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Abstract

Otitis Media (OM) is the most common reason for US children to receive prescribed

oral antibiotics, leading to be a potential to cause antibiotic resistance. To minimize

oral antibiotic usage, we developed polyvinylpyrrolidone-coated silver nanoparticles

(AgNPs-PVP), which completely eradicated common OM pathogens, that is, Strepto-

coccus pneumoniae and nontypeable Haemophilus influenzae (NTHi) at 1.04 and

2.13 μg/ml. The greater antimicrobial efficacy against S. pneumoniae was a result of

the H2O2-producing ability of S. pneumoniae and the known synergistic interactions

between H2O2 and AgNPs. To enable the sustained local delivery of AgNPs-PVP

(e.g., via injection through perforated tympanic membranes), a hydrogel formulation

of 18%(w/v) P407 was developed. Reverse thermal gelation of the AgNPs-PVP-P407

hydrogel could gel rapidly upon entering the warm auditory bullae and thereby

sustained release of antimicrobials. This hydrogel-based local delivery system completely

eradicated OM pathogens in vitro without cytotoxicity, and thus represents a promising

strategy for treating bacterial OM without relying on conventional antibiotics.
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1 | INTRODUCTION

Otitis media (OM), the infection and subsequent inflammation of the

middle ear, is the most common illness within the first 24 months of

birth.1 By age 5, over 95% of children in the United States have had

at least one episode of OM.2,3 In particular, 58% OM episodes are

due to bacterial infections caused by gram-positive Streptococcus

pneumoniae (S. pneumoniae) and/or gram-negative nontypeable

Haemophilus influenzae (NTHi),4,5 pathogens that commonly colonize

the nasopharynx and invade the auditory bullae opportunistically to

cause OM.6

Oral antibiotic therapy is the current mainstay of treatment for

OM. A typical course of treatment comprises 7–10 days of multidose

antibiotic regimens.7 As a result, OM represents the most common

reason for pediatric antibiotic prescriptions written to U.S. children.2,3

The level of systemic antibiotic exposure caused by OM is further

exacerbated by identified antibiotic resistance of OM pathogens. For

example, S. pneumoniae, responsible for over 30% of all OM cases, is

known to have greater tolerance for ß-lactam and macrolide.8,9 Even

with effective fluoroquinolones such as ciprofloxacin, the minimum

inhibitory concentration (MIC) of S. pneumoniae is as high as

0.5–4 μg/ml.10,11 Effective eradication of S. pneumoniae OM requires

high antibiotic concentrations in the middle ear, sustained throughout

the treatment by adhering to the rigorous multidose oral regimens.

The high levels of systemic antibiotic exposure often cause side

effects, such as diarrhea, vomiting, and oral thrush,12 which in turn

make it challenging to continue the treatment and potentially lead to

recurrent OM and widespread antibiotic resistance.

In this report, silver nanoparticles (AgNPs) were examined as a

potential treatment for the OM pathogens. Contrary to small-molecule
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antibiotics, we found AgNPs (stabilized with polyvinylpyrrolidone [PVP])

to be high efficacious against S. pneumoniae, with MICs lower than that

of NTHi, showing a great potential as a broad-spectrum therapy for

OM. In recent years, AgNPs have become an attractive alternative to

antibiotics due to their excellent antibacterial effects against both gram-

positive and gram-negative pathogens13 and even bacteria with

multidrug resistance.14 Several mechanisms have been considered to

explain the antimicrobial efficacy of AgNPs.15 In brief, AgNPs have been

observed to attach to the cell membrane of bacteria, leading to critical

damages such as membrane penetration and disabled membrane func-

tions such as respiration (due to deactivation of membrane-bound

essential enzymes such as respiratory chain dehydrogenases),16,17

which in turn increases bacterial membrane permeability.18,19 AgNPs

that penetrated a bacterial cell can damage DNA and deactivate intra-

cellular enzymes,18,20 leading to rapid cell death.21 Furthermore, AgNPs

are known to generate reactive oxygen species (ROS) including super-

oxide anion (O2
•�), hydroxyl radical (OH•), and hydrogen peroxide

(H2O2).
22 The excess ROS produced by AgNPs often deplete glutathi-

one (GSH), an antioxidant produced by virtually all living organisms,23,24

and subsequently damage cell membrane and intracellular organ-

isms.23,24 Nevertheless, AgNPs have been demonstrated to cause mini-

mal cytotoxicity or immunological responses25 and have thus been

adopted across a range of biomedical applications, including drug deliv-

ery (e.g., wound healing,26 eye infection caused by Pseudomonas

aeruginosa,27 and postcardiac surgery mediastinitis28) and medical imag-

ing (e.g., human oral cancer29 and multimodality cancer30). Although

efficacy of AgNPs against OM pathogens has not been studied previ-

ously, we hypothesized that AgNPs could be highly potent, especially

against the resistant bacteria S. pneumoniae. That hypothesis was based

on the potential synergistic interactions between AgNPs and H2O2 due

to their Fenton-like reactions and the H2O2-generating ability of

S. pneumoniae.31–33

A hydrogel delivery system was designed to enable the localized

and sustained presence of AgNPs during the course of the treatment.

