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Abstract

The timeframe of Indigenous settlements in Northeast North America in the 15th-17th centu-

ries CE has until very recently been largely described in terms of European material culture

and history. An independent chronology was usually absent. Radiocarbon dating has

recently begun to change this conventional model radically. The challenge, if an alternative,

independent timeframe and history is to be created, is to articulate a high-resolution chronol-

ogy appropriate and comparable with the lived histories of the Indigenous village settle-

ments of the period. Improving substantially on previous initial work, we report here high-

resolution defined chronologies for the three most extensively excavated and iconic ances-

tral Kanien’kehá꞉ka (Mohawk) village sites in New York (Smith-Pagerie, Klock and Garoga),

and a fourth early historic Indigenous site, Brigg’s Run, and re-assess the wider chronology

of the Mohawk River Valley in the mid-15th to earlier 17th centuries. This new chronology

confirms initial suggestions from radiocarbon that a wholesale reappraisal of past assump-

tions is necessary, since our dates conflict completely with past dates and the previously

presumed temporal order of these three iconic sites. In turn, a wider reassessment of north-

eastern North American early history and re-interpretation of Atlantic connectivities in the

later 15th through early 17th centuries is required. Our new closely defined date ranges are

achieved employing detailed archival analysis of excavation records to establish the contex-

tual history for radiocarbon-dated samples from each site, tree-ring defined short time series

from wood charcoal samples fitted against the radiocarbon calibration curve (‘wiggle-match-

ing’), and Bayesian chronological modelling for each of the individual sites integrating all

available prior knowledge and radiocarbon dating probabilities. We define (our preferred

model) most likely (68.3% highest posterior density) village occupation ranges for Smith-

Pagerie of ~1478–1498, Klock of ~1499–1521, Garoga of ~1550–1582, and Brigg’s Run of

~1619–1632.
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Introduction

The 15th-17th century CE history of North America is primarily, and until recently almost

exclusively, explained, dated, and viewed in terms of European exploration, interests, and sub-

sequent invasion and settlement (all dates in this paper CE). This early history is predomi-

nantly informed and told from the evidence of European documentary history [1–5]. In turn,

the presence or absence of types of European material culture have formed the basis of archae-

ological chronology (e.g. [6–8]). Accounts typically start with, and are based around, the brief

initial Norse settlement in Newfoundland at L’Anse aux Meadows around 1000, subsequent

exploration and likely coastal interactions up to Cabot in 1497, leading to the landing of Car-

tier (French) in the St. Lawrence in 1534, the settlement at St. Augustine, Florida (Spanish)

from 1565, the failed (British) colony of Roanoke in North Carolina in 1585 and 1587, and

then the first settlements of Arcadia (French) in modern Nova Scotia from 1604, Jamestown

(British) in modern Virginia from 1607 and Fort Nassau (Dutch) in New York from 1614 [1,

5, 9–14]. This complex but very one-sided history has been described in terms of a European

timeline and ingrained perspective [15]. The world of North America before, and the world

the Europeans invaded, is primarily known from archaeology [16]. There is an established but

inherently ethnocentric narrative and timeframe.

In reverse, knowledge of the Indigenous viewpoint is unfortunately limited and primarily

indirect—read often ‘against the grain’ from early European sources [6, 17–21]. Efforts to

include Indigenous ethnohistoric sources (e.g. [15, 22]) cannot easily reach back directly and

specifically to the initial 16th to early 17th century era and beyond. The lack of, and necessity

for, an Indigenous oral history perspective for American archaeology and history has been reg-

ularly noted (e.g. [23]) and has been argued to provide important information for key socio-

political transformations, for example: the creation of the Haudenosaunee League (later Con-

federacy: of Six Nations including the Mohawk) [24–29]. Attempts to identify specific pre-17th

century dates (e.g. [30]) are usually dismissed (e.g. [27] at p.287 n.33). The challenge and com-

plexity, generally, remains around how to introduce such oral history resources into archaeol-

ogy and history, and whether it can have well-defined, rigorous, chronological value (in the

absolute, calendar, versus cultural, sense) (e.g. [31, 32]). The Haudenosaunee comprise a

prime example, where attention to oral history can importantly revise and inform the existing

narrative derived and constrained by the well-known but very ethnocentric 1851 book by

Lewis Henry Morgan ([33], see [34]).

One critical step towards a history that is less affected by ethnocentric biases and assump-

tions is an accurate independent (neutral) timeframe. Here there is work to be done (despite

the best efforts of previous researchers using the materials and approaches that were available

to them). The archaeology of northeastern North America during the last several centuries

before European entradas has been the subject of intense research and is known in detail in

terms of numerous sites of village occupations in various investigated areas [e.g., 6, 35–44].

The spatial dimension of site occupation is thus moderately well-defined. A clear timeline of

settlement, however, has long been a problem, and especially in the period from the later 15th

through early 17th centuries. Sites and cultural assemblages were typically dated according to

the absence or presence of certain types of European trade goods. Absence meant an early site,

rare and fragmentary indications denoted sites somewhere from around the time of Cartier

onwards (although other earlier interactions with European fishermen or travelers clearly also

occurred). More evidence of European items, and especially the appearance of various types of

glass beads and specific metal forms (e.g. kettles, knives) placed sites into the late 16th and

early 17th centuries. Among sites, comparison of changes in some artefact types were used to

suggest apparent social and temporal relationships via seriation analysis (e.g. [8, 9, 45–48]) and
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more recently via social network analysis [49, 50]. All these methods could yield dates or

claimed temporal order or coefficients of similarity, but in terms of timescale they were inher-

ently not independently derived; at best approximate; and, worse, necessarily assumed that all

Indigenous societies accepted and used material culture traits and European trade goods and

connections as soon as they could and in similar ways—overlooking the rich complications

involved in object production, trade, exchange and consumption observed the world over that

likely negate simple or transparent step-wise assumptions from object production, through

social practice, to final deposition [51–56]. Even our ethnographic assessments and under-

standings of what constituted value and interest in material culture by Indigenous peoples dur-

ing the period of early European contacts in America are derived solely from European

observers [57] and are thus at best partial and filtered. The nature of human social groupings,

their differences, individual and wider human agency, values and beliefs, were all compressed

and flat-lined into what was very much a two-dimensional assessment. Independent absolute

dating via radiocarbon (14C) dating was long deemed not useful because a plateau/reversal in

the 14C calibration curve created temporal ambiguity ~1480–1620, producing widely spread,

or multiple, possible date range(s), and thus a lack of resolution. Dendrochronology was rarely

practical on Indigenous sites in northeastern North America as recovered wood remains (pri-

marily charcoal) typically had no more than a few decades of total tree-ring growth preserved.

Recently this entire set of circumstances has changed. The application of accelerator mass

spectrometry (AMS) 14C dating, which enables analysis of small samples and thus production

of larger and relevant datasets (e.g. dating especially short-lived plant materials or specific tree-

rings of direct relevance to specific contexts); improved 14C calibration curve resolution; and,

in particular, the use of Bayesian chronological methods (e.g., [58–61]) enabling the incorpo-

ration of archaeological and other information about sample and site temporal relationships,

have collectively transformed the ability to resolve dates in archaeology including for later 15th

through earlier 17th century Northeast North America [62–65]. In particular, two methods,

ideally combined, have been transformational, enabling a revolution in temporal resolution

for archaeological sites in the region: (i) 14C dating fixed time series of specific tree-rings, even

from wood samples preserving short tree-ring sequences (<50 rings), and placing these into

calendar time via correlation against the 14C calibration curve (so-called 14C ‘wiggle-matching’

[66, 67]); and (ii) integration of prior archaeological or ethnohistoric information about strati-

graphic and temporal relationships within a site’s history and the temporal constraints on the

likely overall maximum duration of such village sites, to greatly constrain and refine 14C dating

using Bayesian methods (e.g. [62, 68, 69]).

The Mohawk River Valley in eastern New York forms one of the most intensively studied

areas of Indigenous settlement in northeastern North America. The name refers to the associa-

tion with the Kanien’kehá꞉ka, or Mohawk Nation, one of the original Five Nations of the Hau-

denosaunee (Iroquois) Confederacy [25, 29, 70]. This Mohawk region is also then associated

with the area occupied, after initial exploration in 1609, by the Dutch (from 1614 until it passed

into British hands in 1664) [11, 12, 69]. Archaeological excavations in New York in the 1960s

and 1970s (e.g. [36, 71–75]), provided information on a number of sites in the region and

formed the basis of considerable further work since—including the first substantial AMS 14C

dating effort in the region [39]. Notable was the work at what became three iconic village sites

excavated by crews from the New York State Museum. Located in the Caroga Creek drainage,

a tributary of the Mohawk River, the Garoga, Klock, and Smith-Pagerie sites are the most

extensively excavated ancestral Mohawk village sites to date [72, 76]: Fig 1.

These three sites had been subjects of avocational excavations and collecting during the 19th

and 20th centuries. Results of the excavations at Garoga were first summarized by Ritchie and

Funk [72]. Funk and Kuhn [76] provided extensive overviews and analyses of the sites,
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including revised interpretations of the village plan of Garoga. Ritchie and Funk [72] suggested

that the three sites were a sequence of villages occupied by the same community during the

16th century. They did not suggest a chronological sequence for the sites, although based on

Fig 1. A map showing the Mohawk Valley region in northeast North America and showing the four sites analyzed in this study (Brigg’s Run, Garoga, Klock

and Smith-Pagerie shown as triangles) and another eight sites re-dated in this paper and revising previous published work [65]. This map was produced in

ArcGIS v 10.6 at the New York State Museum in Albany by compiling GIS shapefiles obtained from open access, publicly available, sources including Statistics

Canada, the United States Census, and the United States Geological Survey.

https://doi.org/10.1371/journal.pone.0258555.g001
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the amount of European-provenance metal found at Smith-Pagerie, they thought it might be

more recent than Garoga. They proposed the sites could not have been occupied contempora-

neously because one interpretation of ethnohistoric data suggested the Mohawk River basin

was divided between clan territories, and they assumed that only three or four villages were

contemporaneously occupied in the (wider) valley ([72] at p.332). Additionally, they believed

that resources in the Caroga Creek drainage would not support more than one village commu-

nity at a time. “It seems unlikely that the two sites [Garoga and Smith-Pagerie] coexisted for

any appreciable period, as the drain on local resources of game, firewood, and soil fertility

would have been considerable” ([72] at p.332).

