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Abstract: In the current work, we combined different physical and chemical modifcations of carbon
nanofbers through the creation of micro-, meso-, and macro-pores as well as the incorporation
of nitrogen groups in cyclic polyacrylonitrile (CPAN) using gas-assisted electrospinning and air-
controlled electrospray processes. We incorporated them into electrode and interlayer in Li–Sulfur
batteries. First, we controlled pore size and distributions in mesoporous carbon fbers (mpCNF) via
adding polymethyl methacrylate as a sacrifcial polymer to the polyacrylonitrile carbon precursor,
followed by varying activation conditions. Secondly, nitrogen groups were introduced via cyclization
of PAN on mesoporous carbon nanofbers (mpCPAN). We compared the synergistic effects of all
these features in cathode substrate and interlayer on the performance Li–Sulfur batteries and used
various characterization tools to understand them. Our results revealed that coating CPAN on
both mesoporous carbon cathode and interlayer greatly enhanced the rate capability and capacity
retention, leading to the capacity of 1000 mAh/g at 2 C and 1200 mAh/g at 0.5 C with the capability
retention of 88% after 100 cycles. The presence of nitrogen groups and mesopores in both cathodes
and interlayers resulted in more effective polysulfde confnement and also show more promise for
higher loading systems.

Keywords: Lithium–Sulfur batteries; mesoporous carbon nanofber; nitrogen doping; gas assisted
electrospinning; air-controlled electrospray

1. Introduction

As demand for energy increases, there is a growing need for clean, effcient, and
cost-effective renewable energy sources and to reduce the usage of fossil fuels. Lithium–
Sulfur (Li–S) batteries have a high theoretical energy density of 2600 Wh/kg and a specifc
capacity of 1675 mAh/g. Sulfur is abundantly available and is environmentally benign [1–3].
All these reasons make Li–S batteries among one of the most promising next-generation
rechargeable batteries.

However, Li–S batteries face several challenges in performance that need to be resolved
before they can become commercially viable. One of these challenges is the dissolution of
higher order polysulfdes into the electrolyte, which makes it diffcult to recover them as
lithium–sulfde precipitate on the cathode at the end of discharge cycle, leading to loss of
active material and low capacity. Another challenge is the polysulfde shuttle effect, which
occurs when the higher order polysulfdes migrate to the anode, become reduced to Li2S,
and migrate back to the cathode to become re-oxidized. The insulating nature of Sulfur
and lithium–sulfde also adds to the cell resistance. Moreover, volume changes and the
formation of lithium dendrites hinder the development of Li–S batteries [3–6].
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Several efforts have been made to combat the technical issues mentioned above. It
has been found that different types of carbon nanomaterials such as microporous carbon,
mesoporous carbon, hierarchical porous carbon, carbon black, hollow carbon spheres, car-
bon nanotubes (CNTs), carbon nanofbers (CNFs), reduced graphene oxide, and graphene
can improve cell performance. These porous carbons can contain the active material,
constrain the dissolved polysulfdes, and accelerate charge/electron transport [7–13]. Man-
thiram et al., introduced the concept of inserting an interlayer between the cathode and
separator to act as a polysulfde entrapper and enhance the re-utilization of trapped mate-
rial. However, despite the improved performance, this acted as a temporary solution since
the interlayer acted as only a physical barrier. The polysulfdes can eventually leach out to
the electrolyte [14].

To ensure more permanent constraining of polysulfdes, chemical modifcation of
active the host’s surface is also effective in reducing shuttle effect and improving cycle
performance. The introduction of doping elements such as nitrogen, sulfur, phosphorus,
and boron have been shown to form strong chemical bonds between the polysulfdes and
these elements [15,16]. Nitrogen doping has been carried out by introducing electron-rich
functional groups such as amines, polypyrrole, pyrroles, and pyridines. It has been found
to be effective in assisting mesoporous carbon in suppressing polysulfde shuttling effect
through Lewis acid–base interactions with polysulfdes [17–22].

In this paper, we study and compare the results of creating mesopores in carbon
nanofbers and functionalizing mesoporous carbon cathodes and interlayers with electron-
rich nitrogen groups. Mesoporous carbon nanofber webs, under various activated con-
ditions, were synthesized by gas-assisted electrospinning of polyacrylonitrile (PAN) and
polymethyl methacrylate (PMMA) blend solutions, where PMMA is used as a sacrifcial
polymer to create mesopores and used as both cathode and interlayer in our system. Cath-
odes were prepared by electrospraying sulfur onto mesoporous carbon, a facile technique
that can be used to create higher loading sulfur electrodes. The surface chemistry of these
mesoporous fbers was modifed by introducing cyclic nitrogen groups followed by carbon
dioxide activation. They were then utilized as cathodes and interlayers to test the effects of
adding cyclic nitrogen groups and mesopores on cell performance.