This design enables an AgNPs-containing formulation to be adminis-

tered through a perforated tympanic membrane as a liquid, which

quickly turns into a firm solid gel to achieve sustained antimicrobial

effects. Reverse thermal gelation, the property that enables liquid-phase

administration of the formulation at room temperature and rapid gela-

tion at elevated temperature (e.g., body temperature), was achieved

using poloxamer 407 (P407).34,35 It enables a single-dose administration

into the middle ear with ease and, once in place, prolonged presence of

the formulation to prevent recurrent OM. Furthermore, P407 has been

tested as mucoadhesive formulations in rectal delivery of a range of

therapeutics such as tizanidine HCl (TIZ) (for treatment of spasticity),36

Ibuprofen (for treatment of pain, fever, rheumatoid arthritis, and

osteoarthritis),37 and quinine in children38 (for treatment of malaria), in

the nasal delivery of selegiline hydrochloride (for treatment of

Parkinson's disease)39 and opiorphin40 (for treatment of acute and

chronic pain), and vaginal delivery of itraconazole41 and clotrimazole42

(for treatment of vaginal candidiasis). No observable irritation to the

mucosal membrane has been observed,43 hinting at the compatibility of

P407-based formulations with the middle ear mucosa. Furthermore,

delivery of OM treatments through a perforated tympanic membrane is

particularly applicable to OM patients with recurrent episodes. A recent

study showed 54.85% chronic OM cases are accompanied by tympanic

membrane perforations,44 whereas among children with recurrent

AOM 92% had tympanic membrane perforations.45 Therefore, the

AgNPs reported here have the potential to enable a single-dose and

sustained treatment for OM.

In this report, we obtained stable AgNPs colloidal solutions by

reducing Ag+ in the presence of stabilizer PVP. The as-synthesized

particles were approximately 10 nm in diameter, as demonstrated

using DLS and TEM. Upon successful demonstration of their antimi-

crobial efficacy in vitro using S. pneumoniae, NTHi, and Streptococcus

mutans (S. mutans) and biocompatibility using human dermal fibroblast

(hFBs) and PC-12 Adh cell line (a pheochromocytoma cell line used to

test neurotoxicity), the particles were further incorporated in an 18%

(w/v) P407 aqueous solution, yielding a hydrogel with reverse thermal

gelation temperature at around 25�C. The hydrogel maintained high

antimicrobial efficacy and biocompatibility. Therefore, the formulation

reported here has the potential to eradicate bacterial pathogens of

OM without antibiotics, which circumvents the systemic antibiotic

exposure and associated harmful side effects caused by the current

oral antibiotic therapy in OM treatment.

2 | EXPERIMENTAL SECTION

2.1 | Nanoparticles synthesis

The stabilized PVP-coated silver nanoparticles (AgNPs-PVP) were syn-

thesized by a chemical reduction reaction as described in the literature.46

In short, 7.5 ml of an aqueous solution of 1 mM silver nitrate (AgNO3,

99.9%tracemetals basis, Sigma,USA) and3.75 mlofanaqueous solution

of 1 mMPVP (MW40000, Sigma, USA) were dissolved in deionized (DI)

water separately and stirred on a magnetic stir plate until the solutions

became homogeneous. Then AgNO3 and PVP solutions were added

togetherandstirred for30minsat0�C,meantime18.75 mlofanaqueous

solution of 0.2 mM sodium borohydride (NaBH4, ≥98.0%, Sigma, USA)

wasdissolved inDIwater at0�C ina separate flask as a reducingagent for

nanoparticles synthesis. Next, the reducing agent solution was added

dropwise into the AgNO3-PVP mixture solution to reduce the Ag+-PVP

toAgNPs-PVPwith thefinal concentrationof0.25 mM.

The method used to determine the concentrations of the

nanoparticles was based on an established approach reported in the

literature.47 In short, because an enough amount (0.7-2 folds that of

the concentration of AgNO3) of reducing agent (NaBH4) was used to

obtain AgNPs-PVP and unprotected AgNPs, the reaction conversion

with respect to Ag was considered complete and thus the concentra-

tion of AgNPs was taken to be the same as the initial concentration of

AgNO3 (i.e., the concentration prior to the addition of NaBH4). The

final molarity concentration ratio of Ag:PVP:NaBH4 = 2:1:1.4 was

chose based on the good stability of as-synthesized AgNPs-PVP in

previous reports.46 The color of the mixture solution became trans-

parent bright yellow indicating formation of AgNPs-PVP.
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2.2 | Characterization of AgNPs and AgNPs-PVP

Optical absorbance of AgNPs and AgNPs-PVP was monitored using a

UV–Vis Spectrophotometer (Infinite® M1000 PRO) as a function of

wavelength in the range from 300 to 500 nm. The incorporation of

PVP was proven by a Bruker Vertex V80V Vacuum Fourier Transform

Infrared Spectroscopy system (FTIR) in the range of 600–2100 cm�1.

The structures and sizes of nanoparticles were observed by 200 kV

field emission Transmission Electron Microscopy (FEI F20 TEM/STEM)

and Zetasizer (Nano 90) Dynamic Light Scattering (DLS). TEM showed

images of particle size and shape on dried carbon-coated copper grid,

and DLS gave the particle size in nanoparticle suspension solution.

