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ABSTRACT

Low-frequency hydromagnetic turbulence is thought to play an important role in charged particle energization in space and astrophysical
environments. For understanding large-scale turbulence in magnetized plasmas, low-frequency electromagnetic turbulence has been widely
investigated within the theoretical framework of incompressible magnetohydrodynamic (MHD) theory. Among the existing works is the
weak turbulence formalism of incompressible MHD turbulence. The present paper revisits the existing formalism under the assumption of
zero residual energy. Under the strict assumption of turbulence taking place in a two-dimensional plane, which can be interpolated to a
three-dimensional situation with azimuthal symmetry, the well-known steady-state turbulent spectrum of k�2

? is recovered, where k? denotes
the wave number perpendicular to the ambient magnetic field.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062561

I. INTRODUCTION

Low-frequency hydromagnetic turbulence in plasmas, or electri-
cally conducting ionized gas immersed in ambient magnetic field, is
widely investigated within the framework of magnetohydrodynamics
(MHD) in the literature.1–4 Many MHD turbulence theories are built
upon the classic phenomenological fluid turbulence theory pioneered
by Kolmogorov.5 Similar phenomenological theories for MHD turbu-
lence were subsequently developed in Refs. 6–9. Extended discussions
along similar lines can also be found in later works.10–12 Important
developments in the more quantitative theory of MHD turbulence
include those of Ref. 13, where the strong turbulence regime of MHD
is modeled. Various renormalization group approaches to MHD tur-
bulence are also found in the literature,14,15 which is a concept well
developed in the context of neutral fluid turbulence.16–19 Among the
important milestones in this regard is the formulation of the weak
MHD turbulence theory for anisotropic turbulence in plasmas with a
strong ambient magnetic field.20–23 The above references rectified an
earlier theory24 and demonstrated that the three-wave resonant inter-
action characterizes the weak MHD turbulence. An excellent and sys-
tematic review of all these and other developments until the early
2000s can be found in Ref. 2, for instance. Numerous reviews with
focus on applications to space and heliospheric physics are also avail-
able in the literature, but herewith, we only cite a few, for example,
Refs. 25–28, and a recent review of MHD turbulence in the magneto-
sphere.4 We should also note that direct numerical simulations of
MHD turbulence are also widely available in the literature, which are

too numerous to give a complete account of, but some representative
works widely cited in the literature include Refs. 29–37. More recent
selective works include Refs. 38–40, to name just a few.

Of particular interest to the present authors is the issue of weak
MHD turbulence.20–24 Because of the well-defined linear physics pro-
vided by the shear Alfv�en wave dynamics for strongly magnetized
plasmas, it seems that the weak turbulence approximation for MHD
turbulence should be quite valid, which is in contrast to the problem
of neutral fluid turbulence where the linear behavior is practically
absent. Because of this, we paid attention to this problem and found
that the existing formalism pioneered in the above references parallels
that of the Langmuir/ion–sound wave weak turbulence problem,
which is another area that is well developed in kinetic plasma theory,
e.g., see Ref. 41. Upon a careful survey of the MHD weak turbulence
theory, we deemed that an alternative formulation of the same prob-
lem within a framework that is often employed in the Langmuir/ion–
sound wave weak turbulence theory might be a useful contribution to
the subject matter. This is the motivation for the present paper.

A major finding in the existing MHD weak turbulence theory,
according to Refs. 22 and 23, is that the weak anisotropic MHD turbu-
lence energy spectrum in the asymptotically steady state should be
characterized by an inverse power-law spectrum, k�2

? , where k? repre-
sents the wave number perpendicular to the ambient magnetic field.
With the alternative formulation of the present paper, we indepen-
dently derive this result. However, we found an interesting feature
associated with the weak MHD spectrum. That is, while the k�2

?
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spectrum appears to be generally supported by our numerical compu-
tation of the resultant weak MHD turbulence equation, we also found
that other spectra are theoretically possible. Such a finding will also be
discussed in the present paper.

