage AV at an observation
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node (O) due to change in complex power at multiple actor
nodes can be approximated as:

Vs 4‘53*58‘2 + Asi*f‘élk + ASE*C{SCA
& 7 % Vs

Sa,* Zba, Ash* be ASr* Zbc

AVg ~— E {}MOA + GX*OA + AA oA ,
A€cA
. O\ [fszen | asizg, | asyzs,
c ar E o

v 3 V3 V3 1

where a,b and c represent the three phases. V{ and AS¢
represent complex voltage and power changes at the phase a
of the actor node A, respectively; Z denotes the impedance
matrix including self and mutual line impedance of the shared
path between observation node and actor node from the source
node. A is the set of all actor nodes. Egn. (1) follows
superposition law and voltage change is aggregated due to the
power change of each actor nodes. For a single actor node, the
voltage change at any phase (say phase a) of an observation
node O can be decomposed into real (AV{}’1) and imaginary

components (AV)’1) as:
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where AP4 and AQ¢ are the real and reactive power change
at phase-a of the actor node A, R%" and X@% are resistance
and reactance of shared line between observation node O and
actor node A. It is proved by Corollary 2 in our fundamental
work that the error in our approximation of voltage change
(i.e., eqns. (2) and (3)) is always upper bounded [10]. Hence,
this approximation scales very accurately with the size of the
network and can be leveraged for deriving voltage change
distributions, and consequently identifying the DVI nodes in
a three-phase unbalanced distribution system.

III. PROPOSED FRAMEWORK

As can be seen from the previous section, the conventional
method of identifying DVI nodes is computationally complex,
which limits its use in real-time operation of power system.
Therefore, we propose the use of information-theoretic dis-
tance metrics as potential indicators of DVI nodes. Funda-
mentally, the proposed approach consists of four steps. In
the first step, we obtain probability distributions of voltage
change at an observation node due to each actor node as
well as due to the aggregate presence of all actor nodes.
These distributions are derived in a computationally efficient
way by employing the analytical expressions discussed in the
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background section. In the second step, we compute distances
between the probability distribution due to each actor node
and the distribution due to the aggregate effect of all actor
nodes. The Third step utilizes the distances to compute voltage
influencing score (VIS) for each pair of observation and actor
nodes. Finally, for each observation node, all the actor nodes
are ranked based on the computed VIS. The actor node whose
voltage change distribution is nearest to the aggregate voltage
change distribution is deduced as the major influencer of
voltage change for that particular observation node. Likewise,
all actor nodes are ranked based on the ascending order of
their distances. The complete procedure is summarized in the
Algorithm 1.

A. Probabilistic model of voltage fluctuations

This section provides a probabilistic model of voltage
change in a three-phase unbalanced distribution system, which
consist of multiple spatially distributed actor nodes with PVs
and active consumers. Random change in power at actor nodes
due to intermittent renewable generation causes random volt-
age fluctuations. Therefore, probability distribution is needed
to quantify voltage change under such stochastic scenarios.
Here, we implement the first step of the proposed approach,
i.e., derive the probability distributions of voltage change at
any observation node due to random power change at a single
actor node as well as due to the aggregate effect of all actor
nodes. Let AS9 be change in complex power at phase a of
the actor node A. Then, using eqn. (1), the voltage change at
phase-a of an observation node O can be expressed as:

AVE L = AVST 4 JAVS 4)

Z % APA (R acos(wa) — XGasin(wa))
A

+AQA(R0ASW(WA) + X6 acos(wa))l,

AV = Z |VA [APL(RY gsin(wa) + XE 4cos(wa))+
AQU(XEasin(wa) — R acos(wa))]

®)

where h ¢ H and u e U. The sets H and U denote differ-
ent phases (i.e., a,b,c) and different phase sequences (i.e.,
aa, ab, ac), respectively. AP% and AQ" are the active and
reactive power changes, respectively. R% ,, X% , are the re-
sistance and reactance of shared path between the observation
node O and actor node A from the source node. w, is the
impedance angle for phase-a. V' denotes the base voltage
of actor node A. For brevity, the derivation is shown for
phase a. However, the same steps can be followed with the
corresponding phase quantities to derive expressions for other
phases. The real and imaginary parts of voltage change can
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further be simplified as,