2.3 | Antibacterial efficacy of AgNPs and
AgNPs-PVP

Two gram-positive bacteria, Streptococcus pneumoniae (S. pneumoniae)

and Streptococcus mutans (S. mutans), and one gram-negative bacteria,

nontypeable Haemophilus influenzae (NTHi), were chosen to test

antibacterial effects of AgNPs-PVP. In short, S. mutans was cultured in

Brian Heart Infusion (BHI) broth (BD Bioscience, USA), and both S.

pneumoniae and NTHi were cultured in BHI medium with defibrinated

horse blood and nicotinamide adenine dinucleotide (NADH) in a

humidified 5% CO2-conatining balanced-air incubator at 37�C

according to established protocols.48–50

The suspension assay for estimation of the minimum inhibitory

concentration (MIC) values was carries out to evaluate the antibacterial

activity. The MIC values were determined on 96-well plates. Bacteria

were cultured to serial dilutions of the AgNPs-PVP or AgNPs (3.125,

6.25, 12.5, 25, 50, and 100 μM), and the end time points were deter-

mined when control group (bacteria only) grew to the stationary phase.

Background from the nanoparticles alone was subtracted from the final

reading. All assays were carried out in triplicates. All bacterial growth

status were monitored by optical density at a wavelength of 600 nm

(OD600) using a UV–Vis Spectrophotometer (Infinite®M1000 PRO).

2.4 | Hydrogel formation and characterization

Hydrogel formulations were made by adding powdered poloxamer

407 (P407) to DI water and stirring the solution at 4�C until all pow-

der was dissolved to form a clear solution. AgNPs-PVP was then

added to the formulated P407 hydrogel solution and stirred until the

solution became homogeneous. The hydrogel formulation was

referred to as XμM[AgNPs-PVP]-18%[P407], where X indicates

AgNPs-PVP concentration and 18% is weight per volume concentra-

tion of P407. Gelation temperature (Tgel), storage (G0) and loss (G00)

modulus were quantified using linear oscillatory shear rheology mea-

surements (1 rads�1, 1% strain, and 1�C/min) by TA Instruments

DHR3 Rheometer. Tgel is taken as the temperature when the G0

became 2 kPa larger than the G00. The changes of G0 and G00 were

recorded in the temperature range of 20–40�C.

2.5 | In vitro release kinetics of hydrogel
formulations

The release of AgNPs-PVP from the hydrogel formulations was

detected using a similar diffusion system as described in the litera-

ture.51 Transwell membrane inserts (3-μm pore size and 1.1 cm2 area;

Costar, USA) and 24-well plates were used as the donor and acceptor

cells, respectively. A 200 μl aliquot of the formulation containing 18%

P407 and 50 or 100 μM AgNPs-PVP was pipetted onto the

prewarmed inserts' membrane to get a solid-like hydrogel. Transwell

inserts with solid-like hydrogel were placed into the 24-well plates

with each well containing 1000 μl prewarmed phosphate-buffered

saline (PBS). Then the plates were incubated at 37�C. The 1000 μl ali-

quots of the PBS were collected at each time point (0.5, 1, 3, 6, 24,

and 48 hours), and the inserts were moved to a new well with 1000 μl

fresh and prewarmed PBS. Collected aliquots were analyzed with

UV–Vis Spectrophotometer; a standard curve was made to determine

the AgNPs-PVP concentrations. Experiments were performed in

triplicates.

2.6 | Biocompatibility evaluation of AgNPs, PVP,
AgNPs-PVP, and hydrogel formulations

The PC-12 cell line (ATCC CRL-1721.1) was cultured with F-12 K

medium supplemented (Corning, USA) with 2.5% fetal bovine

serum (Gibco, USA), 15% horse serum (Gibco, USA) and 1% peni-

cillin and streptomycin (Gibco, USA). The primary dermal fibroblast

cell line (ATCC PCS-201-012) was cultured using the Fibroblast

Growth Kit-Low Serum (ATCC PCS-201-041). Both cell lines are

maintained in a humidified 5% CO2-containing balanced-air incuba-

tor at 37�C.

Following established protocols,52,53 the cells used in the cytotox-

icity assays were cultured using 96-well plates for assessment of the

biocompatibility of AgNPs and AgNPs-PVP, and 24-well plates for

hydrogel formulations, respectively. The cells were seeded at the den-

sities of 1 � 104 cells per well in 96-well plates and 4 � 104 cells per

well in 24-well plates, respectively, and overnight at 37�C in a humidi-

fied 5% CO2-containing atmosphere. After that, the media in each

well was discarded. In 96-well plates, cells were exposed to the

AgNPs-PVP and unprotected AgNPs at concentrations of 3.125, 6.25,

12.5, 25, 50, and 100 μM (dissolved in fresh medium) for 24 and

48 hours. In 24-well plates, cells were exposed to the hydrogel formu-

lation containing 18% P407 and AgNPs-PVP at the concentrations of

3.125, 6.25, 12.5, 25, 50, and 100 μM. Viability of the treated or

untreated cells were quantified using the CCK-8 kit for mammalian

cells (Dojindo Molecular Technologies, Japan). The absorbance at

450 nm was measured after incubating cells with the CCK-8 kit

reagents for 1–2 hours. Empty wells with CCK-8 assay reagents only

were used as blanks and were subtracted from the final reading. Rela-

tive cell viability was calculated by normalizing the absorbance read-

ings using that of untreated cells. All assays were carried out in

quadruplicates.
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2.7 | Antibacterial test of hydrogel formulations

The surface antibacterial assay was chosen to assess the antibacterial

efficacy of the hydrogel formulations based on established

approaches reported in previous studies.54,55 500 μl of 100 μM

[AgNPs-PVP]-18%[P407] was pipetted into a 5-ml round bottom tube

and stored at 37�C until the formulations became solid-like gel. Next,

the 500 μl of prewarmed bacterial broth was added into the tube. The

tube was subsequently incubated at 37�C in a humidified 5% CO2-

containing atmosphere for 24 hours. At the end of the incubation,

100 μl suspension was spread onto appropriate agar plates following

the spread plates technology and incubated for 24 hours before col-

ony forming units were counted.

