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ABSTRACT

The properties of the collective subluminal electrostatic fluctuations in isotropic plasmas are investigated using the covariant kinetic theory of
linear fluctuations based on the correct momentum-velocity relation. The covariant theory correctly accounts for the differences in subluminal
and superluminal fluctuations in contrast to the non-covariant theory. The general formalism developed here is valid in unmagnetized plasmas
and in magnetized plasmas for wavevectors of electrostatic waves parallel to the direction of the uniform magnetic field. Of particular interest
are potential differences between the covariant and the non-covariant approach and the consequences of these differences in modifying obser-
vational predictions. For thermal particle distributions of protons and electrons with nonrelativistic equal temperatures, the covariant and non-
covariant theories yield exactly the same dispersion function and relation for weakly damped electrostatic waves. Also, the quasi-equilibrium
wavenumber spectrum of collective thermal electrostatic noise agrees in both theories apart from the important wavenumber restriction
|k| > k. = w,,/c. While the non-covariant analysis also yields eigenmode fluctuations at small wavenumbers with superluminal phase speeds,
the correct covariant analysis indicates that subluminal electrostatic fluctuations are only generated at wavenumbers |k| > k. by spontaneous
emission of the plasma particles. As a consequence, the nonrelativistic thermal electrostatic noise wavenumber spectrum is limited to the wave-
number range 0, < |k| < kpay. Within a linear fluctuation theory, superluminal electrostatic noise cannot be generated.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0049643

I. INTRODUCTION

During the last few years, tremendous progress with the analysis
of small-amplitude fluctuations in space plasmas has been achieved
(for a detailed review see the monograph'). The system of the linear-
ized and Fourier-Laplace transformed Klimontovich and Maxwell
equations provides general expressions for the electromagnetic fluctua-
tion spectra (electric and magnetic field, charge and current densities)
from uncorrelated plasma particles in unmagnetized” and magne-
tized” ~ plasmas for arbitrary complex frequencies w = wg + iI".

Using the correct momentum-velocity relation from the special
theory of relativity,

P = myEv, E=/1+ (p*/m2c?), (1)

between particle momentum p and particle velocity ¥ with the particle
Lorentz factor E, the theory accounts for the difference in subluminal
[with phase velocities (g /k) less than the speed of light] and superlu-
minal [with phase velocities (wg/k) greater than the speed of light]
fluctuations. Hereafter, we refer to this approach as the covariant
approach as we use the correct velocity-momentum relation from the
special theory of relativity.

This difference is missing when nonrelativistic kinetic equations
for the particles, with E=1 in Eq. (1), are used—hereafter referred to
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as the non-covariant approach—as in existing studies of electrostastic
fluctuations in the literature (see Refs. 6 and 7 and references therein).
It is the purpose of the present manuscript to investigate the properties
of subluminal electrostatic eigenmode fluctuations with the correct
momentum-velocity relation. In particular, we are interested in estab-
lishing any differences between the covariant and the non-covariant
approach, treated separately in Appendix, and how these differences
quantitatively modify observational predictions.

The analysis presented here will be useful for further studies of
this series addressing the generation of electrostatic noise in the inter-
planetary medium by velocity anisotropic strahl plasma distributions
injected into an isotropic thermal background plasma. The recent
observations from the Helios and Parker Solar Probe missions”” are
showing that the parallel component of the electron strahl temperature
is independent of radial distance from the Sun at values of about
100 eV. Even in the absence of additional mechanisms of electron
acceleration, such high temperature population will exhibit a small
fraction of electrons moving at ~5 percent of the speed of light.
Although the signal of electrostatic fluctuations observed by the Parker
Solar Probe so far does not appear to be crucially affected by relativistic
effects,'’ the well-established theoretical results'"'* claim that a very
small fraction of fast suprathermal electrons could notably modify the
observed power spectra in the vicinity of the Langmuir resonance and
be potentially visible during future Parker Solar Probe encounters. It is
important to emphasize that even for nonrelativistic particle velocities,
a relativistic dispersion theory is necessary as the phase speeds of the
electrostatic fluctuations can reach the speed of light at small
wavenumbers.

The organization of this manuscript is as follows: in Sec. II, we
start with the general covariant expressions for the form factor and the
dispersion function for adopted gyrotropic particle distribution func-
tions which determine the fluctuation spectrum of electrostatic waves.
We then simplify these general expressions for isotropic distribution
functions and the limit of weakly damped fluctuations. In Sec. I1I, we
adopt thermal isotropic distribution functions to derive the dispersion
functions and the weakly damped thermal electrostatic noise (TEN)
for arbitrary values of the temperature. The general electrostatic eigen-
mode is investigated in Sec. IV by calculating the spontaneous emis-
sion coefficient of electrostatic fluctuations as input quantity for the
kinetic equation for the intensity of collective electrostatic eigenmodes.
Then for thermal plasmas, the weakly damped thermal electrostatic
noise from the covariant fluctuation theory is determined again for
arbitrary temperature values. In Secs. V and VI, we apply our results
to the case of a thermal electron—proton plasma of equal nonrelativis-
tic temperature and compare them with the corresponding non-
covariant analysis treated in Appendix. We conclude with Sec. VIL.

