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Antiferromagnets have recently attracted significant interest for their potential use in spintronic devices.
Due to their switching frequencies in the terahertz range, antiferromagnets have the potential to produce
fast, dense computer memories[1]. Existing magnetic imaging techniques such as Lorentz TEM[2],
electron holography[3,4], and differential phase contrast scanning transmission electron microscopy
(DPC-STEM)[5,6] have been used effectively to image magnetic domains and topological structures of
magnetism such as skyrmions[7] with spatial resolution of a couple of nanometers|7,8]. However, higher
spatial resolution is needed to study the spin arrangements of antiferromagnets near domain boundaries,
defects, and interfaces.

In this work, we demonstrate experimental 4D-STEM methods, developed with multislice simulations, to

image the local magnetic moments in Fe2As, a metallic antiferromagnet. Fe2As 1s an ideal sample because
the Fe atoms are organized in 6 A-wide blocks in which the spins are locally aligned. The magnetic
moments of the Fe atoms are parallel within the same block and reverse direction in adjacent blocks,
forming a pattern that repeats every 11.96 A (Fig. 1) [9].

First, we utilize quantitative electron scattering simulations to understand the effects of magnetism on
convergent beam electron diffraction (CBED) patterns and determine ideal experimental parameters to
detect magnetism with an atomic-scale probe. We use conventional multislice simulations[10] with a
modification: we include a magnetic phase shift in the transmission function for each slice, using

magnetization densities calculated for Fe2As from density-functional theory. From our simulations, we
found that the magnetic signal was maximized when the real-space probe matched the size of the 6 A-
wide blocks in which the spins are aligned, or equivalently when the Bragg disks overlap slightly. Our

simulations also show that the magnetic structure of Fe2As causes redistribution of intensity within the
bright field disk in addition to small (microradian) shifts of the diffraction pattern.

Guided by our multislice simulations, we optimized methods to extract and isolate a magnetic signal. We
defined a circular mask (Fig. 2b) in the center of the bright field disk and used the masked area to produce
center of mass (COM) images from experimental CBED patterns. As seen in Figs. 2c-2e, the component
of those COM images along the [001] direction shows spatial variation at half the spatial frequency of the

(001) lattice fringes, consistent with the magnetic unit cell of Fe2As. This data indicates that our methods

can directly measure magnetism in antiferromagnetic Fe2As with 6 A resolution. Together, our simulation
and experimental methods illustrate new methods for electron microscopy measurements of
antiferromagnetic materials down to few-angstrom resolution, and we expect that these techniques should
be useful in the development of spintronic devices. [11]
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Figure 1. Structure of Fe;As. a) Magnetic unit cell of Fe;As, showing Fe atoms (gold) and As atoms
(green). Magnetic moments of Fe atoms are indicated by arrows. b) ADF-STEM image of Fe;As.
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Figure 2. a) Schematic showing how sample magnetism causes small deflections to the electron beam. b)
Experimental PACBED image of Fe,As. Dark transparent regions define a circular mask (1) and an
annular mask (2). ¢) and d) Images of same region of FeoAs sample, with scale indicated in e). ¢) Center
of mass image (component in the [001] direction) using mask 1, showing spatial variation consistent with
magnetic structure of FexAs. d) Image summed over mask 2, showing lattice fringes. e) Line profiles of
¢) and d).
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