3 | RESULTS AND DISCUSSION

3.1 | Synthesis and characterization of AgNPs-PVP
and unprotected AgNPs

AgNPs were synthesized via the commonly adopted approach of

reducing silver ions (Ag+) in the presence of a polymeric stabilizer

(Figure 1A).56 Sodium borohydride (BH4
�) was used as the reducing

agent57 because of its rapid reaction with Ag+ and room-temperature

reaction conditions. Ag+ and BH4
� quickly reacted to produce AgNPs

following the equation below46:

AgþþBH4
�þ3H2O!AgþH3BO3þ7=2H2 ð1Þ

As-synthesized AgNPs are prone to aggregation, driven by changes in

pair potential as a result of the spontaneous hydrolysis of BH4
� and

production of sodium hydroxide and orthoborate ([BO3]
3�).46,58 To

prevent the aggregation of AgNPs and control their sizes, PVP was

used due to its strong interaction with Ag+, which slowed down the

growth of silver grains. And the distance between the resulting silver

particles is larger that of the silver particles without PVP59). Compared

to other stabilizers, such as polyvinyl alcohol (PVA),60 PVP demon-

strated greater size-regulating capability, likely due to its stronger

affinity to Ag+ (e.g., the hydroxyl groups in PVA led to weaker interac-

tion than that of Ag+-PVP61 and cellulose62 merely acted as a matrix

for controlled diffusion of Ag+63). FTIR spectra of PVP and AgNPs-

PVP both showed a pronounced peak at 1640 cm�1, indicating C=O

stretching and thus presence of PVP. Furthermore, the FTIR spectra

of unprotected AgNPs and AgNPs-PVP both showed a peak at

1060 cm�1, representing O-H vibration and presence of AgNPs.

Therefore, the spectrum of AgNPs-PVP indicated that the character-

izations of both AgNPs and PVP were fully retained in AgNPs-PVP

(Figure 1B).

F IGURE 1 Synthesis and
FTIR characterization of AgNPs-
PVP. (A) AgNPs-PVP was
synthesized with the final
molarity concentration ratio of
Ag:PVP:NaBH4 = 2:1:1.4 by using
NaBH4 as a reducing agent and
PVP as a protection layer.
(B) FTIR spectra of AgNPs, PVP,
and AgNPs-PVP, demonstrating
AgNPs-PVP retained peaks from
both of AgNPs (O-H at around
1060 cm�1) and PVP (C=O at
around 1640 cm�1)
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Sizes of the AgNPs-PVP and unprotected AgNPs were charac-

terized using DLS and TEM. For an aqueous solution of AgNPs-PVP

(0.25 mM; AgNPs:PVP = 2:1) (Figure 2A), DLS indicated a narrow

range of size distribution, with an average diameter of 9.23

± 2.03 nm and polydispersity index (PDI) of 0.149. In contrast, DLS

captured a much broader size distribution for an aqueous solution of

unprotected AgNPs (0.25 mM) due to aggregation, with an average

diameter of 31.55 ± 7.9 nm and PDI of 0.336. TEM images further

provided direct evidence of the effect of PVP on preventing the

aggregation of AgNPs (Figure 2B). While AgNPs-PVP demonstrated

a spherical morphology with an average diameter of 10.54

± 3.11 nm (Figure 2B,D), substantial aggregation was captured for

unprotected AgNPs (Figure 2B). The characteristic length of the

aggregates was calculated to be 25.82 ± 11.98 nm (Figure 2C),

obtained by processing TEM images using ImageJ. The fact that DLS

measured an average diameter greater than that captured by TEM is

well documented in the literature.64,65 It has been attributed to the

hydrodynamic diameter (as measured by DLS) being greater than the

projected area diameter (as captured by TEM), due to a solvent layer

surrounding a colloid that are subject to the particle Brownian

motion.

Upon dispersion in water at the concentration of 0.25 mM,

AgNPs-PVP formed a stable colloidal solution (Figure 3B), which

remained unchanged after 7 days of storage under ambient conditions.

The solution exhibited a maximum absorption at 404 nm, as character-

ized using UV–vis spectrophotometry (Figure 3B, corresponding to the

bright yellow color), which also remained unchanged after the 7-day

storage. Although a freshly made aqueous solution of unprotected

AgNPs (0.25 mM) exhibited a similar color as that of AgNPs-PVP, the

absorption peaks at 375 and 425 nm hinted at the polydispersed parti-

cle sizes due to aggregation. After 7 days of storage, the solution dem-

onstrated a dark gray color, with no discernable UV–vis absorption

(Figure 3A), indicating instability of the solution. The superior stability

of AgNPs-PVP solutions likely led to their greater antimicrobial efficacy

against OMpathogens, as described below.

