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ABSTRACT: Block copolymers have shown promise in ion-exchange mem-
branes as they can phase separate into well-defined nanostructures which
promote transport. Herein, a systematic study of multiblock copolymers
containing cationic blocks is presented (diblock up to pentablock), and these
were contrasted against a statistical copolymer. A series of vinyl addition
polynorbornene anion-exchange membranes were prepared by copolymerization
of 5-n-hexyl-2-norbornene and 5-(4-bromobutyl)-2-norbornene, followed by
conversion of the halide to a trimethylammonium group. The hydroxide
conductivities of all synthesized block copolymers were higher than the statistical
copolymer, with the tetra and pentablock copolymers being the most conductive.
The higher conductivity of the multiblocks is likely a combination of the
increased surface-to-volume ratio (smaller domain sizes) improving the
connectedness of ionic domains. Water uptake of the block copolymers was
also dependent on the number and order of blocks. Copolymers with ionic blocks at one chain end took up more water than those
where the ionic segments were confined to the chain interior. Finally, a method was developed to attach alkaline-stable
tetraaminophosphonium cations to the bromo-functionalized statistical and pentablock polynorbornene. Interestingly, the
synthesized phosphonium polymers had double the water uptake of their ammonium counterparts, which was attributed to the larger
occupied volume of the phosphonium as compared to the ammonium group.

KEYWORDS: multiblock copolymers, vinyl addition polynorbornenes, anion-exchange membranes, tetraaminophosphonium polymers,
living polymerization

■ INTRODUCTION

Ion-exchange membranes are critical components in electro-
chemical cells, as they facilitate ion flux between the
electrocatalysts.1−5 In the last decade, there has been rising
interest in membranes that promote the flow of hydroxide
anions, as these materials can be used in alkaline fuel cells and
electrolyzers.1−5 Such anion-exchange membranes (AEMs) are
typically comprised of polymers with covalently tethered
cationic groups. Their mechanical integrity is governed by the
polymer backbone, and anion movement is dictated by the
cationic side chains.
Achieving high OH− conductivity (σ > 80−100 mS/cm) in

AEMs often requires relatively large concentrations of cationic
groups appended to the polymer, especially compared to the
number of charged groups in proton-exchange membranes
(PEMs).6 This difference may be due to the lower mobility of
OH− in comparison with H+ in aqueous environments.7−10

Increasing the ion content in AEMs to improve performance
can, however, be detrimental to swelling and mechanical
integrity of the membrane.6 This trade-off offers an

opportunity to improve AEM materials through rational
design.
Kohl and coworkers recently demonstrated that crosslink

density can be used to largely control water uptake and
conductivity in vinyl addition polynorbornene AEMs.11−13 The
authors prepared trimethylammonium-based statistical and
block copolymers and found that light crosslinking produced
materials with exceptional conductivity (190−200 mS/cm at
80 °C).11−13 Moreover, the authors demonstrated that the
linear tetrablock ammonium copolymer was stable in 1 M
NaOH solution at 80 °C, with no loss in conductivity over
1200 h.11
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This study prompted us to consider the specific role of
architecture in linear polynorbornenes and how this can be
used to control properties. Herein, a statistical copolymer and
a multiblock series were synthesized to explore the impact of
polymer composition on hydroxide transport in AEM thin
films. Block copolymers with pendant trimethylammonium
cations produced higher conductivities than the statistical
analogue. However, water uptake was higher for all of the block
copolymers as compared to the statistical copolymer and
moreover, it was impacted by the precise location of the ionic
block (flanking or middle). Finally, a method was developed to
tether base-stable tetraaminophosphonium cations to the
statistical and pentablock polynorbornenes. While the
statistical tetraaminophosphonium performed well as an
AEM, excessive water uptake was observed with the penta-
block, which likely arises from the combination of the phase
separated ionic domains and the bulkier cation.

