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Abstract

The anomalous diffusion of resonant protons in parallel and perpendicular velocity space by kinetic Alfvén waves
is discussed. The velocity diffusion coefficient is calculated by employing an autocorrelation function for proton
trajectories. It is found that for protons resonant with the waves, the perpendicular diffusion coefficient decays
away for a sufficiently long time, but parallel diffusion monotonically increases in time until it saturates at a certain
level. This result indicates that a portion of resonant protons can undergo anomalous diffusion along the
background magnetic field even if the intensity of the kinetic Alfvén wave is sufficiently low. The present findings
imply that under suitable conditions, astrophysical charged-particle acceleration can take place in the parallel
direction.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503)

1. Introduction

The charged-particle acceleration is a long standing problem
(Axford 1965; Burlaga 1967; Bell 1978a, 1978b). Among the
proposed mechanisms is diffusive shock acceleration of
protons (see, e.g., (Jokipii 1986), which may be operative at
the termination shock of the solar wind. This is the accepted
model for the origin of anomalous cosmic rays. Protons and
electrons may also be accelerated in the inner heliospheric
environment, such as in association with solar flares or coronal
mass ejections, and the related shock waves thereof. In the
study of charged-particle heating, which is intimately related to
the solar wind acceleration and coronal heating problem, the
role of kinetic Alfvén waves is emphasized (see, e.g., Vásconez
et al. 2015). This research topic is of contemporary significance
thanks to the inner heliospheric space missions, such as the
Parker Solar Probe and the Solar Orbiter. The interaction
between waves and charged particles is of fundamental
importance in plasma physics. It is well known that charged
particles can be accelerated to high energies via a number of
wave–particle interaction processes including the customary
resonant wave–particle interaction (Karimabadi et al. 1992;
Miller et al. 1997), and nonstandard acceleration processes
such as the resonance overlap in a single large-amplitude quasi-
monochromatic spectrum of waves (Karney 1978; Karimabadi
et al. 1990), for instance. The stochastic acceleration of protons
by kinetic Alfvén waves in the solar wind, may be an important
process, which has been studied by many authors (see, e.g.,
Voitenko & Goossens 2004; Chandran et al. 2010; Hoppock
et al. 2018; Choi et al. 2019). The stochastic acceleration can be
defined as a process for which a particle can gain energy via
nonresonant interaction with waves. During impulsive solar flares
large amounts of energies are released in the form of energetic
electrons or protons with energies up to tens of keV for electrons
and ∼MeV for ions. Among the acceleration processes is the
stochastic energization of the charged particles via interaction with
background waves, including obliquely propagating kinetic
Alfvén waves (Miller 1991; Smith & Brecht 1993; Lee & Völk
1973; Miller et al. 1997; Karimabadi et al. 1992). An important

point is that most charged-particle acceleration mechanisms
involve energization in directions perpendicular to the ambient
magnetic field. Quasi-isotropic energy distribution of charged-
particle emerge only as a result of slow pitch-angle diffusion.
In this paper, we investigate the resonant interaction of

protons with quasi-monochromatic kinetic Alfvén waves, but
instead of the classical approach such as linear or quasilinear
theoretical methods, we employ the perturbative Hamiltonian
method combined with the autocorrelation function scheme in
order to compute the resonant wave–particle diffusion
coefficient. By employing such a tool, a potentially significant
aspect of the resonant wave–particle interaction that had been
overlooked in the past is unveiled. That is, as will be discussed
subsequently, we found that a relatively large energy gain
along the parallel direction with respect to the ambient
magnetic field may be achieved via an anomalous diffusion
process. In such a process, finite Larmor radius effects play a
key role, which is absent in the traditional linear or quasilinear
picture of the resonant wave–particle interaction process. As
will be shown, the anomalous diffusion takes place only along
the parallel direction, but is not associated with perpendicular
diffusion. Along the parallel direction, resonant protons
experience a constant force in the frame moving with the
wave, which remains finite even when particle motions
are averaged over random phases of the waves, but in the
perpendicular direction, such an anomalous effect is diminished
by the gyromotion of the protons. This finding thus implies that
under suitable conditions, charged particles may experience
direct and efficient parallel energization, which has not been
discussed in the literature.
It is important to note that the main focus of the present

