
Plasma Physics and Controlled Fusion

PAPER

Two-fluid approach to weak plasma turbulence
To cite this article: Peter H Yoon 2021 Plasma Phys. Control. Fusion 63 125012

 

View the article online for updates and enhancements.

You may also like
Emergence of coherent vortices from
Leslie’s perturbation method in a rotating
turbulent uid
Kishore Dutta

-

Free swimming of a squid-inspired
axisymmetric system through jet
propulsion
Xiaobo Bi and Qiang Zhu

-

Exploiting fluorescence for multiplex
immunoassays on protein microarrays
Melinda Herbáth, Krisztián Papp, Andrea
Balogh et al.

-

This content was downloaded from IP address 129.2.180.71 on 03/11/2021 at 14:53

https://doi.org/10.1088/1361-6587/ac2e40
/article/10.1088/1751-8121/aac03a
/article/10.1088/1751-8121/aac03a
/article/10.1088/1751-8121/aac03a
/article/10.1088/1748-3190/ac3061
/article/10.1088/1748-3190/ac3061
/article/10.1088/1748-3190/ac3061
/article/10.1088/2050-6120/2/3/032001
/article/10.1088/2050-6120/2/3/032001
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuBmv8pIJ3_yyQkzDWbmk6ht0YomD4s35YK-izvyYsy5XCtTqxfEpx5GvgpQ9lC15eDiMiDm4wGYaegidexVR53JZ1wuAbTLq9E_BQi9p9VnJupUVk2abE0abZ5FjxfTed-IwiYM-3LyZuRo5B0z9woGajZvpvvLKGV8XQnHmvi_SL1B5I-cBtkxvzbmEMhn5GVgxDOOwS2aOMamhgiZ54gieNHoeDWxMUAuOHI3-Q1XuGgosd-YtnV2f4P6Iddc7jhf3uAlFXHZZUwkOqOx09sSV-raPasc1g&sig=Cg0ArKJSzDYKvadrTfD-&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


Plasma Physics and Controlled Fusion

Plasma Phys. Control. Fusion 63 (2021) 125012 (14pp) https://doi.org/10.1088/1361-6587/ac2e40

Two-fluid approach to weak plasma
turbulence

Peter H Yoon

IPST, University of Maryland, College Park, MD 20742-2431, United States of America

E-mail: yoonp@umd.edu

Received 16 June 2021, revised 3 September 2021
Accepted for publication 8 October 2021
Published 3 November 2021

Abstract
Weakly turbulent processes that take place in plasmas are customarily formulated in terms of
kinetic theory. However, owing to an inherent complexity associated with the problem, thus far
the theory is fully developed largely for unmagnetized plasmas. In the present paper it is shown
that a warm two fluid theory can successfully be employed in order to partially formulate the
weak turbulence theory in spatially uniform plasma. Specifically, it is shown that the nonlinear
wave-wave interaction, or decay processes, can be reproduced by the two-fluid formalism. The
present finding shows that the same approach can in principle be extended to magnetized
plasmas, which is a subject of future work.
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1. Introduction

The weak turbulence theory in plasma physics is a well estab-
lished research tool that may be employed in numerous stud-
ies of nonlinear plasma processes. It was developed by early
pioneers of modern plasma physics [1–11], and its further
development continues to this day [12–19]. Recently, the
present author published a monograph in which a system-
atic exposition of the subject is presented in a pedagogic
manner [20].

One of the most successful applications of the weak turbu-
lence theory relates to the electrostatic turbulence involving
Langmuir and ion acoustic waves and the ensuing wave-
particle interaction that leads to the formation of supra-
thermal electron distribution function [21, 22]. Electron and
ion velocity distribution functions measured in space since
the early days of space research have consistently demon-
strated that the space plasma is in a state of non-thermal
quasi-equilibrium characterized by quasi inverse power-law
velocity tail population [23–26]. Such a feature is again veri-
fied by more recent satellite missions [27, 28]. In order to
fit the observation, an empirical model known as the kappa
distribution was put forth in [23]. Later, however, the con-
ceptual basis for the kappa distribution in the context of non
extensive thermo-statical theory [29–31] became available.

The kappa model of non thermal distribution enjoys an
alternative theoretical justification, which is based upon the
plasma weak turbulence theory. It was shown by the present
author that the asymptotically steady state Langmuir turbu-
lence leads to the formation of electron kappa distribution
[21, 22].

Another useful application of the weak turbulence theory is
on the radio emission by partial conversion of electrostatic tur-
bulence to transverse electromagnetic wave, which is known
as the plasma emission [32]. The plasma emission is a funda-
mental mechanism that is responsible for the solar radio bursts,
known as the types II and III radio bursts [33]. Type III radio
bursts, in particular, are radio emission that emanates from
the solar active region. During the solar flare, energetic elec-
tron beam emerges from the active region, which gradually
propagates out into the interplanetary space. As the electron
beam interacts with the background plasma, the beam-plasma
instability sets in, and Langmuir waves are excited. The partial
conversion of Langmuir waves through nonlinear wave-wave
interaction leads to the said plasma emission [34].

The standard weak turbulence theory has successfully
addressed the plasma emission problem [35–41]. Recently,
complete equations of electromagnetic weak turbulence the-
ory are solved in order to quantitatively investigate the plasma
emission process [42], and its validity was confirmed by
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2+ 1/2 dimensional (two dimensional space and three dimen-
sional velocity) particle-in-cell (PIC) simulation [43]. While
PIC simulations of plasma emission process have been car-
ried out [44–54], a quantitative comparison between the PIC
simulation and weak turbulence theory has not been attempted
until [43].

However, one of the key ingredients in the standard method
is that the existence of background quasi static magnetic field
is ignored. In the interplanetary space, especially near Earth
orbit, the solar wind magnetic field is quite weak so that the
assumption of unmagnetized plasma may be adequate. How-
ever, near the solar source, the influence of strong magnetic
field associated with the solar active region cannot always be
ignored [55]. The recent Parker Solar Probe (PSP) observa-
tion of type III bursts also poses some open questions regard-
ing the polarization characteristics [56]. Note that without
the ambient magnetic field, the radio emissions should bear
no signatures of circular polarity, but the authors report such
polarizations. Ma et al [57] analyzed the PSP observation by
surveying the low frequency cutoffs associated with the type
III bursts, and speculate that the cyclotronmaser emissionmay
also be effective in the radiation process. Of course, the cyclo-
tron emission requires the presence of ambient magnetic field.
All these call for the generalization of standard weak turbu-
lence theory to include the effects of ambient magnetic field.
Such a task, which has been attempted sporadically [15–18,
58–69], is by no means complete. The reason is because of the
extreme complexity, which is inherent to the theoretical devel-
opment. A brief overviewmay help set the stage for the present
work.

Among the early works, Tsytovich et al [58] derived
the formal equations of weak turbulence theory for magnet-
ized plasmas, which involve the nonlinear response tensor
expressed in terms of multiple Bessel function series. After
making a series of simplifications, they applied the formal-
ism to the problem of two plasmons (of frequency ω ∼ ωpe,
where ωpe =

√
4πn0e2/me is the plasma frequency, n0, e,

and me being the ambient density, unit charge, and electron
mass, respectively) interacting with a lower-hybrid wave, ω ∼
|ΩeΩi|1/2. Here, Ωe =−eB0/mec and Ωi = eB0/mic denote
the electron and proton cyclotron frequency, respectively, B0,
mi, and c being the ambient magnetic field intensity, proton
mass, and the speed of light in vacuo. In the same vein, Mel-
rose and Sy [59] adopted basically the same methodology as
pioneered in [58], but the authors applied the formalism to
Thomson scattering in magnetized plasmas. Along this line of
research, Pustovalov and Silin [60] also undertook the task of
formulating weak turbulence theory for magnetized plasmas
within the framework of Vlasov kinetic theory. The general
expressions for nonlinear susceptibilities, derived in the above
references, is rather formidable so that relatively few actual
applications are made, a recent example being [70].

In a separate development, Porkolab and coauthors, e.g.
[61–63], etc discussed the weak turbulence theory with
the effects of B field included, but they were interested
in nonlinear interaction of electrostatic Bernstein waves in

hot plasmas. The related work by [64] also pertains to
interactions of electrostatic cyclotron waves in magnetized
plasmas.

An important development was initiated in [65], which for-
mulated the problem with the warm fluid approach. Instead of
the highly complex kinetic formalism, the method in [65] is far
simpler, and in the cold-plasma limit, the formalism becomes
equivalent to those of [58, 59], and also that of [60], if the same
cold-plasma limit is taken in their more formal kinetic theory.
However, the issue of whether the warm fluid formalism is also
equivalent to the approximate kinetic formalism had not been
addressed in the literature. The full kinetic version of nonlin-
ear susceptibility (in both unmagnetized and magnetized plas-
mas) is impractical so that suitable approximations are cus-
tomarily taken. As will be discussed shortly, the present paper
will demonstrate that the approximate kinetic version of non-
linear susceptibility, already amply discussed in the literature
[1–10, 71] can be derived from the warm fluid weak turbu-
lence theory for unmagnetized plasmas. This demonstration
makes the prospect of formulating a similar weak turbulence
theory for magnetized plasmas based upon the warm fluid
theory also feasible. It should be noted that the cold-plasma
formalism [58–60, 65] is not entirely useful since finite tem-
perature effects cannot always be ignored. This is because in
the cold-plasma limit, the ion-sound or magneto-ion acoustic
wave, which mediates the three-wave decay process, does not
even exist. Moreover, judging from the experience in unmag-
netized plasma theory, some approximate limiting forms of
kinetic nonlinear response function usually end up having an
inverse proportionality to the temperature, ∝1/T, so that for
such cases, the cold-plasma limit (T→ 0) is simply meaning-
less. Thus, one needs to capture certain thermal effects via
adopting warm-fluid formalism.