AVSL = |C8TAPS + DEVAQY + CX AP+
abTAQb+CaCTAPC acrAQc
(6)
AVSL = | O APS + DY AQY + CH AP+
abzAQb+CaczAPc aczAQc 7
Eqn. (6) is further written in compact form as,
AVSE =C "TASA,
(N
AVY = C%L AS 4,
where,
a,rT aa,r aa,r ab,r ab,r ac,r ac,r
C [COA DOA C(OA DOA COA DOA }
ng‘ [Caa )i Dg{;’t Cab i ngAz Cac i Dac 7}

The constants C' and D are the functions of the line
impedances and base voltages as explained in eqn. (4). For
brevity, the exact expressions are omitted from here and are
provided in the Appendix A. Then, the power change vector
can be written as,

ASa =[APS, AQ%Y ,APS JAQY ,APS ,AQ4]T

Thus, because of random power changes at each actor node,
the power change vector AS 4 is a random vector with mean
vector ptas, and covariance matrix ) (¢ . The covariance
matrix s, quantifies the correlation of power changes
among varlous phases of a particular actor node A. The diag-
onal elements denote variances of power change at each phase
and off-diagonal elements contain the correlation between the
power changes. Thus, it can be seen from (22) that the voltage
change at an observation node O due to actor node A is the
weighted combination of random vector AS 4, where weights

. a,r T ayiT .

(ie., Cya and Cg, ) are constant terms. Invoking the
Lindeberg -Feller central limit theorem, it can be shown that
the AVSy and AV/J’4 converges in distribution to a Gaussian
random variables, i.e.,

a,r D a,r
AVEL = N(uss =
AV R

T
Coa Las, Coa)

. . T . 2 . T .
a,i __ a,t a,i 4 __ a,t a,i
(Hoa = Coa Hasa; 054 =Coa ZASA Coa)

®)

Ca,rT a,r2
0A HASA,00a =

where, pg, and pgy are the mean vectors of real and
a,r?2
and

imaginary parts of voltage change, respectively. o,
oGy are the variances of real and imaginary parts of voltage
change, respectively. For investigating the relationship between
the real and imaginary parts of the voltage change, a new
bivariate random vector is defined,

a,r a,r 2
Sl fa| [ (1o sl
AVO;& oA c A JOA

Authorized licensed use limited to: Kansas State University. Down

T » .
where, k&, = Cga > [s, Coa is the covariance between

the real and imaginary pailts of the voltage change due to single
actor node A. Eqn. (9) provides the probability distribution of
voltage change at a particular observation node due to single
actor node A. A similar approach can be used to compute
individual voltage change distributions due to each actor node
in the network. Now, we need to obtain the voltage change
distribution due to the aggregate effect of all actor nodes.
Using the superposition property in (1), the voltage change
due to cumulative effect of power changes at multiple actor
nodes can be expressed as [10],

(10)

L
J— D‘7r
- E : VOA?
A=1

where L is the number of actor nodes. By leveraging (22), the
net voltage change can be written as,

AVST = Z ‘”TASA
1><6
= [ceresrt . CcatIASL1AS, ... ASN]T
—C‘”’TAS
16N 6N X1
(11)

where Cg "1 and AS are the long vectors, composed of a
constant term and the power change vector corresponding to
each actor node, respectively. Similarly, the imaginary part of
voltage change can be written as,

Z

The equations (11) and (12) possess a similar form as that of
(22), i.e., the net voltage change is the weighted combination
of power change vector AS. Here, weight C¢" is a constant
vector comprising of line impedances and node base voltages,
whereas, AS comprises of power change at all phases of
all actor nodes. Now, invoking the same Lindeberg-Feller
central limit theorem, the real AVJ" and imaginary AV
part of aggregate voltage change can be shown to converge in
distribution to a Gaussian random variables with the following
parameters:

AV BN (g
AVS' BN (ug!