■ RESULTS AND DISCUSSION
Block copolymers have been considered in AEMs to promote
nanophase separation and transport,14,15 with individual
studies largely focused on a single polymer architecture (e.g.,
a di- or triblock).16−24 Cationic multiblocks have also been
prepared using step-growth polymerization previously,25−29

but this approach does not easily enable precise control over
the number of block segments in the final polymer. Sequential
buildup of functional polymers was desired, to understand
property differences when the functional unit is distributed
statistically along the backbone versus in a block or multiblock
architecture. Poly(5-n-alkylnorbornenes) were a natural choice
for this study, as they have high glass transition temperatures30

and can be solution-cast into mechanically stable, free-standing
films.31 Additionally, living vinyl addition polymerization of 5-
n-alkylnorbornenes has been demonstrated previously with
tBu3PPd(Me)Cl activated with salts of weakly coordinating
anions such as sodium tetrakis[3,5-bis(trifluoromethyl)-
phenyl]borate (BArF) (Figure 1A).32−34 This catalyst system
enabled preparation of high molecular weight copolymers from
endo/exo mixtures of 5-n-hexyl-2-norbornene (hNB) and 5-(4-
bromobutyl)-2-norbornene) (BrBuNB).
Copolymer Synthesis. Two different synthetic strategies

were used to prepare the functional copolymer series (Figure
1A). A statistical copolymer was synthesized by direct
combination of hNB and BrBuNB with the activated catalyst
in CH2Cl2. Block copolymers were prepared by sequential
addition of the hNB (A block) and BuBrNB (B block).
Monomer consumption was monitored using 1H NMR
spectroscopy in sequential addition experiments, to ensure
complete conversion during each chain extension. Representa-
tive GPC traces are shown in Figure 1B, and final copolymers
were isolated in all cases by precipitation into methanol.
A 2:1 ratio of hNB:BrBuNB was targeted for each

copolymer to ensure a meaningful comparison across the
series. This composition was also chosen to prevent excessive
swelling in water upon conversion of the neutral polymer to
the cationic trimethylammonium form (Figure 1A). 1H NMR
spectra of the polymer samples confirmed that the percent
incorporation of BrBuNB was typically within 5% of the target
value (Figure S1 and Table S1). Moreover, good yields of the
final materials were obtained in all cases (∼75% or higher).
Targeted molecular weights for the copolymers were above

the critical chain-entanglement for poly(5-n-hexylnorbor-
nene),35 with Mn values for the series ranging between 80

and 130 kg/mol (determined relative to polystyrene stand-
ards). The individual block lengths decreased moving from the
di- to pentablock, to maintain similar molecular weights across
the series. A high molecular weight shoulder was observed in
some chromatograms, along with tailing in the low molecular
weight region, but this did not impact chain extension. The
high molecular weight shoulder is apparent in the GPC traces
for the diblock and pentablock copolymers in Figure 1B.
Representative spectra and chromatograms are included in the
Supporting Information (Figures S1−S9).
Homogeneous free-standing films were obtained by

dissolving the polymers in CHCl3, followed by solvent
evaporation in stainless steel Petri dishes. The films were

Figure 1. (A) Synthetic scheme of statistical (top) and multiblock
copolymers (bottom) by vinyl addition polymerization. (B) Gel-
permeation chromatography (GPC) traces of the multiblock
copolymers. GPC traces were collected using THF as the eluent,
and molecular weights were determined relative to polystyrene
standards (refractive index detector). Diblock - Mn, 104 kg/mol; Đ,
1.16. Triblock - Mn, 100 kg/mol; Đ, 1.18. Tetrablock - Mn, 118 kg/
mol; Đ, 1.18. Pentablock - Mn, 112 kg/mol; Đ, 1.38. (C) Photographs
of the stat- and pentablock-NMe3[Br] copolymer films.
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removed from the dishes and then immersed in 28% (w/v)
NMe3(aq) at room temperature for 48 h to afford the desired
trimethylammonium polymers with a Br− counterion.
Throughout the text, polymers are described by the copolymer
type, cation, and counterion (e.g., stat-NMe3[Br]). Photo-
graphs of the stat-NMe3[Br] and pentablock-NMe3[Br]
copolymers are shown in Figure 1C.

1H NMR spectroscopy was used to confirm the loss of the
−CH2−Br signal (3.4 ppm) and the appearance of the N−CH3
signal at 3.00 ppm for the statistical copolymer. The di- and
triblocks are only sparingly soluble in 1:1 CDCl3:CD3OD, and
it was difficult to confirm full substitution using 1H NMR
spectroscopy. Fortunately, ion-exchange capacities (IECs)
provided strong evidence that the substitution reaction with
NMe3 was effective, with values ranging from 1.6 to 1.7 mmol/
g for all copolymers (Table S1), near the expected value of
1.72 mmol/g.
TGA analysis of these copolymers revealed onsets of