Since Ritchie and Funk’s publication, the three sites have been considered a single commu-

nity sequence during the 16th century (e.g. [77]). Based largely on pottery type and European

trade metal frequencies, efforts were made to place the three sites into a chronological

sequence. Funk and Kuhn [76] performed formal frequency seriation analyses using pottery

attributes that they believed were chronologically sensitive. Consistent with Snow’s [39] and

earlier interdigitized seriations of Mohawk Valley sites including all or two of the Caroga

Creek sites [45, 77, 78], Funk and Kuhn ([76] at p.142) concluded the order of habitation

(from oldest to most recent) was Garoga, Klock, and Smith-Pagerie (cf. [79]). Conversely,

recent results of a Bayesian analysis of a large suite of new AMS 14C dates on maize and white-

tailed deer bone from 12 key Mohawk Valley sites, suggested a habitation sequence (oldest to

most recent) of Smith-Pagerie, Klock, and Garoga with the Smith-Pagerie occupation initiat-

ing in the last two decades of the fifteenth century [65].

A social network analysis of Mohawk Valley sites meanwhile demonstrated that the three

sites are in fact unlikely to represent a single community [80]. The results of this analysis sug-

gested that ancestral Mohawk settlement systems were more flexible than previously proposed,

with multiple communities able to establish villages outside of any clan-based landscape divi-

sions (see [50] for a similar analysis of contemporaneous sites in southern Ontario). Given the

importance of these sites in understanding ancestral Mohawk landscape use and history, it is

therefore imperative to (i) ascertain if the results of the earlier Bayesian chronological analysis

are robust; and (ii) attempt to better resolve the chronology of these three iconic sites. To that

end we investigated the archaeological excavation and laboratory records from these three

sites in detail and obtained additional radiocarbon dates from them, including dating short

tree ring sequences, to obtain terminus ante quem (TAQ), terminus ad quem, and/or terminus
post quem (TPQ) dates for each of the sites and refine the Bayesian models. We further

obtained new dates on the Brigg’s Run site (Fig 1), which, based on the extensive material

recovered, should be largely contemporaneous with the historically documented early Dutch

period [39], both as a test of dating, and to aid resolution given there were few 14C dates avail-

able in the earlier Bayesian study [65]. Our results considerably refine the date ranges of the

four sites. When considered in conjunction with the data from the previous study [65], they

provide support for the earlier-modelled chronological order of site habitation and offer a

highly time-resolved chronology for settlement and history in the region.

Defining space and time in Northeast American archaeology–history of

work

Since the 1960s a major theme of regional archaeological studies has been the reconstruction

of settlement patterns—how contemporaneous sites of various functions were distributed

across the landscape, and of settlement systems—how activities at the various sites formed net-

works of function and interaction [81, 82]. Subsumed today under the rubric of landscape

archaeology (e.g. [83]), these fundamental concepts have guided regional archaeological

PLOS ONE Resolving time in Northeastern North America: The Mohawk River Valley ~1450-1635 CE

PLOS ONE | https://doi.org/10.1371/journal.pone.0258555 October 15, 2021 5 / 36

https://doi.org/10.1371/journal.pone.0258555


research for decades. Key is establishing both contemporaneity and distinctions of sites across

the landscape both to reconstruct contemporaneous patterns and systems and modeling how

those patterns and systems changed over time.

From the early twentieth century, archaeologists in North America developed various

methods and techniques to control for the passage of time. These approaches formed at a time

when there was little understanding of time depth of Native American occupations in North

America (e.g. [84]). Methods and techniques such as frequency seriation and percentage stra-

tigraphy, based strictly on archaeological artifact assemblages, most often pottery [85], tried to

create order among site datasets. Combining seriations from multiple sites through interdigita-

tion, it was possible to create regional relative chronologies [85], although the temporal scale

was not known (and therefore the validity of the ordering only assumed, not demonstrated).

Coincident with this was the development of regional culture historical schemes with the goals

of controlling and bounding temporal and spatial variations in artifact assemblages [86, 87].

Contemporaneity was determined by assignment to the same taxonomic unit (artefact cate-

gory). Because a goal of culture historical taxonomic systems was to minimize variation within

taxa, change could occur only at taxonomic boundaries. Taxonomic units (developed region-

ally) such as Willey and Phillip’s [87] phases, became the units of analysis in attempts to build

understandings of the past and were frequently, mistakenly, identified as the equivalent of eth-

nic groups [88]. However, this is evidently not an issue in the current case given the continuity

in the archaeological record in the Mohawk River basin from the earliest time under consider-

ation here to the early 17th century and the historical identification of this region with the

Mohawk Nation. However, below this general level, both social network analysis and direct

dating via radiocarbon in several cases further challenge attempts at more refined assumed

associations and chronological placements solely from such material-ethnic associations [50,

62–65, 80].

The advent of radiocarbon dating and its archaeological application beginning in the late

1950s provided a means, independent of the assumptions derived from the archaeological

record or other sources, to establish chronologies directly from the dating of organic material

selected from the sites or objects of interest [89]. In early applications one or a few radiocarbon

dates were used to anchor seriations and taxa in time, while culture historical taxa continued

to be the units of analysis, summary, and narration in spite of prominent critiques of the prac-

tice (e.g. [90]). The continued development and refinement of radiocarbon dating and its

expanded use in archaeology over the intervening decades provides new opportunities to inde-

pendently control regional chronologies for landscape research. Dendrochronological calibra-

tion of radiocarbon dates to account for fluctuations in atmospheric radiocarbon

concentrations; accelerator mass spectrometry (AMS) dating, allowing analysis of small sam-

ples while increasing both accuracy and precision of dates; and, as noted above, Bayesian anal-

yses of large suites of radiocarbon dates have all combined to make the building of site and

regional chronologies less subjective and more robust in recent decades (e.g. [58–61, 91–94]).

While widespread in several areas of world archaeology for over two decades, applications of

these developments to the 15th to 17th century Indigenous archaeological record in eastern

North America is only in its initial stages (e.g. [95, 96]). The largest concentration of work so

far has been in present-day New York (USA) and Ontario (Canada), focusing on the northern

Iroquoian region (e.g. [62–65, 97]).

Research on Native American settlement patterns in present-day New York was carried out

in two extensive research programs in the 1960s through 1980s [72, 74]. These research pro-

grams sought to understand settlement patterns over the full chronological extent of Native

American occupations of the state. Critical to both was the use and establishment of chrono-

logical control. Ritchie and Funk [72], whose research encompassed most of the state, relied
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primarily on their culture-historic framework combined with interpretations of the few avail-

able radiocarbon dates (which at this time yielded at best relatively wide and only approximate

age estimates—these authors were also operating before the general adoption of tree-ring cali-

brated radiocarbon dating [89]). Funk [74] focused on the upper Susquehanna River basin and

also framed his settlement pattern analyses in the culture-historical framework but made a

concerted effort to obtain large series of radiocarbon dates to bolster the chronological place-

ment of sites within the culture historic framework.

Snow [39] conducted more chronologically constrained research focused on the late prehis-

toric to early historic Native American occupations (ca. AD 900–1776) of the Mohawk River

basin. This research included the first large-scale AMS 14C dating of annual plant remains

(maize) in northeastern North America. Combined with traditional relative-dating practices,

including pottery type frequencies and the presence, amounts, and categories of European

exchange items, this work enhanced understandings of the basin’s occupational histories,

work that was later critiqued and clarified by Lenig [79].

An initial Bayesian modelling investigation of a set of Mohawk River Valley sites challenged

several of the conventionally assigned dates for sites [65]. This was the first effort to build a

chronology for ancestral Mohawk sites entirely independent of traditional approaches to chro-

nological control based on artifact analysis. However, in several cases, and in particular for the

important sites of Garoga, Klock and Smith-Pagerie, the available data were less than perfect,

and some ambiguity remained (and for Brigg’s Run there were very few 14C measurements).

Thus, in this present study, we have obtained a number of new radiocarbon measurements on

samples from these four sites (S1 Table), and, in particular, as a methodological development,

we have focused on available wood-charcoal samples offering even short, annually-defined

tree-ring time series ending in waney edge/bark—whose dates correspond with the wood’s

cutting and use by humans. We then employ tree-ring sequenced 14C ‘wiggle-matching’ on

these samples to obtain more precise calendar date estimates for these episodes [66–68, 98].

For Garoga, Klock and Smith-Pagerie we were able to identify samples which can be tied

closely to specific points in each site’s stratigraphic record based on re-examination of the orig-

inal records from the excavation of each site (see Methods, S1 File). In several cases, on careful

examination of these original site records, we identified wood charcoal from contexts which

appear associated with the late, final, or even likely post-occupation use of the relevant feature,

and likely the overall site, that provide therefore terminus ante quem (TAQ) constraints for the

main site occupation phases of interest. Our aim was to achieve chronological resolution for

each of these four sites in isolation—rather than from assumed site sequences or approximate

dates—employing the 14C data from each site integrated with the prior information from site

taphonomy and ethnohistoric and archaeological observations. This work permits us to

resolve the date of each of the sites closely and clarifies their temporal relationships. We then

further re-considered the chronological placements and relationships between these sites and

a wider set of Mohawk River Valley sites (Fig 1).

Materials and methods

Organic sample identification

All wood charcoal fragments larger than 2 mm were fractured by hand or with a steel razor

blade to create fresh transverse, radial, and tangential planes, in order to examine the wood

anatomical structure and identify the taxon. After fracturing, wood samples were supported in

a sand bath or modeling clay and examined under a Motic K-400P stereo microscope at x6–

x50 magnification and an Olympus Bx51 polarizing microscope at x50–x500 magnification.

Seeds were examined under the same set of microscopes. The macro- and micro-anatomical
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features of wood sections and seed samples were documented, photographed, and compared

with those from modern reference collection materials in the Cornell Tree-Ring Laboratory,

standard reference texts [99, 100], and the InsideWood (http://insidewood.lib.ncsu.edu) and

USDA Plants (https://plants.usda.gov/) online databases. A LEO 1550 field emission scanning

electron microscope (FESEM) was used for high magnification observation of anatomical

micro-features and high-quality image capture.