paper relates to the charged-particle energization in perpend-
icular or parallel momentum (or velocity) space, which is
related to, but distinct from, the charged-particle transport in
real (or configuration) space. Energetic charged-particle trans-
port in magnetized plasmas in real space, such as the cosmic-
ray transport across the interplanetary or interstellar medium, is
of great importance, and had been studied for several decades.
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Customarily, the spatial transport is discussed in conjunction
with the momentum transport by means of quasilinear theory
under the gyro-kinetic transformation of variables (Schlickeiser
2002), but alternatively, momentum and spatial transport
theory can be constructed on the basis of the autocorrelation
function scheme (Matthaeus et al. 1990; Bieber et al. 1994;
Shalchi 2009, 2020; Shalchi & Weinhorst 2009). The present
discussion also adopts the autocorrelation function methodol-
ogy, but our main focus is on charged-particle transport and
diffusion in momentum (or velocity) space.
The organization of the present paper is as follows: In

Section 2 the proton trajectory in the presence of a finite
spectrum of a kinetic Alfvén wave is calculated by employing
the perturbative Hamiltonian equation of motion introduced by
Choi et al. (2019). Then Section 3 calculates the diffusion
coefficients of protons in velocity space by making use of the
autocorrelation function, wherewith we discuss the anomalous
parallel diffusion of the protons. Finally, Section 4 concludes
the paper, and discusses possible applications of the present
findings in the context of heliospheric and astrophysical
environments.

2. Motion of Charged Protons in the Presence of the Kinetic
Alfvén Wave

The present investigation is a direct extension of our recent
work on proton acceleration by the monochromatic kinetic
Alfvén wave (Choi et al. 2019). Following Choi et al. (2019),
the wave magnetic field and the associated vector potential
in the case of a monochromatic kinetic Alfvén wave are
expressed by
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2 2( ), A1∣ ∣ is the amplitude of

perturbed vector potential, and r = T m2 i i is the proton
gyroradius, Ti and mi being the proton temperature and mass,
respectively. We now generalize the situation by considering a
broadband kinetic Alfvén wave. We thus express the vector
potential as follows:
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dispersion relation for kinetic Alfvén waves and =VA
pB n m4 i0 0 is the Alfvén speed, B0 and n0 being the ambient

magnetic field intensity and ambient plasma density, respec-
tively. Note the symmetry property, w w- = -k k0 0( ) ( ). Making
use of these the vector potential (2) can be re-expressed as
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where we have assumed, without loss of generality, that the
ambient magnetic field is directed along the z-axis and that k
lies in the yz plane, so that we may write = +k y k zk x y z· .

Note that we alternatively may write = ^k ky and =k kz ,
where ⊥and Prefer to directions with respect to the ambient
magnetic field vector. Following Choi et al. (2019), it is
possible to obtain the relationship between the perturbed vector
potentials along versus across the magnetic field,
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The force balance equation for protons is

= + ´E v B
e

m
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where = -F - ¶ ¶E A t and =  ´B A. For the per-
turbed field, we make use of a spectrum of kinetic Alfvén
waves. Then it is straightforward to show that the equation of
motion, namely, v tx ( ) , v ty ( ) , and v tz ( ) , are given by

= Wv v , 6x y1 0 1 ( )
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which can readily be integrated in time in a trivial manner, and
thus obtain vx(t), vy(t), and vz(t) explicitly. For the present
purpose, however, it is more advantageous to leave the solution
in terms of time derivatives. In (6), (7), and (8), r^J kn ( ) is the
Bessel function of the first kind of order n, W = eB m0 0 is the
proton gyro frequency and

l w
x f

= - + W
= + +^

k v n
k z k y n

,
, 9

n z z

n z

0 0 0

0 0 0 ( )

where f0 is initial phase of the gyrating particle and z y,0 0 is
initial position of the particle.
In the present investigation, we extend our recent work (Choi

