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Abstract A passive method of realizing nonrecipro-
cal wave propagation in a two-dimensional (2D) lattice
is proposed, using bilinear springs combined with the
necessary spatial asymmetry to provide a stable and
strong departure from reciprocity. The bilinear prop-
erty is unique among nonlinear mechanisms in that it
is independent of amplitude but sensitive to the sign of
the wave motion; the 2D setup allows the flexibility of
generating spatial asymmetry at both small and large
scales. The starting point is a linear 2D monatomic
spring—mass lattice with strong directionally depen-
dent wave propagation. The source and receiver are
aligned so that there is virtually no direct wave trans-
mission between them. Adding a region of bilinear-
ity combined with spatial asymmetry that is not in the
direct path between the source and receiver causes sig-
nal transmission via nonreciprocal scattering. A vari-
ety of spatially asymmetric bilinear configurations are
considered, ranging from compact modulations con-
fined within the unit cell to extended ones over the
whole section, to obtain different dynamic nonrecipro-
cal effects. Simulations illustrate how the combination
of bilinearity and spatial asymmetry ensures a passive
amplitude-independent nonreciprocal 2D system for a
variety of different excitations.
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1 Introduction

Reciprocity is a fundamental physical principle of wave
motion that guarantees symmetric wave transmission
between a source and areceiver. Interchanging the posi-
tions of source and receiver in a reciprocal medium
results in the same signal. Overcoming this restriction
can lead to comprehensive control of wave propaga-
tion [1]. Breaking reciprocity in one-dimensional (1D)
structures can be achieved in many different ways,
either using external energy to modulate the system
properties (active methods) or introducing nonlinearity
with spatial asymmetry (passive methods). The ener-
getic approaches fall into two types of methods: intro-
ducing moving parts or circulating flows in the propa-
gation medium [2,3] and performing spatial-temporal
modulations of the system properties [4—10]. The pas-
sive methods typically make use of various nonlin-
ear mechanical properties and the necessary ingredi-
ent of spatial asymmetry [11-17]. Many researchers
have successfully realized breaking reciprocity in 1D
domain via active and passive approaches, demon-
strating effects such as one-way acoustic and elas-
tic wave propagation [1,4-8,15,16,18], asymmetric
energy transfer [1,10,13,17] and nonreciprocal phase
shift [1,3].
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However, in 2D space only the active nonrecipro-
cal systems have been considered. Of the two principle
methods used, the first is nonreciprocal topologically
protected edge states (TPESs) that appear at the inter-
face between two topologically inequivalent insulators.
For nonreciprocal TPESs, unidirectional wave propa-
gation along an interface is supported because one of
the two topologies is created by breaking time-reversal
symmetry. Active components, which are able to mod-
ulate the physical properties in time, are typically used
to break time-reversal symmetry. Examples are exper-
imentally realized lattices of gyroscopes [19], lattices
of acoustic circulators with moving fluid involved [20]
and theoretical studies of chiral edge modes in hexag-
onal and square gyroscopic lattices [21]. The second
active method uses space—time modulation, as in 1D.
For example, nonreciprocal transmission of Rayleigh
surface waves with one-way mode conversion can
be realized in a continuous 2D semi-infinite medium
bound with an array of space—time modulated spring—
mass oscillators [22]. Both the topological insulators
and the semi-infinite medium with complex interface
are active nonreciprocal systems which require external
energy input, and as a consequence, they are potentially
unstable.

Here, we concentrate on a passive approach to break-
ing wave reciprocity in a specific 2D system. We take
advantage of the fact that 2D periodic structures usu-
ally exhibit directional wave propagation when some
requirements, e.g., structural properties and wave fre-
quency range, are satisfied [23—25]. This phenomenon
indicates the existence of propagation-free region in
those structures, which inspires us to come up with
a strategy of realizing the customized nonreciprocal
behavior: wave transmission in the propagation-free
region with opposite signs of displacements. Mate-
rial nonlinearity combined with spatial asymmetry can
be added to the 2D periodic structure, redirecting
the signals to a propagation-free region via scattering
from the asymmetric nonlinear section. Similar idea is
found in some previous works, where cubic nonlinear-
ity has been used in 2D lattices to introduce tunable
wave directionality [24,25]. However, these systems
are heavily dependent on excitation amplitude and are
still reciprocal because of the lack of the necessary and
essential ingredient of spatial asymmetry for breaking
reciprocity. Instead, we use bilinearity, which is inde-
pendent of amplitude but sensitive to the sign of wave
motion, to generate a stable and strong nonlinearity.
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Besides, taking advantage of the 2D condition, we can
design a variety of spatially asymmetric configurations
of bilinearity at both small and large scales to obtain
different scattering results before and after interchang-
ing the positions of source and receiver, and therefore
passively break reciprocity. This paper also provides a
theoretical support for future experimental efforts.

