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Abstract—With increasing penetration of renewable energy 
and active consumers, control and management of power dis-
tribution networks has become challenging. Renewable energy 

sources can cause random voltage fuctuations as their output 
power depends on weather conditions. Conventional voltage 
control schemes such as tap changers and capacitor banks lack 
the foresight required to quickly alleviate voltage violations. Thus, 
there is an urgent need for effective approaches for predicting and 
mitigating voltage violations as a result of random fuctuations in 
power injections. This work proposes a novel voltage monitoring 
approach based on low-complexity, data-driven probabilistic 
voltage sensitivity analysis. The usefulness of this work is not 
only in predicting voltage violations in unbalanced distribution 
grids, but also in opening up the door for optimal voltage control. 
Using system data and forecasts, the proposed approach predicts 
the distribution of system node voltages which is then used to 
to identify nodes that may violate the nominal operational limits 
with high probability. The method is tested on the IEEE 37 
node distribution system considering integrated distributed solar 
energy sources. The method is validated against the classic load 
fow based method and offers over 95% accuracy in predicting 
voltage violations. 

Index Terms—Distributed Generation, Voltage Violation, Prob-
abilistic Voltage Sensitivity, Sensor Measurements 

I. INTRODUCTION 

The integration of smart grid technologies such as electric 

vehicles, energy storage facilities, and distributed generation, 

introduces advantages as well as system operational challenges 

[1]. Renewable energy sources are characterized by variable 

power outputs that increase system vulnerability to opera-

tional ineffciencies [2]. In particular, distribution grids become 

highly vulnerable to random voltage fuctuations especially 

when there is a high penetration of distributed solar PV 

generation [3] [4]. Conventional voltage regulation methods 

such as capacitor banks [5] and tap changers [6] represent 

reactionary approaches and do not exploit any knowledge of 

voltage state based on anticipated power fuctuations. One 

reason for resorting to such reactive approaches is the diffculty 

in estimating the states of a distribution network due to lack of 

observability. However, recent efforts on sparsity-based esti-

mation strategies (see [7], [8], [9]) have opened up new possi-

bilities for more proactive methods for voltage regulation [3]. 

Additionally, the classic voltage regulation methods are not 
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designed for bi-directional current fow and typically provide 

reactive support after an event is detected [10]. Many recent 

research efforts have explored the possibility of using reactive 

power capabilities of PV generators through smart inverters in 

either a centralized [11], [12] or decentralized [13] scheme. 

The effcacy of these methods is dependent on the ability to 

accurately predict voltage violations in the system so that op-

erational setpoints of the PV inverters can be appropriately set 

in advance. Load fow based look-ahead prediction approaches 

are cumbersome, computationally complex and not scalable. 

Therefore, the development of a computationally effcient, yet 

accurate voltage-violation prediction approach that predicts 

future violations as well as their concomitant uncertainty 

bounds is critically important for control and management 

of distribution grids. This paper aims at developing and 

testing a computationally effcient voltage violation prediction 

scheme while considering different penetration levels of PV 

generation. Based on our prior work on probabilistic voltage 

sensitivity analysis (PVSA) [7], [14], the present research 

focuses on identifying nodes with high probability of violating 

voltage limits at different time instances. Leveraging existing 

knowledge of voltage states along with uncertain forecasts of 

power generation/consumption, probabilistic voltage sensitiv-

ity analysis is used to reveal impending voltage issues at any 

node in the network. The major scientifc contributions of this 

work include: 

• A computationally effcient, analytical approach to com-

pute the probability of voltage change at any node in 

an unbalanced distribution system as a result of change 

in real and reactive power injections at multiple active 

consumer locations is proposed. 

• A probabilistic voltage sensitivity analysis based ap-

proach that predicts the probability of future voltage 

violations due to change in complex power injection is 

developed. The approach is used to predict the number 

of violations in the system at any time instant (based on 

forecasted PV generation). 

• The complexity of the proposed analytical approach is 

signifcantly lower than traditional load fow-based meth-

ods. 