3.2 | Antibacterial efficacy of AgNPs-PVP and
unprotected AgNPs

As discussed previously, S. pneumoniae and NTHi are the two most

common bacteria pathogens causing OM, accounting for 58% of the

F IGURE 2 DLS and TEM analyses of particle sizes. (A) DLS indicated a narrow size distribution for AgNPs-PVP, with an average diameter of
9.23 ± 2.03 nm and a PDI of 0.149; whereas unprotected AgNPs demonstrated an average diameter of 31.55 ± 7.9 nm with PDI of 0.336.
(B) TEM images of unprotected AgNPs and AgNPs-PVP, showing aggregates for the former and regular spherical morphology for the latter.
(C) Particle size distributions of unprotected AgNPs (25.82 ± 11.98 nm) and AgNPs-PVP (10.54 ± 3.11 nm) obtained by analyzing TEM images
(n = 3 for each case) using ImageJ. The inset demonstrates the detailed size distribution for unprotected AgNPs with characteristic lengths
>20 nm. Data are mean ± SD
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total OM episodes in the United States.5 The antibacterial efficacy of

AgNPs-PVP and unprotected AgNPs was thus tested using these two

pathogens. The measurement of optical density at 600 nm (OD600)

was used to detect bacterial growth based on their light scattering.

Despite the prevalence of this approach, it is prone to “false positive”

results because dead cells and cells debris can contribute to the

measured scattering, leading to nonzero OD600 reading in samples

with no viable cells.66 The MIC and half maximal inhibitory concen-

tration (IC50) were used to quantify the antibacterial efficacy. MIC

was obtained via broth microdilution assay, where MIC corresponds

F IGURE 3 Greater stability of an
aqueous solution of AgNPs-PVP
(0.25 mM) than unprotected AgNPs
(0.25 mM), demonstrated via visual
inspection and UV–vis
spectrophotometry. (A) Photographs of
an aqueous solution of unprotected
AgNPs (0.25 mM) that was freshly made
and after 7 days of storage under

ambient conditions, along with the UV–
vis spectra under each condition.
(B) Photographs of an aqueous solution
of AgNPs-PVP that was freshly made and
after 7 days of storage under ambient
conditions, along with the UV–vis spectra
under each condition. The maximum
absorption at 404 nm remained
throughout the storage

F IGURE 4 Antibacterial effect of unprotected AgNPs and AgNPs-PVP. (A–C) Growth of NTHi (A), S. pneumoniae (B), and S. mutans (C) after
12 hours of incubation without or with varying concentrations of AgNPs and AgNPs-PVP, normalized by the growth without antimicrobials
(i.e., 100% growth represents the growth of bacteria without AgNPs or AgNPs-PVP). MIC and IC50 are indicated with dashed lines. Data are
mean ± SD. (D–E) Summary of IC50 (D) and MIC (E) values of AgNPs and AgNPs-PVP against NTHi, S. pneumoniae and S. mutans. n = 3 for each
group
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to the lowest concentration of antimicrobials that prevented bacte-

rial growth. To better characterize the affected bacterial growth

before complete eradication (i.e., MIC) was achieved, IC50 was calcu-

lated, defined as the concentration of antimicrobials that led to a

stationary OD600 that was half of that without antimicrobials. For

antimicrobials with the same MIC, lower IC50 indicates higher anti-

microbial effect.

The antimicrobial efficacy of AgNPs against NTHi showed an

average IC50 of 28.72 μM (�4.88 μg/ml) and an average MIC of

50 μM (�8.5 μg/ml) (Figure 4A). The average values of IC50 and MIC

were much reduced in the presence of PVP, which became 9.45 μM

(�1.61 μg/ml) and 12.5 μM (�2.13 μg/ml) respectively (Figure 4A).

The greater antimicrobial efficacy of AgNPs-PVP than unprotected

AgNPs was likely a result of the stabilized particulates (Figure 3) with

greater surface-to-volume ratio than aggregates that led to enhanced

interactions with pathogens.

The antibacterial efficacy of AgNPs-PVP was comparable to tradi-

tion antibiotics against NTHi, such as Amoxicillin (with MIC of 0.5–

2 μg/ml), Clarithromycin (with MIC of 2–8 μg/ml), and Azithromycin

(with MIC of 0.25–2 μg/ml).67 Contrary to those small-molecule anti-

biotics, efficacy of AgNPs and AgNPs-PVP against S. pneumoniae was

better than that against NTHi (Figure 4B), with IC50 values of

17.88 μM (�2.99 μg/ml) and 4.14 μM (�0.70 μg/ml) for AgNPs and

AgNPs-PVP respective and MIC values of 25 μM (�4.18 μg/ml) and

6.25 μM (�1.04 μg/ml) for AgNPs and AgNPs-PVP respective. The

stronger antimicrobial effects of AgNPs and AgNPs-PVP against

S. pneumoniae than that against NTHi could be due to their gram types

or the known production of H2O2 by S. pneumoniae (at levels around

0.1–0.71 mM as a mechanism for competitive survival during

coinfections).68 To better understand this differential efficacy of

AgNPs-PVP, S. mutans, a gram-positive pathogen (same as S.

pneumoniae) with much lower activity of H2O2 production (at levels

around 0–0.06 mM69,70) was tested.