The outline of the paper is as follows. Section
2 discusses the physical structure of the linear 2D
monatomic lattice and the directional wave propaga-
tion properties. The design principle of breaking reci-
procity by adding a bilinear section with spatial asym-
metry to the lattice is introduced in Sect. 3. Based on
the flexibility of generating spatial asymmetry in the
2D lattice, we start with micro-modulations within each
unit cell of the bilinear section in Sect. 4. Interpretation
and amplitude independence of the nonreciprocal effect
are demonstrated, and several simulation arrangements
are considered. An additional design approach using
macro-modulations of the whole bilinear section in its
entirety is then discussed in Sect. 5. Section 6 concludes
the paper.

2 2D Monatomic lattice
2.1 Equations of motion

A 2D monatomic lattice is modeled as an array of equal
masses interconnected by shear springs, as shown in
Fig. 1. Transverse (into- and out-of-plane) displace-
ment is the single degree of freedom describing the
motion of each mass, and springs are assumed to act in
shear with a force related to the relative displacement
of neighboring masses. The unit cell therefore consists
of a block with mass and a mass-less “+” shape struc-
ture (no force between them) with thickness, width and
length d — 0 as Fig. 1 shows. The length-less “+”
shape structure is able to transfer force between neigh-
boring masses, leading to the transverse wave propa-
gation while neglecting rotational motion. Two states
(“+” shape up and down) exist in this 2D lattice, guar-
anteeing the spatial symmetry of the lattice.

The periodicity of the lattice is defined by orthogo-
nal lattice vectors a1171 and azfz in the horizontal and
Vert1ca1 d1rect10n respectively. The mass at location
ni am + no azzz, shown in gray box at the center in
Fig. 1(c), satisfies the equilibrium equation (supposing
that the forces exerted by the shear springs are much



Nonreciprocal and directional wave propagation in a two-dimensional lattice 2451
¢slmar (C) |
ird (-1,1) (0,1 (1,1)
19
‘ . Ka(ni,na +1)
(=1,0) (0,0) (1,0) K1 (ny,nz) Lna)|
: (b) a2 P
(—1, —1) 0,-1)
d—0 & . unit cell at (ny,n2)
a
d—0 |
—>

Fig. 1 2D monatomic lattice of identical masses connected by
shear springs. a and b depict the physical structure of a unit
cell and four neighboring unit cells in the monatomic lattice;
the unit cell consists of a block with mass and a mass-less “+”
shape structure of size d — 0 introducing the in-plane trans-
verse wave propagation; and a stands for the state of “+” shape
up and b down. The insert in a is a schematic of a shear spring

greater than gravity and neglecting rotational motion)

2
M i (ny,ny) = ZI:K]_ A”;_'_Kf Au}f], M)
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with j = 1 and 2 denoting stiffnesses of the springs
located along the horizontal and vertical direction,
respectively, and

3)

representing the relative transverse displacement of two
adjacent masses.

+
A”j = U(n1£8j1,n248j2) — Uny.na) >

2.2 Wave directivity of a linear lattice

The dispersion relatlon between the frequency w and
the wave vector k = ki 11 + k2 i» plays an important
role in deciding the wave propagation in the lattice.
Setting the transverse displacement of the neighboring
masses as

i(xkiayxkraz)

“)

U £1,n41) = Uny,ny) €

with structural length a;, j = 1, 2. ¢ shows the reference sys-
tem; the mass displacement is in the transverse direction (into-
and out-of-plane) only. In order to eliminate reflections from the
boundaries for numerical simulations, the finite lattice is sur-
rounded by perfectly matched layers (PMLs), see Appendix A
for details

and assuming time dependence e '’
sion relation

wZ

yield the disper-

®)

Based on Eq. (5), we plot the dispersion surface
and the corresponding isofrequency contours for the
monatomic lattice in Fig. 2a and b.

The group velocity

2
= — [k1 (1 —coskiay) + k2 (1 — coskpay)].
m

R w - ] w - n ©)

¢ — iy = Colil +Conl ,

g 8/(] 1 ak2 2 gl g2 12

where

o = 2 Sinkja; . j=1.2, (7)
w

is depicted in Fig. 2c; note that the contour is closed
only for the case of wave propagation in all directions.
The angle formed between normal to the isofre-
quency contour and the horizontal axis in Fig. 2b is
denoted as 6, which defines the direction of wave
energy propagation at the corresponding frequency
and wavenumber pair. The propagation directions are
shown in the polar plot in Fig. 2d, and the expression
of propagating angle following from Eq. (7) is
9 — tan—! 22 s%n kaay ’ )
aj k1 sinkja
where the values of k| and k; are specified by the isofre-
quency contour of Fig. 2b for a selected frequency w.
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Fig. 2 Tools for the
analysis of wave directivity.
a Dispersion surface. b