2. Materials and Methods
2.1. Fabrication of PAN/PMMA Nanofbers

Polyacrylonitrile (PAN) (MW = 150,000 from Sigma Aldrich, St. Louis, MO, USA)
and Poly (methyl methylacrylate) (PMMA) (MW = 15,000 from Sigma Aldrich, St. Louis,
MO, USA) were dissolved in dimethylformamide (DMF) in separate vials by stirring
for 24 h at 65 ◦C [23]. PAN/PMMA solutions with different blend ratios (56:44, 59:41,
77:23, and 80:20 w/w) were prepared by dissolving PAN and PMMA into DMF. In this
study, we fabricated PAN/PMMA nanofbers via gas-assisted electrospinning, which is a
good process to produce fber structure by combining an electric feld between the nozzle
and collector, and high-speed air as driving forces. A Harvard Apparatus PHD Ultra
(Harvard Apparatus, Holliston, MA, USA) was used for electrospinning the solution onto
an aluminum foil current collector in a chamber controlled at 16% relative humidity. The
electrospinning apparatus schematic diagram is shown in Figure 1. A coaxial needle with a
12-gauge inner needle and a 16-gauge outer shell was used. The solution was fed through
the inner needle at an infusion rate of 0.03 mL/min, and 16% RH dry air was supplied
through the outer shell at an air pressure of 10 psi. The tip-to-collector distance and applied
voltages were 15 cm and 18 kV, respectively.

2.2. Synthesis of Mesoporous Carbon Nanofber Web (mpCNF)

The spun nanofbers were peeled from the collector and dried in a vacuum oven
(nXDS 10i, Edwards, Ltd., Burgess Hill, West Sussex, UK) at 80 ◦C for 2 h. Stabilization and
carbonization of fbers were conducted in a tube furnace. The dried nanofbers heat-treated
in air with a heating rate of 5 ◦C/min at 280 ◦C and held for 4 h to stabilize the PAN
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component of the fbers. The fbers were then placed between two ceramic plates in a
nitrogen-flled tube furnace with a heating rate of 10 ◦C/min at 1050 ◦C and held for 1 h to
carbonize the PAN component and remove the PMMA component by thermal degradation
creating multi porous carbon nanofbers. During the activation of carbon nanofbers, the
pressure load was applied from 0 to 1.28 N, as illustrated in Figure 1.
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Figure 1. The schematic and photo images of multi-porous carbon nanofbers via ceramic plate
load control.

2.3. Synthesis of Cyclized-Polyacrylonitrile Modifed CNF Fibers (CPAN/mpCPAN)

A 5 wt% PAN-PMMA solution in DMF was prepared. The above prepared CNF
nanofbers were immersed in the PAN solution for 1 m and dried at 80 ◦C for 12 h. The PAN-
coated mesoporous fber was heat-treated in Argon at 300 ◦C for 10 h to form cyclized PAN
nanofbers (CPAN) [24]. The as-prepared CPAN fbers were activated in a heat-treatment
process under carbon dioxide at 700 ◦C for 1 h to improve the mesopore distribution and
BET surface area. CPAN after carbon dioxide activation is referred to as mesoporous
cyclized PAN (mpCPAN).

2.4. Synthesis of Electrodes

The electrodes were synthesized by air-controlled electrospray. Sublimed sulfur
(Spectrum Chemical Mfg. Corp., New Brunswick, NJ, USA) and Ketjen Black EC-600JD
(KB) (AzkoNobel, Washington, DC, USA) solution were dispersed in CS2 to obtain a
composition of 97% Sulfur and 3% Ketjen Black [25]. The solution was stirred for 3 h and
sonicated for 30 min before electrospraying on mpCNF and mpCPAN webs at 15 kV, 10 cm
distance from the collector at 0.08 mL/min fow rate. An 18-gauge stainless steel needle
was used for air-controlled electrospraying. Electrospraying was carried out until the target
Sulfur loading was deposited on the cathode. Cathodes with sulfur loading of 1.1 mg/cm2

were used for testing. The sulfur content of the substrates was 25.0% (14.3% including the
interlayer mass) for 1.1 mg/cm2.