II. BACKGROUND: VOLTAGE SENSITIVITY ANALYSIS 

For a given three-phase distribution network, analytical 

voltage sensitivity analysis estimates the complex voltage 
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change at a particular node (observation node O) as a result 

of complex power change at another node (actor node A) in 

the system [14]. The usefulness of this approach is seen in 

the reduced computational complexity in comparison with 

Newton-Raphson based power fow methods. The change of 

power consumption at an actor node A from SA to SA +�SA 

results in voltage change at observation node O from VO to 

VO + �VO . The voltage sensitivity for a given observation 

node O can be calculated using theorem 1 [14]. 

Theorem 1. For a given three phase distribution network, 

the change in voltage at an observation node (�VO) due 

to change in power consumption at an actor node (�SA) is 

approximated by: 

  
Zaa Zab Zac �Sa �Sb �Sc 

A OA A OA A OA + +
V
A

a� V b� V c� 
A A 

  
Zba Zbb Zbc 

A OA A OA A OA  �Sb �Sb �Sc 


�VO ˇ − 
 + +  (1) 

V
A

a� V b� V c� 
A A 

  
Zca Zcb Zcc 

A OA A OA A OA �Sa �Sb �Sc 

+ +
V a� V b� V c� 
A A A 

where �VO is a vector consisting of the voltage change 

in phases a, b, and c at an observation node O given by 
a c�VO , �V b and �VO . V � and �SA represent the complex O A 

conjugate of voltage and complex power change at actor node 

A, respectively. The superscripts a, b, and c represent different 

phases and Z corresponds to the self and mutual impedance 

of the shared line between the actor and observation node. 

The voltage change due to multiple actor nodes A 2 A can 

be formulated as the cumulative effect of all actor nodes on 

a particular observation node as given in corollary 1 [8]. 

Corollary 1. For a given three phase distribution network, 

the cumulative change in complex voltage at an observation 

node O due to the change in complex power at multiple actor 

nodes can be formulated as: 
  

Zaa Zab Zac �Sa �Sb �Sc 
A OA A OA A OA + +
V a� V b� V c� 
A A A 

  
X 

Zba Zbb Zbc 
A OA A OA A OA  �Sb �Sb �Sc 



�VO ˇ − 
 + +  (2) 

V a� V b� V c� 
A A A 

  
Zca Zcb Zcc 

A OA A OA A OA 
A2A �Sa �Sb �Sc 

+ +
V
A

a� V b� V c� 
A A 

where, A represents the set of all actor nodes resulting in the 

complex voltage change at node O. The analytical method 

presented in corollary 1 gives us a computationally effcient 

method for computing the probability of voltage change at 

any given observation node O due to change in complex 

power at multiple actor nodes A 2 A. Further, the execution 

time of the method to calculate the voltage sensitivity for a 

single observation node is an order faster (e.g., with an intel 

i7 processor based PC, it is 0.00871s, compared to 0.0537s 

in classical load fow method for the modifed IEEE 37 bus 

system). This clearly shows that the proposed approach has 

an edge over traditional methods in terms of computational 

effciency and the difference further increases with the size 

of the network. The analysis in this paper is based on the 

probabilistic extension of corollary 1. 

III. PREEMPTIVE VOLTAGE VIOLATION PREDICTION 

The voltage sensitivity analysis derived in section II is 

extended to predict the probability distribution of voltage at 

an observation node due to complex power change at multiple 

actor nodes. The analytical approach in this work assumes 

that based on measurements of complex power and voltages 

at a subset of locations, it is possible to estimate voltage 

states across the entire network, similar to the approaches 

presented in [7] [3]. The variability in complex power injection 

or consumption at actor nodes results in random voltage 

fuctuations at observation nodes. In this case, actor nodes 

represent active consumers integrated with distributed PV 
p

generation. Subsequently, if V is the present three phase O 
voltage at an observation node O that is obtained from 

f 
system measurements, then V represents the future predicted O 

f
complex voltage vector at that particular observation node. VO 
is expected to be random due to the uncertainty introduced by 

the distributed PV generation and corresponds to, 

f p
V = V + �VO. (3) O O 

Here, �VO represents the change in voltage at an observation 

node due to random complex power changes at actor nodes. 