Isofrequency contours of
frequency distribution
within the first Brillouin

zone (black rectangle) in
(a); 6 defines the direction
of wave energy propagation.
¢ Group velocity (50 data
points per plot). d
Directions of wave energy

propagation (200 data points (© 08

per plot). Here, a; = a; =1
m, k] = k3 = 1 N/m,

m = 1 kg, and frequency w
is measured in rad/s

3 Design of nonreciprocal 2D monatomic lattice

The design for breaking reciprocity takes advantage of
the directional nature of wave propagation in the 2D
lattice. The idea, illustrated in Fig. 3, is as follows.
In the linear case, directional wave propagation from
source in Fig. 3a cannot be detected at receiver (A —
B or B — A) because the latter is, by choice, located in
a propagation-free region relative to the source. Then,
by introducing bilinearity with spatial asymmetry in a
place that a wave can reach from the source, see Fig.
3b, a signal will travel from the source to the receiver
via scattering from the bilinear section. A different
response will be observed after interchanging the posi-
tions of source and receiver, see Fig. 3c, due to non-
reciprocity achieved by the combination of bilinearity
and spatial asymmetry.

Spatial asymmetry is a necessary ingredient for
breaking reciprocity passively in a bilinear medium.
Given the 2D condition, we have the flexibility of com-
bining bilinearity with various spatially asymmetric
setups. Here, we start with the modulations confined
within each unit cell of the bilinear section, achiev-
ing the asymmetric arrangements in the microscopic
manner. Then, we apply the additional modulations of
asymmetry to the whole bilinear section as its entirety
from the macro-perspective.
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4 Micro-modulation: spatial asymmetry of unit
cell

The system remains reciprocal despite the bilinearity
introduced if it is spatially symmetric. Here, we discuss
different ways of introducing microstructural spatial
asymmetry within the unit cell of nonlinear section and
therefore breaking reciprocity.

4.1 Stiffness and structural asymmetry

To start with, spatial symmetry for a unit cell of a linear
2D monatomic lattice indicates that the same resultant
shear force, FljE =i Auf, can be obtained given the
identical relative displacement between the unit cell
and its nearest neighbors, Aujt,

— At
Auj —Auj

-t
Kj —Kj

j = 1 when we consider the neighboring unit cells in
horizontal direction, and j = 2 in vertical direction.
Spatial symmetry still holds in the unit cell when
all linear springs are replaced by the identical bilin-
ear springs (labeled by * and the corresponding stift-
ness written as k ) as shown in Fig. 4a. Although the
bilinear spring has different stiffnesses when it is com-
pressed and stretched, two horizontally or vertically

= F =F/, ©)
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Fig. 3 Schematic diagram of the design for a nonreciprocal 2D
monatomic lattice. a depicts directionally limited wave propaga-
tion in the linear lattice, where the propagating range is indicated
by shaded angles; receiver at B (A) is located in the propagation-
free region relative to source at A (B). The bilinear section (square
box) combined with spatial asymmetry is then introduced in a

Table 1 Stiffness properties of bilinear springs. « is the linear
stiffness, and Ax4 are the deviations from linear stiffness. By
current setting, we get k(¢ or 1) 7 7 K(c or 1)\» OF more specifi-
cally, K or 1), = K(1 or o)\,

Bilinear Spring Label =~ Comp. Stiff. Tens. Stiff.
Ve Kep=K—AKk— K=K+ AKy
4 Ken, =K + Ay k=K — Ak

adjacent bilinear springs are always in the same con-
dition given the identical relative displacement, such
that

- _ Ayt
Auj_Auj o = Ft

j j (10)

Kj =k =Korn
where k. » stands for the compressive stiffness of the
bilinear spring labeled by " and «; ~ the tensile stiff-
ness.

One way to generate spatial asymmetry within the
unit cell is to modify the stiffness property of the bilin-
ear springs in an alternating manner. In Fig. 4c, we
replace the bilinear spring on the right of 7 label with
that of \ label (therefore, we have j = 1 for the follow-
ing relevant equations, representing the replacement in
the horizontal direction); these two springs exhibit dif-
ferent stiffnesses when compressed and stretched, see
Table 1. This modulation generates different resultant
shear forces despite given the same relative displace-
ment between the unit cell and its nearest neighbors,
ie.,

place that a wave can reach from the source; b and c illustrate that
a signal will travel from the source to the receiver via scattering
from the asymmetric bilinear section, and interchanging the posi-
tions of source and receiver results in different responses because
of the spatial asymmetry in the bilinear region (not shown)

Aur = Aul _
! : N = F| #F'.
K| =Kcorn /7Kl =KcornN

a1

The alternative micro-modulation is depicted in Fig.
4e. One leg in “+” shape structure of the unit cell is
moved to the opposite position, up or down. Without
modifying any bilinear spring, the asymmetric struc-
ture results in the opposite conditions for two adja-
cent bilinear springs in horizontal direction (j = 1)
given the same relative displacement. Consequently,
one compressed bilinear spring and the other stretched

one can exert the different resultant shear forces,
Auy = Aut _
H1 =2 N = FT #£Ff.