The organization of the present paper is as follows: In Sec. II,
we formulate the weak MHD turbulence theory in a format that
closely resembles those of existing works, namely, those of Refs.
20–24, particularly those of Refs. 22 and 23. However, the formula-
tion will follow a style that is reminiscent of the plasma kinetic weak
turbulence theory found in the literature.41–46,48 Then, Sec. III
expounds on the implications of the weak MHD turbulence theory,
which includes discussions on energy conservation, the anisotropic
nature of turbulent spectra, and the quasi-steady-state spectrum as
well as numerical demonstrations thereof. Finally, Sec. IV summa-
rizes the present findings.

II. DERIVATION OF WAVE KINETIC EQUATIONS
FOR WEAKMHD TURBULENCE

We start from the equations of incompressible magnetohydrody-
namic (MHD) theory.1,3 Assuming constant density, q ¼ const, and
thus,r � u ¼ 0; u being the fluid velocity, we have

du
dt

¼ �rP� þ
B � rB
4pq

þ �r2u;

dB
dt

¼ ðB � rÞuþ �r2B;

(1)

where B is the magnetic field, which of course, satisfies r � B ¼ 0; the
material derivative is defined by d=dt ¼ @=@t þ u � r; P� ¼ P=q
þB2=ð8pqÞ represents the total pressure; and we have assumed that
the velocity-space dissipation rate and the magnetic resistivity are
identical. We separate the magnetic field into an ambient component
and fluctuations, B ¼ B0 þ dB. We then define the Alfv�en velocity,
cA ¼ B0=ð4pqÞ1=2, and the Els€asser fields, z6 ¼ u6b, where
b ¼ dB=ð4pqÞ1=2. Then, it is a well-known and straightforward exer-
cise to rewrite the MHD equation (1) as

@za

@t
� aðcA � rÞza þ ðz�a � rÞza þrP� � �r2za ¼ 0;

r � za ¼ 0;
(2)

where a ¼ 6 denotes the two signs of Els€asser fields.
In what follows, we will rewrite Eq. (2) in spectral representation. In

doing so, we keep in mind that the spectral amplitudes vary slowly in
time. That is, we treat the spectral amplitudes as an adiabatic function of
time, while the physical quantities also oscillate in fast time scale of Alfv�en
waves.41,43,46,47 This is a shortcut method to implement the multiple
(or two)-time scale analysis into the problem at hand. We also treat the
angular frequency x to possess an infinitesimal positive imaginary
part, which is a consequence of the causality relationship. In short,
we express the physical quantities as zaðr; tÞ ¼

P
k;x zak;xðtÞeik�r�ixt

well as P�ðr; tÞ ¼
P

k;x Pk;xðtÞeik�r�ixt , together with the inverse

transformation, zak;xðtÞ ¼ ð2pÞ�4 Ð dr Ð dt zaðr; tÞe�ik�rþixt and

Pk;xðtÞ ¼ ð2pÞ�4 Ð dr Ð dt P�ðr; tÞe�ik�rþixt . Here, the slow time depen-
dence of the spectral amplitudes zak;xðtÞ and Pk;xðtÞ is meant to be adia-
batic. Implementing this spectral transformation to Eq. (2), we obtain20,22

0 ¼ i
@

@t
þxþ ak � cA þ ik2�

� �
zak;x � kPk;x

� 1
2

X
k0;x0 k � k0ð Þ � z�a

k0 ;x0zak�k0 ;x�x0 þ k0 $ k � k0ð Þ
h i

;
(3)

k � zak;x ¼ 0;

where the symbol ðk0 $ k � k0Þ denotes the repetition of the first
term within the square bracket except k0 and k � k0 are to be inter-
changed, and i@=@t acts upon the adiabatic time variation of the spec-
tral amplitude zak;xðtÞ. In what follows, we absorb the slow time
derivative to the angular frequency, xþ i@=@t ! x, and reintroduce
i@=@t later at an appropriate stage. Note that the nonlinear term in
Eq. (3) is expressed by writing the integral over k0 andx0 in a symmet-
ric form. This shortcut two-time scale treatise is adopted in the theory
of kinetic weak plasma turbulence,41,43,46,47 whereas in standard MHD
(and fluid) turbulence theories the spectral transformation is applied
only for the spatial coordinates.1,2,19,22,23 The advantage of this method
is that the basic equations turn into a set of algebraic equations, which
facilitates subsequent manipulations.