Radiocarbon samples, dating, and site contexts

The 14C dates employed are either new dates, all UCIAMS, published here (S1 Table), or previ-

ously published dates [39, 65]. No permits were required for the described study, which com-

plied with all relevant regulations. The new UCIAMS samples were analyzed by the W.M.

Keck Carbon Cycle Accelerator Mass Spectrometry Laboratory (KCCAMS) at the University

of California-Irvine [101]. At KCCAMS, bone samples were decalcified in 0.5N HCl, gelati-

nized at 60˚C and pH 2, and ultrafiltered to select a high molecular weight fraction (>30kDa)

[102]. Charcoal and maize samples were subjected to the standard acid-base-acid (1N HCl and

1N NaOH, 75˚C) pretreatment. δ13C values were measured at KCCAMS to a precision of

<0.1‰ relative to standards traceable to PDB with a Thermo Finnigan Delta Plus stable iso-

tope ratio mass spectrometer (IRMS) with Gas Bench input. Details on KCCAMS dating pro-

tocols are available on the facility’s website (https://www.ess.uci.edu/group/ams/facility/ams).

The new samples for dating from the Garoga, Klock, and Smith-Pagerie sites were recov-

ered from hearths or large pit features. The size and shape of the large pit features (S1 Table

and S1 File) and in many cases the presence of charred or partially charred grass and/or bark

linings suggest their original function was storage of agricultural crops [103]. The linings and

any crop macrobotanical remains located on and/or immediately above the linings most likely

represent the original uses of the pits. Therefore, radiocarbon dates on these elements are likely

to represent time during each feature’s original period of use. Fill above these elements repre-

sent subsequent activities including purposeful filling episodes, fill from sheetwash and erosion

of pit walls, as well as subsequent secondary use [103, 104]. Unburned bone recovered from

hearths is unlikely to have been deposited while the hearths were in primary use. As such,

radiocarbon dates on material recovered from these known pit contexts represent terminus ad
quem for the pits’ original functions. We focused especially on identifying wood charcoal sam-

ples from specific loci with a number of tree-rings preserved out to original waney edge/bark.

The terminal tree-ring in these cases therefore provides a close date estimate for the human

use of this sample in the episode represented in the context. The availability of a series of tree-

rings leading to this event means that we can employ the 14C ‘wiggle-matching’ approach [66,

67] to constrain and better define the likely date. Even short-sequence wiggle-matches can

usually usefully inform chronological analysis [63, 64, 68, 98, 105].

We note that cases of reported inaccuracies for short-sequence wiggle-matches at high-pre-

cision [106, 107] are in fact relatively minor in scale in most cases and typically occur when the

time-intervals of the samples dated (i.e., the specific number of tree-rings dated, and so calen-

dar window comprising the dated samples) are much shorter than the integrated (smoothed)

IntCal 14C Calibration curve resolution available. Inaccuracies may also occur at certain peri-

ods when the total length of the time series is sufficiently short that it may not be able to permit

discrimination between multiple periods with similar atmospheric 14C levels and trajectories

(i.e. reversals or wiggles in the calibration curve). Over the last 1000 years, such parallel

instances of similar 14C levels and trajectories are typically distinguishable once time-series are

greater than ~50 years. The latter issue of potential ambiguity is potentially relevant in the con-

text of this article especially to the periods around ~1490–1535 and ~1600–1635. In such cases,
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additional constraints may be necessary to achieve satisfactory discrimination for very short

time series. The former issue applies when, for example, single, annual, tree-rings only are

dated (potentially capturing high-frequency annual-scale variation in atmospheric 14C—

attested in available annual resolution 14C time series: e.g. [108–110]), whereas the calibration

record, while largely based on annual data for the second millennium CE, is in fact used as a

smoothed curve removing very high-frequency (i.e., annual-scale) variation [111, 112]. For

this reason in our study, we sought to date samples comprising several tree-rings in most cases

where possible (5 rings in six cases, 2 or 3 rings in 4 cases each, 6 or 9 rings in 2 cases, and a

single ring in just 2 cases: see S1 Table), in order to damp-down any very high-frequency varia-

tion and so achieve data likely more similar to the smoothed IntCal curve. Nonetheless, we

suggest that we do observe an issue in the case of the Klock Ulmus sp. wiggle-match (see below

and Fig 3). Here short-term variation or another offset may apply. The consistency of results

across different analyses of the same/similar samples in this case suggests perhaps the relevance

of real short-term higher-frequency atmospheric variation–especially noticeable in the relevant

mid-later 16th century period where there is a plateau or moderate reversal in the calibration

curve accentuating any 14C offset/difference. As noted by [113], any instances of inter-labora-

tory variation/offsets will further exacerbate any such problems at high-precision and where

only a short sequence with limited data is wiggle-matched. This observation suggests that care

needs to be taken with high-resolution dating in the mid-later 16th century, especially if con-

sidering annual resolution samples or short sequences. But, in our specific case, it is important

to observe that this apparent high-frequency variation (or other offset) is not occurring at a

time where there is a potential alternative calendar placement (contrast the case if the series

was lying around either ~1490–1535 and/or ~1600–1635 when there could be an ambiguity).

Instead, the mid to later 16th century calendar placement for this Klock time series is the only

available placement for the series regardless of the evident variation, noise or offset.

Tree-ring sequences are described in terms of Relative Years (RY): the first measured

(innermost) tree-ring (after pith, if present) is RY 1001. In this case we sought to have more

than one such sequence for each site with the view that achieving multiple compatible results

reinforces confidence in the dates obtained. The samples from Brigg’s Run, in contrast, are

from an avocational archaeologist’s collection donated to the New York State Museum with

minimal associated documentation. Thus we make no intra-site history assumptions in this

case. The key issue for this site, rich in European trade goods including types that, according

to all understanding, can only date from the early 17th century ([39] at pp.252-259), is whether

the 14C dates are consistent with placement in the first decades of the 17th century.

In this study, aimed at high-resolution dating of the Garoga, Klock and Smith-Pagerie sites,

we were specifically interested in whether samples reflected original functions or subsequent

fill, and, if subsequent fill, whether this could be related to the closure or end of use of the fea-

ture and likely the wider site occupation, or even post-occupation activities. To that end, site-

specific excavation and laboratory records in the New York State Museum’s archaeological

archives were consulted to determine the origin of samples dated from within the various pits

(S1 File). Written records, often made by field-school students, were of varying quality and

detail. However, profile drawings combined with these notes made it possible in some cases to

either determine specifically where samples were recovered or their most likely location of

recovery within a feature’s fill. Determinations of likely location of recovery are provided in S1

Table with discussion and additional information in S1 File. Here we provide descriptions of

the pits from Garoga, Klock, and Smith-Pagerie from which the wood charcoal samples we

selected for dating were recovered.

Garoga site Feature 36 was a cylindrical pit measuring 122 cm in diameter and 147 cm deep

within Longhouse 9 ([76] at p.99). The pit’s profile indicates a complex series of fill units (S1
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File). Field notes indicate that a “lobe” of fill was present at the top of the feature along the

south edge. This fill contained fire-cracked rock, charcoal, ash, and a few sherds. This is the

only fill unit from which charcoal is specifically mentioned and is the most likely source of the

charcoal samples. We therefore regard this context as after the main use of the pit–a terminus
ante quem (TAQ) for the earlier use and for the site as a whole.

Klock Feature 84 was a large pit measuring 107 x 152 cm in plan and 122 cm deep (S1 File)

within Longhouse 1 (or House 1 = H1). A sample of the charred grass lining was taken from

the bottom of the pit, which was AMS dated for the current project (UCIAMS-239714). We

regard this lining sample as dating the construction or start of use of the pit. Immediately

above the grass lining was a lens of charred maize including maize cobs with kernels attached.

Maize kernels (UCIAMS-239713, UCIAMS-218474) and a maize cob fragment (UCIAMS-

239712) were AMS dated. These samples, all subsequent to the lining, date the primary use of

the pit. The charcoal samples most likely come either from a small lens labeled “burned wood”

or a thin lens near the top of the pit that indicates charcoal. We therefore interpret the date of

the waney edge of the charcoal sample as defining the closing use/end of use of the pit. It is

thus a TAQ for the earlier use of the pit and for House 1 generally—and likely for much of the

site occupation, since such deliberate final pit closure is likely from the end of use/abandon-

ment of the site. Indeed, given that the cutting and use date available for a sample of this char-

coal (see below) appears to be a few decades at least after the rest of the Klock dating evidence,

there is reason to suspect that this charcoal was in fact from the lens right at the top of the Fea-

ture 84 pit and so may in fact even post-date the main Klock site occupation period.

The maize sample dated by ISGS-A0326 needs comment. This sample was reported in [65]

as coming from Feature 84. This is incorrect. It is in fact sample 45157-A and is from Feature

50. Feature 50 is the other pit within Longhouse 1 with a large maize deposit. However, unlike

Feature 84, the maize deposit in the Feature 50 pit is not from the bottom (and first or early

use) of the pit, and so likely represents use and fill of the pit after it was no longer serving its

primary purpose. Hence we assume that this maize deposit reflects later use of Longhouse 1, in

contrast to the initial/earlier use represented by the material from the bottom of the Feature 84

pit.

Klock Feature 135 was a pit measuring 123 cm in diameter located between Longhouses 3

and 5. Field notes indicate there was a lining of charred “vegetal material” at the base of the pit

in which maize was present. This is the only mention of maize in the field notes and is the

likely source of the AMS-dated maize kernel (UCIAMS-218475) reported in [65] representing

the original function of the pit. Above this lens was a massive deposit of large fire cracked

rocks, which filled the pit. The field notes do not mention charcoal samples, but it is likely that

the charcoal AMS dated for the present project came from the fire-cracked rock deposit—

wood charcoal is not mentioned in the description of the bark lining.