K| =Ko/ K| =Kore)/
(12)

Considering the setup of K orr) 7 = K(1 or c)\> S€€
Table 1, two introduced methods of generating spatial
asymmetry within the unit cell are functionally identi-
cal.

From the perspective of horizontal chain, the spring
condition and resultant shear force for the symmet-
ric and asymmetric (reciprocal and nonreciprocal) unit
cell are self-evident, see Fig. 4b, d and f. In reciprocal
case, as shown in Fig. 4b, for any two adjacent bilin-
ear springs, the identical relative displacement leads
to the same spring condition and the same resultant
shear force. For our first strategy of generating spatial
asymmetry shown in Fig. 4d, the bilinear springs are
reversed alternately; even though the identical relative
displacement results in the same condition for the adja-
cent reversal bilinear springs, different resultant shear
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Fig.4 Schematic of spatially symmetric and asymmetric setups.
a shows the physical structure of a unit cell in the bilinear section
connecting its nearest neighbors by identical bilinear springs, but
without spatial asymmetry. ¢ and e are two functionally identical
asymmetric setups, with the asymmetric modulation in horizon-
tal direction only. The shaded bars on the right illustrate the
spatially symmetric or asymmetric conditions in corresponding
directions. We alternate the bilinear spring connected to the unit
cell in (¢), leading to bilinear stiffness asymmetry; in (e), one leg
in “+” shape structure is moved to the opposite position, result-
ing in structural asymmetry of the unit cell. b, d and f depict
the horizontal chains of unit cells with corresponding bilinear
setups, which intuitively show the compressive/stretched condi-
tions of the bilinear springs and assist in the analysis of spatially
asymmetric systems

forces are obtained. The structural asymmetry can be
achieved using the second strategy as shown in Fig. 4f;
the same relative displacement results in the opposite
conditions for two adjacent identical bilinear springs
and therefore different resultant shear forces.
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4.2 Numerical experiments

From now on, let us discuss the numerical simula-
tions of wave propagation in the 2D monatomic lattice.
To generate incident wave, a continuous displacement
restriction is applied to source position,

u=H) U sinwt, (13)

where U is input amplitude, o is the excitation fre-
quency, and H represents the Heaviside function. The
positions A and B, which are used to locate the source
and receiver, are aligned so that there is virtually no
direct wave transmission between them when strong
directionally dependent wave propagates.

Assuming that a; = ap = 1 m, k] = ko = 1
N/m, m = 1 kg for model setup, and U = |l m, w =
2 rad/s for excitation, we can obtain directional wave
propagation in four discrete directions with angle 6 =
%, n = 1,3,5,7, refer to Fig. 2c and d. Simulation
result of this directional wave propagation in a pure
linear lattice is shown in Fig. 5a.

The location of an introduced bilinear section is then
chosen so that the mentioned directional propagating
wave can reach it. We take the bilinear section as a
square with 2N x 2N bilinear springs, see Fig. 5b,
whose center at angle § = —7 relative to the position
Aand 6 = ST” for B. Therefore, the positions A and B
are equally distant by Ny springs from the center of the
bilinear section.

Here, we set the number of springs No = 10 spec-
ifying the source and receiver positions, and N = 8
defining the bilinear section size. Extreme bilinear-
ity guarantees the significantly nonreciprocal results,
requiring drastic difference between tensile and com-
pressive stiffness, e.g., Ak_ < Ak, see Table 2 for
details of stiffnesses selection.

4.3 Nonreciprocity

Three different setups are tested, and the simulation
results illustrate that combination of bilinearity and
spatial asymmetry is able to break reciprocity.

Case 1: Pure linear. A pure linear setup is shown
in Fig. 6a, and the resultant dynamic profiles at the
receivers are in Fig. 6b. The overlapping low-amplitude
results observed before and after interchanging the
positions of source and receiver, typically below 10%
of the excitation amplitude, not only indicate that the
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Fig. 5 Incident wave and simulation setup. (a) shows the inci-
dent wave directionally propagating with angle 6 in a pure linear
lattice, generated by a continuous excitation, see Eq. (13). (b)
illustrates the bilinear section, assumed to be square with sides

of 2N bilinear springs in length; the positions A and B (used to
place the source and receiver) are equally distant from the center
of the bilinear section with Ny springs in both horizontal and
vertical directions

Table 2 The stiffness of linear and bilinear springs. All linear springs are identical. The expressions of bilinear springs can be found
in Table 1 with k. » <K k; 7, ken > K\ and K(c or 1) 7 = K(1 or ¢),- The unit of stiffness in this table is N/m

K| =ky =K Ak Akt

Ke Ki g LN RN

1 0.875 10

0.125 11 11 0.125

receivers are located at the propagation-free zone rela-
tive to the sources but illustrate the reciprocity.