ASA —c%' AS

Loh N 6N X1 12)

1><6

=Cg5" NAS,U?;Q = CZ’TTZ sCo")
2 a,iT a,t
=Co > sCo )
(13)

Similar to the single actor node case, the correlations between
the real and imaginary parts of net voltage change is captured
by defining a new random vector as:

a,il a,i
= CO, HAS, 00

a,r a,r a,r2 a
[AV% ] N [’“‘Qi] o kg (14)
AVo ml\[K o8

where, k% = C&™" Y (o C&* is the covariance between the
real and imaginary part§ of net voltage change. Equations (9)
and (14) provide the probability distribution due to single actor
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node and the aggregation of multiple actor nodes, respectively.
It is worth noting that the voltage change expressions in equa-
tion (13) are valid for any number of actor nodes. Further, the
proposed method to determine voltage change is sufficiently
general for PV generation with any arbitrary distribution.
This is because the derivation of the voltage change utilizes
standard statistical results that are valid for any probability
distribution. Precisely, eqn. (12) computes voltage change in
the real part of phase a (AV") as the weighted sum of the
power changes in the actor nodes. Here, even if each element
of AS representing PV generation changes is not Gaussian, we
can still invoke Lindeberg-Feller central limit theorem [4], to
show that the weighted sum of the elements of AS converges
in distribution to a Gaussian. Therefore, the distributions of
the real and imaginary parts of voltage change will always
converge to a normal which eventually leads to a Nakagami
distribution for the magnitude of voltage change. The next sub-
section focuses on computing the statistical distances between
these distributions and presents the procedure to rank the actor
nodes.

B. Information theoretic metrics as DVI indicators

This sub-section implements the second step of our pro-
posed approach, i.e., calculate statistical distances between
the probability distributions (derived in earlier sub-section),
and rank the actor nodes based on the computed distances.
The information theoretic distance metrics which are potential
indicators of DVI nodes are defined first.

1) Kullback-Liebler distance: Kullback-Liebler (KL) dis-
tance quantifies how much one probability distribution differs
from another probability distribution. KL divergence between
two multivariate Gaussian distributions (NMy and A7) of di-
mension £ with means (uo and 1) and covariance matrices
(3" and Y can be written as:

Dy (No||N1) = % 7"(21_1 >

1221 |

i — o) X7 (1 — o) — k +1n m)

(15)

where ¢r(.) indicates trace of the matrix. Here, the KL distance
between the distributions of voltage change at the observation
node due to change in power at an actor node A (AVp4) and
due to change in power at all actor nodes (AVp) is given by

1 -
Dici(AVoal|AVo) = 5 [(Zavs T

a
VOA

12 avse )
12 Lve, 1]
(16)

where > ava, and > v are the covariances of AVp 4 and
AVp, respectively.

2) Bhattacharyya distance: Bhattacharyya (BC) distance
measures the similarity of two probability distributions. It is
related to the Bhattacharyya coefficient which is a measure
of the amount of overlap between two statistical samples. BC

a a _1 a a
+(uh — pHa) 1 (wh — pha) —2+n
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distance between the distributions of voltage change at the
observation node due to change in power at an actor node A
(AVp 4) and due to change in power at all actor nodes (AV()
can be expressed as:

1
Dpc(AVoallAVo) = g(ltao — b ) (S — b )
| (17)

! )
\/(zAvg I¥avs, |

Yave —ZEAKVSA

+§ 11’1(

where 3

C. Voltage Influencing score (VIS)

The influence of an actor node on an observation node
needs to be quantified for identifying its rank among all actor
nodes. In this regard, we devise a novel index to quantify
voltage influencing capacity, i.e., Voltage influencing score
(VIS). For a given network scenario, i.e., the location of
actor nodes with the variance of power change from historical
data, the distances between voltage change distributions at an
observation node due to each actor node and due to aggregate
effect of all actor nodes are used to rank the actor nodes. Here,
these distances are employed to compute the VIS between any
pair of observation and actor node as:

_r 1

D(A,0)  D(S,0)
1 i

D(A7,0) — D(S,0)