S. mutans is one of the microorganisms inhabiting the oral cavity,

which has been studied for its etiology of dental caries and infective

endocarditis.71 Interestingly, the colonization of S. mutans in mouth

has been shown to be correlated with the colonization of

S. pneumonia in the nasopharynx,72 thus making S. mutans a pathogen

F IGURE 5 Cytotoxicity of AgNPs, PVP, and AgNPs-PVP in PC-12 and hFBs cell lines. (A–C) Cell viability of PC-12 after incubating with
different concentrations of AgNPs, PVP, and AgNPs-PVP, at 24 and 48 hours. (D–F) Cell viability of hFBs after incubating with different
concentrations of AgNPs, PVP, and AgNPs-PVP, at 24 and 48 hours. Culture of PC-12 or hFBs without any exposure to AgNPs, PVP, or AgNPs-
PVP was considered 100% cell viability. Error bars represent SDs. n = 4 for each group
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of interest for OM treatment. Indeed, the MIC values of AgNPs and

AgNPs-PVP against S. mutans were 50 μM (�8.35 μg/ml) and

12.5 μM (�2.09 μg/ml) respectively, which were comparable to NTHi

and greater than S. pneumoniae (Figure 4C). Similarly, the IC50 value of

AgNPs and AgNPs-PVP against S. mutans were 32.03 μM (�5.35 μg/

ml) comparable to that of NTHi. The IC50 value of AgNPs-PVP,

4.87 μM (�0.81 μg/ml), was smaller than that of NTHi (9.45 μM

[�1.58 μg/ml]) and close to that of S. pneumoniae (4.14 μM

[�0.70 μg/ml]), which could be explained by the bacteriostatic effect

of low levels of H2O2 on S. mutans.73 Taken together, the MIC and

F IGURE 6 Formulation and rheology of the antimicrobial and temperature-responsive hydrogel delivery system. (A) Formulation of the
hydrogels. AgNPs-PVP was introduced to an 18%(w/v) aqueous solution of P407 to the final concentrations of 50, 100, and 200 μM,
respectively. The formulations were thereinafter referred to as XμM[AgNPs-PVP]-18%[P407], where X indicates the concentration of Ag. (B–E)
Linear oscillatory shear rheology of the formulations containing 18%[P407] (B), 50 μM[AgNPs-PVP]-18%[P407] (C), 100 μM [AgNPs-PVP]-18%
[P407] (D), and 200 μM [AgNPs-PVP]-18%[P407] (E), with dashed lines highlighting the storage modulus (G') and loss modulus (G") at 37�C. (F)
Summary of gelation temperatures and values of G' and G" at 37�C, for the four aforementioned formulations. Data are mean ± SD. n = 3 for
each group
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IC50 values of AgNPs and AgNPs-PVP against S. mutans confirmed

that their greater efficacy against S. pneumoniae was likely a result of

the H2O2-producing capability and not gram types, as gram-positive

S. mutans and gram-negative NTHi demonstrated comparable values.

3.3 | Cytotoxicity of AgNPs-PVP and unprotected
AgNPs

Cytotoxicity of AgNPs and AgNPs-PVP was evaluated and quantified

with the PC-12 Adh cell line and the primary dermal fibroblast cell line

(hFBs) using the CCK-8 assay. The PC-12 cell line was chosen to

mimic the response of auditory neural cells to the AgNPs and AgNPs-

PVP; whereas the hFBs was chosen based on its representation of

connective tissues that are prevalent in the TM. The percentage of

cell viability was assessed at different concentrations of AgNPs, PVP,

and AgNPs-PVP, respectively (Figure 5).

AgNPs showed negligible cytotoxicity in the concentration range

of 0–100 μM (far exceeded the MIC for all three pathogens tested) in

PC-12 and hFBs cell lines at 24 and 48 hours (Figure 5A,D). Cytotoxic-

ity of PVP alone was assessed in the concentration range of 0–50 μM

in both cell lines (Figure 5B,E), corresponding to the range used in the

AgNPs-PVP formulations (AgNPs-PVP formulations were made with a

2:1 molar ratio of AgNPs and PVP). PVP also demonstrated minimal

cytotoxicity, consistent with the biocompatibility reported in the litera-

ture.74 All concentrations of AgNPs-PVP formulations in PC-12 and

hFBs demonstrated virtually unchanged cell viability (Figure 5C,F), indi-

cating excellent biocompatibility in 24 hours. At 48 hours, mild cyto-

toxicity was observed for AgNPs-PVP at the concentrations of 50 and

100 μM (representing the concentrations of AgNPs), with cell viability

values of 80% and 20% for PC-12, and 80% and 55% for hFBs, respec-

tively (Figure 5C,F). Nevertheless, the AgNPs-PVP formulation caused

no observable cytotoxicity at concentrations at or below the MICs

(i.e., 12.5 μM for NTHi and S. mutans and 6.25 μM for S. pneumoniae) in

PC-12 and hFBs at both 24 and 48 hours and the formulation was thus

considered safe under effective concentrations.