Il. BASIC EQUATIONS
A. Electrostatic waves

The electric fluctuation spectrum of longitudinal electrostatic

scitation.org/journal/php
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K (k.z) = — _pa %

Hks) = 2 |of? » = k|

m, 00 00 V2F,(py,
S U apy [ ap, P erp2))
—00 0
(3)
in terms of the plasma frequency ; , = 4ne’no/ma, k = |k|, and the
longitudinal dispersion function,

2nw? | (® OF,
ko) =1+ "’“J d J P T
L(k, ) Z AL W I8 e s

(4)

holding both for any gyrotropic plasma particle distribution functions
Fu(p)|, p1) and arbitrary complex frequency o = wpg + 1" with g
=RwandI' = Sw

The two-dimensional momentum integrals in Eqs. (3) and (4)
cannot be done separately as the integrand contains the plasma parti-

VL (@ + ) /me) in oy = py/ ()

In order to decouple the two integrals, it is convenient'” to transform
to the new momentum variables of integration,

cle Lorentz factor E =

P+
y=pi/(mae), E=4[14+7 5 ©
implying
OFa(pysp1) _ (mac) ! | 2EalEed) 7 OFalE,)
ap” ¢ 8}/ E OE ’ (6)
8Fa(PH7PL) \/Ez_l_ 8F Ey
ap. OE

The electrostatic form factor (3) and the longitudinal dispersion func-
tion (4) then become

3
Kilk2) = 2n2\z| kc Za:w ma (mac)

00 VE*—1 2
% J dEs |:J dyy Fa(E7)’):| (7)
1 _VE1 y—Ez

and

Ar(k,o) —lf—pra MyC)

XJ“dEEJVEz’ iy OFu(E.y)  yOFa(E.y)
1 ~VEr -1 y_E_w ay E OE
kc

2n 2 3/
=1- @3 ,(mac)
Zk2c2 £ P

waves in unmagnetized plasma, and in magnetized plasmas with wave « JOC dE EJ S dy vy [OF.(E.y) 42 OF,(E,y)
vectors parallel to the direction of the ordered magnetic field, is given 1 vE y—Ez % E OE

Y_ 13,14 (8)

(G2 (k, o) = Ki(k,z2) .y @) in terms of the complex phase speed
Ak, o)] " o T

. . z=R+1U=—, R=—, I=—. 9)

with the electrostatic form factor ke ke ke
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B. Isotropic distribution functions

An important simplification of the analysis results if only isotro-
pic particle distribution functions F, (E) with OF,(E)/dy = 0 are con-
sidered. In this case, Egs. (7) and (8) reduce to

Ki(k,z) = e (mac)’ " AEF,(E)S [ (E 10
L(k,z) = d WL JE)S[Y(E,2)]  (10)

and

2 , S [* . OF,(E)
Ar(k,z) =1 EEED @, o(Mac) Jl dE E Y(E,z) (11)

with the same integral

VEE-1 2 +VE—1 2 2.2 2,2
—E E
W(E,z) = [ 2~ j oL
VBT y—Ez VB y—Ez
+VE -1 d}’
=2EVE? — 1z + E*Z? J —
—vP-1y —Ez
= 2EVE? — 1z — E?Z*J(E, 2) (12)

involving the complex logarithmic function
VI g Iy
J(.2) = JERD = | -

_1-E—2 t—R—1I '
(13)

_iEit—z

Accounting for the correct analytical continuation in the negative
complex frequency plane I < 0 provides'®

2
1 V1—E2+R I?
](E7R7I):—ll’l( - )2+
2 (VI—E?-R) +P
( V1—E2—-R V1—E2+R
—1 arctanf —_—

-+ arctan
1

+760[1 — R|® [E —(1— Rz)’l/z} ) (14)

with the Heaviside step function ® and ¢=0,1,2 for
I1>0,=0,<0.
The integral (12) yields with

S(W(E, z)] = 2EVE* — 13[2] — B2 (2 (E, 2)], (15)
for the form factor ( 10)

Ki(k,z) = & 32 M,c) (J[z L dEF,(E)EVE? — 1

7T2|Z|

— % JOO dEF,(E)E*3[2*J (E, z)]) , (16)

1

where we use wp My = 0>

M. Likewise, the isotropic dispersion
function (11) becomes

C. Weakly damped fluctuations

For weakly damped fluctuations with |I| < |R|, which needs to
be checked a posteriori (done here in Sec. VI D), the complex logarith-
mic function (14) is approximated by its limit I — 0~ leading to

J(E,R) = Jo(E,R) — m®(E — E.(R))®(1 — R?), (18)

with its real part
\/17E2+R 1, (R+VIZE2)
J(ER) =In| ———=—|=-In ——————5 (19
VitE 2 (R-VI—E?)
and
E(R) = ——— 20)
ViR

We note that the imaginary part in the function (18) only occurs for
subluminal (R? < 1) fluctuations.
The form factor (16) for weakly damped fluctuations then is
given by
KL(k, R) >~ I(L(k7 R7 1= 0)
_ @, M’ O(1 — R?)

iy 2 ) J;dEFAE)Eﬁ 1)

a
1-R2

whereas the dispersion relation (17) becomes

/\L(k7 R) =~ AL(k R I= 0)
kzczzwpa Mac)
X {ZJ dEEVE? — laIE;I(EE)
1

—RJ dEEZaF( )]O(E R) + 1mRO(1 — R?)
>~ zaF( )
xj | dEEP— } (22)

1-R%

The eigenmode dispersion relation of weakly damped electrostatic
oscillations is then given by

RAL(k,R,I= 0):A(k,R):
A(k,R) —lsz Zpra MyC)
OF,(E) 2 OF4(E)
x{zjl dEE\/EZfIWfRJ dEE* =2 2 o(E.R)|

1
(23)

whereas the damping rate is obtained by the standard Taylor expan-
sion'” of the dispersion function near I =0 as

SAL(k,R,I = 0)

I(k) = - >LLS % =)
o OF,(E ORAL (k.RI=0)
Arkz) =1- 5 ZZw,,a myc) {2J dEEVE? — 1% 7L8R
1 2
_ 2m*RO(1 - R OF,(E
23Fa( ) = nkzzﬁAkR pru M,¢) J 1 dEEZ_(;I(S ) (24)
1
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Both the form factor (21) and the damping rate (24) vanish for super-
luminal fluctuations.