VIS(0,A) =

(18)

where D(A, O) is the statistical distance between the voltage
change distribution at an observation node O due to aggregate
effect of all actor nodes and when actor node A is solely
present in the system. D(S,0) is the statistical distance
between source node and observation node. The distance can
be computed with any of the metrics described in the earlier
subsection. For an observation node O, the lower the distance,
the more the actor node A contributes to aggregate voltage
change and consequently the more influencing the actor node
is and vice-versa. Therefore, the VIS is expressed in terms
of inverse of distance. To provide an absolute sense to the
score, VIS is normalized with minimum and maximum values.
For a particular observation node, the ideal location of actor
node A’ for minimum distance would be the same observation
node location. On the other hand, the maximum distance
location would always be the source node as it has minimum
influence on voltage fluctuations of any observation node.
These minimum and maximum distances are used to normalize
VIS as shown in eqn. (18).

In the final step of the proposed approach, VIS is leveraged
for ranking the actor nodes. The nodes are ranked in an
ascending order based on VIS. The topmost (Rank 1) and
bottom-most (Rank L for the case of L actor nodes) ranks
will be assigned to the actor nodes in the following way:

Rank 1:argmaxVIS(O, A)

- (19)
Rank L : argmin VIS(O, A)

A

It is worth to note that the proposed approach can work
with any other information theoretic metric (Frechet distance,
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Fig. 1: Modified IEEE 37-node network

Jensen-Shannon distance, etc.), and for illustration purposes,
the method is evaluated with two metrics (KL divergence &
Bhattacharyya distance) in the results section.

IV. RESULTS AND DISCUSSION

The efficacy of the proposed method in identifying dominant
voltage influencer nodes is evaluated in this section. The
baseline method is the conventional Monte-Carlo simulation-
based approach, and both algorithms are implemented in the
modified IEEE 37-node test system as shown in figure 1.
This test network is chosen as it denotes a typical unbalanced
distribution system and is used by many researchers for
illustrating the efficiency of their methods [10], [27]. The
nominal voltage of the test system is 4.8 kV. A scenario is
generated with 15 actor nodes distributed randomly in the
IEEE 37-node network. Change in real and reactive power
at 15 actor nodes is modeled as zero-mean Gaussian random
vector. Generally, Gaussian distribution is used to validate
statistical frameworks, and it has been considered as a common
assumption in many prior works related to distribution systems
[7], [28]. Moreover, the probability distribution of power/load
changes in a power distribution system including PV/wind
power changes have also been shown to sometimes follow a
Beta distribution [29], [30]. Therefore, the proposed approach
is validated for both Gaussian and Beta distribution. It is worth
noting that the proposed approach is generic for any choice of
actor node and power change distributions, and the simulated
case-studies are merely a way to illustrate its performance.
Three different PV sizes are considered in this case study.
The mean and variance of real and reactive power change of
all three kinds of PV capacities along with their location and
phase information are as follows:

0] [¥5 —0.05]
ASa~N [o [ 0.05 0.25 |’

A e {7°,8%,12¢,27° 28°}
[0 —0.1]

0] [{0.1 0.5] )7
A€ {7°,18%,22¢ 34° 36°}

0] [45 —0.2]
ASa~ N M’[ 02 0.75] )’

A € {9°,14¢,26° 30%, 31°}

ASy~N

(20)

where superscript over actor nodes, i.e., {a,b,c} represent
respective phases of actor nodes at which power is varying.

ermission. See http://www.ieee.or

The change in power across different actor nodes can be
correlated because of environmental factors. The DERs such
as PVs and wind turbines are expected to exhibit a similar gen-
eration profile due to their geographical proximity. Further, the
real and reactive power of inverter-based DERs is negatively
correlated. The underlying covariance structure ) (. can be
estimated based on historical or irradiance-related |data. The
base loads on the test network are the same as mentioned
in the IEEE PES Distribution system analysis subcommittee
report. For actor nodes, the variance of change in real power
and reactive power are present in the diagonal elements
of covariance matrices as shown in eqn. (20). Thus, three
approximate PV sizes which are simulated in our experiments
are 45 kW, 38 kW and 35 kW. The off-diagonal elements
of the covariance matrices capture the covariance between
real and reactive power. These covariance of each actor nodes
are combined to form the covariance matrix of power change
vector ) (< which corresponds to all actor nodes. Here, the
correlation} coefficient between AP’s and AQ’s for different
actor nodes within the same phase is kept same and covariance
between cross-phase terms is assumed to be zero. However,
the proposed approach is quite general to accommodate other
covariance structures as well. The variance of nodes other than
the actor nodes is set to zero.