Considering a single phase for simplicity, the voltage change 

at an observation node O due to single actor node A can 

be expressed in terms of real and imaginary part of voltage 

change as follows: 

|V a| 

= �V 
a,r a,i �V a + j�VOA OA OA (4) 

where, 

�V 
a,r 
OA = − 1 a(Ru(�P OA cos �A − Xu sin �A)A OA 

A 

− �Qa (Ru 
OA cos �A)) (5) sin �A + Xu 

A OA 

and, 

1 
(�Qa (Ru�V 

a,i = − OA cos �A − Xu sin �A)OA A OA |V a|A 
a(Ru+�P sin �A + XOA 

u cos �A)) (6) A OA 

where, u represents different phase sequences, i.e., aa, ab, ac 
ain phase a. �P and �Qa represent the active and reactive A A 

power changes at phase a of actor node A, Ru and Xu 
OA are OA 

the real and imaginary parts of the impedance of the shared 

line between the observation O and actor node A, and �A is 

the phase angle of the voltage at the actor node A. 

Similar to corollary 1, (4) can be extended to accommodate 

the impact of multiple actor nodes. Therefore, the cumulative 

voltage change at a single phase in an observation node O due 

to multiple actor nodes A 2 A can be written as: 
X X X 

�V 
a,r a,i �V a = = + j �V (7) �VO OA OA OA 

A2A A2A A2A 

At each time instant, the active and reactive power injections 

in the system can be modeled as random variables based on 

the variability of distributed PV generation at active consumer 

sites. Therefore, it is natural to model �VO as a random 



      

 
    

 
  

   

 

 

      

 
 

 
  

 
 

 

   
 
 

 

 

 

       

  

      
    

 

 
  

 

 

  
  

     
   

 
  

   
   

 
 
 

  
  

  
   

 

 
  

 

 

  
  

    
   

 
    
    

  
  
  

  
   

 

 

 

  

      

variable as well. The derivation of the distribution of |�VO| 
is the focus of the next subsection. 

A. Probability Distribution of predicted voltage 

Theorem 2 provides the probability distribution of the 

magnitude of predicted voltage at an observation node O due 

to complex power change at multiple actor nodes A 2 A for 

a single phase. 

Theorem 2. For a given unbalanced distribution network, the 
f

predicted voltage magnitude (|V |) at an observation node OO 

due to complex power changes at multiple actor nodes A 2 A 
follows a Rician distribution, i.e., 

f|V |˘ Rician(�, ˙) (8) O 

p p
where, � = w and ˙ = � with, 

˙4 2 2(1 + 2µ ) + ˙4(1 + 2µ )r r i i� = 
2 2 (9) 

˙2(1 + 2µ ) + ˙2(1 + 2µ )r r i i 

and, 

2 2 2 2 2 2 2 2 2(˙r µr + ˙i µi )(˙r + ˙i 
2 + 2˙r µr + 2˙i µi ) w = (10) 

˙4 + ˙4 2 2+ 2˙4µ + 2˙4µr i r r r i 

T = V r,p There, ˙2 = cr 
T ��Scr, ˙2 = c ��Sci, µr +c µ�S ,r i i O r 

i,p T i,p 
and µi = V + c µ�S . In this context, V 

r,p 
and V are O i O O 

the present estimated values of real and imaginary parts of 

voltage. cr and ci are based on system topology and µ�S 

and ��S are related to variability in power change as will be 

discussed in the proof. 

Proof. The variability of PV generation randomizes the asso-

ciated power output. In this case, the forecasted power change 

is modeled as a non-zero mean random vector with mean µ�S 

and covariance ��S . This model captures a nominal forecast 

(µ�S ) and the associated error in forecast characterized by 

��S . The real and reactive power represent the net nodal load 

changes given the presence of distributed PV generation at 

active consumer sites. Accordingly, �S can be represented 

as shown in (11) with n representing the number of nodes in 

the system. 

a a
�S = [�P1 , ..., �P , �Q1 

a , ..., �Qa ] (11) n n 

The following steps detail the steps involved in the derivation 
f

of the distribution of |V |.O 

1) Computation of covariance matrix ��S: The covariance 

matrix ��S captures the relationship between complex power 

changes at multiple actor nodes and can be determined based 

on historical measurements. For a given system, the diagonal 

elements of the covariance matrix (i.e., variance) depend on 

the size of distributed PV generation and the uncertainty in the 

forecast. The off diagonal elements of the covariance matrix 

are based on the future net-load forecasts given a particular 

spatial PV generation and load profle. If a particular node in 

the network is not integrated with distributed PV generation, 

then the mean and variance term of the respective node is 

equivalent to their typical load variability. Accordingly, the 

covariance matrix ��S can be formulated as, 
  

˙2 . . . cov(pn, p1) cov(q1, p1) . . . cov(qn, p1)p1 

 . . . . ..  . . . . . . 
 . . . . . . 
  