Returning to the overview, Trakhtengerts [65] heuristic-
ally discussed two plasmons interacting with low-frequency
magneto-ion-acoustic wave. Later, [71–74] addressed the
issue of second-harmonic plasma emission within the frame-
work of cold magnetized plasma theory. However, the cold-
plasma theory of plasma emission in magnetized plasmas is
not entirely compatible with that of unmagnetized plasma
emission theory. For instance, in the cold magnetized plasma
theory, ion-acoustic mode (S) does not exist, and Langmuir
mode reduces to the upper-hybrid (or more accurately, Z
mode) wave with no thermal effects.

Meanwhile, the present author [66–68] formally derived
(and numerically solved) the complete kinetic equations of
weak turbulence theory for magnetized plasmas, but only for
limiting situations of either exactly parallel or perpendicu-
lar propagation. The focus on these papers was either on
low-frequency ion-cyclotron turbulence or nonlinear interac-
tion of upper-hybrid (or Z mode) waves with X mode radi-
ation. On a different development, [15–18, 75, 76] took a dif-
ferent approach by adopting the drift kinetic equation as a
basis to analyze the whistler/lower-hybrid turbulence prob-
lem. In this approach, cyclotron waves and their harmonics
are ignored, which makes the analysis tractable. In yet another
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development, incompressible magnetohydrodynamic (MHD)
turbulence problem has also been analyzed within the stand-
ard framework and methodology commonly adopted in the
theory of weak turbulence [77–79]. An area that was over-
looked in this overview is that of (strong) MHD turbulence,
for which perturbative expansion in some smallness parameter
may not be suitable. The full MHD turbulence is often treated
with full numerical simulations or by means of phenomenolo-
gical approach, and it is a mature subject area [80, 81]. Also
largely left out of the overview is the recently rapidly devel-
oping area of dealing with large scale plasma turbulence with
hybrid [82], gyro-kinetic [83, 84], or even full Vlasov/PIC sim-
ulations [85–87].

As briefly reviewed, a number of important milestones have
been achieved on the weak turbulence theory of magnetized
plasmas throughout the long history of plasma physics, and
advances in the problem of weak turbulence in magnetized
plasma have been in diverse directions. However, thus far,
no comprehensive theory emerged that can be considered as
equivalent to that of unmagnetized plasmas and no quantitat-
ive numerical analysis of the sort discussed in [42] is avail-
able, let alone, direct comparison with simulations, as in [43].
There are, however, reasons to believe that some fundamental
progresses can be made if one employs the warm fluid theory
instead of the much more difficult kinetic theory. We make
note of the fact that the main nonlinear mechanism for con-
version of electrostatic waves into radiation involves nonlin-
ear wave-wave decay interaction, which involves only waves
but no particles. This points to the possibility of avoiding the
arduous task of employing the kinetic theoretical method in
the attempt to generalize the standard weak turbulence theory
to include the effects of ambient magnetic field, but instead
to resort to the much simpler fluid theoretical framework for
such an effort. Before we carry out such a task, however, it
is useful to first demonstrate that the standard weak turbu-
lence theory for unmagnetized plasma can be partially recon-
structed within the fluid theoretical paradigm as a proof of
concept.

The purpose of the present paper is thus, to revisit the
problem of weak plasma turbulence from the perspective of
two-fluid theory. Our aim is to show that the nonlinear three
wave interaction process can be reproduced by the two-fluid
approach. In the subsequent analysis, we begin with the rel-
atively simple electrostatic formalism, and then we move on
to the more general electromagnetic treatment. The inclusion
of ambient magnetic field effects based upon the methodo-
logy outlined in the present paper is the subject of future
work.

2. Two-fluid formulation of weakly turbulent plasma
processes

2.1. Electrostatic approximation

Let us first consider the simple case of electrostatic approxima-
tion. We start from electrostatic two-fluid equations in unmag-
netized plasmas:

∂na
∂t

+∇· (nava) = 0,

mana

(
∂

∂t
+ va ·∇

)
va+∇Pa+ eanaE= 0,

∇·E= 4π
∑
a

eana,

∂E
∂t

= 4π
∑
a

eanava, (1)

where a= i,e denotes charged particle species (i for protons
and e for electrons); na, va, Pa, and E denotes fluid density,
velocity, pressures, and electric field; and ea and ma stand for
charge and mass for charged particle species labeled a. Let us
assume isotropic pressure Pa = naTa, and separate quantities
in terms of averages and fluctuations: na = n0 + δna, va = δva,
and E= δE. Here, we have assumed that there is no net flow
associated with the plasma fluid and that the system is free
of large scale electric field. In the present analysis we adopt
the weak turbulence ordering, which amounts to the assump-
tion that the fluctuating quantities are treated as small perturb-
ations to the average quantities. Specifically, it is assumed that
|δna| ≪ n0. Making use of the charge neutrality

∑
a ea = 0, we

arrive at:

∂ δna
∂t

+ n0∇· δva+∇· (δna δva) = 0,(
∂

∂t
+ δva ·∇

)
δva−

ea
ma

δE+
Ta
man0

∇δna

− Ta
man20

δna∇δna = 0,

∇· δE=
∑
a

4πea δna,

∂ δE
∂t

=−
∑
a

4πean0 δva−
∑
a

4πea δna δva. (2)

In the momentum equation above we have expanded the
inverse of density, 1/na = 1/(n0 + δna)≈ n−1

0 (1− δna/n0).
The perturbed electric field vector can be expressed in terms
of the electrostatic potential, δE=−∇δϕ. Note that the
last two equations can be used interchangeably, as they are
equivalent. Spectral representation of this set of equations
are:

δnak,ω
n0

=
k
ω
δvak,ω +

1
ω

∑
ω ′,k ′

k · (k− k ′)

|k− k ′|
δnak ′,ω ′

n0
δvak−k ′,ω−ω ′ ,

δvak,ω =
ea
maω

kδϕk,ω +
kv2a
ω

δnak,ω
n0

+
1
ω

∑
ω ′,k ′

× [k · (k− k ′)][k ′ · (k− k ′)]

kk ′|k− k ′|
δvak ′,ω ′ δvak−k ′,ω−ω ′ ,

δϕk,ω =
∑
a

4πean0
kω

(
δvak,ω +

∑
ω ′,k ′

k · (k− k ′)

k|k− k ′|
δnak ′,ω ′

n0

× δvak−k ′,ω−ω ′

)
. (3)
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Here, we have expressed the velocity perturbation as δvak,ω =
(k/k)δvak, and have introduced the fluid thermal speed, va =
(Ta/ma)

1
2 . Note that the angular frequency has an implicit

slow-time derivative, ω → ω+ i(∂/∂t), where time-derivative
operator i(∂/∂t) is to be regarded as a small correction.We ini-
tially disregard the time derivative in the definition for angu-
lar frequency ω so that the ensuing analysis can be treated
as algebraic methodology. However, we reintroduce i(∂/∂t)
at an appropriate later stage in the theoretical development
[3, 88].

We write the particle fluid quantities as in perturba-
tion series, with each term proportional to the electric field
amplitude, δnak,ω = δna(1)k,ω + δna(2)k,ω + · · · and δvak,ω = δva(1)k,ω +

δva(2)k,ω + · · · , where δna(1)k,ω , δva(1)k,ω ∝ O(δϕk,ω), δn
a(2)
k,ω , δva(2)k,ω ∝

O[(δϕk,ω)
2], etc. Making use of the above we may solve

equation (3) by iterative means in terms of the field strength,

δna(1)k,ω =
ean0
ma

k2

ω 2 − k2v2a
δϕk,ω,

δva(1)k,ω =
ea
ma

ωk
ω 2 − k2v2a

δϕk,ω,

δna(2)k,ω =
e2an0
2m2

a

ω 2

ω 2 − k2v2a

∑
ω ′,k ′

× ω ′(ω−ω ′)

ω(ω ′ 2 − k ′ 2v2a )[(ω−ω ′)2 − (k− k ′)2v2a ]

×

(
k2

ω
k ′ · (k− k ′)+

k ′ 2

ω ′ k · (k− k ′)

+
|k− k ′|2

ω−ω ′ k · k ′

)
δϕk ′,ω ′ δϕk−k ′,ω−ω ′ ,

δva(2)k,ω =
e2a
m2
a

ω 2

ω 2 − k2v2a

∑
ω ′,k ′

× k ′[k · (k− k ′)]ω ′(ω−ω ′)

ω(ω ′ 2 − k ′ 2v2a )[(ω−ω ′)2 − (k− k ′)2v2a ]

×
(
k ′ · (k− k ′)

kk ′
+
kk ′v2a
ωω ′

)
δϕk ′,ω ′ δϕk−k ′,ω−ω ′ .