Case 2: Bilinearity only. In Fig. 6¢c, we introduce
a nonlinear section with bilinearity in both horizontal
and vertical directions to the place where directional
wave propagation can reach, refer to Fig. 5b. However,
the overlapping low-amplitude dynamic profiles in Fig.
6d indicate that a bilinear section without spatial asym-
metry cannot break reciprocity.

Case 3: Bilinearity + spatial asymmetry. We
combine the bilinearity with spatial asymmetry and
arrange this combination along the horizontal direction
only within the bilinear section (the vertical direction
remains solely bilinear) as shown in Fig. 6e. The resul-
tant dynamic profiles have the opposite shifts in Fig. 6f:
A positive shift is obtained when the incidence comes
from position A, and that from B gives a negative shift.
Even though the normalized amplitude is still relatively
low, roughly between 30 and 60%, we lay more empha-
sis on the nonreciprocal dynamic behaviors with steady
opposite shifts.

4.4 Interpretation of nonreciprocal effects

The reason for the opposite signs in dynamic profiles
is discussed. Based on our previous explorations in the

1D bilinear spring—mass chain system [15], we con-
clude that the relation between the compressive and
tensile stiffness of bilinear spring and the asymmet-
ric arrangements of bilinearity strongly influence the
dynamic behavior, which can also help us understand
the simulation results in current 2D case.

Figure 7 shows the propagation of a single-cycle
incident wave in a spring—mass chain system from the
opposite directions. Two types of pulses are formed
when the incidence enters the bilinear section; a dashed
line divides a pulse into different parts each of which
relates to bilinear springs in the same state, compres-
sion or tension. Therefore, TC pulse (CT pulse) indi-
cates a pulse with a tensile zone followed by a compres-
sive zone (a compressive zone is followed by a tensile
zone) [15].

Since a tensile wave travels with a higher speed than
acompressive one under current stiffness setup (k. » <
k¢ #), we expect an increase in distance between the
tensile and compressive zones and the generation of
a zero deformation zone (the horizontal region with
nearly constant positive displacement) for a TC pulse;
in terms of a CT pulse, we expect that the faster tensile
wave front catches up with the slower compressive one
and then changes the pulse type to TC one. Table 3
concludes these two processes.
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(a) (b)

(c) (d)

(e) ®

Fig. 6 Simulation results. The left column depicts three differ-
ent simulation setups, refer to Figs. 4 and 5(b); the right one
records the corresponding dynamic profiles of receivers, the nor-
malized displacement u/|U| against the number of excitation
period. a shows the pure linear setup, and b shows its recipro-
cal results with the overlapping low-amplitude dynamic profiles.
The setup in ¢ contains a squared section with the bilinearity in

w/[U| 0 i

W)U 0f—ssspronepfihsrssming g

0.6

0.3

-0.6
0.6

0.3

A—B

A+B

50
t/T

100

both horizontal and vertical directions; the overlapping dynamic
results in (d) again indicate the reciprocity. Spatial asymmetry
is introduced in (e), and the combination of bilinearity and spa-
tial asymmetry is arranged in horizontal direction only; f shows
that the dynamic profiles of receivers have the opposite signs of
steady shifts with positive one for the source located at position
A and negative one at B

Table 3 Explanation of nonreciprocal wave propagation in an asymmetric bilinear chain

Pulse Type Property Stiffness Wave Speed Result
TC pulse Tens. zone precedes TC pulse with
Comp. zone zero deformation zone
Ke p L Ki gt Comp. wave < Tens. wave
CT pulse Comp. zone precedes TC pulse

Tens. zone

In the current 2D monatomic lattice, an incident
wave is generated by a continuous excitation in the lin-
ear section. Upon entering the nonlinear section con-
sisting of multiple asymmetric bilinear chains con-
nected together, the incidence is best thought of as a
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string of multiple cycles of two types of pulses, TC and
CT one, see Table 3. After having the similar propaga-
tion process shown in Fig. 7, the transmitted wave with
single sign then scatters into the linear section again
and is detected by the receiver. For example, as the
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Fig.7 Nonreciprocal wave propagation in an asymmetric bilin-
ear chain. a and b show the single-cycle incident waves and the
transmitted waves for incidence from left and right, respectively.

nonreciprocal case in Fig. 6(e) shows, the same stim-
ulus generates incident waves coming from opposite
directions with reversed order of pulse types, resulting
in transmitted pulses of the same pulse type but with
oppositely signed displacement: the incident wavefield
from position A on the left experience the same situ-
ation as Fig. 7(a) describes, and Fig. 7(b) represents
the transmission of the same incidence from B on the
right.