et al. 2019) by employing a narrow band, quasi-monochro-
matic, Alfvén wave spectrum. In the Earth’s magnetosphere
whistler mode chorus or ion-cyclotron waves of a narrow band
are often observed, which are believed to play an important role
for diffusion of resonantly interacting electrons or protons
(Lyons 1974; Hikishima et al. 2009, 2010). In the literature the
energy distribution of such waves is modeled as a Gaussian
function in wave frequency and wavenumber (Lyons 1974). In
a similar vein, we deal with the diffusion of protons by kinetic
Alfvén waves with a Gaussian spectral distribution in kz and k⊥
having a peak wave intensity located at central perpendicular
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and parallel wavenumbers, k̂ 0 and kz0, respectively:
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where dkz and dk̂ represent the widths of the spectrum along
parallel and perpendicular directions, respectively. Note that
Equation (10) satisfies the symmetry property, =^k kA ,z1 0( )

- - ^k kA ,z1 0*( ). In the limit of d k 0z and d k̂ 0 one can
easily see that the above spectrum reduces to a pair of counter-
streaming monochromatic kinetic Alfvén waves in oblique
directions with respect to the ambient magnetic field. While
Equation (10) is quite general, for situations characterized by
d ^ ^k k 0 and dk kz z0 , the problem reduces to quasi-
monochromatic kinetic Alfvén waves. As we shall see later,
while the formulation is general, we focus on quasi-
monochromatic situations characterized by d ^ ^k k 0 and
dk kz z0 . It should be noted that our choice of Gaussian
spectrum is a highly idealized model. We adopt such a model
because a narrow Gaussian spectrum is a direct generalization
of the monochromatic model considered earlier by us (Choi
et al. 2019) so that a direct comparison can be made. For a
realistic turbulence spectrum in the heliosphere, of course, our
model is not appropriate. For a more realistic model spectrum
Matthaeus et al. (1990) consider a slab model, Shalchi &
Weinhorst (2009) adopt a 2D model spectrum that includes
inertial and energy range, to name just a couple. A recent
review by Shalchi (2020) discusses a number of realistic
turbulence spectra in the heliospheric environment.

3. Diffusion Coefficients

It is possible to derive the charged-particle transport equation
that includes momentum space diffusion as well as spatial (or
configurational space) diffusion, starting from the standard
Vlasov equation by transforming the variables to gyro centered
phase space, as shown by Schlickeiser (2002) and Shalchi
(2009). Transformation of the phase space variables between
real phase space and gyro-phase becomes very complicated
especially when the equation becomes nonlinear (Frieman &
Liu 1982). According to modern gyro-kinetic theory using Lie-
transform perturbation methods, its relation to real physical
variable is mathematically clear, but physically subtle (for
example, exact particle density and gyro-phase center density;
Brizard & Hahm 2007). However, when we consider a
homogeneous magnetic field or very local transport event, we
may follow the above-referenced works in order to derive the
charged-particle transport equation that describes momentum
and spatial diffusion. The purpose of the present paper is,
however, restricted to the issue of momentum space diffu-
sion only.

We calculate the velocity diffusion coefficients for protons
by making use of the Taylor–Green–Kubo (TGK) formalism
(Taylor 1922; Green 1951; Kubo 1957), which in the standard
form, applies to the spatial diffusion. The TGK spatial diffusion

coefficient is defined as
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is the velocity autocorrelation function, with the ensemble
average denoted by the bracket. Note that the TGK spatial
diffusion coefficient pertains to the charged-particle transport in
configuration space (Bieber et al. 1994; Matthaeus et al. 2003;
Shalchi & Weinhorst 2009; Shalchi 2010, 2020). In a
straightforward extension of this formalism to velocity space,
the corresponding TGK velocity space diffusion coefficient is
given (Smith & Kaufman 1978; Shalchi 2009, 2011) as
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Note that now the autocorrelation function involves the
acceleration, or the force exerted on each particle.