2.5. Material Characterization

The pore size distribution analysis was performed on a Micrometrics Gemini VII 2390
(Micromeritics Instrument Corp., Norcross, GA, USA) in liquid nitrogen with the Brunauer,
Emmett, and Teller (BET) method. Samples were degassed under nitrogen at 300 ◦C for at
least 3 h. The scanning electron microscope (SEM) images were taken by a TESCAN Mira3
Field Emission SEM and Zeiss Gemini 500 SEM (Zeiss, Oberkochen, Germany). The Fourier
Transform Infrared (FTIR) spectra of mpCNF and mpCPAN were carried out using a Bruker
Hyperion FT-IR Microscope (Bruker, Billeric, MA, USA) at ambient temperature. X-ray
Photoelectron Spectroscopy (XPS) of mpCPAN and mpCNF before and after cycling was
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used to obtain chemical bonding information and elemental analysis (ESCA 2SR, Scienta
Omicron, Danmarksgatan, Uppsala, Sweden).

2.6. Electrochemical Characterization

The interlayers and substrates were cut into discs of diameter 15 mm from the
nanofber mat. CR2032 coin cells were assembled using sulfur deposited mpCPAN/mpCNF
(5.5 mg/cm2) as cathodes, lithium metal (same diameter as cathode) as anode, mpC-
PAN/mpCNF (8.2 mg/cm2) as interlayers, a 25-micron thick Celgard separator (2400, Celgard,
LLC, Charlotte, NC, USA), an electrolyte of 1 M lithium bis(trifluoromethanesulfonyl)imide,
and 0.2 M LiNO3 in 1,2-dioxolane/1,2-dimethoxyethane (v/v = 1:1). EIS measurements
were performed using a Solartorn Cell Test System model 1470E potentiostat between
frequencies 0.01–100kHz (Solartron Analytical, Leicester, UK).

3. Results and Discussion
3.1. Surface and Structural Properties of Multi-Porous Carbon Nanofbers

Carbon nanofbers were fabricated by electrospinning PAN as the precursor and
PMMA as the sacrifcial polymer to obtain the porous structure. The multi-porous car-
bon nanofber electrode materials are obtained by the carbonization-activation step. The
pore size could be controlled by simultaneously applying the loading pressure in the
carbonization-activation step. In many published papers, pores were prepared through the
weight ratio of PAN/PMMA, but it was diffcult to control the size and uniformity of meso-
or macro-pores. The SEM image in Figure 2 shows carbon nanofbers prepared by applying
a load of 0 to 1.28 N during carbonization activation at a PAN/PMMA weight ratio of 59:41.
As the applied load increased, the carbon nanofber diameter increased from about 220 nm
to 400 nm. Macropores were observed on the carbon nanofber surface, possibly because
the applied load helps to withhold shrinkage and collapse of pores created by the removal
of PMMA during the carbonization-activation stage. The fber diameter and macropore are
one of the important factors determining the electrochemical properties of carbon materials
formed from electro-spun nanofbers.
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The pore size can also be controlled by varying the amount of PMMA in the blend
compositions. Figure S1 (Supplementary Materials) shows the morphological changes of
the surface of carbon nanofbers prepared by varying the weight ratio of PAN/PMMA
under a load of 1.28 N. SEM images (Figure S1a–c, Supplementary Materials) revealed
that the average diameter of fbers increases with increasing PAN amount in the blend
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compositions. The fber diameter obtained for PAN/PMMA (56:44) was 390 nm increasing
to 440 nm for PAN/PMMA (77:23) and 450 nm for PAN/PMMA (80:20). The trend can be
attributed to the lower viscosity of the solutions with higher amounts of PMMA compared
to that of a neat PAN solution. During electrospinning, the dispersed PAN droplets,
having a higher viscosity compared to that of PMMA, would be elongated more by the
electrical forces, and thus the fber diameter increased further. These results suggest that
the larger the fber diameter, the better the pore formation under the load pressure applied
during carbonization activation. We found PAN/PMMA (80:20) to be the optimum blend
composition to create meso- and macro-pores among those samples.