Smith-Pagerie Feature 54 was a pit measuring 122 x 152 cm in plan and 135 cm deep within

Longhouse 1. A dark, charcoal-stained lens extending across the pit at depths of 63.5–72.4 cm,

61 cm above the bottom of the pit, contained abundant maize. A maize kernel from this lens

was AMS dated (UCIAMS-218490) as reported in [65]. AMS dates on two maize kernels also

apparently from this lens (AA-6419, AA-7405) were reported by [39]. Field notes indicate that

charcoal samples selected for dating were recovered from the same lens as the maize. The pit

profile drawing suggests that the upper half of the pit was filled in, partially re-excavated, and

refilled (S1 File). This second fill was evidently excavated into and then refilled. The dark lens

was at the base of the first posited re-excavation. A 19th century source indicates that pits were

visible at sites like this at the time and would presumably therefore have been visible to ances-

tral Mohawk people after having been filled ([114] at p.23): “These strange aboriginal maga-

zines or storehouses can be seen in numbers even at the present day. Some of them are in the
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dense forests, others lie in open fields. They are looked upon with curiosity by the country peo-

ple who regard them as the graves of Indians.” Such visibility, and the knowledge of the pres-

ence of these features (with differing Indigenous versus European/settler interpretation) may

well have encouraged at least occasional activity at these loci—potentially for very different

reasons (Indigenous versus European/settler)—which could explain instances of apparent late

or post-use pits and high-up and near plow-soil charcoal material. We therefore interpret the

samples we date as belonging to activity or activities ending with the firing represented by the

date of the waney edge of the charcoal samples (thus a TAQ for the earlier use of the pit) and

latest maize samples, with some older material likely from earlier (to initial) use of the pit.

Smith-Pagerie Feature 60 Longhouse 5 was a small and relatively shallow pit (36" diameter

and only 24" deep: [76] at p.61). Thus, we assume that this pit likely represented just one real

use episode. We therefore assume the maize dated (UCIAMS-218493) gives a date for the first

use of the pit. The 14C however is much older than any other dated element from the site (even

treating this as an initial site context). It is a ~98% probability outlier if assumed to be the first

date from the site, and a 100% probability outlier if included in the subsequent main site

Phase. This date is thus excluded from the dating models, whether as an unexplained outlier,

or evidence of distinct and earlier human activity at the site locus.

Radiocarbon modelling

We employed the OxCal Bayesian chronological modelling software [92] using version 4.4.4

with the IntCal20 Northern Hemisphere 14C calibration curve [111] (curve resolution set at 1

year). OxCal key words/commands (Chronological Query Language, CQL2: see https://c14.

arch.ox.ac.uk/oxcalhelp/hlp_commands.html), such as Boundary, Date, Before, D_Sequence,

Gap, Interval, LnN, Outlier Model, N, Phase, R_Combine, Sequence, are capitalized in our

text. Individual outliers within site models were identified and down-weighted using the

OxCal SSimple Outlier model within D_Sequence (tree-ring wiggle-match) sequences [66]

and with the OxCal General Outlier model in the case of short-lived samples [115]. Dates on

wood charcoal (not part of wiggle-matches) were analyzed with the OxCal Charcoal Outlier

model applied to approximately allow for the likely in-built age involved in the dated sample

[115]. The SSimple Outlier model was also used to assess weighted averages against the model.

Samples on the identical material, including the same exact tree-rings, were combined follow-

ing [116]. Samples are identified in the figures as M = maize (Zea mays ssp. mays), B = animal

bone, and R = residue (food/organic residue). Other samples are given descriptions. Each site

is modelled within an overall site OxCal Phase between start and end Boundaries. Based on

ethnohistoric information we regard the occupation of each village as likely being within a

total range of 0–30 or 0–40 years with average site occupation lengths somewhere likely in the

range of 10–20 or to 25 or so years [62, 68, 117] (and see further discussion in Results below).

We therefore consider three constraints on the duration of each site between the start and

end Boundaries via an Interval query with a constraint of (i) a Log Normal distribution of LnN

(ln(20),ln(2)); or (ii) a Normal distribution of N(20,10); or (iii) a Normal distribution of N

(25,10). In each case the site Model 1 uses the LnN constraint; the site Model 2 uses the N20,10

constraint; and the Model 3 uses the N25,10 constraint (see Results and S2 Table). Critically,

the LnN or N constraint does not impose a hard upper limit; thus the dates from the site can

overwhelm the prior if the assumption is not appropriate and so indicate a problem. In all

cases satisfactory agreement is evident between the Posterior v. Prior distributions (OxCal

Agreement values >60). Fig 2 shows and compares these three site duration probability

assumptions. All have similar mean and median values (between 20 and 25 years), reflecting

the ‘average’ site durations expected based on assessments of ethnohistoric and archaeological
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evidence [62, 68, 117]. The two Normal (or Gaussian) distributions then symmetrically allo-

cate declining probability around these average/median values (of 20 and 25 years)—95.4% of

the probability lies between 0–40 or 5–45 years, respectively. In contrast, the LnN distribution

reflects an assumption that in the real world the Normal distribution may not be appropriate

in a case like this. While the median or average lifetime of villages (as a set) may be around 20–

25 years, many villages likely had a shorter lifetime (the mode value for the distribution used is

between 12.2–12.4 years), just as some (few) villages may have had lifetimes that are longer,

and a very few even much longer, than the ‘average’. The LnN distribution better accommo-

dates this real-world range—95.4% of the probability lies between 2.36–65.04 years. In prac-

tice, however, the modelled results are relatively similar using all three models (since they are

describing reasonably similar scenarios) [68] (see Results). We explain each of the four site

contextual histories and their models and any specific site assumptions below by site.

Brigg’s Run. The 14C dated samples all from the site Phase–with no further information

available as the material derives from a non-systematic avocational collection given to the New

Fig 2. Visualization and comparison of the three different site duration constraint probability distributions used and applied in the different models via

an interval query, constrained by respectively normal distributions of N(20,10), or N(25,10), or a Log Normal distribution of LnN(ln(20),ln(2)).

https://doi.org/10.1371/journal.pone.0258555.g002
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York State Museum–comprise four dates on short-lived samples (maize) belonging to the site

Phase, and a wiggle-match series of dates on a 25-ring beech (Fagus grandifolia) sample ending

in bark, reflecting a use date somewhere within the site Phase. There is relevant historical

information ([39] at pp.252-259). The account of Van den Bogaert [118] states that by the time

of his inspection visit in 1634–1635 there were only villages on the south side of the Mohawk

River. Thus, this gives a terminus ante quem (TAQ) for the end of Brigg’s Run (on the north

shore of the river) by 1635. Less definite but informative, is the rich assemblage of a range of

materials recovered from Brigg’s Run which can only belong in the early 17th century, with

some items indeed likely only post-1614 (and the founding of Fort Nassau) and even post-

1624 –though materials likely dated from the years 1626–1635 are not specifically observed in

Snow’s [39] review. Overall possible dates are thus stated as within the range ca. 1600–1635

([39] at pp. 252–259). Other scholars generally agree, but some place the date towards either

the earlier or later portions of this overall range. For example, Rumrill ([119] at pp.9-10) sug-

gests 1600–1615 whereas Bradley ([11] at pp.74, 80, 199 n.35) suggests 1624–1635. Such mate-

rial culture-based assessments necessarily are approximate but are likely relatively robust when

based on a range of material types and on multiple examples. One area of error or caveat could

be that the European-dated material arrived at the site well after its initiation (rather than from

the start). To be highly conservative, we therefore consider a possible 100% error on these

expert assessments. Thus we regard the possible date range for the site as somewhere–with

uniform probability–between 1565 to 1635 by limiting the start and end Boundaries for the

site Phase with a constraint of U(1565, 1635). While leaving a liberal range available of ca. 70

years, this has the important effect of removing what would otherwise be possible dating prob-

ability in the ca. 1500–1560 region (due to calibration curve taphonomy)—but is clearly not

plausible given the good historical associations with the early 17th century.

Garoga. As noted above, there are two wood charcoal samples evidently from a late high

lobe on the south side of F36 pit. Wiggle-match dates for the waney edge of a beech (Fagus
grandifolia) sample and the last extant tree-ring from an elm (Ulmus sp.) sample are interpreted

as providing a TAQ for the pit and so for Longhouse (House, H) 9 at the site (with the date on

the waney edge placed as the latest available evidence). There are seven other dates from House

9. Y-1381 is wood charcoal that may well include substantial in-built age, which we accordingly

model applying the OxCal Charcoal Outlier model. AA-8370 on maize from F37 pit is a 100%

probability outlier versus the site model–and is too old–for unexplained reasons. Either it is an

erroneous measurement or represents previous, much older, activity at the site area. The other

dates (all on maize) come from the F2 pit. AA-7695 is a ca. 10% probability outlier in the model

(whose date is slightly too old). We exclude AA-8370 and AA-7695. An intra-site Sequence for

House 9 is modelled placing the data from the House before the wiggle match TAQ dates. A

Difference query applied to the period between the start and end Boundaries for House 9 yields

estimates for the duration of House 9 of 0–8 years at 68.3% hpd, and 0–21 years at 95.4% hpd.

Other dates from Garoga come from pits in House 2, House 4, House 5 and House 12 and from

F184 pit between House 1 and the stockade. We model the overall site Phase.

Klock. A small diameter elm (Ulmus sp.) branch preserving the entire stem from pith to

bark with 25 rings (the last including latewood formation) came from what appears to be the

last and final use of the Feature 84 pit–high-up in the pit just below plow-soil–and this last use

is likely either approximately contemporaneous with, or after (potentially even well after), the

last use (post-closure) of the associated Longhouse (House, H) 1 structure–since Feature 84 was

under the area of a bed platform during the use of House 1 and thus this final activity in Feature

84 probably occurred after the removal of House 1. Thus the date on the waney edge of this

sample offers a TAQ for House 1. The length of the ‘ante’ is not known. A tree-ring sequenced

wiggle-match is available. Two 14C dates are on relative years (RY) 1001–1002 (innermost two
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rings of the sample: UCIAMS-226653 and 239720). Since these dates are on the identical tree-

rings (and are very similar) we combine them as a weighted average. Another 14C date is on

RY1010-1018 (UCIAMS-239721), ~12.5 years later, and a final 14C date is on RY1021-1025

(UCIAMS-226654), 9 years later again. The date of the last complete tree-ring (including the

waney edge), RY1025, is 2 years after the mid-point of the RY1021-1025 sample.