decomposition (Td 5%) between 210 and 256 °C. These
values fall below the expected glass transition temperature for
the copolymers, so Tg’s were not determined (the Tg of poly(5-
n-hexylnorbornene) is 265 °C30). The decomposition temper-
ature onsets for the stat-NMe3[Br] and diblock-NMe3[Br]
(210 and 226 °C, respectively) are slightly lower than those of
the tri-, tetra-, and pentablock-NMe3[Br] which all decompose
near 255 °C (Figure S10). A two-step decomposition was
observed for all copolymers. The first step corresponds to
∼10−15% loss, with nearly all of the remaining mass lost in the
second step. Mass loss in the first step most likely arises from
decomposition of the ionic group, followed by polymer
decomposition in the second step.
SAXS/TEM. The nanostructure of the dried ammonium

bromide copolymers was probed using small-angle X-ray
scattering (SAXS) in the pinhole geometry (top of Figure 2)
and narrow slit, large q range collimation modes (Figure S11).

In both instances, the scattering patterns for the block
copolymers revealed the presence of a clear but broad primary
Bragg peak at wavevector q*, as well as a higher order peak at
3q*, indicating periodic nanoscale phase separation, although
with limited long-range ordering. The d-spacing decreased with
increasing number of blocks from ∼65 nm for the diblock to
∼30 nm for the tetra- and pentablock copolymers.
As expected, the Bragg peaks were absent in the statistical

copolymer SAXS patterns (top right in Figure 2). Close
inspection of the high q range of the statistical copolymer
traces acquired in slit collimation mode (top right in Figure 2)
revealed the presence of a distinct change of slope in the ∼2
nm−1 range. This feature was interpreted as the indication of
the short-range, aperiodic clustering of ionic groups. Similar
clustering has been observed in our recent study of
phosphonium-based statistical copolymers.36 In addition,
patterns acquired in slit-collimated geometry (Figure S11)
exhibited in all instances broad maxima centered at ∼5 nm−1

corresponding to the wide angle scattering amorphous halos of
all copolymers.
Real space morphologies of the triblock, tetrablock, and

pentablock copolymers were visualized using cryogenic
transmission electron microscopy (bottom of Figure 2).
Electron transparent specimens, ∼70 nm in thickness, were
prepared using cryo-microtomy to keep the membrane
structure intact during the cutting and imaging processes.
The inferior mechanical integrity of the diblock copolymer in
comparison with multiblocks, which are stabilized by physical
crosslinking, made it less amenable to sectioning. Dark regions
in all of the images were identified as ionic block domains with
electron density contrast arising from the presence of Br−

counterions. Together with the SAXS data, these TEM images
suggest a disordered cocontinuous structure or a lamellar
morphology with only very short-range ordering. Length scales
from TEM were also comparable to the spacings determined

Figure 2. Top - SAXS scattering patterns acquired at 22 °C for a series of NMe3[Br] copolymer films in pinhole geometry (red - diblock with Mn,
104 kg/mol; Đ, 1.16; blue - triblock withMn, 100 kg/mol; Đ, 1.18; magenta - tetrablock withMn, 118 kg/mol; Đ, 1.18; green - pentablock withMn,
112 kg/mol; Đ, 1.38; black - statistical with Mn, 125 kg/mol; Đ, 1.17). The SAXS pattern acquired in slit-collimation mode for the statistical
copolymer is vertically shifted and included in the top right panel. Bottom - Cryo-TEM images of the triblock, tetrablock, and pentablock
copolymers (left to right) taken at an accelerating voltage of 200 keV. Microphase separation is observed in all three copolymers with ordering
length scales of 22−31 nm for the triblock, 32−40 nm for the tetrablock, and 28−34 nm for the pentablock as determined from fast Fourier
transforms of the images.
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from SAXS, although the images of the triblock suggested a
less uniform morphology. This is evident from the presence of
less defined regions within the image (left panel in the bottom
of Figure 2).
Water Uptake and Hydroxide Conductivity. After the