(4)

Making use of the perturbative solutions the wave equation can
be expressed as follows:

0= kϵ(k,ω)δϕk,ω − i
∑
ω ′,k ′

k ′|k− k ′|

× χ(k ′,ω ′|k− k ′,ω−ω ′)δϕk ′,ω ′ δϕk−k ′,ω−ω ′ , (5)

where linear and nonlinear susceptibilities are given by:

ϵ(k,ω) = 1+
∑
a

χa(k,ω),

χa(k,ω) =−
ω 2
pa

ω 2 − k2v2a
,

χ(k1,ω2|k1,ω2) =
∑
a

χa(k1,ω2|k1,ω2),

χa(k1,ω2|k1,ω2) =
−iea
2ma

ω 2
pa ω1 ω2 ω

(ω 2
1 − k21 v

2
a )(ω 2

2 − k22 v
2
a )(ω 2 − k2v2a )

×
(
k1
ω1

k2 · k
k2k

+
k2
ω2

k1 · k
k1k

+
k
ω

k1 · k2
k1k2

)
. (6)

In the nonlinear susceptibility, ω and k are short-hand nota-
tions for ω = ω1 +ω2 and k= k1 + k2. In equation (6) ωpa =
(4πn0e2/ma)

1/2 is the plasma oscillation frequency defined
for species a.

It is interesting to compare the fluid versions of plasma sus-
ceptibilities against the kinetic versions [10, 12–14, 20]:

χa(k,ω) =
∑
a

ω 2
pa

ˆ
dv

1
ω− k · v

k · ∂Fa(v)
∂v

,

χa(k1,ω1|k2,ω2) =
−i
2
ea
ma

ω 2
pa

k1k2k

ˆ
dv

1
ω− k · v

∂

∂v

·
(

k1k2
ω2 − k2 · v

+
k2k1

ω1 − k1 · v

)
· ∂Fa(v)

∂v
.

(7)

Here, Fa(v) represents the particle velocity distribution
function, normalized according to

´
dvFa(v) = 1, and ω is

assumed to have a finite positive imaginary part, ω → ω+ i0.
In kinetic theory, thermal speed is defined with a factor 2
higher than that of the fluid theory, v2a = 2Ta/ma. As discussed
in [10, 12–14, 20], linear and nonlinear susceptibilities in kin-
etic theory enjoy the following approximate properties:

χa(k,ω) = Reχa(k,ω)+ i Imχa(k,ω),

Reχa(k,ω) =
{

−(ω 2
pa/ω

2)
[
1+ 3

2 (k
2v2a/ω

2)
]

k · v≪ ω
2ω 2

pa/(k
2v2a ) k · v≫ ω

,

Imχa(k,ω) =−
πω 2

pa

k2

ˆ
dvk · ∂Fa ∂v δ(ω− k · v), (8)

and

χa(k1,ω1|k2,ω2) =
−i
2
ea
ma

ω 2
pa

ω1ω2ω

(
k1
ω1

k2 · k
k2k

+
k2
ω2

k1 · k
k1k

+
k
ω

k1 · k2
k1k2

)
,

(ω1 ≫ k1va, ω2 ≫ k2va, ω ≫ kva),

=
iea
Ta

ω 2
pa

ω2ω

k2 · k
k1k2k

, (ω1 ≪ k1va, ω2 ≫ k2va,

ω ≫ kva),

=
iea
Ta

ω 2
pa

ω1ω

k1 · k
k1k2k

, (ω1 ≫ k1va, ω2 ≪ k2va,

ω ≫ kva),

=
iea
Ta

ω 2
pa

ω1ω2

k1 · k2
k1k2k

, (ω1 ≫ k1va, ω2 ≫ k2va,

ω ≪ kva). (9)

Note that the fluid nonlinear susceptibility (6) enjoys the exact
same limiting forms as the kinetic nonlinear susceptibility (9).
This shows that the present two-fluid formulation does indeed
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partially correspond to that of kinetic theory. Note also that
the fluid linear susceptibility is slightly different in limiting
formwhen compared to that of kinetic formalism. Specifically,
under the two-fluid treatment, the linear susceptibility has the
following form:

χa(k,ω) =
{

−(ω 2
pa/ω

2)
[
1+(k2v2a/ω

2)
]

k · v≪ ω
ω 2
pe/(k

2v2a ) k · v≫ ω
,

(10)

which differs slightly from equation (8) in that not only
the mathematical forms of the limiting expressions are not
identical but also that the linear dielectric susceptibility has
no imaginary part in the fluid limit. This means that in the
two-fluid formulation the linear wave property of small amp-
litude perturbation will be distinct from that of kinetic theory.
Moreover, as the principal parts of the inverse linear dielec-
tric constant is intimately associated with the induced scatter-
ing processes while the residue contributions from the same
inverse linear dielectric constant is related to the decay pro-
cesses, and since the two-fluid formalism does not have ima-
ginary parts of the linear dielectric constant, the induced scat-
tering is absent in the two-fluid theory of weak turbulence.

Let us proceed with the rest of the formulation. We mul-
tiply δϕ∗

k,ω = δϕ−k,−ω to (5) and take the ensemble average
to arrive at:

0= kϵ(k,ω)
⟨
δϕ2
⟩
k,ω − i

ˆ
dω ′
ˆ
dk ′ k ′|k− k ′|

× χ(k ′,ω ′|k− k ′,ω−ω ′)⟨δϕk ′,ω ′ δϕk−k ′,ω−ω ′

× δϕ−k,−ω⟩. (11)

The subsequent formulation involves the computation of third-
body cumulant, ⟨δϕk ′,ω ′ δϕk−k ′,ω−ω ′ δϕ−k,−ω⟩, which can
be done following the customary closure scheme, as explained
fully in the author’s monograph [20] as well as in other lit-
erature [10, 12–14]. In this scheme we take each of δϕk ′,ω ′ ,
δϕk−k ′,ω−ω ′ , and δϕ−k,−ω and write as sums of leading solu-
tion that satisfies the linear dispersion relation plus nonlin-
ear correction. The nonlinear correction is computed from
the wave equation (5). This procedure leads to the four-body
cumulant ⟨δϕk1,ω1 δϕk2,ω2 δϕk3,ω3 δϕk4,ω4⟩, which is expressed
as products of two-body cumulants while ignoring irreducible
four-body correlation under the assumption of the so-called
Bogoliubov’s hierarchy of correlations. These methodologies
are exactly the same whether one is concerned with kinetic
formalism or fluid-theoretical paradigm. Consequently, we do
not explicitly rehash the derivation that involves these steps.
Again, all such processes are explained in detail in the present
author’s recent monograph [20] and in other works [10, 12–
14]. Of the various terms that results from following the above
explained steps, we subsequently ignore those terms that lead
to ϵ(0,0) in the denominator, since ϵ(0,0)→∞ such that the
inverse 1/ϵ(0,0)→ 0. We write down the final result,

⟨δϕk ′,ω ′ δϕk−k ′,ω−ω ′ δϕ−k,−ω⟩

=
2ik |k− k ′|χ(k ′,ω ′|k− k ′,ω−ω ′)

k ′ ϵ(k ′,ω ′)

×
⟨
δϕ2
⟩
k−k ′,ω−ω ′

⟨
δϕ2
⟩
k,ω

+
2ikk ′χ(k ′,ω ′|k− k ′,ω−ω ′)

|k− k ′|ϵ(k− k ′,ω−ω ′)

⟨
δϕ2
⟩
k ′,ω ′

⟨
δϕ2
⟩
k,ω

− 2ik ′ |k− k ′|χ∗(k ′,ω ′|k− k ′,ω−ω ′)

kϵ∗(k,ω)

×
⟨
δϕ2
⟩
k ′,ω ′

⟨
δϕ2
⟩
k−k ′,ω−ω ′ . (12)

Inserting (12) to (11), making use of k2 ⟨δϕ⟩k,ω =⟨
δE2

⟩
k,ω , and reinstating the slow time derivative to

the leading linear response term, ϵ(k,ω)
⟨
δE2

⟩
k,ω →

ϵ(k,ω)
⟨
δE2

⟩
k,ω +(i/2)[∂ϵ(k,ω)/∂ω](∂/∂t)

⟨
δE2

⟩
k,ω , we

obtain the formal wave kinetic equation,

0= ϵ(k,ω)
⟨
δE2

⟩
k,ω +

i
2
∂ϵ(k,ω)

∂ω
∂

∂t

⟨
δE2

⟩
k,ω + 2

ˆ
dω ′

×
ˆ
dk ′

(
{χ(k ′,ω ′|k− k ′,ω−ω ′)}2

ϵ(k ′,ω ′)

⟨
δE2

⟩
k−k ′,ω−ω ′

×
⟨
δE2

⟩
k,ω

+
{χ(k ′,ω ′|k− k ′,ω−ω ′)}2

ϵ(k− k ′,ω−ω ′)

⟨
δE2

⟩
k ′,ω ′

×
⟨
δE2

⟩
k,ω − |χ(k ′,ω ′|k− k ′,ω−ω ′)|2

ϵ∗(k,ω)

×
⟨
δE2

⟩
k ′,ω ′

⟨
δE2

⟩
k−k ′,ω−ω ′

)
. (13)

Here, we have resorted back to the electric field fluctuation
spectrum. This result is formally identical to the kinetic ver-
sion of the same equation [10, 12–14, 20], except that the
definitions of linear and nonlinear dielectric susceptibilities
are defined differently.