The wiggle-match is not entirely straightforward as the 14C dates on these samples offer a

less than perfect fit against the calibration curve (see Fig 3A). The two dates on RY1001-1002

are very similar and the combined weighted average value yields a (non-modelled) specific

date either 1527–1552 (50.6% probability of the 68.3% hpd range) or much later 1633–1642

(17.7% probability of the 68.3% hpd range). This suggests somewhere around 1527–1552 as

the likely (plausible) age. The last ring should therefore be less than 24 years later: before 1551–

1575. However, the other two dates indicate non-modelled ranges (ruling out impossible

options before the RY1001-1002 date) later, either 1592–1619 (UCIAMS-239721) or 1580–

1622 (UCIAMS-226654). The net outcome versus IntCal20, adding in the constraints of the

tree-ring derived spacing between the samples and trying to compromise what appear to be

somewhat non-compatible data, is that the wiggle-match is pushed later with the RY1001-1002

weighted average placed most likely 1564–1589 (59.9% of 68.3% hpd) but at the price a poor

OxCal individual Agreement value of ~44.6 < 60, since the modelled placement no longer cor-

responds with most of the likely non-modelled calibrated probability. At first sight, this result

appears of concern. But it is important to consider that the IntCal curve is a narrow, modelled

probability band trying to best-describe a large set of raw 14C calibration data available in this

period. For example, one high-quality annual resolution time series of recent data (ETH data-

set) shows considerably greater structure in the 16th century than represented in the smoothed

IntCal20 record [108] (see Fig 3B). Overall, comparison of the 14C age ranges of the Klock

branch samples versus the raw IntCal20 dataset suggests greater potential flexibility. If we con-

sider just the wiggle-match of this Ulmus sp. branch, the OxCal Amodel and Aoverall values for

the data as reported (Results below and S2 Table) are ~31<60 and ~46<60. If the measure-

ment errors on each date are increased by 25% (rounded upwards), these values become

~46<60 and ~60. If the measurement errors are increased by 50% (rounded upwards), these

values become ~61 and ~72. We thus consider the overall Klock model in two versions (a and

b): (a) reported values for these data, and (b) an alternative wiggle match with the measure-

ments errors on these data increased by 50%. The first (version (a)) yields Amodel and Aoverall

values of ~53<60 and 66 with the Ulmus sp. RY1001-1002 sample with individual Agreement

value ~42<60. The second (version (b)) yields Amodel and Aoverall values of ~70 and 79 with the

Ulmus sp. RY1001-1002 sample with individual Agreement value ~68.

The last ring (including the waney edge) of the above Ulmus sp. branch sets a TAQ for

House 1 at Klock. House 1 is represented by a temporal sequence of contexts and radiocarbon

dates on these. A sample of the charred grass lining from the bottom of the Feature 84 pit

(UCIAMS-239714) dates its construction or start of use. The lens of charred maize cobs with

kernels attached (kernels: UCIAMS-239713, UCIAMS-218474; cob: UCIAMS-239712) date

the primary use of the pit. We employ a weighted average 14C age for this apparently single epi-

sode/group. Another 14C date on a maize sample from Feature 116 pit is likely within this

same earlier use horizon (UCIAMS-218476). There are then some 14C dates on samples and

contexts from likely subsequent House 1 use. A date on maize (UCIAMS-190560) and a date

deer bone (UCIAMS-190562) from hearths reflect use during the period of House 1.

ISGS-A0326 is on maize from the Feature 50 pit, but, unlike the maize from the Feature 84 pit,

this maize deposit was not at the bottom of the pit, and so probably represents use/filling after

the pit was no longer serving its original/primary purpose and hence is from the main/later

occupation versus initial/early occupation at the site. In addition to House 1 there are several
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Fig 3. Relationships of the 14C dated tree-ring sequenced samples from the Klock Feature 84 Ulmus sp. branch with IntCal20. a. The

laboratory stated data wiggle-matched against IntCal20. Two measurements for RY1001-1002 are combined as a satisfactory weighted

average and there are then dates on RY1010-1018 and RY1021-1025. The likely non-modelled calibrated locations do not accommodate

the known tree-ring spacing in detail. The two dates on RY1001-1002 identify 1527–1552 as the most likely placement (purple box). But

this is not compatible with the other two dates given the tree-ring spacings (hence the expected, if the likely non-modelled dates on
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other 14C dates on samples from other Klock contexts. One is an outlier that is clearly too old

for unknown reasons (laboratory or sample–the measurement was run several decades ago)

(AA-7204 on maize) which we exclude; the remaining dated samples belong to somewhere

within the period of the Klock occupation (ISGS-A0523 organic residue, UCIAMS-190559

bone, AA-6418 maize, UCIAMS-190561 bone, UCIAMS-218475 maize and UCIAMS-239711

wood charcoal). We consider the date on organic residue as potentially including in-built age

and thus apply the OxCal Charcoal outlier model to this date. There is one sub-grouping. Two

samples come from Feature 135 pit between Houses 3 and 5: a sample of maize (UCIAMS-

218475) and a small ash (Fraxinus sp.) twig with 13 tree-rings ending in waney edge/bark.

UCIAMS-239711 dates tree-rings RY1009-1013 of this twig, thus we can model the date of the

waney edge and use of this twig as 2 years after this date (mid-point treated as RY1011).

The overall Klock site Phase encompasses the House 1 Sequence (before the TAQ from the

Ulmus branch’s dated waney edge) and the Phase of other dates. Integrated into the overall site

model and data, whether we use the quoted 14C values for the Ulmus sp. samples (a), or those

with a 50% measurement error increase (b), makes very little difference other than to the Amo-

del values (~53 versus ~68/69) (considering Models 1a v. 1b and 2a v. 2b). The Date query for

the overall Klock Phase is almost identical comparing the most likely 68.3% hpd ranges: (a)

1494/5-1521/3 and (b) 1496–1521.

Smith-Pagerie. Unburnt bone from Feature 127 (a hearth) in Longhouse (House, H) 4

likely represents post-site-occupation deposition (since we would expect bone to be burnt

from use of the hearth during the site occupation period). This sample is thus a TAQ for the

site occupation. The latest dated occupation context for the site is the maize from the Feature

80 hearth from Longhouse 2. We regard this as likely a TAQ for the other data from the site in

that we would expect periodic cleaning of hearths during a site’s occupation. Four dates are

available on samples which can only be placed as from activity within the site Phase repre-

sented by Longhouse 1: UCIAMS-190565, UCIAMS-190563 and UCIAMS-190566 on bone

from Features 11, 25 and 40 in Longhouse (House) 1, and ISGS-A0528 on organic residue

from Feature 15 in Longhouse 1. One date on maize from Feature 60 pit in Longhouse 5,

UCIAMS-218493, is an unexplained, much too old outlier (~100% probability if placed in the

site Phase with the other data). This could be a sample or laboratory issue but may also reflect

earlier activity at the locus. The Feature 60 pit is relatively small and shallow (36” diameter and

24” deep: [76] at p.61) and may reflect limited earlier activity in the first half of the 15th century

(the date offers a calibrated calendar age range 1421–1447 at 95.4% probability). We exclude

this date from the analysis. We also exclude UCIAMS-218491 from Feature 9 pit in Longhouse

1. We have no information on what material was in fact dated in the case (an error, clearly,

which we are not able to retrospectively address). The δ13C value, -29.1‰, is also substantially

different from all the others from the site, raising suspicions. The age is too recent and is a

~100% probability outlier if modelled in the site Phase. We thus do not include this date in the

site model. This leaves the remaining Smith-Pagerie data from Feature 54 pit from Longhouse

1. As discussed above, maize samples from a mid-pit-depth deposit likely date use or residual

material during the use period of the pit (UCIAMS-218490, AA-6419 and AA-7405). The con-

text of the charcoal samples (a Fagus grandifolia sample to waney edge/bark, a Betula sp.

RY1001-1002 are correct, pink box is left floating in free space away from the IntCal20 curve). The wiggle-match, trying to accommodate

all the dates therefore moves the modelled RY1001-1002 dates (solid green distribution) to a more recent placement (largely missing

IntCal20 and hence achieving a poor OxCal Agreement value: 44.6<60) but allowing the other modelled dates (solid gray and solid cyan

distributions) to be associated with IntCal20 (although the overall Amodel value is poor: 31<60). b. The raw IntCal20 dataset from which

the modelled curve in a. is derived [111] highlighting the ETH dataset [108]–these raw data indicate greater possible variation which

might allow the observed Klock data to fit better, including earlier, similar to the purple and pink boxes in a.

https://doi.org/10.1371/journal.pone.0258555.g003
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sample to waney edge/bark, and a Fagus grandifolia sample to waney edge) indicates that the

wiggle-matched dates for the waney edge of these samples set a TAQ for the other material in

the pit–with these later fills and re-use of the pit quite likely dating after (even well after) the

main occupation of the site (and earlier use of the lower part of Feature 54 pit). The three wig-

gle-matched samples indicate dates for this subsequent use, re-excavation, and re-filling of the

pit as represented in the Dark Lens charcoal likely from the mid-16th century to the early 17th

century. Material higher in the pit fill may be even more recent (see comment above concern-

ing the report in [114] at p.23).

OxCal models. OxCal runfiles for each of the four sites discussed above—Brigg’s Run,

Garoga, Klock and Smith-Pagerie—are set out with descriptive notes in S2 File. The model for

the analysis of 12 Mohawk River Valley sites, including these four sites, revising and elaborat-

ing previous work [65], is set out in S3 File. Note: we use a kIterations value of 3000 in these

models, 100x the OxCal default, to ensure the reported models are likely representative. Typi-

cal results from several separate runs of each model are shown and reported. We note that very

small variations occur between runs of such models. Only models with all values exhibiting

individual Convergence values of �95 were used.