4.5 Amplitude independence

The nonreciprocal phenomenon of the opposite-sign
dynamic profiles is presumably independent of input
excitation amplitude given that the bilinear springs in
the 2D lattice are only sensitive to the sign of the
relative wave motion between unit cells connected to
them. Here, we apply the continuous excitation with
several different amplitudes to show the amplitude-
independent property.

We first set excitation amplitude positive, U > 0,
as we did in previous demonstrations. Figure 8a shows
that the resultant dynamic profile scales linearly with

- T A Com
7omS:” TC pulse Zone”

The chains in shade areas contain structurally asymmetric unit
cells connected by identical bilinear springs, see Fig. 4f

the input amplitude, so that the normalized results over-
lap and therefore amplitude independence holds. Set-
ting the excitation amplitude negative, U < 0, shows
the same scaling and amplitude independence, see Fig.
8b; however, the dynamic profiles are different from
those of positive U. The reason is that the opposite
signs of excitation amplitudes lead to different pulse
type orders within each cycle of the incident wave: A
CT pulse precedes a TC one for the negative-value case;
the reverse condition, TC before CT, is the case of posi-
tive excitation amplitude. Since they are fundamentally
different inputs, this phenomenon does not violate the
amplitude-independent property.

4.6 Alternative modulation arrangements

We display two more nonreciprocal demonstrations
applying different linear and nonlinear section setups
to show the micro-modulation design’s capability of
breaking reciprocity.

Bilinearity + spatial asymmetry in both horizon-
tal and vertical directions. Here, we arrange the com-
bination of bilinearity and spatial asymmetry in both

@ Springer
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(a) (b)
09
u (m) 0.6
03
0 :
0 100 100

Fig. 8 Amplitude independence. Simulations are performed in
the setup with asymmetric bilinear arrangement along horizon-
tal direction only in the nonlinear section, refer to Fig. 6e, and
the dynamic profiles of receiver at position B are recorded. a
shows the results when we set positive excitation amplitudes
U = 1 and 2 m, see Eq. (13); the overlapping normalized results

horizontal and vertical directions and set the positions
for locating source and receiver which are A, B and C
as Fig. 9a shows. Dynamic profiles with the opposite
amplitudes can be observed when considering the posi-
tions A and B, but the amplitude of the negative profile
decreases approaching to zero, see Fig. 9b. For case of
considering positions B and C where the receiver can
presumably detect the signal coming from the source
in linear condition, we can also obtain the dynamic
profiles with opposite shifts as Fig. 9¢c shows.
Broadband effect. Our nonreciprocal design works
for any case of the receiver being located in the
propagation-free region relative to the source. Here, we
set k1 = 1 N/m, ko = 1.5 N/m for linear springs and
keep the nonlinear section and excitation unchanged,
which results in a directional wave propagation with
ranges Orange ~ 102° instead of several discrete direc-
tions in previous demonstrations, see Fig. 10a and b.
As Fig. 10c shows, we can still get the nonrecipro-
cal dynamic profiles with the opposite signs before and
after interchanging the positions of source and receiver.

5 Macro-modulation: spatial asymmetry of
bilinear section

Micro-modulation within the unit cell is a fundamental
way of generating spatial asymmetry. With the source
and receiver locations fixed, the whole bilinear sec-
tion can be modulated in its entirety to further generate
additional spatial asymmetry.

@ Springer

demonstrate the amplitude-independent property. b shows the
results with amplitudes U = £1 and —2 m; the normalization of
all negative-amplitude profiles is overlapped; however, because
changing the sign of amplitude results in a different incident
wave, the opposite signs of excitation amplitudes demonstrate
different normalized dynamic behaviors

5.1 Modulation beyond the unit cell

In addition to generating the spatial asymmetry within
the unit cell, we can extend the spatial modulation at a
larger scale. When the positions of source and receiver
are fixed, the modification of the whole bilinear section
in its entirety can generate additional spatial asymme-
try in a macro-perspective. However, simply perform-
ing the macro-modulation for the whole bilinear sec-
tion without the micro-modulation in its unit cells is
proved to be an inefficient way of breaking reciprocity:
It is shown in Appendix B that spatial asymmetry intro-
duced by macro-modulation alone gives very little non-
reciprocity. Adding additional macro-modulation of
spatial asymmetry into the spatially micro-modulated
bilinear section is able to adjust the original nonrecip-
rocal results.