By taking the dot product k� of Eq. (3) and making use of the
incompressibility condition, k � zak;x ¼ 0 one may obtain Pk;x, which
is inserted back to Eq. (3). The result is

Daðk;xÞzaik;x ¼ 1
2

X
k0;x0

PijðkÞkk zajk�k0;x�x0z
�ak
k0 ;x0 þ ðk0 $ k � k0Þ

h i
;

(4)

where we have made use of k0 � z�a
k0 ;x0 ¼ 0 and ðk � k0Þ � z�a

k�k0;x�x0

¼ 0, and where the linear response function Daðk;xÞ and the projec-
tion operator PijðkÞ are defined, respectively, by

Daðk;xÞ ¼ xþ akkcA þ ik2�;

PijðkÞ ¼ dij �
kikj
k2

:
(5)

Here, we should keep in mind that the angular frequency x is implic-
itly assumed to have an infinitesimal positive imaginary part, xþ i0.
In order to proceed, we take the dot product zai�k;�x and take the
ensemble average of Eq. (4),

Daðk;xÞhzaik;xzai�k;�xi

¼ 1
2

X
k0;x0

PijðkÞkk hzajk�k0;x�x0z
�ak
k0 ;x0zai�k;�xiþðk0 $ k�k0Þ

h i
: (6)

As is apparent, Eq. (6) is not closed since the two-body correlation
function hzaik;xzai�k;�xi is coupled to the three-body correlations,

hzajk�k0;x�x0z�ak
k0;x0zai�k;�xi and hzajk0;x0z�ak

k�k0;x�x0zai�k;�xi, and so on, ad

infinitum. Consequently, one must close the infinite hierarchy of
correlations.

Note that for homogeneous and stationary turbulence, we have
hzaik;xzai�k;�xi ¼ hzak;x � za�k;�xi ¼ hz2aik;x, which is related to the spec-
tral energy density of the Els€asser fields. Note also that hzaik;xzai�k;�xi
¼ hu2ik;x þ hb2ik;x þ 2aRehuk;x � b�k;xi. Here, hu2ik;x þ hb2ik;x is
the total (particle plus field) energy, the quantity huk;x � b�k;xi is associ-
ated with the alignment between the flow field vector and the fluctuat-
ing magnetic field vector. If huk;x � b�k;xi ¼ 0, then the Els€asser fields
are symmetric, hz2þik;x ¼ hz2�ik;x, and the turbulence is said to be
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balanced. Note that in general, the dot product of Els€asser fields of
opposite signs is not necessarily zero, hz6k;x � z7�k;�xi ¼ hu2ik;x
�hb2ik;x 72iImhuk;x � b�k;xi. The quantity hu2ik;x � hb2ik;x is
known as the residual energy, the difference between the flow kinetic
energy and the field energy. In general, the residual energy is generally
finite, as some simulations indicate, and as Ref. 49 point out. For non-
zero residual energy, in addition to the ensemble-averaged nonlinear
equation for hzak;x � za�k;�xi specified by Eq. (6), one must also con-
struct the separate equation for hzak;x � z�a

�k;�xi. Such a formalism will
lead to the coupling of energy density for Els€asser field,
hzak;x � za�k;�xi, and the residual energy field hzak;x � z�a

�k;�xi. However,
in the present discussion, we are concerned with a relatively simple
and ideal case of zero residual energy, hzak;x � z�a

�k;�xi ¼ 0, which Ref.
22 also assumed. This simplifies the analysis in that the ensuing for-
malism will only involve nonlinear interactions between the Els€asser
fields of opposite signs, hzþk;x � zþ�k;�xi and hz�k;x � z��k;�xi.