3.1. Diffusion along the Magnetic Field

Making use of Equation (8), the zz component of the
correlation function along the magnetic field is given as
follows:
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and assuming dk k 1z z0  and d^ ^k k 10  , i.e., quasi-
monochromatic kinetic Alfvén wave situation, we obtain
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The velocity dispersion á D ñvz 2( ) follows upon making use of
the autocorrelation function for parallel acceleration:
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This leads to the parallel diffusion coefficient for quasi-
monochromatic kinetic Alfvén waves,
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icular wavenumber, but consider a finite spectral width along
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Owing to the factor l l- t1 cos n n( ) , one may easily see that
the dominant contribution to the integrand comes from l ~ 0n .
On the other hand, for a sufficiently narrow kz spectrum with
dk 0z  , we can also see that the dominant contribution comes
from =n n0. In short, we may approximate

d»G n k v G n k v, , , , , 30z z z z n n1 0 0 1 0 0 0 , 0( ) ( ) ( )
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where dn n, 0 is the Kronecker delta. Note that =n 00

corresponds to the Landau resonance, while =n 10 and
=n 20 corresponds to first and second cyclotron harmonic

resonance. Consequently, the resonant part to G1 can be
integrated exactly to yield
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and the superscript designates the fact that kz0 and vz0 satisfy
the resonance condition (28). In a similar manner, we may also
obtain G2 for resonant protons,
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Combing Equations (23), (31), and (33), we arrive at the
diffusion coefficient for resonant protons as
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Figure 1 plots the parallel diffusion coefficient for protons at
various resonant harmonic mode number n0, versus normalized
time. For numerical purposes we chose normalized input
parameters corresponding to = =e m V cA 0.1, 0.1A1 , rW0
=c 0.1, =v c 0.05z0 , =k̂ 0.10 , and d =k 0.1z , with kz0

determined according to Equation (28). In Figure 1, panel (a)

shows the case of Landau resonance with =n 00 , panel (b)
displays the cyclotron resonance with =n 10 , and panel (c)
depicts the second harmonic cyclotron resonance with =n 20 .
Figure 1(a) shows that the diffusion coefficient for Landau
resonance peaks in an early time period but subsequently
decreases with the behavior µ -t 1O( ), which is characteristic of
normal diffusion. Note that the normal diffusion brought on by
Landau resonance is rather insignificant, the magnitude being
only on the order of ~ -10 10O( ). In contrast to the Landau
resonance, the cyclotron resonance leads to anomalous diffusion,
as shown in Figure 1(b) and Figure 1(c). The cyclotron-resonant
diffusion coefficients do not exhibitµ -t 1O( ) temporal behavior,
but instead, they asymptotically approach constant values for
 ¥t . This is representative of anomalous diffusion. Note that

the anomalous diffusion coefficient is higher in magnitude over
that of Landau resonance by a factor of 106O( ) to 108O( ). Also,
it is seen that the fundamental harmonic resonance leads to
higher magnitude when compared with the harmonic cyclotron
resonance.
For the case of monochromatic waves, we also obtained a

similar anomalous behavior associated with the diffusion
coefficient. In the limit of the monochromatic d k 0z case,
we have already obtained a diffusion coefficient in the z
direction (Choi et al. 2019) as
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At the resonance l = 0,n we obtain =W t 2n
2 . Thus, for

sufficiently long t, the diffusion coefficient behaves as
~D t tz

mono( ) , which grows linearly in time, which of course
is an anomalous behavior associated with diffusion. The
purpose of Choi et al. (2019), however, was to discuss
stochastic diffusion and acceleration of charged protons, for
which the focus was on nonresonant wave–particle interaction.
Consequently, in Choi et al. (2019) we considered protons far
from resonance. In contrast, the diffusion coefficient of protons
who are resonant with the quasi-monochromatic wave
approaches constant magnitude asymptotically. Note that each
quasi-monochromatic wave within the spectrum has a random
phase and resonant protons also acquire the same phase. The

Figure 1. The parallel diffusion coefficient D tz b,
Res( ), for (a) Landau resonance =n 00 , (b) cyclotron resonance =n 10 , and (c) harmonic cyclotron resonance =n 20 ,

versus time.
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ensemble average process for resonant protons phase mixes
such motion and the overall diffusion coefficient becomes
constant for a large time as
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This shows that even for a narrow spectrum of dkz in the z
direction with monochromatic wavenumber in perpendicular
direction, the existence of broad spectrum changes the
characteristics of diffusion in a fundamental way.