As in the standard method, by considering the lin-
ear response of equation (13) and setting equal to zero,
ϵ(k,ω)

⟨
δE2

⟩
k,ω = 0, we obtain the linear eigenmode and

eigenvalue. For high frequency Langmuir mode, satisfying
ω 2 ≫ k2v2e and ω 2 ≫ k2v2i , we may ignore ion response and
approximate the electron response via (10). For low frequency
ion sound mode, which satisfy ω 2 ≫ k2v2i and ω

2 ≪ k2v2e , we
retain both electron and ion responses, but we adopt opposite
limiting forms by virtue of (10). This leads to the fluid ver-
sion of the Langmuir and ion sound wave dispersion relations,
ω = ωLk and ω = ωSk, where ωLk = ωpe

[
1+ 1

2 (k
2v2e /ω

2
pe)
]
=

ωpe
(
1+ 1

2k
2λ2

D

)
and ωSk = kcs(1+ Ti/Te)

1
2 (1+ k2λ2

D)
− 1

2 ≈
kcS, where ωpe = (4πn0e2/me)

1
2 is the electron plasma oscil-

lation frequency, λD = T
1
2
e /(4πn0e2)−

1
2 is the Debye length,

and cs = (Te/mi)
1
2 is the ion sound speed. As a consequence

of linear dispersion relation, we may write the electric field
spectrum as

⟨
δE2

⟩
k,ω =

∑
α=L,S

∑
σ=±1 I

σα
k δ(ω−σωα

k ).
Implementing the above prescription and coupling

with the imaginary part of (13) and making use of
the inverse of linear dielectric response function, we
obtain:

5
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1
ϵ(k ′,σωα

k −σ ′ ′ωγ
k−k ′ )

= P
1

ϵ(k ′,σωα
k −σ ′ ′ωγ

k−k ′ )

−
∑
β

∑
σ ′=±1

×
iπδ(σωα

k −σ ′ωβ
k ′ −σ ′ ′ωγ

k−k ′ )

∂ϵ(k ′,σ ′ωβ
k ′ )/∂(σ ′ωβ

k ′ )
,

1

ϵ(k− k ′,σωα
k −σ ′ωβ

k ′ )
= P

1

ϵ(k− k ′,σωα
k −σ ′ωβ

k ′ )

−
∑
γ

∑
σ ′ ′=±1

×
iπδ(σωα

k −σ ′ωβ
k ′ −σ ′ ′ωγ

k−k ′ )

∂ϵ(k− k ′,σ ′ ′ωγ
k−k ′ )/∂(σ ′ ′ωγ

k−k ′ )
,

1

ϵ∗(k,σ ′ωβ
k ′ +σ ′ ′ωγ

k−k ′ )
= P

1

ϵ∗(k,σ ′ωβ
k ′ +σ ′ ′ωγ

k−k ′ )

+
∑
α

∑
σ=±1

×
iπδ(σ ′ωβ

k ′ +σ ′ ′ωγ
k−k ′ −σωα

k )

∂ϵ(k,σωα
k )∂(σω

α
k )

, (14)

which are again the same in the present two-fluid versus the
customary and more complete kinetic approaches. However,
the main difference is that in the two-fluid approach, the lin-
ear dielectric constant does not have an imaginary part, which
implies that Landau damping associated with Langmuir and
ion-sound waves is absent in the present two-fluid formal-
ism. As a result, the principal parts of (14) do not have any
contribution to the imaginary part of the nonlinear wave kin-
etic equation (13). Consequently, the resulting wave kinetic
equation does not have linear wave-particle resonance term,
i.e. induced emission, nor does it have nonlinear wave-particle
resonance term, or induced scattering term,

∂Iσαk
∂t

=
4π

∂ϵ(k,σωα
k )/∂(σω

α
k )

∑
β,γ

∑
σ ′,σ ′ ′=±1

ˆ
dk ′

× |χ(k ′,σ ′ωβ
k ′ |k− k ′,σ ′ ′ωγ

k−k ′)|2

×

(
Iσ

′β
k ′ Iσ

′ ′γ
k−k ′

∂ϵ(k,σωα
k )∂(σω

α
k )

−
Iσαk Iσ

′ ′γ
k−k ′

∂ϵ(k ′,σ ′ωβ
k ′)/∂(σ ′ωβ

k ′)

−
Iσαk Iσ

′β
k ′

∂ϵ(k− k ′,σ ′ ′ωγ
k−k ′)/∂(σ ′ ′ωγ

k−k ′)

)
× δ(σωα

k −σ ′ωβ
k ′ −σ ′ ′ωγ

k−k ′). (15)

This form of wave kinetic equation is identical to the non-
linear equation depicting the three wave decay term. Since
this equation does not have linear term, or induced emission
term, it cannot describe Landau damping. Also, since the two-
fluid approach does not have the concept of particle kinetic
equation, the above equation cannot describe the damping of
the wave via particles absorbing wave energy in the first place.
Equation (15) does not allow for the description of induced
scattering either, which is sometimes known as the nonlin-
ear Landau damping. However, it is adequate to describe the
nonlinear interaction among three waves. Before we move

on to electromagnetic formalism, we note that one may fur-
ther manipulate equation (15) by invoking the approximate
properties of nonlinear susceptibility (9), which is the same
both in two-fluid and kinetic formalisms, as already pointed
out. The result, which is identical to the three-wave decay
interaction equation, already discussed in the standard liter-
ature, e.g. [10, 12–14, 20], is shown here for the purpose of
completeness,

∂IσLk
∂t

= σωLk
∑

σ ′,σ ′ ′=±1

ˆ
dk ′ π

2
e2

T2
e

µk−k ′(k · k ′)2

k2k ′ 2|k− k ′|2

×

[
σωLk I

σ ′L
k ′

Iσ
′ ′S

k−k ′

µk−k ′

−

(
σ ′ωLk ′

Iσ
′ ′S

k−k ′

µk−k ′
+σ ′ ′ωLk−k ′ Iσ

′L
k ′

)
IσLk

]
× δ(σωLk −σ ′ωLk ′ −σ ′ ′ωSk−k ′),

∂

∂t
IσSk
µk

= σωLk
∑

σ ′,σ ′ ′=±1

ˆ
dk ′ π

4
e2

T2
e

µk[k
′ · (k− k ′)]2

k2k ′ 2|k− k ′|2

×
[
σωLk I

σ ′L
k ′ Iσ

′ ′L
k−k ′

−
(
σ ′ωLk ′ Iσ

′ ′L
k−k ′ +σ ′ ′ωLk−k ′ Iσ

′L
k ′

) IσSk
µk

]
× δ(σωSk −σ ′ωLk ′ −σ ′ ′ωLk−k ′),

µk =
k3v3e
ω3
pe

(
me

mi

)1/2

. (16)

Here, α= L,S denotes Langmuir and ion sound wave. To
reiterate, this form of nonlinear equation is identical to
that one encounters in kinetic theory of weak turbulence
theory, except that the linear and nonlinear wave-particle
resonant interaction terms are missing. Having said that,
however, we should caution the readers that the subtle dif-
ference is how the linear dispersion relations for Lang-
muir (L) and (S) are defined. Whereas in the present two-
fluid formalism, they are defined by ωLk = ωpe

(
1+ 1

2k
2λ2

D

)
and ωSk = kcs(1+ Ti/Te)

1
2 (1+ k2λ2

D)
− 1

2 , the kinetic theoret-
ical definitions are ωLk = ωpe

(
1+ 3

2k
2λ2

D

)
and ωSk = kcs(1+

3Ti/Te)
1
2 (1+ k2λ2

D)
− 1

2 .