3.4 | Formulation and rheology of the
antimicrobial and temperature-responsive hydrogel
delivery system

AgNPs-PVP was chosen to formulate the hydrogel delivery system

due to its superior antimicrobial efficacy compared to unprotected

AgNPs. AgNPs-PVP was added to an 18%(w/v) P407 aqueous solu-

tion to formulate the antimicrobial and temperature-responsive

hydrogel, with concentration of the AgNPs-PVP (Ag:PVP ratio of 2:1)

in the hydrogel varied in the range of 0–100 μM. The resulting formu-

lation was referred to as XμM[AgNPs-PVP]-18%[P407], where

X indicated the concentration of Ag (Figure 6A).

As discussed previously, P407 was used here due to its reverse

thermal gelation properties, that is, the AgNPs-PVP-containing formu-

lation could flow readily into the middle ear space during

administration, and then gel promptly at 37�C to ensure sustained

antimicrobial effect. The concentration of P407, that is, 18% (w/v),

was selected based on our prior experience, which led to a gelation

temperature close to 37�C and sufficient gel strength to sustain drug

delivery over the 7-10 day course of treatment.51

Linear oscillatory shear rheology of the AgNPs-PVP-containing

hydrogel formulations demonstrated that introduction of the nan-

otherapeutics at concentrations at or below 100 μM did not jeopar-

dize the desirable reverse thermal gelation. For each formulation,

storage (G0) and loss (G0 0) moduli were quantified in the temperature

range of 20–40�C; and gelation (i.e., the transition from a liquid for-

mulation to a solid gel) was defined as the point where G0 was greater

than G0 0 by 2 kPa. Without the nanotherapeutics, the formulation con-

taining 18%[P407] had a gelation temperature of 25�C, and G0 and G0 0

of 12.27 ± 0.42 and 4.22 ± 0.21 kPa at 37�C (Figure 6B). At the

AgNPs-PVP concentration of 50 μM, the hydrogel formulation dem-

onstrated virtually unchanged gelation temperature of 24�C, and G0

and G0 0 of 12.29 ± 0.19 and 4.63 ± 0.14 kPa, respectively, at 37�C

(Figure 6C). With 100 μM AgNPs-PVP, the gelation temperature

remained at 24�C, with G0 and G0 0 values increased to 14.41 ± 1.91

and 6.07 ± 0.50 kPa at 37�C (Figure 6D), which was likely a result of

the entanglement between PVP and P407 chains. Gelation did not

occur for the formulation of 200 μM[AgNPs-PVP]-18%[P407] and G0

was reduced to 5.29 ± 0.66 kPa, merely half of that of 18%[P407]

(Figure 6E). This could be attributed to the inability for P407 chains to

F IGURE 7 Toxicity evaluation of formulations XμM[AgNPs-PVP]-

18%[P407]. (A) Cell viability of PC-12 after incubating with XμM
[AgNPs-PVP]-18%[P407] (X = 0, 3.125, 6.25, 12.5, 25, 50, or 100) for
24 and 48 hours. (B) Cell viability of hFBs after incubating with XμM
[AgNPs-PVP]-18%[P407] (X = 0, 3.125, 6.25, 12.5, 25, 50, or 100) for
24 and 48 hours. Culture of PC-12 or hFBs without any exposure to
the hydrogel formulations was considered 100% cell viability. Error
bars represent standard deviations. n = 4 for each group
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form micelles and/or for micelles to pack into a solid gel due to the

substantial presence of PVP chains. Values of the gelation tempera-

tures and storage/loss moduli were summarized in a table (Figure 6F).

3.5 | Cytotoxicity of the hydrogel formulations

Cytotoxicity of XμM[AgNPs-PVP]-18%[P407] with Ag concentration

ranging from 0 to 100 μM was evaluated using PC-12 and hFBs, the

two common cell lines used to assess cytotoxicity of topical formula-

tions. The percentage of cell viability was assessed at different con-

centrations of AgNPs-PVP in hydrogel (Figure 7).

All formulations of XμM[AgNPs-PVP]-18%[P407] tested using

PC-12 and hFBs showed negligible cytotoxicity at both 24 and

48 hours (Figure 7), indicating excellent biocompatibility. Cytotoxicity

was markedly improved for 50 μM[AgNPs-PVP]-18%[P407] and

100 μM[AgNPs-PVP]-18%[P407] compared to the aqueous solutions

of 50 and 100 μM AgNPs-PVP (Figure 5C,F). This phenomenon could

be attributed to the sustained release and thus controlled dosing of

AgNPs-PVP from the hydrogel formulations, effectively reducing the

concentration of AgNPs-PVP to which PC-12 and hFBs cells were

exposed. The formulations of 50 and 100 μM[AgNPs-PVP]-18%

[P407] were selected for further assessment of in vitro release studies

given their excellent biocompatibility.