I1l. THERMAL ISOTROPIC DISTRIBUTION FUNCTION
For the thermal distribution function

pae et
Fo(E) = ——5—— (25)
4n(mac) K2(Ha)
with

2

MuC
= 26
Ha =T (26)

and K, denoting the modified Bessel function of order 2, we notice
that

OF, (E)
OF

The isotropic form factor (16) then is given by

= —u,F,(E). (27)

Ky (k, dEEVE? — le *E
1(k,z) = 47t3|z| (ke) 3 ZKZ (\f[z L e
1
’EJ dE Ee " [22) (E, z)]) (38)
1
With the integral

J dEEVE? — 1e "€ = —831 dEVE? — 1e1E
1 u

_ Ko ()

—

K
_ 7&{ l(ﬂ)} ’ (29)
O n I
the thermal form factor (28) reduces to
2 mec?
Ki(k,z) = —2 " (Gfz] — '
1(k,2) 483 |z (ke)? (\y[ ] Z:ZKZ(,%)
x J dEE?e MES [zZJ(E.z)])
1
pe
e +
4n3|z| ke)® ( i ZZKZ
0w, (g ) 2
X L dE Ok S[ZJ(E2)] ), (30)
where we introduce the function
o© E> 2E 2
wy(u,, E) = J dxx’e e = et | — = = (31)
E Ha Ky MG
which obviously obeys
aWZ(.umE) _ —Ezef““E. (32)

OE

Likewise, with Egs. (25) and (27) the dispersion function (17) reduces
to

scitation.org/journal/php

ALk, z) kz zz Pa’ua U dEEVE? — 1e7HE
C

KZ .uu
—gj dE E*e "E] (E, z)}. (33)
1

With the integral (29) and the function (31) we obtain for the thermal
dispersion function (33)

1(k,2) _1+Z ]fzaza (2 1),

_ U, 2 —u,E 34
Lz ) =1 ZKZ(%)J dEE*e "] (E, z) (34)

_ Uy awl(:uavE)

S W e

A. Weakly damped fluctuations
For weakly damped fluctuations with |I| < |R| the thermal elec-
trostatic form factor (30) reduces to

awz(:uav )(\ 2
R2 ke)® Xa:Kz (1a) J JE SIRIER)

2O(1 — R? 00
_ m“m ( )Z Ha J g 072 (ta E)
(2m)’ (ke)® — Ka(ia) Jew) OF

1
aW. a
_ wIZ,AemeCZG(l — R?) a2 (,u N RZ)
872 (kc)’ - Ky (1) 7
where we used the imaginary part of the function (18).

Likewise, inserting the function (18) the thermal dispersion func-
tion (34) becomes

(35)

nR@(l — RZ) Z UJ[Z)'aﬂiWZ(‘Um EC)

AL(k,R,I=0) = A(k,R) + 2k2c2 Ky (i) 7
A(k,R) = RAL(k,R,T =0) = 1 +Z lfz“z“ o(R, 1),
(36)
with
. R BWZ(HWE)
Lo(R ) = 1+ ZKZ(%)[ op  PER- G

The eigenmode dispersion relation of weakly damped electrostatic
oscillations is given by
RAL(k,R, ] =0) = A(k,R) =0, (38)

whereas the associated damping rate is

) — - SAKRI=0) _ 7RO(1-R) Z @) abaW2 (g, Ec)
= 09?1\(/55-,1:0) - ke Z[()A kR} Ky (1,)

(39)
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B. Weakly damped thermal electrostatic noise
Consequently, according to Eq. (2) the weakly damped thermal

electrostatic noise (TEN) from covariant fluctuation theory then is

given by

K (k,R) - w‘f)’eme&@(l - R?)

Ak R)[* 872 (ke)*|A (K, R)[?

1
HaW2 (Hm ﬂ)
a KZ (:uu)

a) MeCO(1 — R

e
87r2(kc |A(k,R)? ZKZ (1a)
1 2 2
X { + +uz]’ (40)

(OE*) (k,R) =

X

1R2

1-R -y V/1-R

where we inserted Egs. (35) and (31). The form (40) is particularly
useful for non-collective fluctuations when the denominator A(k, R)
does not become close to zero. However, most of the fluctuation inten-
sities occur for collective modes, defined by A(k,R) = 0, where the
earlier approach by Yoon et al.'” has to be taken.

IV. ELECTROSTATIC EIGENMODE

According to Eq. (38), the electrostatic eigenmode obeys the dis-
persion relation

A(k7 R) = §}%AL(IQR) =0, (41)

providing R = R(k) or wg = wg(k). The fluctuating electric field is of
the form

(0E),, = (0E)6(w — w(k)), (42)

k.o

yielding for the electrostatic wave intensity

S(k,1) = [do [ do (88) (0B exp [=1(00 = )]
_ <6E2>k€2r<k)t, (43)

so that as a consequence of induced emission (for positive I'(k)) or
induced absorption [for negative I'(k)]

[%} =20k, 1) (44)

A. Spontaneous emission coefficient

To account for spontaneous wave emission, we rewrite Eq. (2) as
in Refs. 4 and 18

Ky (k,R)
A (k)]

A (k o+ ig) (OE*)(k,R) = (45)
where we have introduced the slow adiabatic time derivative 9/Jt on
the left-hand side."* Performing the Taylor expansion to first order of
the left-hand side and of the denominator of the right-hand side of the
last equation yields

scitation.org/journal/php

Atk (k) (587 1 ) + 120 2) 0
Ky (k,R)
ML), o)

For eigenmodes according to Eq. (41), we use A(k, wr(k))
= A"(k, wr(k)) = 0 leaving with Egs. (42)-(43)

(0E?) (k, R)

(46)
Ak, w(k)) +

%a/\a(i;w) 88(8]? Vito—on(h) = OA(k wI;L(k’ 5 '
L]
(47)
aS(ak[ Lot = on(k) - A (k ;Z)IIEM > 1
PR o onfi)

Integrating Eq. (48) over all frequencies provides with the residuum
theorem for the spontaneous emission coefficient of thermal electro-
static waves,
a(k ) = {<9S(k7 t)]  4nK(k,R(k))  4nk*cKy(k, R(k))
’ ot lgont | OA(k, wp) |? OA(k,R) |?
6wR OR

(49)

B. Kinetic equation for the intensity of collective
electrostatic eigenmodes

Combining spontaneous emission [from Eq. (49)] and induced
emission/absorption [from Eq. (44)], the kinetic equation for the time
evolution of electrostatic waves reads

OS(k,t) _ [M} N {as(k, t)}
spont ind

ot ot ot
= o(k,t) + 2T (k, t)S(k, t). (50)

In general, both the spontaneous emission coefficient o(k, t) and the
growth rate I'(k, t) can depend on time.