2.2. Electromagnetic formalism

We next move on to the more general electromagnetic prob-
lem, yet without the constant magnetic field. The two-fluid
equations are thus generalized to:

∂na
∂t

+∇· (nava) = 0,(
∂

∂t
+ va ·∇

)
va+

∇(naTa)
mana

− ea
ma

(
E+

va
c
×B

)
= 0,

∇×E+
1
c
∂B
∂t

= 0,

∇×B− 1
c
∂E
∂t

=
∑
a

4πeanava
c

. (17)
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Again separating quantities in terms of averages and
fluctuations, we obtain the spectral form of nonlinear
equations,

δnak,ω
n0

=
k · δvak,ω

ω
+

1
ω

∑
k ′,ω ′

δnak ′,ω ′

n0
k · δvak−k ′,ω−ω,

δvak,ω =
iea
maω

δEk,ω +
kv2Ta
ω

δnak,ω
n0

+
1
ω

∑
k ′,ω ′

× [(k− k ′) · δvak ′,ω ′ ]δvak−k ′,ω−ω ′

+
∑
k ′,ω ′

iea
maω(ω−ω ′)

(δvak ′,ω ′ · δEk−k ′,ω−ω ′)

× (k− k ′)

−
∑
k ′,ω ′

iea
maω(ω−ω ′)

[(k− k ′) · δvak ′,ω ′ ]

× δEk−k ′,ω−ω ′

−
∑
k ′,ω ′

(k− k ′)
v2Ta
ω

δnak ′,ω ′

n0

δnak−k ′,ω−ω ′

n0
,

0=

(
1− c2k2

ω 2

)
δEk,ω +

c2

ω 2
(k · δEk,ω)k+ i

∑
a

× 4πean0
ω

δvak,ω + i
∑
a

4πean0
ω

∑
k ′,ω ′

δnak ′,ω ′

n0

× δvak−k ′,ω−ω ′ . (18)

We again implement the iterative solution method by
decomposing the fluid particle quantities by first- and second
order density and velocities. The first order solution can be
obtained immediately,

δna(1)k,ω

n0
=
iea
ma

kj
ω 2 − k2v2a

δEjk,ω,

(δva(1)k,ω )i =
iea
ma

ω 2δij− v2a k
2δij+ v2a kikj

ω(ω 2 − k2v2a )
δEjk,ω, (19)

where repeated indices represent the dot product, i.e. the
Einstein convention, and δij denote the Kronecker delta,
δ= 0 if i ̸= j and 1 if i= j. In writing the second order
equations, we reshuffle and combine certain terms. The result
is:

δna(2)k,ω

n0
=

1
ω 2 − k2v2a

∑
k ′,ω ′

×

(
(k · δva(1)k−k ′,ω−ω ′)[(k− k ′) · δva(1)k ′,ω ′ ]

+
iea
ma

k · (k− k ′)

ω−ω ′ (δva(1)k ′,ω ′ · δEk−k ′,ω−ω ′)

− iea
ma

(k− k ′) · δva(1)k ′,ω ′

ω−ω ′ (k · δEk−k ′,ω−ω ′)

)

−
∑
k ′,ω ′

(
k · (k− k ′)v2a
ω 2 − k2v2a

δna(1)k ′,ω ′

n0

δna(1)k−k ′,ω−ω ′

n0

−
δna(1)k ′,ω ′

n0

k · δva(1)k−k ′,ω−ω ′

ω

)
,

δva(2)k,ω =
kv2a
ω

1
ω 2 − k2v2a

×

∑
k ′,ω ′

(k · δva(1)k−k ′,ω−ω ′)[(k− k ′) · δva(1)k ′,ω ′ ]

+
iea
ma

k · (k− k ′)

ω−ω ′ (δva(1)k ′,ω ′ · δEk−k ′,ω−ω ′)

− iea
ma

∑
k ′,ω ′

(k− k ′) · δva(1)k ′,ω ′

ω−ω ′ (k · δEk−k ′,ω−ω ′)

−
∑
k ′,ω ′

[k · (k− k ′)v2a ]
δna(1)k ′,ω ′

n0

δna(1)k−k ′,ω−ω ′

n0


+
∑
k ′,ω ′

(
kv2a
ω

δna(1)k ′,ω ′

n0

k · δva(1)k−k ′,ω−ω ′

ω

+
(k− k ′) · δva(1)k ′,ω ′

ω
δva(1)k−k ′,ω−ω ′

+
iea
maω

k− k ′

ω−ω ′ (δv
a(1)
k ′,ω ′ · δEk−k ′,ω−ω ′)

− iea
maω

(k− k ′) · δva(1)k ′,ω ′

ω−ω ′ δEk−k ′,ω−ω ′

− (k− k ′)v2a
ω

δna(1)k ′,ω ′

n0

δna(1)k−k ′,ω−ω ′

n0

)
.

(20)

Once we solve for the fluid particle quantities via iterative
means, then we couple the fluid quantities with the wave
equation,

0=

(
1− c2k2

ω 2

)
δEk,ω +

c2

ω 2
k(k · δEk,ω)+ i

∑
a

4πean0
ω

× δva(1)k,ω + i
∑
a

4πean0
ω

δva(2)k,ω + i
∑
a

4πean0
ω

∑
k ′,ω ′

×
δna(1)k ′,ω ′

n0
δva(1)k−k ′,ω−ω ′ . (21)

An immediately obvious fact is that the second order dens-
ity perturbation is not needed in the final wave equation. This
facilitates the computation.

For the sake of notational simplicity, let us omit δ in front
of perturbed quantities and make use of the shorthand nota-
tion K= (k,ω). Making use of the first order solution the
second order velocity perturbation is thus expressed in short-
hand notation by:

7
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(va(2)K )i =− e2a
m2
aω

∑
K ′

(
(ω ′ 2 − k ′ 2v2a )(k− k ′)j+ v2ak

′ · (k− k ′)k ′j
ω ′(ω−ω ′)(ω ′ 2 − k ′ 2v2a )[(ω−ω ′)2 − (k− k ′)2v2a ]

×{[(ω−ω ′)2 − (k− k ′)2v2a ]δik+ v2a (k− k ′)i(k− k ′)k}+
(k− k ′)i[(ω

′ 2 − k ′ 2v2a )δjk+ v2a k
′
j k

′
k]

ω ′(ω−ω ′)(ω ′ 2 − k ′ 2v2a )

−
δik[(ω

′ 2 − k ′ 2v2a )(k− k ′)j+ v2ak
′ · (k− k ′)k ′j ]

ω ′(ω−ω ′)(ω ′ 2 − k ′ 2v2a )

+
ki[(ω ′ 2 − k ′ 2v2a )(k− k ′)j+ v2ak

′ · (k− k ′)k ′j ]

(ω 2 − k2v2a )ω ′(ω−ω ′)(ω ′ 2 − k ′ 2v2a )[(ω−ω ′)2 − (k− k ′)2v2a ]

×{[(ω−ω ′)2 − (k− k ′)2v2a ]kk+ v2ak · (k− k ′)(k− k ′)k}v2a

+
k · (k− k ′)[(ω ′ 2 − k ′ 2v2a )δjkki+ v2a kik

′
j k

′
k]v

2
a

(ω 2 − k2v2a )ω ′(ω−ω ′)(ω ′ 2 − k ′ 2v2a )

−
kikk[(ω ′ 2 − k ′ 2v2a )(k− k ′)j+ v2ak

′ · (k− k ′)k ′j ]v
2
a

(ω 2 − k2v2a )ω ′(ω−ω ′)(ω ′ 2 − k ′ 2v2a )

−
k · (k− k ′)kik ′j (k− k ′)kv4a

(ω 2 − k2v2a )(ω ′ 2 − k ′ 2v2a )[(ω−ω ′)2 − (k− k ′)2v2a ]

+
kik ′j {[(ω−ω ′)2 − (k− k ′)2v2a ]kk+ v2ak · (k− k ′)(k− k ′)k}v2a

ω(ω−ω ′)(ω ′ 2 − k ′ 2v2a )[(ω−ω ′)2 − (k− k ′)2v2a ]

−
(k− k ′)ik ′j (k− k ′)kv2a

(ω ′ 2 − k ′ 2v2a )[(ω−ω ′)2 − (k− k ′)2v2a ]

)
EjK ′EkK−K ′ . (22)

As is apparent, even with the fluid approach, which is far
simpler than the kinetic theory, the second order velocity per-
turbation is still quite complex. This is mostly owing to the
fluid thermal correction. However, the second order perturb-
ation is essentially a next-order correction to the linear per-
turbation. As such, it is not necessary to retain the full thermal
correction term. We thus focus only on the leading terms, that
is, we ignore terms with explicit v2a dependence in the overall
numerator, but only retain thermal correction in the denom-
inator. Then it can be shown that the final result, which is
shownwith long-hand notation again, is quite compactly given
by:

(δva(2)k,ω )i =− e2a
m2
a

∑
k ′,ω ′

ω ′(k− k ′)iδjk

ω(ω−ω ′)(ω ′ 2 − k ′ 2v2a )

× δEjk ′,ω ′ δEkk−k ′,ω−ω ′ . (23)

Inserting the iterative solution to the wave equation,
and rewriting the nonlinear term in symmetric fash-
ion with respect to dummy integral variables, we
have:

0=

[
δij−

∑
a

ω 2
pa

ω 2

ω 2δij− v2a k
2δij+ v2a kikj

ω 2 − k2v2a

×−c2k2

ω 2

(
δij−

kikj
k2

)]
δEjk,ω +

∑
k ′,ω ′

∑
a

−iea
2ma

ω 2
pa

ω 2

×
(

ω ′(k− k ′)iδjk

(ω−ω ′)(ω ′ 2 − k ′ 2v2a )

+
ω(ω−ω ′)k ′j δik

(ω ′ 2 − k ′ 2v2a )[(ω−ω ′)2 − (k− k ′)2v2a ]

+
(ω−ω ′)k ′iδjk

ω ′[(ω−ω ′)2 − (k− k ′)2v2a ]

+
ωω ′(k− k ′)kδij

(ω ′ 2 − k ′ 2v2a )[(ω−ω ′)2 − (k− k ′)2v2a ]

)
× δEjk ′,ω ′δEkk−k ′,ω−ω ′ . (24)

Rearranging terms and ignoring thermal correction in the
numerator, the above reduces to:

0= Λij(k,ω)δE
j
k,ω +

∑
k ′,ω ′

χijk(k
′,ω ′|k− k ′,ω−ω ′)