Table I: Observation node 7 Table II: Observation node 16

Node | MC KL BC Node | MC KL BC
7 1 1 1 14 1 1 1
9 0.577 | 0.163 | 0.129 22 0.919 | 0.840 | 0.808
12 0.543 | 0.150 | 0.117 18 0.782 | 0.170 | 0.133
22 0.530 | 0.127 | 0.096 12 0.613 | 0.576 | 0.533
14 0.516 | 0.137 | 0.106 9 0.426 | 0.422 | 0.373
26 0.441 | 0.092 | 0.067 7 0.209 | 0.290 | 0.242
28 0.350 | 0.084 | 0.060 17 0.146 | 0.230 | 0.186
8 0.042 | 0.065 | 0.045 8 0.020 | 0.111 | 0.083
17 0.026 | 0.050 | 0.033 26 0.001 | 0.176 | 0.138
27 0.001 | 0.043 | 0.029 28 0.001 | 0.164 | 0.128

A. VIS for ranking DVI nodes

To assess the performance of the proposed approach in iden-
tifying DVI nodes, VIS for two arbitrary observation nodes
(i.e., 7, 16) are computed using two different distance metrics
namely KL divergence (eqn. (15)) and Bhattacharyya distance
(eqn. (16)). The results obtained by using the proposed ap-
proach is validated against ground truth values. The baseline
approach to compute true DVI nodes is based on Monte-Carlo
simulations (MCS) of load flow as explained in Section II-
A. Initially, the variance of voltage change magnitude at a
given observation node is computed due to the presence of all
actor nodes. Multiple power change scenarios are simulated
by running 100000 MCS with load flow method. Then, the
reduction in the variance of the magnitude of voltage change
is determined by setting the variance to zero for each actor
node sequentially. Again, for each actor node case, different
MCS are executed. Finally, the actor nodes are ranked based
on the reduction in variance they bought when the variance of
power change at the corresponding actor node is set to zero.

Tables I and II tabulates the VIS for observation nodes 7
and 16, respectively. MC, KL and BC refers to baseline MCS
approach, proposed KL divergence and Bhattacharyya distance
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based methods, respectively. Node in the tables refers to actor
node. It can be inferred that the VIS for the most dominant
actor node is 1 and it decreases as we move to lower rank
nodes. For observation node-7 with KL distance metric, there
is a small difference in VIS between nodes 22 and 14 implying
that they exhibit almost equal voltage influencing capacity.
However, there is a considerable difference when it comes
to nodes 14 and 26. Thus, VIS allows us to quantitatively
differentiate between dominant influencer nodes.

B. Ranking of DVI nodes with VIS

DVI nodes are identified by ranking nodes based on VIS.
Table III tabulate the top 10 dominant voltage influencer nodes
for observation nodes 7 and 16, respectively.

Table III: DVI nodes for observation nodes 7 and 16

Rank —

Metric | 1 2 3 4 5 6 7 8 9 10
Observation node -7

MC 7 9 12 122 | 14 | 26 | 28 | 8 17 | 27

KL 7 9 12 | 14 | 22 | 26 | 28 | 8 17 | 18

BC 7 9 12 | 14 | 22 | 26 | 28 | 8 17 | 18
Observation node -16

MC 14122 |18 | 12 |9 7 17 | 8 26 | 28

KL 14 (22 ] 12 |9 7 17 1 26 | 18 | 28 | 8

BC 14 (22 ] 12 |9 7 17 | 26 | 18 | 28 | 8

According to Table III, the MC method indicate that the
actor nodes 7 and 14 are Rank-1 nodes for observation node
7 and 16, respectively. The assignment of Rank-1 nodes is
carried out correctly by both the metrics of the proposed
approach. The reasons for rank-1 allocation are (1) the high
variance of power change and (2) proximity of actor nodes to
the given observation node in the IEEE 37-node test system.