For steady growth rates I'(k) and steady spontaneous emission
coefficients o(k), Eq. (50) provides the solution

_ 21 (k) (t—to) a(k) 20(k) (t—to) _
S(k, t) = So(k)e +2r(k)[e 1, (51)

using the initial condition S(k, ty) = So(k).

In isotropic unmagnetized plasmas (and in magnetized plas-
mas with parallel wave vectors), the imaginary part of the eigen-
mode frequency I'(k) < 0 is always negative, so that no growing
electrostatic eigenmode exists.”' In nonrelativistic plasma kinetic
theory this result is known as Newcomb-Gardner theorem.'”*’ In
this case, the solution (51) for large times t — t, > [2['(k)|™"
approaches the quasi-equilibrium spectrum,
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afk) ok
2I0(k) 2kel (k)
2nkcKy, (k, R(k))

1R I

_ 27mkeKy (k,R(k))

A (k, R) PALRR)

Skt — tg > 20(k)| ") ~ Sy (k) = —

(52)
where we inserted the spontaneous emission coefficient (49) and (24).

C. Thermal plasmas

In the case of thermal plasmas, we use Egs. (35), (36), and (39) in
Eg. (52) to obtain for the quasi-equilibrium spectrum of collective TEN,

HaW2 (ﬂmﬁ)
2 ,mO(1 — R?) za:

KZ(:ua)
Suo (k) = 2 . (53)
ZnZR% D} bW </‘a’ m—sz)
- Ka(p,)

D. Lower wavenumber limit

The thermal form factor K1 (k, R(k)) given in Eq. (35), determin-
ing the spontaneous emission coefficient (49) and the quasi-
equilibrium spectrum of collective TEN (53), has non-zero values only
for subluminal fluctuations. It has been shown before”” that sublumi-
nal solutions to the thermal electrostatic dispersion relation exist only
for wavenumbers |k| > k. with the critical wavenumber

1/2
k() = |5 Zpa 2Kolita) + ek (4)
(1) =
¢ | a c :uuKZ(:uu)
fi 1
(o) e
~ (54)
2
\/Z ‘“‘ﬂ“ ——00772) for p, < 1.

Consequently, the longitudinal collective fluctuations from the thermal elec-
trostatic eigenmode can only be generated by the spontaneous emission of
thermal plasma particles at wavenumbers greater than k. Mathematically,
the subluminality condition ®(1 — R?) corresponds to ®(|k| — k), so
that the quasi-equilibrium spectrum (53) of collective TEN reads

HaW2 (H(u ﬁ)

? m.c*O(|k| — k. Ks(u,
sy e k) S TEG)
R I R) wp,a“aWZ(““’ﬁ)
OR
a KZ(:ua)

V. NONRELATIVISTIC ELECTRON-PROTON PLASMA

As application, we consider a thermal electron—proton plasma
of equal nonrelativistic temperature T, = T, = Ty, so that

scitation.org/journal/php

,up = /& =1836p, > 1 with the electron-proton mass ratio
= m,/m, = 1/1836 and p, = m.c*/(kgTy) > 1. Then the func-
thn (31) is well approximated as

eix/fikz

>SLE)~—— 56
T oo

so that the ratio in Eq. (55) becomes

HaW2 (/'Lm ﬁ)
Ka(u,) 1
e Y (57)
Wy, Mg W2 <Hmﬁ) Dp.eHe
a K2 (:ua)

With kc(p, > 1) ~ w,./c from Eq. (54), the quasi-equilibrium fluc-
tuation spectrum (55) for collective weakly damped fluctuations then
becomes

m,O(k| — wpe/c)  ksTo®(k| — w,,./c)
Soo (k) = i PN ER) o OAGRR) (58)
¢ OR OR

It remains to calculate the real part of the phase speed as a function of
wavenumber R(x) from solving the dispersion relation (41) as well as
ON"(k,R)/OR = OA(k,R)/OR.

In their Sec. IV, Touil et al.”” have demonstrated that for nonrela-
tivistic plasma temperatures the longitudinal thermal dispersion func-
tion (34) is well approximated to the well-known textbook expression,

2
A(kz)~1-%" kj);;z 7 (ﬂi) : (59)

in terms of the derivative of the Fried-Conte plasma dispersion
function™

2

Z(x) = nfl/zj dt S

-, (60)

and the normalized (in units of ¢) thermal velocity

2kgT,
\f Vs b= b= Vb o

in an equal temperature plasma. We note that copp / ﬁp = wp’e /B2, so
that Eq. (59) reads
k22 ﬁZ Z ( )

-1 ﬁ;{z {z' (ﬁi) n ( \éﬁ)} (62)

in terms of the normalized wavenumber

ke
Wp.e

Ap(k,z) ~1—

K= (63)

The normalization (63) implies for the real part of the phase speed
R = f /i with the normalized frequency f = wg/®,. In terms of the
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normalized wavenumber (63), the quasi-equilibrium fluctuation spec-
trum (58) for collective weakly damped fluctuations from covariant
fluctuation theory reads

- kBT()@(‘K‘ — 1)
OR
For weakly damped fluctuations, Eq. (62) provides
A(k,R) = RA(k,R,I = 0)
1 R \]
=1-——|RZ + RZ' : 65
poe (ﬁ ) (f ﬁe) )
Consequently,
OA(K,R) 1 ,,(R) ( R )
— = RZ . (66)
OR Kzﬁ |: ﬁe \/_ \/_,Be

With the nonrelativistic temperature limits (1, > 1) of the functions
(31) and (A4), the damping rate I(x) from Eq. (39) becomes

n RuO(|k| -~ 1)

106) = =3 e {%} o {_“e (ﬁ - lﬂ

2/ARO(|x| — 1)
(1 ey | AR

ex"[ 7 (= 1>]

(67)
where we inserted y, = 2/f2.