× δEjk ′,ω ′δEkk−k ′,ω−ω ′ ,

8
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Λij(k,ω) = ϵij(k,ω)−
c2k2

ω 2

(
δij−

kikj
k2

)
,

ϵij(k,ω) = δij+
∑
a

χaij(k,ω),

χaij(k,ω) =−
∑
a

ω 2
pa

ω 2
δij−

∑
a

ω 2
pa

ω 2

k2v2a
ω 2 − k2v2a

kikj
k2

,

χijk(k1,ω1|k2,ω2) =
∑
a

−iea
2ma

×
ω 2
paω1ω2ω

(ω 2
1 − k21 v

2
a )(ω

2
2 − k22 v

2
a )(ω

2 − k2v2a )

×
(
kiδjk
ω

+
k1jδik
ω1

+
k2kδij
ω2

)
. (25)

The rest of the analysis is equivalent to the kinetic form-
alism, namely, we take the product of the wave equation with
δEi(k

′,ω ′), and take the ensemble average. We also obtain the
three body cumulant in the same manner as explained already.
The result is:

0= Λij(k,ω)⟨δEi δEj⟩k,ω − 2
∑
k ′,ω ′

χijk(k
′,ω ′|k− k ′,ω−ω ′)

×
{[

Λ−1
jl (k ′,ω ′)χlmn(−k+ k ′,−ω+ω ′|k,ω)

×⟨δEk δEm⟩k−k ′,ω−ω ′

+ Λ−1
kl (k− k ′,ω−ω ′)χlmn(−k ′,−ω ′|k,ω)

× ⟨δEj δEm⟩k ′,ω ′

]
⟨δEi δEn⟩k,ω

+Λ−1
il (−k,−ω)χlmn(−k ′,−ω ′| − k+ k ′,−ω+ω ′)

× ⟨δEj δEm⟩k ′,ω ′ ⟨δEk δEn⟩k−k ′,ω−ω ′

}
. (26)

This is the nonlinear spectral balance equation based
upon which further manipulation will lead to the non-
linear wave kinetic equation, to be discussed next.
The first step toward the derivation is to introduce

the slow time dependence to Λij(k,ω) via Λij(k,ω)→
Λij(k,ω+ i∂/∂t)≈ Λij(k,ω)+ (i/2)(∂Λij(k,ω)/∂ω)(∂/∂t).
We then invoke the symmetry relations Λij(−k,−ω) =
Λ∗
ij(k,ω), χijk(−k1,−ω1| − k2,−ω2) = χ∗

ijk(k1,ω1|k2,ω2),
χijk(k1,ω1|k2,ω2) = χikj(k2,ω2|k1,ω1), and χijk(k1 + k2,
ω1 +ω2| − k2,−ω2) =−χjik(k1,ω1|k2,ω2). Further, we make
use of the specific diagonal expressions for the linear dielectric
susceptibility tensor and its inverse,

Λij(k,ω) =
ki kj
k2

ϵ∥(k,ω)+
(
δij−

ki kj
k2

)
Λ⊥(k,ω),

Λ−1
ij (k,ω) =

ki kj
k2

1
ϵ∥(k,ω)

+

(
δij−

ki kj
k2

)
1

Λ⊥(k,ω)
,

Λ⊥(k,ω) = ϵ⊥(k,ω)−
c2k2

ω 2
,

ϵ∥(k,ω) = 1−
∑
a

ω 2
pa

ω 2 − k2v2a
,

ϵ⊥(k,ω) = 1−
∑
a

ω 2
pa

ω 2
. (27)

Finally, the spectral wave energy density tensor is decomposed
into longitudinal and transverse parts in diagonal form,

⟨EiEj⟩k,ω =
ki kj
k2

⟨
E2
∥

⟩
k,ω

+
1
2

(
δij−

ki kj
k2

)⟨
E2
⊥
⟩
k,ω . (28)

Implementing all of the above processes to nonlinear wave
equation (26) leads to quite a lengthy expression, which is fully
written down in the author’s monograph so that readers may
independently check its accuracy [20]. The full expression in
the monograph, however, includes terms that arise as a res-
ult of formulating the problem from the framework of kinetic
theory. In the present fluid formalism, we have only partial
terms that relate to the fluid treatment. Nevertheless these par-
tial terms are sufficient for the description of electromagnetic
decay interaction. For the sake of completeness, we show the
intermediate result,

0=
i
2

∂ϵ∥(k,ω)
∂ω

∂⟨E2
∥⟩k,ω
∂t

+
i
2
∂Λ⊥(k,ω)

∂ω

∂⟨E2
⊥⟩k,ω
∂t

+ ⟨E2
∥⟩k,ωϵ∥(k,ω)+ ⟨E2

⊥⟩k,ωΛ⊥(k,ω)+ 2
ˆ
dk ′
ˆ
dω ′

×

{[
k ′j k

′
l

k ′ 2
χijk(k

′,ω ′|k− k ′,ω−ω ′)χ
(2)
nlm(k

′,ω ′|k− k ′,ω−ω ′)

ϵ∥(k
′,ω ′)

+

(
δjl−

k ′j k
′
l

k ′ 2

)
χijk(k

′,ω ′|k− k ′,ω−ω ′)χnlm(k
′,ω ′|k− k ′,ω−ω ′)

Λ⊥(k
′,ω ′)

]
×
[
kikn
k2

(k− k ′)k(k− k ′)m
|k− k ′|2

⟨E2
∥⟩k−k ′,ω−ω ′ ⟨E2

∥⟩k,ω +
1
2
kikn
k2

(
δkm−

(k− k ′)k(k− k ′)m
|k− k ′|2

)
×⟨E2

⊥⟩k−k ′,ω−ω ′ ⟨E2
∥⟩k,ω +

1
2

(
δin−

kikn
k2

)
(k− k ′)k(k− k ′)m

|k− k ′|2
⟨E2

∥⟩k−k ′,ω−ω ′ ⟨E2
⊥⟩k,ω

+
1
4

(
δin−

kikn
k2

)(
δkm−

(k− k ′)k(k− k ′)m
|k− k ′|2

)
⟨E2

⊥⟩k−k ′,ω−ω ′ ⟨E2
⊥⟩k,ω

]
+

[
(k− k ′)k(k− k ′)l

|k− k ′|2
χijk(k

′,ω ′|k− k ′,ω−ω ′)χnml(k
′,ω ′|k− k ′,ω−ω ′)

ϵ∥(k− k ′,ω−ω ′)

9
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+

(
δkl−

(k− k ′)k(k− k ′)l
|k− k ′|2

)
χ
(2)
ijk (k

′,ω ′|k− k ′,ω−ω ′)χ
(2)
nml(k

′,ω ′|k− k ′,ω−ω ′)

Λ⊥(k− k ′,ω−ω ′)

]

×
[
kikn
k2

k ′j k
′
m

k ′ 2
⟨E2

∥⟩k ′,ω ′ ⟨E2
∥⟩k,ω +

1
2
kikn
k2

(
δjm−

k ′j k
′
m

k ′ 2

)
⟨E2

⊥⟩k ′,ω ′ ⟨E2
∥⟩k,ω

+
1
2

(
δin−

kikn
k2

)
k ′j k

′
m

k ′ 2
⟨E2

∥⟩k ′,ω ′ ⟨E2
⊥⟩k,ω +

1
4

(
δin−

kikn
k2

)(
δjm−

k ′j k
′
m

k ′ 2

)
⟨E2

⊥⟩k ′,ω ′ ⟨E2
⊥⟩k,ω

]
−

[
kikl
k2

1
ϵ∗∥(k,ω)

χijk(k
′,ω ′|k− k ′,ω−ω ′)χ∗

lmn(k
′,ω ′|k− k ′,ω−ω ′)

+

(
δil−

kikl
k2

)
1

Λ∗
⊥(k,ω)

χijk(k
′,ω ′|k− k ′,ω−ω ′)χ∗

lmn(k
′,ω ′|k− k ′,ω−ω ′)

]
×
[
k ′j k

′
m

k ′2
(k− k ′)k(k− k ′)n

|k− k ′|2
⟨E2

∥⟩k−k ′,ω−ω ′⟨E2
∥⟩k ′,ω ′

+
1
2

k ′j k
′
m

k ′ 2

(
δkn−

(k− k ′)k(k− k ′)n
|k− k ′|2

)
⟨E2

∥⟩k ′,ω ′⟨E2
⊥⟩k−k ′,ω−ω ′

+
1
2

(
δjm−

k ′j k
′
m

k ′ 2

)
(k− k ′)k(k− k ′)n

|k− k ′|2
⟨E2

⊥⟩k ′,ω ′ ⟨E2
∥⟩k−k ′,ω−ω ′

+
1
4

(
δjm−

k ′j k
′
m

k ′ 2

)(
δkn−

(k− k ′)k(k− k ′)n
|k− k ′|2

)
⟨E2

⊥⟩k ′,ω ′ ⟨E2
⊥⟩k−k ′,ω−ω ′

]}
. (29)

This equation can further be analyzed for specific eigen-
modes, that is, the two longitudinal electrostatic modes, Lang-
muir and ion sound waves, and the transverse electromagnetic
mode.