Figures 3 and 4 show the cross-section morphology of carbonized and activated
nanofbers at different pressure load and weight ratios. After the carbonization-activation
treatments, the carbon nanofbers retained their fbrous morphology without collapsing.
All the carbon nanofbers demonstrate various internal pore sizes. In particular, in the case
of carbon nanofbers prepared at a weight ratio of PAN/PMMA (80:20) and a load of 1.28 N,
mesopores and macropores were observed not only on the surface but also on the inside.
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Figures S2, S5 and S6 (see Supplementary Materials) illustrate the nitrogen adsorption–
desorption isotherms and the pore size distribution for the resulting activated nanofbers,
respectively. Surface area and the pore size distribution are important factors that determine
the performance of the Li–S batteries. According to Table 1 and Figures 5 and 6, the variables
of PAN/PMMA weight ratio and loading pressure caused changes in surface area and pore
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size. All carbon nanofber compositions had more macropores compared to PAN/PMMA
carbon nanofber without loading. Among carbon nanofbers, PAN/PMMA (59:41) with no
load applied has the largest surface area. However, mesopores and macropores were about
14% less than those of PAN/PMMA (80:20) carbon nanofbers loaded with 1.28 N. Detailed
results of the BET measurements, including specifc surface area and volume percentage of
total pore volume of all manufactured carbon nanofbers, are summarized in Table 1. These
results demonstrated that pore size could be tuned from the application of loading pressure
during the activation process. The pore size distribution and presence of mesopores are
known to be important aspects of high-performance Li–S batteries due to their high sulfur
loading, better access, and release of bulky polysulfdes. Thus PAN/PMMA (77:23) carbon
nanofbers loaded with 1.28 N, which exhibits a decent surface area and a high fraction
of mesopores, has been selected for mesoporous carbon nanofbers (mpCNF) for Li–S
battery applications.

Table 1. Textural properties of obtained carbon nanofber materials.

Multi-Porous Carbon Nanofbers BET Surface
Area (m2/g)

Mesopore Volume/Total
Volume (cm3/g)

PAN/PMMA (59:41)

0 N 1284 0.80

0.62 N 376 0.77

1.12 N 224 0.80

1.28 N 420 0.81

Ceramic pressure
load 1.28N

PAN/PMMA (56:44) 456 0.79

PAN/PMMA (77:23) 547 0.84

PAN/PMMA (80:20) 126 0.89
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3.2. Characterization of CPAN and mpCPAN Nanofbers

We note that the PAN coated mpCNF was heat-treated in Argon at 300 ◦C for 10 h to
form cyclized PAN nanofbers (CPAN). The as-prepared CPAN fbers were activated in a
heat treatment process under carbon dioxide at 700 ◦C for 1 h to improve the mesopore
distribution and BET surface area. CPAN after carbon dioxide activation is referred to
mesoporous cyclized PAN (mpCPAN). Various analytical tools were used to characterize
the surfaces of mpCNF, CPAN, and mpCPAN and confrm the presence of cyclic nitrogen
groups in mpCPAN after synthesis. XPS survey scans of mpCNF and CPAN are presented
in Figure 7a. Before the cyclization reaction for mpCNF, we observe two prominent peaks
for C 1s at 285 eV and O 1s at 532 eV. After the cyclization reaction for CPAN, we see a third
prominent peak for N 1s at 400 eV. However, as seen in Figure 7b, after CO2 activation,
the intensity of the nitrogen peak is reduced for mpCPAN than CPAN, indicative of
lower nitrogen content. Figure 7c,d show the deconvoluted N 1s signals for CPAN and
mpCPAN, respectively. Two peaks at 398 eV and 399.9 eV represent pyridine and pyrrole,
respectively, [22–25]. The ratio of pyrrole-to-pyridine in mpCPAN after CO2 activation
appears to be higher than that for CPAN.
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FTIR spectra of mpCPAN in Figure 8 shows absorbance bands at 1066, 1150, and
1195 cm−1 which represent C–N stretching. The peak at 1560 cm−1 represents the vibration
of combined C=C and C=N and the peak at 1370 cm−1 is for C–C stretching [22–25].
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SEM images of mpCNF and mpCPAN are shown in Figure 9a,b. It is observed that
a signifcant fraction of external pores among fbers in mpCNF is covered in mpCPAN
by dip-coating treatment used to synthesize mpCPAN. It appears that the fber diameter
substantially increases after the dip-coating, followed by cyclization and CO2 activation.
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The BET surface area reduced signifcantly from 547.7 m2/g to 32 m2/g in CPAN.
The pore-size distribution of mpCNF and CPAN are shown and compared in Figure 10.
It is observed that not only large mesopores (>20 nm) are greatly reduced, but also small
meso-/micro-pores (<5 nm) are removed in CPAN, by dipping PAN followed by cycliza-
tion reaction.