A. Comparison with non-covariant analysis

Until here, all results are derived by using the correct covariant
approach. In Appendix, we derive the corresponding results from the
non-covariant approach based on the strictly nonrelativistic analysis.
In comparison, we note:

(1). As Eq. (A16) agrees exactly with Eq. (62), we find that for non-
relativistic thermal plasmas covariant and non-covariant theo-
ries yield exactly the same dispersion function and dispersion
relation for weakly damped electrostatic waves.

(2). Concerning the quasi-equilibrium spectrum of collective TEN, we
note that the non-covariant spectrum (A25) agrees with the covari-
ant spectrum (64) apart from the important wavenumber restric-
tion O(|x| —1). Whereas the non-covariant analysis vyields
eigenmode fluctuations also at small wavenumbers with superlumi-
nal phase speeds, the correct covariant analysis indicates that sublu-
minal electrostatic fluctuations are only generated at wavenumbers
|ic| > 1, corresponding to wavenumbers |k| > k. = wp./c in a
nonrelativistic thermal electron—proton plasma.

(3). Concerning the damping rates, we note that the non-covariant
rate from Eq. (A22), listed here again as

]
2n'/?Re %

scitation.org/journal/php

agrees rather well with the covariant damping rate (67) apart
from the important wavenumber restriction ®(|x| — 1). Only
for values of |R| close to unity, the covariant damping rate dif-
fers from the non-covariant rate.

B. Solution of the nonrelativistic dispersion relation

As noted, the covariant and non-covariant approaches lead to the
same nonrelativistic dispersion relation A(x, R) = 0, which according
to Eq. (62) yields

(Bor)? = (kin)® = RZ' ( ﬁe) +RZ ( \/ljﬁe) (69)

where we introduce the Debye length

ip=tie B [kl g [ TR )
Wpe  Wpe 4me*n,  \n./em 3

In terms of the variable

R WR
x=— = : 71
B~ ko =
the dispersion relation (69) can be written in the form
(kip)* = (B,x)* = RZ'(x) + RZ' (43x). (72)

With the numerically calculated Fried-Conte plasma dispersion func-
tion, we plot the dispersion relation (72) in Fig. 1. As the wavenumber
k and the normalized phase speed x are real, solutions of the dispersion
relation (72) are only possible if the right-hand side of Eq. (72) is posi-
tive. According to Fig. 1, this occurs for x > 0.924, corresponding to
IR| > 0.924f, or

|wg| > 0.924|k|vg, . (73)

Moreover, Fig. 1 indicates that the right-hand side of Eq. (72) is always
smaller than 0.56. Consequently, collective longitudinal waves in an

0 A

4 ‘ ‘ ‘ ‘
4 2 0 2 4 6

logyy()

I(x) = 5 am/\(,c R)’ (68) FIG. 1. Numerically solved dispersion relation (72) of longitudinal waves in an
ﬁ 2 T OR equal-temperature  thermal  electron—proton  plasma  with  nonrelativistic
temperatures.
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equal-temperature thermal nonrelativistic electron—proton plasma
only exist at wavenumbers between

0 < |kip| = |KB,| < +/0.56 = 0.75, (74)
indicating the existence of the maximum wavenumber

0.75 0.75

Kmax - ﬁe bl max — /'Le (75)
We emphasize that the lower limit on x > 0.928 and the upper wave-
number limit k& < K,y result from the property of the real part of the
Fried-Conte plasma dispersion function RZ’'(x). We are not aware
that the existence of these limits has been realized before.

As solutions to the dispersion relation are only possible for
x> 0.924, we need an accurate polynomial approximation of the real
part of the Fried—-Conte plasma dispersion function for these values of
x, in order to investigate analytically the dispersion relation (72).
These approximations are discussed next.

C. Fried-Conte plasma dispersion function
The Fried-Conte plasma dispersion function obeys the relation
1+ xZ(x) = =27/ (x). (76)

For the real part of the function Z’(x), one finds in the literature™ the
polynomial approximations,

—2(1 —2x*) for|x| < 1.03,
RZ (x) ~< 1 3 77
() = (1+-=] for|x| > 1.03. 77
x? 2x?

In Fig. 2, the numerically calculated and the standard polynomial
approximations of the real part of RZ'(x) are shown. While the poly-
nomial approximations are very accurate at very small and very large

exact

standard approx. =———

improved approx.

FIG. 2. Comparison of the numerically calculated (blue curve) real part of RZ’(x)
with the standard polynomial approximations (77) (red curves) and the improved
polynomial approximations (78) (black curve) for real arguments x. As only values
of x> 0.924 are of interest the improved approximation is significantly better than
the standard approximation.

scitation.org/journal/php

values of the real argument x, they are too inaccurate for values of x
near unity.