Electrostatic linear eigenmodes have already been dis-
cussed in the previous subsection. They satisfy the longit-
udinal wave dispersion relation, ϵ∥(k,ωα

k ) = 0. We already
discussed that α= L and S correspond to Langmuir and
ion-sound modes. The transverse electromagnetic (T) mode
satisfies the transverse wave dispersion relation. For T
mode the ion response can be ignored and we have
Λ⊥(k,ωTk) = 1−ω 2

pe/(ω
T
k)

2 − c2k2/(ωTk)
2, from which we

easily obtain ωTk = (ω 2
pe+ c2k2)

1
2 . As with the longitudinal

mode, the transverse mode spectrum can be represented by
⟨E2

⊥⟩k,ω =
∑

σ=±1 I
σT
k δ(ω−σωTk). Making use of the short-

hand notations, ϵ ′∥(k,ω) = ∂ϵ∥(k,ω)/∂ω and Λ ′
⊥(k,ω) =

∂Λ⊥(k,ω)/∂ω, and making note of the fact that inverses
of linear dielectric response function makes no contribu-
tions to the wave kinetic equation from their principal parts,
we can show, after some tedious but otherwise straightfor-
ward exercise (note that [20] fully spells out the interme-
diate steps) that the wave equation (29) decouples into an
equation for longitudinal mode and an equation for transverse
mode,

0= ϵ ′∥(k,σω
α
k )

∂Iσαk
∂t

+ 4π
ˆ
dk ′

×

{∑
β,γ

∑
σ ′,σ ′ ′

ki kn
k2

k ′j k
′
m

k ′2
(k− k ′)k (k− k ′)l

|k− k ′|2

× χijk(k
′,σ ′ωβ

k ′ |k− k ′,σ ′ ′ωγ
k−k ′)χ

∗
nml

× (k ′,σ ′ωβ
k ′ |k− k ′,σ ′ ′ωγ

k−k ′)

×

[
Iσ

′ ′γ
k−k ′ Iσαk

ϵ ′∥(k
′,σ ′ωβ

k ′)
+

Iσ
′β

k ′ Iσαk
ϵ ′∥(k− k ′,σ ′ ′ωγ

k−k ′)

−
Iσ

′ ′γ
k−k ′ I

σ ′β
k ′

ϵ ′∥(k,σω
α
k )

]
δ(σωα

k −σ ′ωβ
k ′ −σ ′ ′ωγ

k−k ′)

+
∑
β

∑
σ ′,σ ′ ′

ki kn
k2

k ′j k
′
m

k ′2

(
δkl−

(k− k ′)k (k− k ′)l
|k− k ′|2

)
× χijk(k

′,σ ′ωβ
k ′ |k− k ′,σ ′ ′ωTk−k ′)χ∗

nml

× (k ′,σ ′ωβ
k ′ |k− k ′,σ ′ ′ωTk−k ′)

×

[
Iσ

′ ′T
k−k ′ Iσαk

ϵ ′∥(k
′,σ ′ωβ

k ′)
+

2 Iσ
′β

k ′ Iσαk
Λ ′
⊥(k− k ′,σ ′ ′ωTk−k ′)

−
Iσ

′β
k ′ Iσ

′ ′T
k−k ′

ϵ ′∥(k,σω
α
k )

]
δ(σωα

k −σ ′ωβ
k ′ −σ ′ ′ωTk−k ′)+

∑
σ ′,σ ′ ′

× 1
4
ki kn
k2

(
δjm−

k ′j k
′
m

k ′2

)(
δkl−

(k− k ′)k (k− k ′)l
|k− k ′|2

)
× χijk(k

′,σ ′ωTk ′ |k− k ′,σ ′ ′ωTk−k ′)χ∗
nml

× (k ′,σ ′ωTk ′ |k− k ′,σ ′ ′ωTk−k ′)

×

[
2 Iσ

′ ′T
k−k ′ Iσαk

Λ ′
⊥(k

′,σ ′ωTk ′)
+

2 Iσ
′T

k ′ Iσαk
Λ ′
⊥(k− k ′,σ ′ ′ωTk−k ′)

−
Iσ

′T
k ′ Iσ

′ ′T
k−k ′

ϵ ′∥(k,σω
α
k )

]
δ(σωα

k −σ ′ωTk ′ −σ ′ ′ωTk−k ′)

}
,

(30)

10
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where

ϵ ′∥(k,σω
L
k) =

2
σωL

k
, ϵ ′∥(k,σω

S
k) =

2
σωS

k

, Λ ′
⊥(k,σω

T
k) =

2
σωT

k
.

(31)

When compared with the electrostatic formalism—see
equation (15), we now have additional decay processes
involving T mode. When compared with kinetic formal-
ism [20], the present two fluid theory does not have wave-
particle interactions so that induced emission and induced
scattering terms are missing—as we already noted in the
previous subsection—but the decay processes are repro-
duced exactly in the formal sense. The difference lies
in the definition of susceptibilities, but the formal result
is identical to the kinetic counterpart (minus the particle
effects).

The electromagnetic formalism not only modifies the lon-
gitudinal wave kinetic equation, but as noted, it leads to the
wave kinetic equation for T mode. Following the prescribed
and systematic methods, the formal wave kinetic equation (29)
leads to the formal T mode wave kinetic equation, which res-
ults in the following:

0= Λ ′
⊥(k,σω

T
k)

∂IσTk
∂t

+ 4π
ˆ
dk ′

×

∑
β,γ

∑
σ ′,σ ′ ′

1
2

(
δin−

ki kn
k2

)
k ′j k

′
m

k ′2
(k− k ′)k (k− k ′)l

|k− k ′|2

× χijk(k
′,σ ′ωβ

k ′ |k− k ′,σ ′ ′ωγ
k−k ′)χ

∗
nml

× (k ′,σ ′ωβ
k ′ |k− k ′,σ ′ ′ωγ

k−k ′)

×

[
Iσ

′ ′γ
k−k ′ I

σT
k

ϵ ′∥(k
′,σ ′ωβ

k ′)
+

Iσ
′β

k ′ IσTk
ϵ ′∥(k− k ′,σ ′ ′ωγ

k−k ′)

×−
2 Iσ

′ ′γ
k−k ′ I

σ ′β
k ′

Λ ′
⊥(k,σω

T
k)

]
δ(σωT

k −σ ′ωβ
k ′ −σ ′ ′ωγ

k−k ′)

+
∑
γ

∑
σ ′,σ ′ ′

1
2

(
δin−

ki kn
k2

)(
δjm−

k ′j k
′
m

k ′2

)

× (k− k ′)k (k− k ′)l
|k− k ′|2

× χijk(k
′,σ ′ωT

k ′ |k− k ′,σ ′ ′ωγ
k−k ′)χ

∗
nml

× (k ′,σ ′ωT
k ′ |k− k ′,σ ′ ′ωγ

k−k ′)

×

[
2 Iσ

′ ′γ
k−k ′ I

σT
k

Λ ′
⊥(k

′,σ ′ωT
k ′)

+
Iσ

′T
k ′ IσTk

ϵ ′∥(k− k ′,σ ′ ′ωγ
k−k ′)

×−
2 Iσ

′ ′γ
k−k ′ I

σ ′T
k ′

Λ ′
⊥(k,σω

T
k)

]
δ(σωT

k −σ ′ωT
k ′ −σ ′ ′ωγ

k−k ′)

}
. (32)

As with the electrostatic case, formal equations (30)
and (32) can be further simplified by taking advantage of
approximate forms of nonlinear susceptibility. For electro-
magnetic case, the two-fluid version of nonlinear susceptib-
ility can be approximated under various limiting conditions as
follows:

χaijk(k1,ω1|k2,ω2) =
−iea
2ma

ω 2
pa

ω1ω2(ω1 +ω2)

×
(
k1jδik
ω1

+
k2kδij
ω2

+
kiδjk
ω

)
,

(ω1 ≫ k1va, ω2 ≫ k2va, ω ≫ kva),

=
iea
2Ta

ω 2
pa

ω2ω

k1j
k21

δik,

(ω1 ≪ k1va, ω2 ≫ k2va, ω ≫ kva),

=
iea
2Ta

ω 2
pa

ω1ω

k2k
k22

δij,

(ω1 ≫ k1va, ω2 ≪ k2va, ω ≫ kva),

=
iea
2Ta

ω 2
pa

ω1ω2

ki
k2

δjk,

(ω1 ≫ k1va, ω2 ≫ k2va, ω ≪ kva),
(33)

where k= k1 + k2 and ω = ω1 +ω2. This leads to the expli-
cit representation of the wave kinetic equations for L, S, and
T, which are equivalent to the wave kinetic equations for the
same modes derived under the framework of kinetic theory,
except that the present two-fluid formalism only reproduces
terms that depict various three wave decay processes:

∂IσLk
∂t

=−π (σωLk)
∑

σ ′,σ ′ ′

ˆ
dk ′

×

{
e2

4T2
e

µk ′ [k · (k− k ′)]2

k2 k ′2 |k− k ′|2

×

(
σ ′ωLk ′ Iσ

′ ′L
k−k ′ IσLk +σ ′ ′ωLk−k ′

Iσ
′S

k ′

µk ′
IσLk −σωLk

× Iσ
′ ′L

k−k ′
Iσ

′S
k ′

µk ′

)
δ(σωLk −σ ′ωSk ′ −σ ′ ′ωLk−k ′)