˙2 
cov(p1, pn) . . . cov(q1, pn) . . . cov(qn, qn) 
 pn ��S = 

˙2 
cov(p1, q1) . . . cov(pn, q1) . . . cov(qn, p1) 

 q1  
 . . . . . . 
 . . . . . . 

. .. . . . 

˙2cov(p1, qn) . . . cov(pn, qn) cov(q1, qn) . . . qn 

(12) 

Here, n represents the number of nodes in the desired network 

and pi and qi are the active and reactive power injection or 

consumption at the ith active consumer site, respectively. ˙2 
pi 

and ˙2 capture the variance of active and reactive power qi 

generation across different actor nodes, respectively, and the 

off diagonal elements capture the correlation between various 

generators due to geographical proximity. 

2) Computation of cr and ci vectors: The present work 

assumes prior knowledge of the system parameters. To begin 

with, defne cr and ci as follows: 

aa ab ac]T aa ab ac]T cr = [c , c , c , ci = [c , c , c (13) r r r i i i 

For simplicity, the vectors are shown for single phase, i.e., 

phase a, where each vector is composed of three sub-vectors 

corresponding to self and mutual phases. crand ci for a single 

phase can be computed as, 

−(Raa 
 cos(�1)−Xaa sin(�1)) 

|V a| 
O1 O1 

1 
 . 
 .  
 . 

 
−(Raa )−Xaa 

 cos(�n sin(�n))  
On On 

  
aa |V a| 

 c = (Raa n (14) r 
 sin(�1)+Xaa cos(�1)) O1 O1 
 |V a|  

1 
  
 . 

 . 
 .  

(Raa )+Xaa 
On On sin(�n cos(�n)) 

|V a|
n 

−(Raa 
 sin(�1)+Xaa cos(�1)) 

|V a| 
O1 O1 

1 
 . 
 .  
 . 

 
−(Raa 

 sin(�n)+Xaa cos(�n))  
On On 

  
aa |V a|

n c = −(Raa (15) i  cos(�1)−Xaa sin(�1)) O1 O1 
 |V a|  

1 
  
 . 

 . 
 .  

−(Raa )−Xaa 
On On cos(�n sin(�n)) 

|V a|
n 

The aforementioned vectors are constant for a given system 

with a particular set of active consumer (actor) nodes inte-

grated with distributed PV generation. The elements of cr and 

ci vectors consist of the ratio of the impedance of shared path 

(between the observation and actor node) to the rated voltage 

of the associated phase, (e.g., in this case, it would be phase 

a). When the system topology changes, the cr and ci vectors 

are expected to change as well. 

3) Probability distribution of �V r and �V i: This subsec-o o 

tion provides an expression for the real and imaginary parts of 

voltage change at an observation node due to complex power 

change at multiple actor nodes. The change in voltage at an 
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Fig. 2. Solar PV generation profle for each unit. 

higher than 0.5 are considered vulnerable. The method is 

generic and can be implemented on all observation nodes 

in the network. This assessment provides an insight into 

the voltage status of the network at a future time instant. 

The assessment criterion is computationally effcient and the 

outcome can be used as an input for voltage control. The 

control aspects, although not discussed in this paper, will be 

part of future research efforts. 

IV. SIMULATION AND RESULTS 

This section summarizes the simulation results and fndings 

related to PVSA based preemptive voltage monitoring strategy. 

First, the violation prediction method is tested on the IEEE 37 

node test system. Next, a catastrophic scenario is presented 

where the system experiences a complete loss of generation at 

a particular actor node and the effcacy of the proposed voltage 

violation prediction is evaluated. Actual voltage violations 

in the system are extracted using power fow solutions for 

the purpose of validating the proposed approach. Among 

the 37 system nodes, a subset of nodes is considered to be 

active consumers with integrated distributed PV generation 

and voltage status is monitored on all system (observation) 

nodes. For the frst case, A hypothetical solar PV generation 

scenario is considered from noon to 18:00 with power and 

voltage measurement availability every 15 minutes. The solar 

PV generation in this work is modeled as a random process 

with a component of uncertainty to illustrate a profle that 

follows real world scenarios as follows: 

GPV (t) = S(t) + Rs(t). (31) 

Here, S(t) is the mean forecast trend of the solar PV genera-

tion and Rs(t) represents a zero mean uncorrelated Gaussian 

random process illustrating the uncertainty in PV generation. 