Results

We considered each of the Smith-Pagerie, Klock, Garoga and Brigg’s Run sites in separate dat-

ing models. Previous assumptions and debates about site relationships among the Smith-

Pagerie, Klock and Garoga sites (summarized above in Introduction) were specifically not

included in our analysis, in order to obtain a neutral assessment based solely on the data avail-

able from each site, considered independently. Using the Bayesian chronological modelling

approach as implemented in the OxCal software [58–60, 91, 92], we integrated the calibrated

radiocarbon probabilities within each overall site Phase with the constraints available from

various contextual and stratigraphic relationships based on archaeological observations from

the site and between and from the samples themselves (whether short-lived samples, or sam-

ples with in-built age, and samples where tree-ring defined sequences could be used to refine

the estimated age of the outermost tree-ring underneath the bark, corresponding to the year of

the tree’s felling and human use): see Methods. No assumptions were made other than those

related to each site in isolation. Identification and examination of wood-charcoal samples

offering short tree-ring sequences (Fig 4) enabled the employment of 14C wiggle-matches to

constrain and refine dating for each site [67, 68]; in particular, for three sites, tree-ring samples

from late, final, or even subsequent use of pits at the sites–after careful review of available doc-

umentation (S1 File) – provided probable TAQ constraints. An OxCal Date query was made

to estimate the chronological period between the start and end Boundaries for each overall site

Phase and is used as an estimate for the site date overall, and an Interval query was made to

establish the length of time for each overall site Phase likewise between the start and end

Boundaries.

As briefly discussed above, the one key further assumption made concerns the likely overall

period of occupation at these sites. According to the specific observations made in early ethno-

historic accounts, as well as assessments made on the basis of the archaeological evidence and

resource use estimates, we regard the occupation of each village as being less than ~40 years

(e.g. typical maximum range of 20–40 years estimated for the 15th through early 17th centuries

[117]), and likely within a total range of 0–30 or 0–40 years, with average site occupation

lengths somewhere in the range of ~10–30 or so years. A typical average of (i) ~20 years has

been cited ([120] at p.120); or (ii) of ~25 years ([117] at p.49), with larger and more recent sites

regarded as having occupation periods more towards the shorter end of these ranges (e.g. [62]
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at pp.66-67, [48, 68, 117]). We therefore consider three constraints on the duration of each site

between the start and end Boundaries via an Interval query with a constraint of either a Log

Normal distribution of LnN(ln(20),ln(2)) [68], or a Normal distribution of N(20,10) (derived

from [120]) or a Normal distribution of N(25,10) (derived from [117]) (see Fig 2 above). In the

case of each site, Model 1 uses the LnN constraint; Model 2 uses the N20,10 constraint; and

Model 3 uses the N25,10 constraint. An important consideration is that neither the LnN or N

constraint imposes a hard upper limit (in contrast with a uniform prior assumption), such that

the data from each of the sites overwhelms the prior if the assumption used above is in fact not

appropriate, and so indicate a problem. We find only very modest differences across all three

Fig 4. Example FSEM images of wood charcoal taxa sampled for dating, including transverse sections of A. Fagus grandifolia from Brigg’s Run (sample

A2002.10AC.1.4.7.1), B. Ulmus sp. from Garoga (sample A-42354.E.1), C. Betula sp. from Smith-Pagerie (sample A-44757.1), and D. radial section of the same

Betula sp. showing scalariform vessel perforation pits.

https://doi.org/10.1371/journal.pone.0258555.g004
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of these models, and the Posterior probabilities correspond well with the Prior probabilities in

each case indicating that data, assumptions and model are reasonably well aligned (S2 Table).

Figs 5–8 show the site dating models and the results for each of the Smith-Pagerie, Klock,

Garoga and Brigg’s Run sites from the site Model 1 cases (LnN constraint). Table 1 lists a sum-

mary of the results from both Model 1 (LnN constraint) and Model 2 (N20,10 constraint) for

each of the four sites and two alternatives for the tree-ring wiggle-match from the Klock site.

The respective results are very similar (S2 Table shows comparisons of Models 1, 2 and 3 and

some additional details). Thus, the particular choice of (broadly similar) constraint Prior is not

decisive [68]. In each case, except one, the models offer satisfactory OxCal Amodel and Aoverall

values (>60) and the likely date range of each site is evident with minimal realistic ambiguity.

There is no ambiguity in any of the most likely 68.3% hpd ranges. The one exception regarding

the Amodel values is Klock Model 1a, Model 2a and Model 3a. As discussed in Methods

(above), the wiggle-match of the dated tree-ring samples from the Ulmus sp. branch from Fea-

ture 84 is less than satisfactory given the available data and the IntCal20 smoothed calibration

curve (Fig 3A). Either the laboratory data are overly precise (or slightly inaccurate), or it may

well be that underlying greater high-frequency (annual-scale) variation in atmospheric 14C

and calibration values is reflected in our data, as suggested by comparison with the raw 14C

data from which IntCal20 is derived and especially the large recent ETH dataset [108] (Fig 3B).

Klock Models 1b, 2b and 3b approximately allow for greater variation by increasing the mea-

surement errors on each sample in this wiggle-match by 50%–this solves the OxCal Agreement

issue but makes no substantive change to the likely date placement for the site.

In the case of Klock, one other possible variation in assumptions seems worth consider-

ation. It might be argued as plausible that the samples found from (we may assume) the last

use(s) of the hearth feature in House 1 (CIAMS-190562 on bone and UCIAMS-190560 on

maize) reflect the last use of House 1 and so set a TAQ for the earlier material from the house

and pits therein. If we revise Klock Model 1b to reflect this additional assumption, placing the

dates on material from the hearth as the latest in the house Sequence, it only further solidifies

the preferred date range for the site identified in each of Models 1–3: see Fig 9. The overall

Klock site Phase Date estimate in this model at 68.3% hpd is 1498–1520 (or 1481–1534

(91.0%) and 1581–1600 (4.5%) at 95.4% hpd).

A very few larger outliers were identified and excluded in the final site models employed

(see Methods, S2 File). As discussed in Methods, some of these outliers may be laboratory out-

liers or problematic samples (especially UCIAMS-218491). In a few instances the data are

from recent AMS 14C measurements and still yielded substantially older ages. In such circum-

stances, where no in-built age can be explained in terms of the sample (e.g., random wood

charcoal or organic residue from a ceramic vessel), then it is possible that there was previous

human activity at the locus—indeed, multiple uses of suitable, even strategic, loci through time

have been observed or suggested in other work in the region (e.g. [39, 69]). It is notable that

the modelled Intervals show good agreement between the calculated Posterior versus the Prior

assumptions in each case–suggesting that the data do support and conform with the ethno-

graphic and archaeological assessments of typical village occupation length. The likely date

placements for the Smith-Pagerie, Klock and Garoga sites contradict some previously hypothe-

sized site relationships and dates (as also does recent social network analysis: [80]). For exam-

ple, the assessment of a site-community occupation sequence (oldest to youngest) of Garoga

then Klock and then Smith-Pagerie by Funk and Kuhn ([76] at p.142) is challenged. The

Bayesian chronological models for each of these sites in Figs 5–7 offer the basis for a well-

resolved, independent, temporal framework.

We further considered the four sites dated in Figs 5–8 (Model 1 for each site) in terms of

eight other Mohawk Valley sites discussed in recent work: the Snell, Pethick, Getman, Second
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Fig 5. Dating model and results for Smith-Pagerie (S-P) Model 1. a. Site dating model with the OxCal key words and boxes

describing the model exactly. Light-shaded distributions show the non-modelled calibrated calendar probabilities; the dark shaded

distributions show the modelled probabilities applying the model. The lines under each distribution show the modelled 68.3% and

95.4% highest posterior density (hpd) ranges. The individual OxCal Agreement values (A) and the Outlier (O) values (Posterior/Prior)

are shown (note in the case of the Charcoal Outlier model these are always 100/100). b. Detail from a. showing the Date query result for
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Woods, Elwood, Cayadutta, Otstungo and Wormuth sites [65]. We did not include the Pala-

tine Bridge site as this site has only two 14C dates and we did not run additional samples in this

study. We re-ran the dating models available for these other eight sites from previous work

([65]–using the Model 2 version from that study) but incorporating an Interval query con-

straint of the form LnN(ln(20),ln(2)), as in the Model 1 constraints for Smith-Pagerie, Klock,

Garoga and Brigg’s Run in the present study (Figs 5–8). We did not place the site set within an

overall Phase but treated each site Phase as entirely independent. The site Date query results

for all 12 sites are shown in Fig 10A and Table 2. In some cases observing the calendar dating

probabilities, there is a clear most likely modelled age range (majority of the most likely proba-

bility) and then an alternative less likely range (with a minority of the most likely probability).

In Fig 10B we show a detail of the 10 sites lying in the mid-15th to early 17th centuries and (sub-

jectively and arbitrarily) remove the less likely alternative probability regions. This reveals a

likely approximate time-frame for this set of 10 sites. We compare the date ranges achieved

against one set of previous date estimates for 11 of these 12 sites in Table 2 in order to illustrate

the instances of marked changes in temporal placements.

For the first time, there is now a relatively clear and resolved (unambiguous) chronology

for these Mohawk Valley sites. In this regard our findings here confirm, but importantly revise

and refine, initial 14C based work [65]. The calendar age ranges we achieve for each of these vil-

lage sites start to be sufficiently resolved as to be representative and informative of both the

likely relatively short life-cycles of these settlements, and to allow us to begin to elucidate a

human-scale, historical-level, approach to the investigation of the constituent social groups,

their connectivities, and the complex set of entangled relationships involving place, climate-

environment, agents, actions, events and outcomes from village to regional spatial scales ([50,

62, 80, 94, 121–123]). We note that there are additional sites in the Mohawk Valley region

from this general era (e.g. [80]). It is likely some of these date within the same time range and,

based on a current absence of evidence, we might especially suspect that some of these sites, at

least, likely date in the periods before and after Garoga, since we currently have less evidence

for dated sites at these times (marked by the ?? in Fig 10B), especially ~1520–1550, and perhaps

also ~1570–1590. Our findings thus pinpoint targets for future research in the 16th century,

especially, and highlight how much we are yet to learn and to delineate if we are to narrate a

more comprehensive history.