However, on activation of CPAN, the BET surface area was increased to 300.6 m2/g
and a corresponding increase in mesopore volume was also observed as shown in Figure 11.
This confrms that the activation process improves the surface area of the nanofbers by
sacrifcing the nitrogen content, which can prove benefcial for better cathode performance.

3.3. Applications of mpCNF, CPAN, and mpCPAN Nanofbers in Li–S Batteries

Having confrmed the cyclization of mpCNF and the increased surface area after
CO2 activation, mpCPAN was chosen for our nitrogen-doped mesoporous carbon cathode
and interlayer material. The effects of mpCNF and mpCPAN on the electrochemical
performance of the cells were tested by using them as both cathodes and interlayers in the
following combinations of systems:
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• mpCNF cathode and mpCNF interlayer (mpCNF-mpCNF)
• mpCNF cathode and mpCPAN interlayer (mpCNF-mpCPAN)
• mpCPAN cathode and mpCNF interlayer (mpCPAN-mpCNF)
• mpCPAN cathode and mpCPAN interlayer (mpCPAN-mpCPAN)
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Cell performance for systems with mpCPAN replaced by CPAN was also examined as
shown in Figure S3 in the Supplementary Materials. These systems were analyzed with
S-loading of 1.1 mg/cm2 and 1.7 mg/cm2. Despite the presence of higher nitrogen content
than the remaining systems, the system CPAN-CPAN had the poorest cycle performance,
possibly due to the lack of micro-/meso-pores by coating PAN on mpCNF. The decon-
voluted N 1s signals for CPAN as interlayer and cathode in Figure S7a,b, respectively in
the Supplementary Materials, also implies that using CPAN as cathode results in poorer
nitrogen group utilization for polysulfde capture. In Figure 12, the cycle performance and
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rate capability of systems utilizing mpCPAN were examined for S-loading of 1.1 mg/cm2.
In this case, due to the lower nitrogen content of mpCPAN, the mpCNF-mpCPAN system
had a lower capacity compared to its non-activated counterpart. However, the mpCPAN-
mpCPAN system had the best cycle performance, leading to the capacity of 1200 mAh/g
at 0.5C after 100 cycles with capacity retention of 88%. In addition, the rate capability
of the mpCPAN-mpCPAN system was comparable to that of the mpCNF-CPAN system.
This may be due to the presence of mesopores and nitrogen groups in both the cathode
and interlayer, leading to greater polysulfde confnement. Those for high S-loading of
1.7 mg/cm2 are shown in Figure S4 in the Supplementary Materials, which exhibit the
similar trend. In comparison, Kalra et al. obtained a discharge capacity of 1285 mAh/g
at 0.2 C after 100 cycles with 83% capability retention using a meso–microporous carbon
nanofber interlayer [26].
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The plots of Electrochemical Impedance Spectroscopy (EIS) of fresh cells are shown
in Figure 13. The EIS spectra of each system consist of one semicircle (Charge transfer
resistance, Rct) and slope line (Warburg Resistance). We note that the mpCNF-mpCNF and
mpCPAN-mpCNF systems had an additional semi-circle after discharging, corresponding
to Li2S precipitate flm [2,27]. This may be because these systems have mpCNF as an
interlayer. The polysulfdes become deposited between the fbers, but may not be reutilized
effciently in the following charging-discharging cycles. For fresh cells, the charge transfer
resistance of cells with at least one nitrogen-doped component was lower than the reference
mpCNF-mpCNF system.