+
e2

4T2
e

µk−k ′ (k · k ′)2

k2 k ′2|k− k ′|2

×

(
σ ′ωLk ′

Iσ
′ ′S

k−k ′

µk−k ′
IσLk + σ ′ ′ωLk−k ′ Iσ

′L
k ′ IσLk −σωLk

×
Iσ

′ ′S
k−k ′

µk−k ′
Iσ

′L
k ′

)
δ(σωLk −σ ′ωLk ′ −σ ′ ′ωSk−k ′)

+
e2

2T2
e

µk ′ (k× k ′)2

k2 k ′2 |k− k ′|2

×

(
σ ′ωLk ′

Iσ
′ ′T

k−k ′

2
IσLk + σ ′ ′ωTk−k ′

Iσ
′S

k ′

µk ′
IσLk −σωLk

×
Iσ

′S
k ′

µk ′

Iσ
′ ′T

k−k ′

2

)
δ(σωLk −σ ′ωSk ′ −σ ′ ′ωTk−k ′)

+
e2

8 m2
e ω 2

pe

(k× k ′)2

k2 k ′2 |k− k ′|2

(
k2

σωLk
+

k ′2

σ ′ωLk ′

)2

×

(
σ ′ωLk ′

Iσ
′ ′T

k−k ′

2
IσLk + σ ′ ′ωTk−k ′ Iσ

′L
k ′ IσLk −σωLk

11
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× Iσ
′L

k ′
Iσ

′ ′T
k−k ′

2

)
δ(σωLk −σ ′ωLk ′ −σ ′ ′ωTk−k ′)

+
e2

4m2
e

k2 {k ′2 |k− k ′|2 + [k ′ · (k− k ′)]2}
k ′2 |k− k ′|2(ωTk ′)2(ωTk−k ′)2

×

(
σ ′ωTk ′

Iσ
′ ′T

k−k ′

2
IσLk +σ ′ ′ωTk−k ′

Iσ
′T

k ′

2
IσLk −σωLk

×
Iσ

′T
k ′

2

Iσ
′ ′T

k−k ′

2

)
δ(σωLk −σ ′ωTk ′ −σ ′ ′ωTk−k ′)

}
,

(34)

∂

∂t
IσSk
µk

=−πσωLk
∑

σ ′,σ ′ ′

ˆ
dk ′

×

{
e2

4T2
e

µk [k
′ · (k− k ′)]2

k2 k ′2 |k− k ′|2

×

(
σ ′ωLk ′ Iσ

′ ′L
k−k ′

IσSk
µk

+ σ ′ ′ωLk−k ′ Iσ
′L

k ′
IσSk
µk

−σωLk

× Iσ
′ ′L

k−k ′ Iσ
′L

k ′

)
δ(σωSk −σ ′ωLk ′ −σ ′ ′ωLk−k ′)

+
e2

2T2
e

µk (k× k ′)2

k2 k ′2 |k− k ′|2

×

(
σ ′ωLk ′

Iσ
′ ′T

k−k ′

2
IσSk
µk

+ σ ′ ′ωTk−k ′ Iσ
′L

k ′
IσSk
µk

−σωLk

× Iσ
′L

k ′
Iσ

′ ′T
k−k ′

2

)
δ(σωSk −σ ′ωLk ′ −σ ′ ′ωTk−k ′)

}
,

(35)

∂

∂t
IσTk
2

=−πσωTk
∑

σ ′,σ ′ ′

ˆ
dk ′

×

{
e2

32 m2
e ω 2

pe

(k×k ′)2

k2 k ′2 |k−k ′|2

(
k ′2

σ ′ωLk ′
− |k−k ′|2

σ ′ ′ωLk−k ′

)2

×

(
σ ′ωLk ′ Iσ

′ ′L
k−k ′

IσTk
2

+σ ′ ′ωLk−k ′ Iσ
′L

k ′
IσTk
2

− σωTk

× Iσ
′ ′L

k−k ′ Iσ
′L

k ′

)
δ(σωTk −σ ′ωLk ′ −σ ′ ′ωLk−k ′)

+
e2

8T2
e

µk ′ (k×k ′)2

k2 k ′2 |k−k ′|2

×

(
σ ′ωLk ′ Iσ

′ ′L
k−k ′

IσTk
2

+σ ′ ′ωLk−k ′
Iσ

′S
k ′

µk ′

IσTk
2

− σωTk

× Iσ
′ ′L

k−k ′
Iσ

′S
k ′

µk ′

)
δ(σωTk −σ ′ωSk ′ −σ ′ ′ωLk−k ′)

+
e2

8T2
e

µk−k ′ (k×k ′)2

k2 k ′2 |k−k ′|2

×

(
σ ′ωLk ′

Iσ
′ ′S

k−k ′

µk−k ′

IσTk
2

+σ ′ ′ωLk−k ′ Iσ
′L

k ′
IσTk
2

− σωTk

×
Iσ

′ ′S
k−k ′

µk−k ′
Iσ

′L
k ′

)
δ(σωTk −σ ′ωLk ′ −σ ′ ′ωSk−k ′)

+
1
4
e2

m2
e

|k−k ′|2

(σωTk)
2(σ ′ωTk ′)2

(
1+

(k ·k ′)2

k ′4

)
×

(
σ ′ωTk ′ Iσ

′ ′L
k−k ′

IσTk
2

+ σ ′ ′ωLk−k ′
Iσ

′T
k ′

2
IσTk
2

−σωTk

× Iσ
′ ′L

k−k ′
Iσ

′T
k ′

2

)
δ(σωTk −σ ′ωTk ′ −σ ′ ′ωLk−k ′)

}
.

(36)

This completes the derivation wave kinetic equations that
depict nonlinear wave-wave interaction processes starting
from the two-fluid framework. The final result is consistent
with that of kinetic theory, which shows that it is possible to
formulate the weak turbulence theory for more complex prob-
lems such as that of magnetized plasmas.

3. Summary and discussion

The present paper shows that the two-fluid formalism can suc-
cessfully reproduce the nonlinear wave kinetic equation that
involves decay processes. This lays the foundation for similar
approaches that may be taken for magnetized plasmas. The
significance of the present work is in such a context. That is,
the purpose of the present author’s research is to build upon
the experience of developing the weak turbulence theory for
unmagnetized plasma on the basis of two-fluid theory, and
then proceed to formulate the weak turbulence theory for mag-
netized plasmas. In doing so, however, while the presence of
ambient magnetic field will greatly complicate the problem,
fortunately, the situation there might simplify the matter in
another way.

For unmagnetized plasmas the high frequency waves,
Langmuir (L) and transverse radiation (T) cannot undergo
wave-wave interaction unless there exists a low frequency
ion sound (S) wave. The ion sound (or ion acoustic) wave
does not exist in cold plasma, since it is a thermal plasma
mode. This means that the weak turbulence theory, whether
based upon kinetic theory or two-fluid theory, cannot entirely
ignore thermal corrections. This generally makes the ana-
lysis quite cumbersome. For instance, in the present paper,
we encountered the extremely complex form of the second-
order velocity perturbation that includes thermal effects—see
equation (22)—albeit, still simpler than the kinetic theoretical
counterpart.

However, for magnetized plasmas, the low frequency wave
naturally exists in the form of magnetosonic/whistler mode,
even if one ignores the proton response and thermal effects.
This means that one may employ the standard magnetoionic
theory of magnetized plasma waves within the context of the
weak turbulence theory. Recall that the magnetoionic theory
is a cold plasma theory of waves in magnetized plasma in
which ion response is ignored. In magnetoionic theory, fast
extraordinary (X) and ordinary (O) modes constitute the radi-
ation, while high frequency plasma oscillation-upper hybrid
mode known as the Z (or slow extraordinary) mode exists. The
low frequencymagnetosonic/whistler, orW mode, is a low fre-
quency mode, which may participate in three wave interaction
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with any two of the three high frequency modes. This points
to the possibility that the extension of the present two-fluid
equation based weak turbulence theory may be employed for
magnetized plasmas in a relatively straightforward manner
since we may ignore proton dynamics and thermal effects at
the outset. Indeed, such a possibility has already been enter-
tained in the literature, but only in qualitative terms [89–91],
or by means of numerical simulation [92, 93]. A quantitative
weak turbulence theory that may deal with such an interaction
among magnetoionic modes is still lacking.

Note that for both magnetized and unmagnetized plasmas,
the plasma emission at the second harmonic does not involve
low frequency mode at all. For unmagnetized plasmas, the
merging of two Langmuir waves into a transverse EM radi-
ation at twice the plasma frequency occurs, while for magnet-
ized plasmas, the merging of two Z modes may lead to the
radiation emission at approximately twice the upper-hybrid
frequency in the form of either X or O mode [59, 74]—see
also, [94]. In short, the comprehensive weak turbulence the-
ory that is capable of quantitative numerical analysis, and that
naturally lends itself to comparative analysis again PIC simu-
lation is still lacking, which is the long term research goal of
the present author. The present paper, which partially refor-
mulates the weak turbulence theory for unmagnetized plasmas
from the perspective of warm fluid theory represents a proof
of concept, and it is a start for the future research.
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