Discussion

The period around the initial European presence and then invasion and settlement of north-

eastern North America in the 15th through early 17th centuries has conventionally been dated

and described in terms of European history and the absence, presence and types of European

trade goods. The first part of the title of a 1995 article perfectly captures the ingrained thought

processes involved in most work until recently: “Untanglers of matters temporal and cultural:

glass beads and the early contact period. . .” [120]. This predominance of Eurocentric thinking

and approach is understandable. Previous limited engagement with, and direct knowledge of,

the Indigenous viewpoint [6, 15, 17–20], and a focus therefore on the material culture record

[16], rendered alternatives challenging until a refined independent dating approach became

available. As noted in the Introduction and in other recent studies (e.g. [62, 63, 65]), until very

recently, the standard archaeological dating technology, radiocarbon dating, was long

the overall Smith-Pagerie Phase. c. Interval query result, applying the LnN(ln(20),ln(2)) prior, showing the probability for the period of

time between the start and end Boundaries for the site Phase in a. versus the prior (there is good agreement). Data from OxCal [91, 92,

115] version 4.4.4 of 2021 using IntCal20 [111] with curve resolution set at 1-calendar year.

https://doi.org/10.1371/journal.pone.0258555.g005
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Fig 6. Dating model and results for Klock Model 1b. a. Site dating model. b. Detail of the Date query estimate for the overall Klock site

Phase. c. Interval query result, applying the LnN(ln(20),ln(2)) prior, showing the probability for the period of time between the start and

end Boundaries for the site Phase in a. versus the prior. For description of the figure, see the caption to Fig 5.

https://doi.org/10.1371/journal.pone.0258555.g006
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regarded as less than helpful in this period due to the wide calendar age ranges obtained for

individual age measurements because of the shape of the radiocarbon calibration curve (a

reversal-plateau in the 16th century). Thus, despite pioneering efforts to obtain large sets of

radiocarbon dates, such as by [39] for the Mohawk Valley, the available material culture, and

especially the European trade goods therein, continued to dominate assessments and thought

frameworks into the beginning of the 21st century. It is only very recently that the combination

of modern AMS 14C dating, allowing dates on small samples and with good measurement pre-

cision, allied with Bayesian chronological methods incorporating prior knowledge informing

and constraining temporal relationships between variously samples, different contexts at a site,

and overall occupation duration, have enabled temporal resolution at the scale of Indigenous

village life-cycles and the associated human lived experience and history (e.g. [63, 64, 68]). In

particular, as demonstrated in our analyses of the Smith-Pagerie, Klock, Garoga and Brigg’s

Fig 7. Dating model and results for Garoga Model 1. a. The site dating model. b. Two short wiggle-matches run on the late (end of use) lobe from the Feature

36 pit in Longhouse 9 and cross-referenced into the model in a. c. Detail of the Date query for the overall Garoga site Phase from a. d. Interval query result,

applying the LnN(ln(20),ln(2)) prior, showing the probability for the period of time between the start and end Boundaries for the site Phase in a. versus the

prior. For description of the figure, see the caption to Fig 5.

https://doi.org/10.1371/journal.pone.0258555.g007
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Run sites, we base our analysis on the single, individual, sites and their contextual and secure

historical associations considered in isolation, without imposing either any assumptions con-

cerning site relocation sequences or by achieving an order within a sequence of sites, when sev-

eral sites may in fact have been partly or even wholly contemporaneous (a major improvement

over a previous initial analysis [65]). This independence of analysis is essential–avoiding past

archaeological assumptions of site relationships as much as possible–since recent social net-

work analysis has raised questions over previous, relatively loosely derived, assumptions in this

regard in several cases [50, 80].

As in other recent Bayesian chronological modelling work in northeastern North America

employing substantial sets of AMS 14C dates, our findings presented in this study challenge, and

in some cases contradict, previous conventional interpretations of site dates and associated

regional chronologies based on artefact types and assemblages. At the specific level of the iconic

set of three villages formally considered to belong to one community and successive occupations,

ordered as Garoga, Klock, and Smith-Pagerie ([76] at p.142), it was almost inevitable that our

independent dating using radiocarbon allied with tree-ring sequenced information identifies that

Fig 8. Dating model and results for the Brigg’s Run site Model 1. a. The site dating model. The site Phase is constrained (very conservatively) as starting and

ending with uniform probability between 1565 and 1635 (see Methods). A short wiggle-match is cross-referenced as belonging to somewhere within the site

Phase. No contextual/site information is available on the Brigg’s Run material (see Methods). b. Detail of the Date query estimate for the overall Brigg’s Run site

Phase. c. Interval query result, applying the LnN(ln(20),ln(2)) prior, showing the probability for the period of time between the start and end Boundaries for the

site Phase in a. versus the prior. For description of the figure, see the caption to Fig 5.

https://doi.org/10.1371/journal.pone.0258555.g008

PLOS ONE Resolving time in Northeastern North America: The Mohawk River Valley ~1450-1635 CE

PLOS ONE | https://doi.org/10.1371/journal.pone.0258555 October 15, 2021 24 / 36

https://doi.org/10.1371/journal.pone.0258555.g008
https://doi.org/10.1371/journal.pone.0258555


the sites not only likely lie in the exact reverse temporal order, but also that their temporal place-

ments are consistent with findings from social network analysis indicating that it is unlikely these

villages represent the same community [80]. Past assumptions need to be rethought entirely.

Overall, it is evident through a comparison of the date estimates obtained in this study, ver-

sus those from a standard assessment from a quarter of a century ago [39] (Table 2), that the

main area of change and revision is in the period related to initial European associations and

presence in northeastern North America, that is: the later 15th through 16th centuries. Earlier

periods were genuinely prehistoric, and the dates were based on available radiocarbon dates

Table 1. Summary of typical results for the site dating for the models for Smith-Pagerie, Klock, Garoga and Brigg’s Run from the respective site Models 1 (Figs 5–

8) and Models 2 (and the a and b variations for Klock) (see Methods).

Am 68.3% hpd 95.4% hpd Am 68.3% hpd 95.4% hpd

Smith-Pagerie

Model 1

111 Smith-Pagerie

Model 2

108

Boundary Start 1475–1492 1469–1504 Boundary Start 1475–1492 1469–1505

Date 1478–1498 1468–1512 Date 1478–1499 1469–1511

Boundary End 1485–1506 1479–1521 Boundary End 1486–1507 1479–1519

Interval 5–22 2–44 Interval 7–27 0–35
Klock Model 1a 53 Klock Model 2a 53

Boundary Start 1485–1513 1472–1517 (77.5) 1563–1595 (18.0) Boundary Start 1487–1510 1478–1517 (80.5) 1569–1593

(15.0)

Date 1494–1523 1483–1532 (77.2) 1573–1611 (18.2) Date 1495–1521 1486–1530 (80.4) 1576–1606

(15.1)

Boundary End 1505–1531 1498–1543 (77.4) 1587–1624 (17.9) 1626–1627 (0.2) Boundary End 1507–1529 1498–1538 (80.8) 1590–1615

(14.7)

Interval 5–26 3–53 Interval 10–30 1–38
Klock Model 1b 68 Klock Model 2b 69

Boundary Start 1487–1512 1470–1517 (82.4) 1565–1594 (13.1) Boundary Start 1487–1510 1478–1517 (82.0) 1578–1599

(13.5)

Date 1496–1521 1482–1533 (82.0) 1574–1610 (13.4) Date 1496–1521 1485–1530 (81.8) 1576–1606

(13.7)

Boundary End 1503–1523 1495–1531 (82.7) 1580–1604 (12.7) Boundary End 1507–1529 1498–1539 (82.2) 1591–1615

(13.2)

Interval 5–27 2–53 Interval 10–30 2–39
Garoga Model 1 114 Garoga Model 2 111

Boundary Start 1541–1573 1502–1626 (10.4) 1529–1583 (77.5) 1612–1629 (7.6) Boundary Start 1543–1571 1503–1524 (9.1) 1533–1581

(79.4) 1612–1628 (6.9)

Date 1550–1582 1513–1593 (88.0) 1619–1636 (7.4) Date 1551–1581 1512–1534 (8.3) 1539–1593

(80.3) 1619–1635 (6.8)

Boundary End 1560–1590 1523–1541 (7.4) 1543–1547 (0.8) 1549–1549 (0.1)

1554–1602 (79.1) 1627–1642 (8.1)

Boundary End 1561–1588 1524–1543 (8.3) 1555–1600

(79.8) 1628–1643 (7.3)

Interval 5–24 2–50 Interval 8–27 1–37
Brigg’s Run

Model 1

70 Brigg’s Run

Model 2

67

Boundary Start 1610–1627 1564–1582 (8.7) 1593–1631 (86.7) Boundary Start 1608–1627 1570–1571 (0.1) 1588–1634

(95.3)

Date 1619–1632 1585–1588 (0.9) 1593–1634 (94.6) Date 1619–1632 1599–1635

Boundary End 1629–1635 1623–1635 Boundary End 1629–1635 1622–1635

Interval 4–20 2–46 (93.3) 47–48 (0.4) 59–65 (1.8) Interval 4–22 0–33

For further details and Model 3 results, see S2 Table. Note that every run of such models can produce very slightly results. Typical variations are in the ~0–2 year range;

most variations occur in the less likely parts of the 95.4% hpd ranges. Am = Amodel.

https://doi.org/10.1371/journal.pone.0258555.t001
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since that technology became available. Later periods, from the early-mid-17th century

onwards, fall into a much better documented era (e.g. [11, 21, 22]). However, in between, if we

remove the cultural lens that assumes we should try to best employ European associations and

their type, or their absence, as the critical temporal determinant, and instead employ direct,

independent, absolute dating based on 14C wiggle-matching and AMS radiocarbon dates

incorporated into Bayesian chronological models, we find in a number of cases a substantially

different timeframe. In turn, this provides the basis to a very different basic history of lives and

use of places in northeastern North America in the period from the late 15th through 16th cen-

turies. This period is revealed as a long century of dramatic changes in many aspects of society

and cultural landscapes across the region–relating to processes including settlement aggrega-

tion, violent conflict, population movements and the formation of political confederacies–that

only now we can start to define and tease apart given accurate and reasonably precise

Fig 9. Alternative dating model and results for Klock Model 1b if revised to place the dates from hearth contexts as the latest use episode for House 1. a.