As we need good approximations for values of x > 0.924, we use
instead of Eq. (77) the improved approximation,

34247
RZ(x) 0 — 78
() 5.1 4+ 3.4x% + 2x* (78)

shown as black curve in Fig. 2. This approximation is indeed more
accurate for values of x> 0.924. The improved approximation (78)
implies

8x3(x? + 3)
(5.1 +3.4x2 + 2x4)*

RZ"(x) ~ — (79)

VI. RESULTS
A. Subluminal dispersion relation

With the improved approximation (78), we obtain for the disper-
sion relation (72),

(B = — 2 3 +2(43%)°
51 434x2 4 2x* 5.1 4 3.4(43x)" 4 2(43x)*
3 4 2x2 14 3 4 2x%

(80)

T 511 3.4x2 £ 2xt | 2x2 5.1+ 3.4x2 1 2x4)

where due to the smallness of ¢ = 1/1836, we ignore the proton con-
tribution completely. Setting

y = 2x27 o= (Kﬁe)z € [ﬁ§7056]7 (81)

where the lower limit reflects the lower limit |x| = 1 for subluminal
electrostatic waves established in Sec. V A, the dispersion relation (80)
reads

2(3
a:2(7+)’)7 (82)
y2 3.4y +10.2
with the solution
1—-1.7a 60
=2’ = 14+ 83
4 x o * + 1— 1,7<x] (83)
or
xz_R2_171.7a i 60 (84)
B 2a 1—1.70]

For small values of o < 1, the solution (84) is well approximated by

9
X~ {1 —0.200 — Z“Z} (85)

R |~

or
1

R~ pe [1—0.2(8.x)* —2.25(8,x)"]. (86)

With the solution (85) of the dispersion relation inserted, we obtain

for the earlier noted [see Eq. (73)] normalized phase speed restriction
x> 0.924 the requirement
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9, 2
1—-0.2a— Za > 0.92470 = 0.854u (87)
or

o < 0.472, (88)

which is slightly stronger than the earlier found limit (81) that
o < 0.56. Consequently, the subluminal solution (84) holds in the
wavenumber range 1 < x < 0.687f3, . It corresponds to

1+ 1+& (89)
1—1.70

while the approximation (86) for small values of o < 1 provides the
well-known non-covariant dispersion relation,

2
Wr

1—-1.7a
= R =on? ~ ——=
5, 2

f=

2~ 1—02(B,x)" —2.25(B,K)", (90)

which apart from the first term differs significantly from the standard
non-covariant dispersion relation,
3% K2

=1+ § ) (91)

In Fig. 3, we compare the improved dispersion relation (89) of sublumi-
nal electrostatic waves f(x) with its approximation (90). We find very
good agreement of the approximation (88) with the Eq. (87) even at
wavenumbers close to the maximum wavenumbers Ky, = 0.687f; .
Both curves show a frequency decrease to the value |f| = 0.631 for the
maximum value f§,Km.x = 0.687.

B. Fluctuation spectrum
With the variable (71), we rewrite Eq. (66) as

OA(x, R 1 I "

% - aF [RZ'(x) + 4302 (43x)). ©2)

0 .
-0.1

_ 117« 6o
02 2= (1 14 ) —
(o= K2[7)
03 f2=1-0.20 — 2.2502

10%10(‘f|)

0.4 ‘ ‘ |

logy(|%])

FIG. 3. Dispersion relation of subluminal electrostatic waves f(x) in an equal-
temperature thermal electron—proton plasma with nonrelativistic temperatures
(B = 10‘4) calculated from Eg. (89) (blue curve) and its approximation (90) (red
curve) with the improved polynomial approximation of the Fried—Conte plasma dis-
persion function.
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The approximation (80) of the dispersion relation provides

3 4+ 222
504340 4 2xt e D2 (93)
(xB.)
implying with Eq. (79)
3.2 4
RZ'(x) ~ 8% (" + 3)(12/%)

43R7" (43x) ~ —%x(xﬁe)“ = —3672x(kf,)*.

For values of x > 0.924, the second contribution from protons in Eq.
(94) is much greater than the first contribution from electrons.
Consequently, Eq. (92) reduces to

1" X
OA(k,R) e (\/E>  43RZ"(43x)
OR T JEaep k2p

2
= 3672xf,Kx* = ERKZ.

(95)
The quasi-equilibrium fluctuation spectrum (64) then becomes
Soc(K) _ kBTO@(lk‘ — 1)2®(Kmax — ‘KD
1836(27)*Rx 3, K2
Ekp Ty ® — 1)O(Kmax —
:C Bl1o (‘K‘ . )2 (K |K|) (96)
(2m)" B r2x?
Inserting the dispersion relation (85) then provides
T, -1 68701 —
Su(i6) = Ckp To®(|x| — 1)©(0.6878, " — [x|) 97)

- (ZTC)Z [1 - 0'2([))21(:)2 - 2'25(ﬁe’€)4} ’

which is shown in Fig. 4. The fluctuation spectrum is basically flat and
constant with a slight increase at large normalized wavenumbers.

257 1

U ChpTy /(272

0.5r7 1

0 1 2 3 4
log(|%])

FIG. 4. Fluctuation wavenumber spectrum (97) of subluminal electrostatic waves in
an equal-temperature thermal electron—proton plasma with nonrelativistic tempera-
tures calculated for §, = 107,
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C. Total collective electrostatic electric fields
Integrating the spectra (97) over all wavenumbers, we obtain for

the total collective longitudinal electric field in thermal nonrelativistic
electron—proton plasmas,

((OE)*) s = J dkSy (k) = 4n J:O dk kS (k)

Wpe\> [
=47 <ﬂ> J dic K285 (K0). (98)
c Kmin

The non-covariant theory has no lower limit Kpin non—cov = 0, whereas
the covariant theory provides Kyin cov = 1. This difference in the lower
limit of the covariant and non-covariant fluctuation theories applied
to nonrelativistic thermal electron-proton plasmas, however, is not
significant as we show next. We readily obtain

4 3 0.687 2
((OB)?) = 210 (7) |, i

B.c 1—0.2y2 —2.2594

& BeKmin
Eme® (@pe)?
=B ( . ) J(BeKmin), (99)
where we inserted kg Ty = m,c> [fﬁ /2 and introduced the integral

0.687 2
4

Y) = dy —=2

J(Y) JY e 0.2y2 —2.25y4

0.687
~ J dyy*(1+0.2y%)
Y

5 2\ 70687 3 )
= |5\ 1+== =0114——|1+—). 100
{3 ( - 25/ ]y 3 N 25 (100)

The non-covariant lower limit then provides Jhoncov = 0.114 whereas
the covariant lower limit with Kmincoy = 1 Vields Jeoy =~ 0.114
—(p?/3). The difference between the two is negligibly small as f8; is of
the order 107!, Using the non-covariant value Jyoncoy = 0.114 then
provides for the total collective longitudinal electric field (99)

<(5E)2>tot = (101)

27, c (B./107%)  cm?’