solid-state organization was evaluated, the NMe3[Br] copoly-
mers were converted to the −OH form by immersion in 1 M
KOH for 48 h at 60 °C. Water uptake, which was measured
gravimetrically, ranged from 30 to 85% for the series (bar chart
to the left in Figure 3). The stat-NMe3[OH] had the lowest
water uptake at 30%, and the diblock- and tetrablock-
NMe3[OH] had the highest, at 80 and 85%, respectively.
The tri- and pentablock-NMe3[OH] had water uptakes in
between these values at 57 and 75%, respectively. The slightly
higher water uptakes of the diblock and tetrablock copolymers
are likely a function of the ionic segments flanking one end of
the polymer chain, leading to increased interchain ionic
interactions. In contrast, the lower uptakes in the triblock and
pentablock are likely attributed to the flanking location of the
insulating blocks which enhances physical crosslinking and
limits swelling. This is reminiscent of thermoplastic elastomers
derived from ABA triblock copolymers where rigid outer A
blocks flank the soft elastic B block. The water uptake for the
tetrablock synthesized here (85%) was slightly higher in
comparison to a previous report on ammonium-functionalized
tetrablock polynorbornenes,11 which might be due to the Mn
difference between the two samples (118 kg/mol compared to
38 kg/mol).
Hydroxide conductivity for the copolymer series was

measured using electrochemical impedance spectroscopy
(EIS) (specific details in the Supporting Information).
Comparison across the series revealed an increase in
conductivity for all block copolymers as compared to the
statistical copolymer (bar chart to the right in Figure 3). An
∼65% increase in conductivity is noted when comparing the
statistical copolymer to the pentablock copolymer (σstat = 60 ±
2 mS/cm versus σpent = 100 ± 5 mS/cm at 80 °C). The
conductivities of the tetra- and pentablock-NMe3[OH]
copolymers are also ∼25% higher than the di- and triblock-
NMe3[OH] at 80 °C (Figure 3). Since the same concentration
of ionic groups is being confined to smaller domains during
microphase separation from diblock to pentablock, increasing
the surface-to-volume ratio is likely affording more inter-
connected networks for ion transport. Nealey, Arges and
coworkers have demonstrated that interconnected ionic
domains enhance conductivity in lamellae-forming block
copolymer electrolytes,37,38 with minimization of defects and

grain boundaries leading to large increases in ion conductivity.
The multiblock architectures synthesized here likely improved
the interconnectedness of ionic domains, which is consistent
with the more uniform TEM images of the tetra- and
pentablock, as compared to the triblock.

Tetraaminophosphonium Polymers. Considering the
high hydroxide conductivity and controllable water uptake of
the ammonium-functionalized polynorbornenes, we consid-
ered whether other cations could be appended to this polymer
framework. Resonance-stabilized tetraaminophosphonium cat-
ions were targeted given their exceptional stability to alkaline
media.39,40 In past work, tetraaminophosphonium-based AEMs
have been synthesized using ring-opening metathesis polymer-
ization, with copolymerization of a cationic monomer and an
insulating comonomer (e.g. norbornene or cyclooctene).36,41

Here, the preparation of statistical and pentablock phospho-
nium copolymers was accomplished using post-polymerization
modification (Figure 4).
A trisaminophosphazene [N(iPr)Me]3PNMe was

combined with the hNB/BrBuNB copolymers in dichlor-
obenzene for nearly 2 days at 55 °C under N2 (Figure 4). The
trisaminophosphazene can be conveniently prepared from its
protonated form using a two-phase reaction (Supporting
Information). Both the statistical and pentablock copolymers
were substituted successfully using this procedure, and workup
followed by treatment with an anion-exchange resin produced
the desired polymer in the Cl− form. New 1H NMR signals
arising from the phosphonium cation are noted in Figure 4.
The conversion of the pendant alkyl bromides to the

phosphonium was estimated using 1H NMR spectroscopy
(Figure S3). The N−Me groups bound to the P atom appear
between 2.5 and 2.8 ppm (Hc−He in Figure 4). These were
compared to the CH3 group of the hNB which appears as a
broad signal near 0.9 ppm. The integrals are within 10% of the
expected value and suggest >90% conversion of the bromo
group to the cationic tetraaminophosphonium (Figure S3).
The stat- and pentablock-IPrMe[Cl] copolymers were solvent-
cast from 1,2-dichloroethane/methanol to form flexible, free-
standing films. After soaking the films in 1 M KOH for 48 h at
60 °C, water uptake, hydroxide conductivity, and IEC were
measured. Bar charts comparing water uptake, hydration
numbers, and hydroxide conductivity for the phosphonium
and ammonium copolymers are shown in Figure 5.
First, the water uptake for the stat-IPrMe[OH] is

approximately twice that of the stat-NMe3[OH] (59% versus
30%). The hydration number indicated that the phosphonium
cation is solvated by nearly 3 times the number of H2O