Here, we use the demonstrated nonreciprocal case
of bilinearity and spatial asymmetry existing in both
horizontal and vertical directions, see Fig. 9 in Sect.
4, and introduce additional macro-modulations of spa-
tial asymmetry in the whole bilinear section to check
their influences on nonreciprocity. We only take the
positions A and B for tests, and the same excitation is
applied, see Eq. (13).

5.2 Horizontal translation
We fix the positions of source and receiver, but displace

the whole bilinear section laterally by AN number of
springs from its original position, as Fig. 11a shows.
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Fig. 9 Bilinearity + spatial asymmetry in both horizontal and
vertical directions. a shows the simulation setup. The combi-
nation of bilinearity and spatial asymmetry is arranged in both
horizontal and vertical directions. Three positions A, B and C

C. b depicts the different dynamic behaviors with decreasing
negative shift for incidence from position B compared with Fig.
6f. ¢ shows the dynamic profiles with the opposite signs when
positions B and C are considered

are used to locate source and receiver; No = 10 for position

0.8 0.8
(a) (b) (©)

0.4 0.4

A—B

Fig. 10 Broadband effect. a shows the directional wave prop-
agation covering a range with Ouange ~ 102°. b shows the
dynamic profiles in the reciprocal linear case; the insert plot
intuitively depicts the propagating ranges. ¢ shows the nonre-

t/T

(a)

NO Ny

‘+
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Fig. 11 Horizontal translation. a shows the horizontal transla-
tion of the bilinear section from its original position with pos-
itive AN the distance (number of springs) moved to the right;
No = 10, N = 8. b denotes the effect that value AN has on non-
reciprocal behavior, which is indicated by the maximum ampli-

al'ange
0.4 -0.4 WWWWMWW
0.8 0.8 A<B
50 100 0 100

50
t/T
ciprocal dynamic behaviors with the opposite signs of displace-

ments before and after interchanging the positions of source and
receiver

1
b I
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*
*
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A—B o * 4
057 | A«B %
A—B
AcB ® 0
-1
-8 4 0 4 8
AN

tudes of dynamic profiles at two receivers and the ratio between
them; the right translation results in the ratio approaching to —1,
meaning the exaggeration of nonreciprocity; and the left one
leads to the same amplitude sign, weakening the nonreciprocity
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Fig. 12 Shape deformation. a depicts the shape deformation of
the bilinear section into a parallelogram with vertical boundaries
tilted clockwise by positive angle y; this demonstration uses the
same parameters as that in Fig. 11(a). b denotes the influence of
tilting angle y, labeled by tan y in the polar plot; the maximum

Simulation results are presented in Fig. 11b; instead of
the whole dynamic profiles, only the maximum ampli-
tudes are recorded; and the ratios of two maximum
amplitudes before and after interchanging the positions
of source and receiver for each value of AN are also
calculated, cases closer to —1 being treated as the more
significantly nonreciprocal results. The lateral trans-
lation to the left, AN < 0, results in two dynamic
profiles with the same positive sign and the amplitude
ratio approaching to 41, weakening the nonreciprocal
behavior. See Appendix B for an explanation of this
phenomenon.

5.3 Shape deformation

Another macro-modulation fixes the center of the bilin-
ear section at its original position and deforms its pre-
vious square shape into a parallelogram. In Fig. 12a, y
describes the angle by which the vertical boundaries of
the bilinear section tilt. Namely, we displace the bilin-
ear arrangements laterally by ntany,n = 1,2, ..., N
from the center of bilinear section to the top for the
upper half, and —n tan y from the center to the bottom
for the lower half. Figure 12b depicts the effect of the
shape modulation, showing that the clockwise tilt, y
or tany > 0, exaggerates the nonreciprocal behavior,
but counterclockwise one, y or tan y < 0, weakens the
nonreciprocity. We refer to Appendix B for an expla-
nation of this phenomenon.

6 Conclusion

Taking advantage of the directional nature of wave
propagation in the 2D monatomic lattice, we have

@ Springer

amplitudes of dynamic profiles at two receivers and their ratio for
each value of y are used for checking the effect of adjustment;
and the modulations of the bilinear section can either weaken
(counterclockwise tilting) or exaggerate (clockwise tilting) the
nonreciprocity

demonstrated a passive approach to breaking reci-
procity via the introduction of a bilinear section
with spatially asymmetric properties, which displays
amplitude-independent nonreciprocal scattering. Uti-
lizing the 2D linear anisotropic wave properties of
the lattice, the source and receiver are chosen to be
positioned so that the direct linear signal approxi-
mates zero and therefore the asymmetric nonlinearity-
induced scattered signals with opposite signs domi-
nate. The 2D lattice configuration opens up the possi-
bility of spatially asymmetric configurations at differ-
ent scales. The micro-modulations, either by bilinear
stiffness alteration or by physical structure modifica-
tion, within each unit cell of the nonlinear section fun-
damentally generate the spatial asymmetry and break
reciprocity. Additional macro-modulations aiming at
the whole bilinear section in its entirety, for example,
by lateral displacement or by deformation of the sec-
tion shape, can further weaken or exaggerate the exist-
ing nonreciprocal behavior. Moreover, different simu-
lation setups resulting in directional propagation and
nonreciprocity prove that our design has the capability
of breaking reciprocity as long as a propagation-free
zone exists.
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Appendix A: Perfectly matched layers