3.6 | In vitro release of AgNPs-PVP from the
hydrogel formulations with reverse thermal gelation

The cumulative release of AgNPs-PVP was studied by quantifying the

in vitro diffusion of Ag from hydrogel formulations placed in a

Transwell®. Effect of initial drug loading amount on release kinetics of

the hydrogel formulations was investigated using two hydrogel formu-

lations, 50 μM[AgNPs-PVP]-18%[P407] and 100 μM[AgNPs-PVP]-

18%[P407]. Consistent with previous reports,51,75 lower initial drug

loading amount resulted in slightly greater cumulative release fraction

by the end of the 48 hours testing period (Figure 8). At 3 hours, the

two formulations had similarly low release fractions, that is, 5.38

± 2.32% for 50 μM[AgNPs-PVP]-18%[P407] and 2.79 ± 0.40% for

100 μM[AgNPs-PVP]-18%[P407]. The total amounts of Ag released

from the two formulations were comparable. At 6 hours, 49.49

± 1.24% was released from 50 μM[AgNPs-PVP]-18%[P407] and

44.64 ± 2.94% from 100 μM[AgNPs-PVP]-18%[P407], where the

amount of Ag released from the latter exceeded that of the former by

F IGURE 9 Antibacterial
efficacy of the hydrogel delivery
system tested using S.
pneumoniae and NTHi. The
100 μM[AgNPs-PVP]-18%[P407]
formulation (500 μl) was stored at
37�C until it became a solid-like
gel; prewarmed bacterial broth
(500 μl) was subsequently added
to the hydrogel. The tube was
then incubated at 37�C for
24 hours, by the end of which,
100 μl of the culture was applied
on agar plates and incubated for
24 hours. The hydrogel
formulation, 100 μM[AgNPs-
PVP]-18%[P407] completely
eradicated both S. pneumoniae
and NTHi

F IGURE 8 Cumulative in vitro release of Ag from 50 μM[AgNPs-
PVP]-18%[P407] and 100 μM[AgNPs-PVP]-18%[P407]. n = 3 for
each group. Data were mean ± SD
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nearly twofold, implying that the release of Ag was dominated by pas-

sive diffusion. Similar observations were made at 24 and 48 hours,

that is, 50 μM[AgNPs-PVP]-18%[P407] achieved cumulative release

fractions of 77.41 ± 1.60% and 87.03 ± 1.25%, respectively, and

100 μM[AgNPs-PVP]-18%[P407] achieved 74.37 ± 1.56%, and 80.61

± 1.65%, respectively. The cumulative release fractions of 100 μM

[AgNPs-PVP]-18%[P407] were slightly less than twofold that of

50 μM[AgNPs-PVP]-18%[P407] at 6, 24, and 28 hours, which was

likely a result of the aforementioned entanglement between PVP and

P407 chains that increased physical cross-linking and reduced rate of

passive diffusion.

3.7 | Antibacterial efficacy of the
AgNPs-PVP-containing hydrogel

Using the formulation containing the highest concentration of AgNPs-

PVP while still maintaining reverse thermal gelation, that is, 100 μM

[AgNPs-PVP]-18%[P407], antimicrobial efficacy was examined. As

discussed previously, S. pneumoniae and NTHi, the two main patho-

gens causing OM,5 were used.

To mimic the environment of an auditory bullae during an active epi-

sode of OM, which has the volume of 1.52 ± 0.26 ml (mean ± SD),76

500 μl hydrogel formulation was applied to 500 μl bacteria broth and incu-

bated for 24 hours. The antibacterial activity of hydrogel formulations was

assessed by counting the colony-forming unites (CFU) at the end of the

24-hour incubation (Figure 9). The method of applying bacterial culture

directly onto the surface of hydrogel formulations has been widely used in

previous reports to assess antimicrobial efficacy,52,77–80 and have demon-

strated excellent correlation with in vivo efficacy results. This method was

adopted here instead of applying the hydrogel using Transwell membrane

inserts (like those used in the in vitro release studies) also because the

inserts alone were discovered to inhibit the bacterial growth and interfere

with the antimicrobial efficacy results (Figure S6). While countless colonies

of S. pneumoniae and NTHi were observed on the agars that were

untreated or treated with 18%[P407], 100 μM[AgNPs-PVP]-18%[P407]

achieved complete eradication of both pathogens, demonstrating the

potential of this local treatment to cure OMwith high bacterial counts.

4 | CONCLUSION

In summary, we designed a hydrogel formulation (100 μM[AgNPs-

PVP]-18%[P407]), which achieved complete eradication of the two

most common bacterial OM pathogens, that is, S. pneumoniae and

NTHi in vitro without causing cytotoxicity. The AgNPs-PVP was syn-

thesized via a chemical reduction reaction using NaBH4 as the reduc-

ing agent and PVP as the stabilizer. The as-synthesized AgNPs-PVP

demonstrated a narrow size distribution (�10 nm), which led to their

effective eradication of the bacterial OM pathogens at MIC values of

6.25 μM (�1.04 μg/ml) for S. pneumoniae and 12.5 μM (�2.13 μg/ml)

for NTHi. To realize the local and sustained delivery of the AgNPs-

PVP, a hydrogel with reverse thermal gelation properties was

formulated, promising a delivery system with ease of administration

through (perforated) tympanic membranes and sustained presence in

the auditory bullae. Gelation temperature of the final hydrogel formu-

lation, 100 μM[AgNPs-PVP]-18%[P407], was measured to be 24.06 ±

1.28�C using linear oscillatory shear rheology. The antimicrobials

released from 100 μM[AgNPs-PVP]-18%[P407] eradicated the two

aforementioned OM pathogens without triggering cytotoxicity. The

hydrogel formulations were designed to provide sustained release of

the AgNPs-PVP for the duration of the treatment, which has been

shown to be necessary for the clearance of the infection.51 This was

the first time that AgNPs were used against OM pathogens, and the

hydrogel formulation thus points to an effective and biocompatible

solution to treat OM while circumventing the health concerns associ-

ated with systemic antibiotic exposure.
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