0.114¢m, 2 (wpve)3 5410 P1)/% erg
D. Damping rate and a posteriori consistency check
Equation (95) also enters the damping rates (67) and (68), providing

_VEEO(K| — 1) {2( !

BT ﬁ‘l)] "

and
_RZ
7.[1/2 56 I3

I(K)non—cov = T T 4 (103)
(Ber)'
with the same R? taken from the dispersion relation (86), i.e.,
1
> ol 2 4
R~ — [1-0.2(8,x)" —2.25(8,x)"], (104)

taken from the dispersion relation (84) and shown in Fig. 5. As can be
seen, the values of the phase speed |R| are considerably smaller than

scitation.org/journal/php

-50

3 32 34 36 38 4
log(|])

FIG. 5. Phase speed (blue curve) |R| from Eg. (104) and damping rate
I(k) = —T"/kc (red curve) of longitudinal waves as a function of the normalized
wavenumber « in an equal-temperature electron—proton plasma with nonrelativistic
temperatures f, = 10~*. The intersection of the two curves occurs at i, ~ 4700.

unity, so that the covariant and non-covariant damping rates divided
by kc given in Eqs. (102) and (103), respectively, are practically equal
and indistinguishable so that in Fig. 5 we only show one of them.

Moreover, the weak-damping condition is only fulfilled if
|I| < |R], corresponding with Egs. (103) and (104) to wavenumbers
|| < K. where

1
128 Gr? 1
mlee e 1 (105)
(Berce) K

o

yielding

Ko~ 4.7-10°(,/1074) 7", (106)

in excellent agreement with Fig. 5. Only below the corresponding criti-
cal wavenumber k. = 0.47w,./(cf,) cm™ !, which is slightly smaller
than the limits inferred before, our results for weakly damped longitu-
dinal waves are valid.

VIl. SUMMARY AND CONCLUSIONS

The properties of the collective subluminal electrostatic fluctu-
ations in isotropic plasmas are investigated using the covariant
kinetic theory of linear fluctuations based on the correct momen-
tum-velocity relation. The covariant theory correctly accounts for
the differences in subluminal and superluminal fluctuations in con-
trast to the non-covariant theory based on p = m,t. The presented
general formalism is valid in unmagnetized plasmas and in magne-
tized plasmas for wavevectors of electrostatic waves parallel to the
direction of the uniform magnetic field. Of particular interest are
potential differences between the covariant and the non-covariant
approach and the consequences of these differences in modifying
observational predictions.

As a first application, we consider thermal particle distributions
of protons and electrons with nonrelativistic equal temperatures. We
demonstrated that in this limit, covariant and non-covariant theories
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yield exactly the same dispersion function and relation for weakly
damped electrostatic waves. Concerning the quasi-equilibrium
spectrum of collective thermal electrostatic noise, the calculated non-
covariant wavenumber spectrum agrees with the covariant wavenum-
ber spectrum apart from the important wavenumber restriction
|k| > k. = w,./c. While the non-covariant analysis also yields eigen-
mode fluctuations at small wavenumbers with superluminal phase
speeds, the correct covariant analysis indicates that subluminal electro-
static fluctuations are only generated at wavenumbers |k| > k. by
spontaneous emission of the plasma particles. As a consequence, the
nonrelativistic thermal electrostatic noise wavenumber spectrum is
limited to the wavenumber range @, < |k| < Kmax. Within a linear
fluctuation theory, superluminal electrostatic noise cannot be gener-
ated. Of course, this is modified if nonlinear effects, such as nonlinear
Landau damping,”” *’ scatter subluminal waves to the superluminal
regime.

However, when calculating the total strength of the collective
electrostatic electric fields, the lower wavenumber limit has a neg-
ligibly small effect as the noise wavenumber spectrum is flat and
contains most of its power at large wavenumbers near k.. The
value of the maximum wavenumber k. is set either by the
requirement of the validity of the weak-damping approximation,
and/or by a newly proposed improved, i.e., more accurate than
the standard one, polynomial approximation of the real part of
the derivative of the Fried—-Conte plasma dispersion function. The
strongest of these constraints provides kmax = 4.7/ (f.c) em ™"
in terms of the electron plasma frequency and the thermal elec-
tron velocity fi,..

Our results can be used to determine the intensity level of
electrostatic noise in the solar wind plasma, quiet phases of the
interstellar medium, and the intracluster gas in clusters of galaxies.
The plasma particle distribution functions in these astrophysical
objects are well represented by thermal Maxwellians with nonrela-
tivistic plasma temperatures. Also, the equal temperature assump-
tion for electrons and protons is reasonably well fulfilled;
otherwise, it is straightforward to generalize our results to the case
of different electron-proton plasma temperatures. Another future
application is possible and planned where we will contrast our ana-
Iytical formula with dedicated PIC simulations as was done
before’””" in a pure electron and electron-positron plasma,
respectively.
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APPENDIX: NONRELATIVISTIC ANALYSIS

In the strictly nonrelativistic analysis with E=1 and p = m,,
we obtain for Egs. (3) and (4) with F,(p) = f,(¥)/m2,

ARTICLE scitation.org/journal/php

2 00 0 v V3 (o), 0
Ki(k,w) = o (\J dUHJ dvy = ”f ” D)
27‘52|w| — 0 w kUH
(A1)
and
Ar(k @4-22“‘2”“]% v de” NI (pg)
L% - p w —0 I 0 Lw—kvu 81)”7
respectively. Equation (A2) agrees exactly with Eq. (9) of

Schlickeiser.”®
For nonrelativistic temperatures j, > 1, the thermal distribu-
tion function (25) reduces to

3/2
falv) = szu(E) ~ <i> e’““(E’D7 (A3)

where we approximated

T
Koy >1) ~ /Z,u e Ha. (A4)
a

2 2
E—1= 1+(P)—1:P— (A5)

mgc 2m2c?