High-resolution S 2p and N 1s spectra of the cathode and interlayer of each system
were examined after 100 cycles and are shown in Figure 14a–d. The cells were fully
discharged to 1.8 V. The carbon spectra were calibrated to 284 eV and peak ftting was
done with a Shirley Background. In the S 2p spectra for each system, a sulfate peak at
166.7 eV was observed, which can be attributed to the reaction of the polysulfdes with
air/moisture on exposure [28]. An additional signal was observed at 158 eV which is
attributed to trapped lithium polysulfdes [28–31]. To further confrm the effectiveness
of the nitrogen groups in capturing polysulfdes, high-resolution N 1s spectra of systems
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utilizing mpCPAN as cathode or interlayer or both were examined in Figure 14b,d. In
the case of mpCPAN, the N 1s spectra of the interlayer were deconvoluted to obtain two
peaks at 399.2 and 397 eV. Comparing this to the N 1s spectra of pristine mpCPAN, we fnd
that the peaks corresponding to pyrollic- and pyridinic-nitrogen shifted towards a lower
binding energy as a result of Li-N interaction [15,32,33]. During Li–N interaction, there is
an increased electron density around the more electronegative N atom [15]. The resulting
increased shielding effect can reduce the energy required to knock off the electrons.
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Although mpCNF-mpCNF has both components with a higher surface area, it has
a lower capacity and stability compared to mpCPAN-mpCNF and mpCNF-mpCPAN.
This may be attributed to the absence of nitrogen groups to trap the polysulfdes through
chemical bonds. The mpCNF-mpCNF interlayer physically traps the polysulfdes in the
pores, which may eventually leach out into the electrolyte during discharge, or may also
not get completely released for conversion to sulfur during charging (hence, it is a poor
sulfur re-utilization).

Conversely, mpCPAN systems had a relatively lower N-content but increased meso-
pores, therefore allowing them to function effectively as both cathodes and interlayers.
However, due to the reduced nitrogen content of mpCPAN, the system mpCPAN-mpCPAN
has the most superior performance, comparable to that of the mpCNF-CPAN system. The
presence of nitrogen groups and mesopores in both cathodes and interlayers results in more
effective polysulfde confnement. It also shows more promise for higher loading systems.
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4. Conclusions

In summary, we have combined different physical and chemical modifcations of
carbon nanofbers through the creation of micro-, meso-, and macro-pores as well as the
incorporation of nitrogen groups in cyclic poly-acrylonitrile (CPAN) using gas-assisted
electrospinning and air-controlled electrospray processes. We have incorporated them into
electrode and interlayer in Li–Sulfur batteries. We have discussed the effects of using meso-
porous carbon as a host for cyclic nitrogen groups on battery performance. Four systems
utilizing mesoporous cyclized PAN fbers as cathode/interlayer were compared. Despite
lowered nitrogen content, the increased mesopores showed a signifcant improvement in
cell performance for all the nitrogen-containing systems, particularly mpCPAN-mpCPAN
(a capacity of 1177 mAh/g at 0.5 C after 100 cycles with 88% capability retention), relative
to the reference mpCNF-mpCNF system (a capacity of 897 mAh/g at 0.5 C after 100 cycles).
The heat treatment of cyclized PAN fbers produced by conventional means is a facile
approach to optimize both N-content as well as surface area and mesopore content, which
are crucial for cathode performance. The presence of nitrogen groups and mesopores in
both cathodes and interlayers results in more effective polysulfde confnement and also
shows more promise for higher loading systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14071342/s1, Figure S1: SEM surface images of carbon
nanofibers obtained with different weight ratio at ceramic pressure load of 1.28 N: (a) PAN/PMMA(56:44),
(b) PAN/PMMA(77:23), (c) PAN/PMMA(80:20), Figure S2: N2 adsorption-desorption isotherms of
carbon nanofbers prepared with different PAN/PMMA weight ratios and ceramic pressure loads,
Figure S3: (a) Cycling performance of 4 systems at 1.1 mg/cm2 S-loading, 0.25 C (b) Rate Capability
test comparison of systems using CPAN as interlayer at 1.1 mg/cm2 S-loading (c) Rate Capability
test comparison of systems using CPAN as cathode at 1.1 mg/cm2 S-loading, Figure S4: (a) Cy-
cling performance of 4 systems at 1.7 mg/cm2 S-loading, 0.25 C (b) Rate Capability test comparison
of systems using CPAN as interlayer at 1.7 mg/cm2 S-loading (c) Rate Capability test compari-
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son of systems using CPAN as cathode at 1.7 mg/cm2 S-loading, Figure S5; EIS Spectra of fresh
cells (a) mpCNF-mpCNF and mpCNF-CPAN (b) CPAN-mpCNF and CPAN-CPAN EIS Spectra of
discharged cells after 100 cycles (c) mpCNF-CPAN and CPAN-mpCNF, (d) mpCNF-mpCNF and
CPAN-CPAN, Figure S6: High Resolution S 2p spectra of (a) mpCNF cathode (b) CPAN cathode
(c) mpCNF interlayer (d) CPAN interlayer, Figure S7: High Resolution N 1s spectra of (a) CPAN
interlayer (b) CPAN cathode.
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