Revised site dating model. b. Detail of the Date query estimate for the overall Klock site Phase from the revised model. c. Interval query result, applying the LnN

(ln(20),ln(2)) prior, showing the probability for the period of time between the start and end Boundaries for the site Phase in a. versus the prior from the

revised model. For description of the figure, see the caption to Fig 5. The alternative OxCal runfile code is listed in S2 File.

https://doi.org/10.1371/journal.pone.0258555.g009
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Fig 10. The modelled calendar dating probabilities for the Mohawk Valley sites in this study and adding eight

other sites from previous work [65]. a. The dating probabilities for the 12 sites using the site models for Smith-

Pagerie, Klock, Garoga and Brigg’s Run from Figs 5–8 and those for the other 8 sites from a re-run of the data in [65]

but applying now the LnN(ln(20),ln(2)) prior to the Interval query in each case. b. Detail of the mid-15th through early

17th century period and removing instances of alternative less likely probability ranges in a. The ?? marks indicate two
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resolution for settlement and community loci in both time and space [50, 62, 63, 64, 80]. An

accurate and refined timescale offers a belated opportunity to reconsider and re-investigate the

North American world that Europeans invaded from a more neutral viewpoint with the mate-

rial culture considered in terms of its own time and place, and not through an imposed Euro-

pean-derived narrative. Such an accurate and independent timescale also provides the

appropriate framework into which to include and employ oral history.

The relatively refined and high-resolution definition of time for the sites focused on in this

study highlight that the presence or absence of initial and limited quantities of European trade

goods often cannot be used satisfactorily to define chronology [62–65, 69]. Where there are

extensive, replicated, and plural connections with European goods and typologies, then the

radiocarbon-based analysis offers a date range that is compatible with the historical informa-

tion. In our present study this describes the situation with the Brigg’s Run site, and in previous

recent work this describes the findings for the Warminster site in Ontario, likely directly

linked with Samuel de Champlain who spent the winter of 1615–1616 at the site [63, 64]. How-

ever, in other cases where no such plural, replicated, and multiple connections exist, it is clear

that selective, or historically determinist assumptions, based on limited occurrences and their

types, or absences, can be entirely misleading. Contrary previous assumptions, some sites (or

at least individuals or groupings at some sites) in the Mohawk Valley acquired European

goods (especially metals) early in the history of European involvement in North America.

Detailed contextual study and additional radiocarbon dates confirm previous indications

that the artefacts determined to be of European iron and copper, the latter by pXRF analysis, at

Smith-Pagerie are presently the earliest well-dated examples of European metal circulation in

Northern Iroquoia [65] (Fig 5). The early date, likely in the last couple of decades of the 15th

century, highlights how very little we know about European contacts and involvement with

periods, based on less available evidence, where we may expect one or more other sites to date (before/after and

contemporary with Garoga)–several other sites are known from the overall Mohawk Valley region that have so far not

been part of recent dating efforts (see the set of sites in [80]).

https://doi.org/10.1371/journal.pone.0258555.g010

Table 2. Date query estimates for the overall site phases (period between the start and end Boundaries for the overall site phase) for the 12 Mohawk Valley sites

shown in Fig 10A.

68.3% hpd (i) 95.4% hpd Dates in Snow [39] (ii) Overlap (i) v. (ii)

Snell 1280–1292 1274–1299 1275–1350 Yes

Pethick 1362–1386 1346–1401 N/A N/A

Getman 1456–1488 1441–1511 1400–1450 No

Second Woods 1455–1475 1443–1490 1450–1500 Yes

Elwood 1460–1486 1448–1506 (92.7) 1600–1612 (2.7) 1450–1500 Yes

Smith-Pagerie 1479–1500 1470–1513 1560–1580 No

Klock 1500–1521 1486–1532 (88.8) 1577–1599 (6.6) 1540–1565 No

Garoga 1550–1581 1512–1592 (91.0) 1621–1634 (4.4) 1525–1545 No

Cayadutta 1498–1518 (22.6) 1583–1622 (45.7) 1482–1529 (36.3) 1565–1631 (59.1) 1525–1545 No

Otstungo 1493–1516 (23.6) 1586–1624 (44.6) 1467–1534 (41.0) 1570–1631 (54.5) 1450–1525 No

Wormuth 1502–1510 (5.6) 1576–1622 (62.7) 1481–1527 (22.3) 1556–1630 (73.1) 1450–1525 No

Brigg’s Run 1619–1632 1584–1589 (0.9) 1593–1634 (94.6) 1614–1626 Yes

Note the ranges or probabilities for Smith-Pagerie, Klock, Garoga and Brigg’s Run vary very slightly from the Table 1 Model 1 results–and each run of such models sees

very small variations. The likely date region, used to discriminate where ambiguity, for Fig 10B is the region around the underlined probabilities. The previous dates

suggested for 11 of these sites by Snow [39] are also listed to indicate the changes (or not) involved with the current results.

https://doi.org/10.1371/journal.pone.0258555.t002

PLOS ONE Resolving time in Northeastern North America: The Mohawk River Valley ~1450-1635 CE

PLOS ONE | https://doi.org/10.1371/journal.pone.0258555 October 15, 2021 28 / 36

https://doi.org/10.1371/journal.pone.0258555.g010
https://doi.org/10.1371/journal.pone.0258555.t002
https://doi.org/10.1371/journal.pone.0258555


northeastern North America outside the few well-known episodes of the long-told standard

narrative, such as Cartier landing in the St. Lawrence in 1534 and the establishment of Fort Nas-

sau in New York from 1614. Earlier Norse contact and settlement is attested around 1000, and

some other links between then and the 15th century are possible or hinted at [10, 124, 125]. His-

tory recounts Cabot reaching Newfoundland in 1497 [126], and a subsequent fishing boom, but

it is evident that there must have been many, many other–but not necessarily official (royal

sponsorships and similar) nor well-documented–interactions with the Indigenous populations

of northeastern North America also in the period at least from the later 15th through 16th centu-

ries [9, 10, 126–129], especially via fishing and whaling crews [127, 129], before the establish-

ment of sustained European settlements in northeastern North America from Arcadia to Fort

Nassau to Jamestown in the first years of the 17th century (1604–1614). The recent re-discovery

of William Weston and his voyage from Bristol to North America ~1499, is just one example of

a rich, but largely hidden, history [130]. In correcting the past European derived timescale for

Northeast North America in the later 15th through 16th centuries from direct archaeological evi-

dence there is thus an irony. In doing this we also throw additional important light, in reverse,

via the independent dating of early European materials at Indigenous sites in North America—

like Smith-Pagerie, Klock and Garoga [65]—on an important, world-changing, but largely for-

gotten and hidden period of early modern Atlantic connectivity from which only a few famous

names have retained their currency into our modern histories. There remains much still to

learn about the beginnings of the early modern globalized world.

Supporting information

S1 Table. Radiocarbon dates from the Briggs’ Run, Garoga, Klock, and Smith-Pagerie sites

used in the site models in S2 Table. Note: samples of Zea Mays ssp. mays are listed as

“maize”. Similarly, we refer to white-tailed deer rather than Odocoileus virginianus. RY refers

to Relative Year for tree-ring samples–this means the annual growth increments (tree-rings)

within the sample. Note: the four Ulmus sp. samples listed as NYSM #45171.A1 are from the

same small diameter branch sample. Two samples were mistakenly listed as Fagus sp. in the

UCIAMS laboratory report but the samples sent (as part of two different sets of samples) were

all Ulmus sp. and from the same branch. Wood charcoal is identified where it was part of the

present study–samples and dates from previous work (e.g. the sample for date Y-1381) could

not be identified if the relevant reports/publications did not provide this information. Missing

δ13C values reflect our inability to find these in some older reports/publications. The δ13C val-

ues noted with an � were stated as estimated (versus measured) by the radiocarbon laboratory.

The value replaced by �� was a case where the sample was too small for a separate IRMS assay;

following normal UCIAMS laboratory protocols the δ13C was measured in the AMS for isoto-

pic correction of the 14C age but this AMS-derived δ13C is not reported. Measurements in orig-

inal reports converted to cm where previously in inches. Note: the reported date on a sample

from Brigg’s Run, AA-8369 ([39] at p.259) that is considerably older than the other dating evi-

dence from the site (material culture or radiocarbon) is not used and, assuming this sample is

in fact from the exact same site, then, as proposed by [39], “it appears that once again a seven-

teenth-century Mohawk village was built on top of an earlier component, a characteristic of

several late Mohawk village sites” [39, 65, 72, 76, 131, 132].

(DOCX)

S2 Table. Comparison of summary of results from Model 1, LnN(ln(20),ln(2)), Interval

query constraint, Model 2, N(20,10), Interval query constraint, and Model 3, N(25,10),

Interval query constraint for the Smith-Pagerie, Klock, Garoga and Brigg’s Run sites and

queries related to two specific features at these sites (House, H, 9 at Garoga and House, H,
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1 at Klock).
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S1 File. Field drawings and transcribed notes for features described in the article text.

Field drawings have been cropped to remove individual’s names. Note: in S1 File the mea-

surements are given in feet (‘) and inches (”) as listed in the original site documentation and

drawings (some reproduced below).

(DOCX)

S2 File. OxCal runfiles for the models in Figs 5–8. Note: some of the labels/descriptions are

edited for display in Figs 5–8. Note: Zea mays (maize) samples are identified as M, Odocoileus
virginianus (white-tailed deer) samples are identified as B, and organic residue samples are

identified as R. For details, see S1 Table. Note, for reasons of display space, samples of Fagus
grandifolia (beech) are listed just as “Fagus”.

(DOCX)

S3 File. OxCal runfile for the model in Fig 10. This model employs the site models (Model 1)

for Smith-Pagerie, Klock (Model 1b), Garoga and Brigg’s Run from those listed in S2 File (and

as used for Figs 5–8). The data and models for the other eight sites are taken from the Model 2

versions in [65] with the change that the Interval statement now includes the LnN(ln(20),ln

(2)) constraint (and we now employ IntCal20 [111]). Otherwise, the data and models for each

site are the same as previously published (thus these sites have a uniform probability constraint

placed on the start and end Boundaries between 1150 and 1635 CE as explained in [65]. Note:

Zea mays (maize) samples are identified as M, Odocoileus virginianus (white-tailed deer) sam-

ples are identified as B, and organic residue samples are identified as R. For details, see S1

Table and [65]. Note, for reasons of display space, samples of Fagus grandifolia (beech) are

listed just as “Fagus”.
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