Apart from rank-1, utilities might be interested in identi-
fying other dominant nodes which are next to rank-1. In this
regard, we use Top-N accuracy, which can be defined as,

|{Predicted Top-N nodes} N {True Top-N nodes}|
N ;
where N is the desired number based on the applications.
The Top-5 and Top-10 accuracy results are presented for
observation nodes 7 and 16 in Table IV. The last column
of the table denotes the mean accuracy when all the nodes
of the IEEE-37 node network act as observation nodes. It
can be observed that distance metrics KL and BC have
fairly good identification accuracy, and the mean accuracy is
more than 90%. Apart from Rank-1 node, our approach also
provides the correct sequence of actor nodes when compared
to baseline MC approach. However, in some positions, the
order of actor nodes is flipped or offset by one or two units.
This is because, the corresponding actor nodes have an equal
influencing capacity for that particular observation node. For
instance, in the case of observation node 7, the position of
actor nodes 22 and 14 are flipped. However, this is not a
major concern here, as we are more interested in correctly
identifying nodes lying in a particular band (i.e., Top-5, Top-
10) rather than their exact order. The power at the Top-5 or
Top-10 actor nodes can be efficiently regulated to mitigate
voltage violations.

ey
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Table IV: Identification accuracy of DVI nodes

Node — obs. node-7 | obs. node-16 Mean
Accuracy | (%) (%) all nodes (%)
Top-5 100 80 91
Top-10 90 100 93

Furthermore, to get the overall influencing capacity of actor
nodes, one can compute the mean VIS. For each actor node,
the mean of VIS is taken across all observation nodes of
the network. It can be observed From Table V that actor
nodes 17 and 30 have maximum and minimum influencing
capacity among all the actor nodes present in the network.
This assignment is because of their topological position in the
distribution network and the magnitude of power variance due
to associated DER units or load variation.

Table V: Average VIS of actor nodes

Nodes VIS Nodes VIS Nodes VIS
7 0.220 17 0.444 28 0.156
8 0.220 18 0.304 30 0.154
9 0.212 22 0.349 31 0.189
12 0.258 26 0.163 34 0.378
14 0.300 27 0.166 36 0.427

Table VI: Running time of various approaches

Time Running time
Metric Top-S (s)
MC 12039
KL 0.92
BC 0.96

C. DVI nodes for Non-Gaussian distribution of power change

The proposed framework is generic and can be applied
for power variations following any distribution with finite
mean and variance. Therefore, along with the Gaussian, the
proposed method is also evaluated for the case of power
changes following a Beta distribution. The shape and scale
parameters of the Beta distribution are chosen as 2 and 5,
respectively. Here, power is varied at 5 actor nodes namely
7,8,14,17,22. The magnitudes of power variation and corre-
lation structure are kept the same as described earlier for the
Gaussian scenario. Table VII represents the ranking of all actor
nodes for observation node 8 when power change follows the
Beta distribution. It can be seen that the assignment of the
Rank-1 node is carried out correctly by both the information-
theoretic metrics, which further reinforces the merit of our
approach.

Table VII: DVI nodes for observation node-8

Rank —

Metric | 11213 4 5
MC 8| 7 17 | 22 14
KL 8| 7 17 | 22 14
BC 8| 7 17 14 | 22
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D. Computational complexity of proposed method

Apart from correctly identifying the dominant voltage in-
fluencing nodes, the proposed approach offers a considerable
computational advantage over the conventional approaches.
Table VI reports the execution time of various approaches
to identify Top-5 actor nodes for the observation node 7.
It can be seen that the proposed approach involving any of
the two distance metrics is multiple order faster than that
of the conventional approach, which takes around 3.2 hrs.
All the experiments are conducted on a machine with Intel
i7 processor running at 2.2 GHz. This results demonstrates
the computational advantage of the proposed approach over
conventional methods.