Figure 2 shows the solar PV generation model used (S(t)) as 

well as the net-power curve used for simulation in this paper. 

Time instances where the net-power is negative indicates 

reversed power fow in the grid due to surplus solar PV 

generation. Although this particular scenario is considered, 

the proposed method is generic and applicable to different 

scenarios. Initially, net-power injections, system data such as 

node locations and line impedances are used to compute the 

cumulative effect of actor nodes on all observation nodes in 
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Fig. 3. Voltage violation prediction using (29) vs. load fow. 

the network. The analytical expressions presented in section 

II are the basis for estimating the mean and variance of 

voltage at all nodes as discussed in section III. The covariance 

matrix ��S is computed relying on estimates of historical 

data. The network topology is used to compute vectors cr 

and ci as formulated in (13). Finally, node voltage state 

estimates as well as the analytical voltage change probability 

distribution are utilized to compute the probability of node 

voltage violation according to the threshold given in section 

III-B. In the frst case study, a hypothetical 30% Penetration 

Level (PL) of distributed PV generation is randomly allocated 

among 14 actor nodes and voltage state is monitored across all 

observation nodes in the network. Figure 3 shows the number 

of violations in the system using the proposed method in (29) 

vs. load fow method. From fgure 3, it can be inferred that 

the proposed method accurately predicts voltage violations in 

the system compared to actual violations calculated using load 

fow method. 

In the next case study, a scenario with complete loss of 

PV generation at a certain time instant is investigated. In 

this case, actor nodes are assigned to three different 24 

hour PV generation profles contributing to a 70 % PL for 

demonstrating the generality of the proposed method. The 

system in this case consists of 20 arbitrary active consumer 

nodes integrated with distributed PV generation. Similar to the 

frst case study, voltage state is monitored across all nodes in 

the network. Figure 4 shows the number of voltage violations 

in the system using the proposed analytical method in (29) 

vs. load fow method with a PV generation loss scenario 

occurring at time 16:32 of the day. It can be inferred that 

the proposed method effectively predicts voltage violations 

not only under normal operation conditions but also under 

generation loss scenarios. Finally, the accuracy of the proposed 

method is quantifed via multiple Monte-Carlo simulations. 

Two cases are considered for investigating the accuracy of the 

proposed method, namely, 30% and 70% PLs. For both cases, 

20 arbitrary actor nodes are integrated with distributed PV 
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Fig. 4. Voltage violation prediction using (29) vs. load fow. 

generation and voltage state is monitored across all nodes in 

the network. Both scenarios are simulated for 100 Monte-Carlo 

simulations and the mean prediction error is obtained. Table I 

shows the prediction error for both cases, which demonstrates 

that the effectiveness of the proposed method in predicting 

voltage violations in the system is higher than 95%. Therefore, 

the proposed method can provide effective foresight on voltage 

violations to system operators, which can then be utilized to 

implement an appropriate optimal voltage control strategy. 

PL Prediction error (%) 
30% 4.31 
70% 4.43 

TABLE I 
THEORETICAL VS. ACTUAL VOLTAGE VIOLATIONS. 

V. CONCLUSION 

Power systems across the globe are witnessing rapid in-

tegration of smart grid technologies including renewable en-

ergy based distributed generation. This increased integration 

increases system vulnerability to voltage violations which 

greatly decreases system reliability. Conventional voltage con-

trol methods rely mainly on reactionary methods which makes 

it diffcult to completely mitigate voltage violations in the 

system. This paper proposes a new preemptive voltage mon-

itoring method that provides useful foresight on violations in 

the system. The proposed approach is based on probabilistic 

voltage sensitivity analysis where the probability of voltage 

violation is computed for all system nodes given changes 

in power injections at different system nodes. Results in 

this paper demonstrate that the proposed voltage violation 

prediction method is extremely accurate with a low prediction 

error of approximately 4 %. 

Future research directions of this work include identifying the 

most dominant and infuencial nodes that result in voltage 

violations at an observation node which in turn can be used 

to develop quick and effective control solutions. 
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