In Figure 2 we plot the parallel diffusion coefficient versus
normalized gyroradius, for =n 10 , and for W t600 0 , for which
the diffusion coefficient is at near saturation magnitude. One
can see that in the limit of infinitesimal gyroradius, the
diffusion coefficient tends to zero, while for finite gyroradius,
the saturated diffusion coefficient becomes finite and increases
monotonically as a function of rk̂ 0 . This indicates that the
finite Larmor radius effect leads to enhanced diffusion of
protons along the parallel direction. Since r^D kz b,

Res
0( ) is

inversely proportional to dkz, in the limit of monochromatic
waves, the diffusion coefficient diverges while for the quasi-
monochromatic spectrum, they converge to finite values.

3.2. Diffusion across the Magnetic Field

The proton gyromotion becomes important for perpendicular
diffusion, and as shown by Smith & Kaufman (1978), the so-
called “apparent diffusion” arises where diffusion coefficient
decrease as -O t 1( ). The diffusion coefficient is given by
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We may obtain specific expressions for perpendicular forces—
for detailed intermediate steps, see the Appendix. The result is
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Defining the Dawson-F function as DF, we have
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Here we used the property that = -Z iZ iZerfi erf( ) ( ), where
erf is the error function, and erfi is the imaginary error
function.
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and the correlation functions tCx ( ) and tCy ( ) can be obtained
as follows:
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Figure 2. The parallel diffusion coefficient r^D kz b,
Res

0( ) for =n 10 versus
normalized gyroradius, computed for dimensionless time W t600 0 , for which the
diffusion coefficient has attained the asymptotically steady state value.
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We may calculate tb t-
+ +e D D0i n ( ) ( ) and tb t-

- -e D D0i n ( ) ( ).
Take, for instance,
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where we have made use of b = -W+n 1 00 , from which we have
dw= W- = +D D0 n n F1 00( )∣ [ ( )]. We may implement similar

procedures for tb t-
+ +e D D0i n ( ) ( ) as well.

At this point, we assume that vz0 satisfies a specific
resonance condition,
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Then, for such a value of vz0, we have
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where the resonance occurs at =n n0. Taking the zeroth-order
gyromotion into account as well, we arrive at
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It can be shown that tCx ( ) is the same as tCy ( ). The derivation
is omitted. As a consequence, for a sufficiently long time, the

diffusion coefficient in the perpendicular direction is given by
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In this equation, one can see that the first term represents an
“apparent” diffusion by gyromotion (Smith & Kaufman 1978),
while the second term is anomalous diffusion by quasi-
monochromatic kinetic Alfvén wave. In arriving at
Equation (50), we have assumed that a single perpendicular
wavenumber dominates the k̂ integral and dk kz z0 or

dwW 10  as was done for the parallel diffusion. This
indicates that the Dawson-F function with a large argument
leads to

dw
W

D 1. 51F ⎜ ⎟⎛
⎝

⎞
⎠ ( )

Owing to this term in the perpendicular direction, the
anomalous or second term of Equation (50) is negligibly small
compared to first term. Comparing a such feature with the
parallel diffusion coefficient in (36), one may readily see that in
perpendicular direction, the anomalous term is negligible. One
may conclude that for protons near resonance, anomalous
diffusion across the magnetic field can be ignored.
In Figure 3 we show the perpendicular diffusion coefficient

of resonant protons D̂ b,
Res given by Equation (50) for the time t.

Upon comparison with Figure 1, which shows the parallel
diffusion coefficient, it is shown that the perpendicular
diffusion coefficient is generally higher in magnitude. But this
diffusion is due to the simple gyromotion of the proton and
anomalous diffusion of resonant protons does not show up due
to its small magnitude.