With

at nonrelativistic momenta we obtain for the distribution function
(A3) with p=m,,

r‘2+r2
3/2 2 o
my 2 e 'ta
V) ~ e 2makyTa — , (A6)
Jal®) (anBTa) w2}
with the thermal velocity
2kgT,
bha = 4/ (A7)
a

With the distribution function (A6), the nonrelativistic thermal
form factor (A1) becomes

KL(k7

2
w; M, 1 e v
w) ~ — Lz Z — J dl)”
47t7/2\w\ — Vth,a o 0 —kyj

2e7V
ye
4n7/2\w| kzv‘h“U R } (A9

where we used

2

= Uy
J dvivie "na = T"a, (A9)
0

and substituted v| = vy, oy. The remaining integral is given by
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- - kvth a
, o w?
00 Y k2 122 k2 12,2
_ J dy th, aw Uth, a 7)/
4 kvth a
00 ., wz 00 e—y2
:J dy(y+ y+2—2J dy ———
—o0 k Uth,a k vth,a oy — P
Uth,a
Y ) )
= 1+—2Z
kUth,a g |: + kvth,a (kvth,a):| ’

(A10)

in terms of the Fried-Conte plasma dispersion function,

e

y—x

Z(x) = nfl/ZJ‘ dy

Consequently, the nonrelativistic thermal form factor (A8) becomes

KL (k7 U)) = P

w? m, w
_pere 122 7 2
47'E3|(1)|2k2 Z { [ " ona kvth a <kvth,a>:| }

0)2 m w
_ pe "¢ /
T el ZS[“’Z (kvth,aﬂ’ (&12)

as the plasma dispersion function satisfies

Z'(x) = —2[1 4+ xZ(x)]. (A13)

Likewise, with the distribution function (A6) the nonrelativistic

thermal dispersion function (A2) becomes

2

Mlko) 1= 3 e[ gy 0
L - . nl/zvthvaw — 00 ‘(JJ kUH 81)”

00 y e—y
d Al4
I/ZZkUthan y w0 ( )

Y- kl‘(h a

where we use the integral (A9). With the integral (A10), we obtain

(03]
kw—1+2k2 [ kuthaz<kvth,a>}

o (kvm ) (A15)

1. Electron-proton plasma

For an equal temperature T, = T, = Ty electron-proton

plasma, the dispersion relation (A15) reads

Ar(k,z) =1— ﬂﬁlxz {zf (ﬁi) +7Z <_51/Zzﬁe>} , (A16)

in terms of the complex phase speed (9) and the normalized wave-

number (63). Likewise the thermal form factor (A12) is given by

(All)
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Ki(k,z) = _%%{Z{ (/)2) +Z/<fl/zzﬁe)} }

(A17)
2. Weakly damped fluctuations

For weakly damped fluctuations, the eigenmode dispersion
relation then is given by

0 = A(k,R) = RAL(k,R,] = 0)

e ()2 (@)

leading to the same dispersion relation (72), i.e.,

(kip)* = RZ'(x) + RZ' (43x), (A19)

resulting from using the covariant plasma equations in the nonrela-
tivistic thermal limit.
For the damping rate, we use again the first Eq. (39) providing

ek
SAL(k,R,I = 0) B g,

109 =~ g A RT=0) ~ (o PRAL R T=0)
R o R
(A20)
With

SZ(x) =n'e™,  SZ(x) = —21"xe ™, (A21)

for 3(x) = 0 the damping rate (A20) becomes

2711/2R67;§_i

I(k) ~ — (A22)

s L ORA(,RT=0)

Per OR

which differs considerably from the damping rate (67) derived from

using the correct plasma equations. Most noteworthy is that the rate

(A22) has no wavenumber restriction, holding for all values of x.
From Egs. (A16) and (A17), we obtain

Ki(k,R,1=0) = — w‘”mczo z(-R
L( s Ny L= )_ ( ) (kC) ( (ﬁe) + v1/2ﬁ )
! R ! R
%[Z (ﬂ) o (é”zﬁeﬂ
SAL(k, R) == ﬁﬁkz 5
(A23)

respectively, so that the ratio

2ntkeKy(k,R,1 = 0) wpe (o)’ B mc2 7 (A24)

SAL(k,R)  (2m)’R(ke)>  (2n)’R
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where we inserted kc = wp.x from Eq. (63). Consequently, we
obtain for the quasi-equilibrium fluctuation spectrum (54)

27ntkcKy (k, R, 1 = 0)

Seo(k) = ORA (e, R1=0)

SAL(k,R,1 = 0)

OR
_ meczﬁﬁ _ kgTo
(Zn)zR ORA" (k,R,1 =0) 2m2R ORA* (k,R,I =0)
OR OR

(A25)

where we use m,c?f> = 2kgTy. Apart from the missing wavenum-
ber restriction, the spectrum (A25) agrees exactly with the spectrum
(58) derived with the covariant analysis.

Moreover, Eq. (A16) provides

ORA™(1,R,1 =0)  ORA(x,R, 1 =0)

OR OR
_ 1 1" 5 —1/2pn R
w7 (5) ¢ o))
(A26)
so that
Soo (K) OpMe for (A27)
oK) = — -
2 R “1)2
(2n)"RR | 2" <ﬁ_) + &z fl/zﬁe
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