The proposed approach of identifying DVI nodes can en-
hance voltage control strategies in multiple ways. One of the
approaches is based on system partitioning, where a set of
effective actor nodes is used for control actions. Our approach
helps to identify such set of actor nodes in a computation-
ally efficient manner. Given a particular scenario of power
change in the system, one can determine the set of common
observation nodes for which a particular actor node induces
the maximum impact on voltage profiles. Therefore, the set of
common observation nodes can form a cluster and it is cost
effective to control power variations on the most dominant
actor node to quickly restore voltages to their safe operational
limits within that cluster. Along with clustering, our method
of ranking nodes can also be used for optimal allocations
of DERs or fault current limiters which involves sensitivity
analysis. These control and asset allocation strategies will
be investigated as part of our future work. Furthermore, the
proposed approach is performance (voltage influence score)
driven hence can also assist network-based approaches to
efficiently identify critical nodes in a distribution network [31],
[32].

V. CONCLUSION AND FUTURE WORK

The conventional methods to identify dominant voltage
influencer nodes (DVI) are Monte-Carlo simulation-based that
are computationally expensive. Therefore, this work focuses
on an analytical approach and proposes statistical distance
metrics to devise VIS that quantifies voltage influencing ca-
pacity of actor nodes. The VIS is then leveraged to identify
the DVI nodes. The proposed framework computes VIS not
solely on the basis of correlation between change in power at
the actor node and change in voltage at the observation node,
but it also relies on the magnitude of voltage variation that is
being caused due to power change at actor nodes. Effectiveness
and computational efficiency of the proposed method are
illustrated by comparing the results with conventional method
of identifying DVI nodes using Monte-Carlo simulations in
IEEE 37-node test system. From the results, it can be inferred
that the proposed statistical distance metrics effectively predict
the DVI nodes while substantially reducing the execution
time. The error in modeling the probability distribution would
impact the dominant set. Therefore, the robustness of the
proposed approach will be investigated as part of future work.
Further, this scalable approach of identifying DVI nodes can
find applications in a variety of areas such as in utilizing

DVI nodes for voltage control at strategic locations, identi-
fying most influencer DERs that are responsible for voltage
fluctuations, among others. Employing DVI nodes for network
partitioning and efficient control applications will be pursued
as part of our future work.
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APPENDIX

The real and imaginary parts of voltage change (equation
(6) can be expressed as,

a,r a,rT
AVyy =Coys ASa,

a,i a,iT (22)
AVyy =Coa ASa,
where,
Ca,rT _[ aa,r Daa,'r Cab,r Dab,r Cac,r ac,'r}
OA — OA OA OA OA OA OA

a,t ' aa,t aa,i ab,i ab,i ac,i ac,i
Coa =1[Coa Doa Coix Do Coi Dol

10

The constants C' and D are the functions of the line
impedances and base voltages which are given by,

M Z(R& cos(wa) = X & sin(wa)) ]

QAT - -
OA aa 2 |VA| aa
aa,r (R sin(wa)+X G cos(wa))
0A \ VAl
Cab,r —(RaobAcos(wA)—Xg%sin(wA))
" — OA o Ve 23)
oA Dab,r — (R, sin(wa)+ X3 cos(wa))
oA VAT
Coix —(Ri5cos(wa)— X {5y sin(wa))
Vil
LD | ] R sin(wa)+XE% cos(wa))

L & V5 J
Similarly, constants C' and D for imaginary part of voltage
change are expressed as,

- iaa,i r7(RGsin(wa)+Xg% cos(wa)) T
OA V4l
aa,i (X&Usin(wa)—RE cos(wa))
0A A Vil
Cab,i — (R, sin(wa)+ X3 cos(wa))
Ca,i o OA | V3 (24)
oA Dab,i — (X8 sin(wa)— R cos(wa))
o4 VA
ac,i —(R%‘Asin(wA)—Ql—Xg‘fAcos(wA))
o4 VAT
ac,i £(X88 sin(wa)— R, cos(wa))
o4 L VAl i

where RY ,, X}, are the Yesistance and reactance of shared
path between the observation node O and actor node A from
the source node. h denotes the self or mutual impedance terms
of a particular phase, for instance aa, ab, ac of phase a.
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