Figure 3. Left - Water uptake and hydration values for the statistical through pentablock-NMe3[OH]. Water uptake was determined using
gravimetric analysis. Hydration values were determined using the equation λ = [1000 × WU]/[IEC × 18]. Right - Conductivity (σ) for the
statistical through pentablock-NMe3[OH] copolymer series determined using electrochemical impedance spectroscopy (EIS). The error is the
standard deviation over three measurements. All other relevant parameters (e.g., Mn values) for the copolymers are noted in Table S1.
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molecules when compared to the ammonium analogue (29
versus 10). This is consistent with the occupied volume for
each cation. If the monomeric NMe4Cl (MW = 109.6 g/mol)
and [(N(iPr)Me)4P]Cl (355.0 g/mol) salts are compared and
assumed to have similar densities, at equimolar concentrations,
the phosphonium cation will occupy ∼3.2 times the volume of
the ammonium cation. Given this, it is not surprising that the
hydration number for the stat-IPrMe[OH] is nearly 3 times
larger than the stat-NMe3[OH]. The water uptake is
exacerbated in the pentablock copolymer, where the
phosphonium variant is again double that of its ammonium
counterpart (150% vs 75%). In both the ammonium and
phosphonium copolymers, the change from a statistical to
block copolymer resulted in higher water uptakes (Figure 5),

but this is more problematic for the phosphonium copolymers
where water uptakes are already higher.
The hydroxide conductivity of the stat-IPrMe[OH] at 25

and 80 °C was only slightly lower than the stat-NMe3[OH]
under identical conditions (σstatIPrMe = 52 ± 3 mS/cm vs
σstatNMe3 = 61 ± 1 mS/cm at 80 °C). However, hydroxide
conductivity for the phosphonium-functionalized pentablock
was difficult to measure and unreliable at 80 °C due to
excessive swelling. It was also only 15% better than the stat-
IPrMe[OH] at room temperature. This is markedly different
than in the ammonium copolymer series where an ∼65%
increase in conductivity was noted from statistical to
pentablock-NMe3[OH]. This limitation of the pentablock-
IPrMe[OH] is likely due to excessive water uptake, which
limits its potential as an AEM. Blocks may prove difficult to
work with for phosphonium-based systems, as the higher
hydration of these bulky cations will likely result in water
management issues, unless other strategies to mitigate water
uptake are employed.

■ CONCLUSIONS

In this study, a series of trimethylammonium-functionalized
multiblock copolymers were synthesized by living vinyl
addition polymerization. The impact of multiblock architecture
on properties and transport was then systematically evaluated.
The block copolymers were more conductive than the
statistical variant, suggesting they should be of use as high
performance hydroxide transporting membranes. The increase
in conductivity was attributed to confining ammonium groups
within a microphase separated block, which affords a better
network for ion transport. The results are consistent with
Kohl’s prior work on tetrablock copolymers11−13 and suggest
that block copolymer phase segregation can be used as a tool
to enhance conductivity. Interestingly, all of the block
copolymers produced higher water uptakes than the statistical
variant, suggesting that water management is more challenging
with blocks. Moreover, in the block copolymers, the location of
the ionic block (flanking or middle) had a small impact on
water uptake, where middle blocks proved to be slightly more
effective for controlling water uptake.
In addition, a method was developed to append resonance-

stabilized tetraaminophosphonium cations to the statistical and
pentablock copolymers. Direct comparison with the ammo-
nium copolymers revealed much higher water uptake with

Figure 4. 1H NMR spectra before (top) and after (bottom) reaction
of the statistical copolymer with the trisamino phosphazene
[N(iPr)Me]3PNMe. Spectra were recorded in 1,1,2,2-tetra-
chloroethane-d2 (TCE).

Figure 5. Left - Water uptake and hydration values for the statistical and pentablock NMe3[OH] and IPrMe[OH] copolymers. Water uptake was
determined using gravimetric analysis. Hydration values were determined using the equation λ = [1000 × WU]/[IEC × 18]. Right - Conductivity
(σ) for the trimethylammonium and tetraaminophosphonium copolymers determined in the OH− form using EIS. The error is the standard
deviation over three measurements. Other relevant parameters (e.g., Mn values) for the polymers are noted in Table S1.
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these bulky cations appended to the polymer chain. Future
work will look at other types of phosphonium cations and
other classes of bulky cations to determine their impact on the
performance and properties of polynorbornene membranes.
We anticipate this study will provide useful guidance for future
work aimed at polynorbornene membranes with cations
beyond trimethylammonium.
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