Figure 3. The perpendicular diffusion coefficient D̂ t .b,
Res( )
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4. Summary and Conclusions

In the present paper, we have calculated the velocity
diffusion coefficients for protons in both parallel and perpend-
icular directions, assuming the protons are immersed in an
ambient magnetic field plus quasi-monochromatic kinetic
Alfvén wave field. It is found that for the protons moving
coherently with the waves, they exhibit an unexpected behavior
of anomalous diffusion in the parallel direction. While normal
diffusion approaches zero for a sufficiently long time, the
anomalous part of the parallel diffusion coefficient saturates to
a finite level asymptotically. The anomalous parallel diffusion
has a close connection to perpendicular proton motion in that
the saturated parallel diffusion coefficient depends on the finite
gyroradius. This is evident from the fact that the fastest
anomalous parallel diffusion occurs for protons resonant with
the =n 10 cyclotron mode (Figure 1), but is absent for the

=n 00 Landau resonant case, for which no perpendicular
motion is included. This verifies the interpretation that the
anomalous parallel diffusion is intimately related to the
perpendicular proton motion. In the customary linear or
quasilinear diffusion process, the particles are assumed to
execute the unperturbed orbit, hence, finite gyroradius terms
induced by the waves, namely, terms associated with r^J kn ( ),
are precluded.

The physical origin of the anomalous parallel diffusion can
be understood from the force Equation (8). In the vicinity of the
resonance l » 0n or l » 0n 1 , one can see that a proton in
parallel direction experiences a constant force, which is
independent of time. This in turn leads to the asymptotically
constant terms in the autocorrelation tCz ( ), as can be easily
seen from 19 and 20. Consequently, the diffusion coefficient
Dz b, increases in time until is asymptotically approaches the
saturation level (Figure 2). A similar anomalous term is also
present in the perpendicular diffusion coefficient, but as shown
by Equation (50), it is associated with a small factor

dwWDF 0( ), which for narrow spectrum, becomes vanishingly
small as dw W0 approaches zero. Thus, the anomalous
diffusion in the perpendicular direction is negligibly small.

The present work is based on a Gaussian form kinetic Alfvén
wave model intended to directly extend our previous work
based on a monochromatic kinetic Alfvén wave (Choi et al.
2019). We find the following differences and new features. In
the monochromatic case, we cannot calculate the diffusion
coefficients for resonant particles since the resonant particles
suffer from a constant force by the wave. But when the wave
becomes quasi-monochromatic, different wavenumbers imply
different forces with random phase to the particles such that it
leads to anomalous diffusion. Another important fact is that for
resonant particles, the diffusion coefficient across the magnetic
field is an order of magnitude smaller compared to the parallel
diffusion. In other words, the main anomalous diffusion occurs
along the magnetic field rather than across the magnetic field.
This was not addressed in Choi et al. (2019). The potential
importance of the present findings in the context of
astrophysics is as follows. In most charged-particle acceleration
mechanisms, the energization takes place in directions
perpendicular to the ambient magnetic field vector. For
instance, shock-related energization processes involve predo-
minant perpendicular acceleration. Standard resonant and
stochastic heating by kinetic Alfvén waves discussed in the

context of coronal heating and solar wind acceleration also
involve predominant perpendicular heating. Quasi-isotropic
energy distribution of energetic particles come about as a result
of slow pitch-angle diffusion. In the absence of large-scale
parallel electric field, direct acceleration along the ambient
magnetic field vector is generally not available. The present
finding that under certain conditions, charged particles may
undergo anomalous parallel diffusion implies a new parallel
energization/heating mechanism. Further investigations of the
ramifications of the present findings, including demonstrations
by numerical simulations is called for, but such a task is
beyond the scope of the present work.
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Appendix
Intermediate Steps

From the force balance Equation (7), we have
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Returning to the original force balance equation, we have

ò ò h= -W +

´ w
-¥

¥

-¥

¥

^ ^
-

^

v t v
ie

m
dk

k k k k e dk, A , , A6

y x z

z z
i t

1 0 1

1
k x 0

( )

( ) ( ) ( )( · )



In order to carry out the integral in Equation (A6), we substitute
Equation (10) in (A6), which results in the following
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expressions for the integral of relevance:
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Upon making use of the Bessel function property,
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Upon defining x x= +t 0, where x = - -z v Vz As0 0 0( ), the
function xG ( ) expressed in terms of transformed time variable
ξ is given by its derivative,
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force balance equation, we have
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The solution to Equation (A11) is represented as
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Here, DF(Z) is defined as
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and we have made use of the property =D Z D ZF F* *( ) ( ). Note
that DF(Z) is also known as the Dawson function (or Dawson’s
integral).
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