To simulate a nonreflecting infinite transverse wave,
perfectly matched layers (PMLs) are attached to the
sides and corners of the 2D monatomic lattice, as
Fig. 13 shows. The PML is a damped monatomic
lattice with ramped-up damping coefficients to avoid
reflections caused at the interfere of damped and non-
damped sections. The varying damping coefficients can
be expressed as

L) (AD

ci=cC (
! "\ Npumi

where C; represents the damping coefficient at index
j that starts from 1 at the interfere of PML and non-
damped lattice, C,,, is the maximum damping coeffi-
cient located at the end of the PML, and Np 1 denotes
the number of dampers per column for the upper and
lower PMLs or per row for the left and right PMLs in
Fig. 13. The damping coefficients in PMLs at four cor-
ners are more complicated to be expressed but also obey
the rule of values increasing from interfere to bound-
aries. Here, we take Npyr = 10 and Cpu = 10
kg-s~! for all numerical simulations in this paper.

R

Fig. 13 Perfectly matched layers (PMLs) surround the 2D
monatomic lattice. PML is a damped monatomic lattice with
damping coefficients ramping up from the interfere of damped
and nondamped lattice to the boundary. The size of damping
cartoon in PMLs denotes the value of damping coefficient; the
larger the size, the greater the value

Appendix B: Spatial distribution of nonreciprocal
wavefield

Here, we qualitatively explain some phenomena using
simulation results of wave propagation for various con-
figurations illustrated in Fig. 14; for each configuration,
the left wavefield depicts the source at A on the left and
the right one has source on the right at B.

Figure 14a shows a reciprocal case with different
linear stiffness values inside and outside the square
section. Bilinearity is introduced to the square section
without any type of spatial asymmetry in (b), and reci-
procity is maintained. Two time-responsive dynamic
profiles in the top row confirm the reciprocity. (a) and
(b) together illustrate that only the reflection occurs
when stiffness mismatch exists, and that spatial asym-
metry is a necessary ingredient of breaking reciprocity.

When the horizontally arranged micro-modulation
of spatial asymmetry is introduced to the nonlinear
section as Fig. 14c depicts, directional scattering with
opposite signs of displacements at left and right side of
square section indicates a significant degree of nonre-
ciprocity. As comparison, (d) and (e) show that bilinear-
ity plus macro-modulation of spatial asymmetry alone
cannot generate the similar level of nonreciprocity apart
from some reflections, which also indicates that only
micro-modulation can efficiently generate significantly
nonreciprocal results.

However, macro-modulation can effectively adjust
the nonreciprocity caused by micro-modulation. Figure
14g—j demonstrates several adjustments of two macro-
modulations to the nonreciprocal results in configura-
tion (f) within which the combination of bilinearity and
micro-modulated spatial asymmetry is arranged in both
horizontal and vertical directions inside the square sec-
tion. The scattering region, which contains masses with
single-sign displacements, covers certain parts around
the nonlinear section; e.g., in (f), the scattering region
with positive sign appears around the top right corner
and the negative one is around the bottom left corner.
When we perform the additional macro-modulations,
the scattering regions can move accordingly, result-
ing in the different dynamic responses collected at the
fixed receivers. As (g) shows, the horizontal transla-
tion of nonlinear section to the left shifts the scatter-
ing regions to the left as well, changing the original
opposite signs of displacements to the merely posi-
tive results regardless of where the incidence comes
from and therefore weakens the original nonreciprocal

@ Springer
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Fig. 14 Spatial distribution of wavefield for a variety of config-
urations. In each case, the plot on the left (right) is for the source
at A (B). a shows a reciprocal case with different but still lin-
ear stiffness inside the square section; reciprocity is confirmed
by the identical signals. b is also reciprocal with bilinearity in
the square section but with no spatial asymmetry, confirming the
condition of reciprocity. ¢ depicts the case of bilinearity plus
micro-modulation of spatial asymmetry in horizontal direction.
Itleads to a significant nonreciprocity as shown by the directional

results. The translation to the right, see (h), causes the
scattering regions move to the right and maximizes the
difference between displacements with opposite signs
obtained at receivers, leading to the exaggeration of the
original nonreciprocity. Similar behaviors are obtained
for a counterclockwise tilt of the nonlinear section in
(1) and clockwise tilt in (j).
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