In order to achieve closure, one needs to obtain the three-body

cumulants hzajk�k0;x�x0z�ak
k0;x0zai�k;�xi and hzajk0 ;x0z�ak

k�k0 ;x�x0zai�k;�xi,
which is done in the customary manner in standard weak turbulence

theory. We first write the solution to (3) iteratively, zaik;x ¼ zað0Þik;x

þzað1Þik;x þ � � �, where zað0Þik;x satisfies the linear equation,

Daðk;xÞzað0Þik;x ¼ 0. This means that odd moments of the zeroth order
solution are all zero, including the third order moment,

hzað0Þik;x zbð0Þjk0;x0 z
að0Þk
k00;x00 i ¼ 0. Since Daðk;xÞzað0Þik;x ¼ 0, the nonlinear correc-

tion is obtained by

zað1Þik;x ¼ 1
2

1
Daðk;xÞ

X
k0;x0

PijðkÞkk zað0Þjk�k0 ;x�x0z
�að0Þk
k0;x0 þ ðk $ k � k0Þ

h i
:

(7)

With this solution, we write the three-body cumulants of relevance as

hzajk�k0 ;x�x0z
�ak
k0;x0zai�k;�xi ¼ hzað1Þjk�k0;x�x0z

�að0Þk
k0 ;x0 zað0Þi�k;�xi

þhzað0Þjk�k0;x�x0z
�að1Þk
k0 ;x0 zað0Þi�k;�xi

þ hzað0Þjk�k0;x�x0z
�að0Þk
k0;x0 zað1Þi�k;�xi: (8)

By making use of the short-hand notation, q ¼ ðk;xÞ, and by itera-
tion we may construct the three-body cumulants of relevance upon
coupling Eqs. (7) and (8),

hzajk�k0;x�x0z
�ak
k0 ;x0zai�k;�xi

¼ 1
2Daðq� q0Þ

X
q00

Pjlðk � k0Þðk � k0Þm

� hzalq�q0�q00z
�am
q00 z�ak

q0 zai�qi þ hzalq00z�am
q�q0�q00z

�ak
q0 zai�qi

� �
þ 1
2D�aðq0Þ

X
q00

Pklðk0Þk0m hz�al
q0�q00z

am
q00 z

aj
q�q0z

ai
�qi

�

þhz�al
q00 z

am
q0�q00z

aj
q�q0z

ai
�qi
�
� 1
2Dað�qÞ

X
q00

PilðkÞkm

� hzal�q�q00z
�am
q00 zajq�q0z

�ak
q0 i þ hzalq00z�am

�q�q00z
aj
q�q0z

�ak
q0 i

� �
; (9)

where we have ignored the superscript (0) after everything is said and
done.

At this point, it is apparent that the three-body cumulants

depend on four-body cumulants, hzaiq z
bj
q0 z

ck
q00z

dl
q000i. In order to truncate

this infinite chain of hierarchy, we write the four-body cumulant into
products of two-body correlation functions while ignoring the irreduc-

ible four-body correlation function, hzaiq z
bj
q0 z

ck
q00z

dl
q000i ¼ hzaiq z

bj
q0 ihzckq00zdlq000i

þhzaiq z
ck
q00ihz

bj
q0 z

dl
q000i þ hzaiq zdlq000ihz

bj
q0 z

ck
q00i. We further make use of

hzaiq z
bj
q0 i ¼ dðqþ q0Þhzaiq z

bj
�q0i and the fact that Pjlðk � k0Þdðq� q0Þ

¼ 0; Pklðk0Þdðq0Þ ¼ 0; Pilð�kÞdð�qÞ ¼ 0, and Pklðk � k0Þdðq� q0Þ
¼ 0. Then, we have

hzajk�k0;x�x0z
�ak
k0 ;x0zai�k;�xi

¼Pjlðk�k0Þ
Daðq�q0Þ ðk�k0Þm hzalq zai�qihz�am

�q0 z
�ak
q0 iþhzal�q0z

�ak
q0 ihz�am

q zai�qi
� �

þ Pklðk0Þ
D�aðq0Þ

k0m hz�al
�qþq0z

aj
q�q0ihzamq zai�qiþhz�al

q zai�qihzam�qþq0z
aj
q�q0i

� �

� PilmðkÞ
Dað�qÞkm hzal�qþq0z

aj
q�q0ihz�am

�q0 z
�ak
q0 iþhzal�q0z

�ak
q0 ihz�am

�qþq0z
aj
q�q0i

� �
:

(10)

This method of constructing the three-body cumulant based upon the
iterative solution (7) rather than taking the direct triple product of Eq.
(2)—see, e.g., Refs. 1, 2, 19, 22, and 23—is again a standard practice
adopted in the kinetic weak plasma turbulence formalism.41,43,46

Obviously, this method bypasses the actual evolution equation for the
triple correlation function and hence is convenient for achieving the
closure of the hierarchy of correlations.

Inserting this into Eq. (6), making use of the incompressibility
condition kizaiq ¼ 0 associated with various terms, as well as the prop-
erty hzaiq z

aj
q i ¼ dijhz2aiq, we arrive at

0 ¼ DaðqÞhz2aiq �
1
2

X
q0

k2PijðkÞ
 
Pijðk0Þhz2�aiq�q0 hz2aiq

Daðq0Þ

þ
PijðkÞhz2aiq�q0 hz2�aiq0

D�
aðqÞ

þ ðk $ k � k0Þ
!
; (11)

where we have written down the terms with interchange of dummy
arguments ðk0 $ k � k0Þ specifically, and we have made use of
kjPijðkÞ ¼ 0. Here, we have made use of the fact that x is considered
to have an infinitesimal positive imaginary part, which ensures causal-
ity. Thus, we have DaðqÞ ¼ Daðk;xÞ ¼ xþ akkcA þ ik2� þ i0,
which means that we may write Dað�qÞ ¼ �x� akkcA þ ik2�
þi0 ¼ �D�

aðqÞ. In arriving at Eq. (11), we have made use of the fact
that the cross product hza � z�aiq associated with the residual energy is
zero.

At this point, we reintroduce the slow time dependence on DaðqÞ
via DaðqÞ ¼ Daðk;xÞ ! Daðk;xþ i@=@tÞ, which modifies the first
term of Eq. (11),

DaðqÞhz2aiq ! DaðqÞhz2aiq þ
i
2
@DaðqÞ
@x

@hz2aiq
@t

¼ DaðqÞhz2aiq þ
i
2

@hz2aiq
@t

; (12)
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where we have made use of the fact that @DaðqÞ=@x ¼ 1, by virtue of
the definition DaðqÞ ¼ xþ akkcA þ ik2�. We may split DaðqÞ into
real and imaginary parts, DaðqÞ ¼ ReDaðqÞ þ i ImDaðqÞ, where
ReDaðqÞ ¼ xþ akkcA and ImDaðqÞ ¼ k2�. This modifies the equa-
tions at hand,

0 ¼ ReDaðqÞhz2aiq þ ik2�hz2aiq þ
i
2

@hz2aiq
@t

� 1
2

X
q0

k2 1þ ðk � k0Þ2

k2k02

� �
hz2�aiq�q0 hz2aiq

Daðq0Þ

"

þ
2hz2aiq�q0 hz2�aiq0

D�
aðqÞ

þ ðk $ k � k0Þ
#
; (13)

where we have made use of the definition (5) for the projection opera-
tor, PijðkÞ, in order to express the final equation in explicit notation.
This procedure of first absorbing the slow-time derivative into the
angular frequency and reintroducing it later is the essence of the short-
cut two-time scale analysis, which is adopted in the kinetic weak tur-
bulence theory.41,43,46

The real part of Eq. (13), while ignoring nonlinear terms, namely,
ReDaðqÞ ¼ 0, leads to the Alfv�en wave dispersion relation,
x ¼ �akkcA, so that we may write the energy density for Els€asser
fields in terms of the intensities,

hz2aiq ¼ Iak dðxþ axkÞ;
xk ¼ kkcA:

(14)

We next consider the imaginary part of Eq. (13),

0 ¼ @Iak
@t

þ 2k2�Iak

� �
d xþ axkð Þ

�Im
X

q0

(
k2 1þ ½k � k � k0ð Þ�2

k2ðk � k0Þ2

 !
I�a
k0 I

a
k

Da q� q0ð Þ

� d xþ axkð Þd x0 � axk0
� �

þ
2k2I�a

k0 I
a
k�k0

D�
a qð Þ

d x� x0 þ axk�k0
� �

d x0 � axk0
� �

þk2 1þ ðk � k0Þ2

k2k02

� �
I�a
k�k0 I

a
k

Da q0ð Þ
d x� x0 � axk�k0
� �

d xþ axkð Þ

þ
2k2Iak0 I

�a
k�k0

D�
a qð Þ

d x� x0 � axk�k0
� �

d x0 þ axk0
� �)

: (15)

We evaluate the inverse dielectric functions by ignoring the prin-
cipal part contributions,

1
Daðq� q0Þ ¼

1

ðx� x0 þ axk�k0 þ i0Þ @Daðq� q0Þ
@ðx� x0Þ

¼ �ip dðx� x0 þ axk�k0 Þ;
1

Daðq0Þ
¼ 1

ðx0 þ axk0 þ i0Þ @Daðq0Þ
@x0

¼ �ip dðx0 þ axk0 Þ;

1
D�
aðqÞ

¼ 1

ðxþ axk þ i0Þ @D
�
aðqÞ
@x

¼ ip dðxþ axkÞ;

(16)

where we have again made use of the fact that @DaðqÞ=@x ¼ 1. This
leads to the wave kinetic equation for the intensities Iak associated with
the Els€asser fields,

@Iak
@t

¼ �2k2�Iak�pk2
ð
dk0
(

1þ ðk � k0Þ2

k2k02

� �
Iak � 2Iak0

� 	
I�a
k�k0

� d xk � xk0 þ xk�k0ð Þþ k $ k � k0ð Þ
)
; (17)

where we now resort back to the long-hand notation. This form of
wave kinetic equation is essentially the same as those found in the lit-
erature, e.g., Refs. 22 and 23.

III. IMPLICATIONS OF WEAKMHD TURBULENCE
THEORY

The first implication of weak MHD turbulence theory relates to
the energy conservation theorem. It can be shown that Eq. (17) satis-
fies the conservation of total energy associated with the Els€asser fields
in the absence of dissipation. In order to show this, it is useful to multi-
ply Eq. (17) with x ¼ axk , sum over both signs of a ¼ 6, and inte-
grate over k. Note that �hx represents the quantummechanical energy,
although the present discussion is purely classical. Nevertheless, this
shows that the quantity considered below represents the time rate of
change in the total energy (TE) of Els€asser fields:

d
dt

TEð Þ¼
X
a¼61

@

@t

ð
dkaxkI

a
k ;

¼�2
ð
dkk2�

X
a¼61

axkI
a
k �pk2

ð
dk
ð
dk0

X
a¼61

� 1þ½k � ðk�k0Þ�2

k2ðk�k0Þ2

 !
Iak �2Iak�k0

" #(

� I�a
k0 axkd xkþxk0 �xk�k0ð Þ

þ 1þ k �k0Þ2

k2k02

� �
Iak �2Iak0

� 	
I�a
k�k0axkd xk�xk0 þxk�k0ð Þ:

�
(18)

We pay attention to the nonlinear term, which is expressed concretely as

NL ¼ �pk2
ð
dk
ð
dk0 1þ k � ðk � k0Þ


 �2
k2ðk � k0Þ2

 !(

� Iþk I
�
k0xk dðxk þ xk0 � xk�k0 Þ (A)

þ 1þ ðk � k0Þ2

k2k02

� �
Iþk I

�
k�k0xk dðxk � xk0 þ xk�k0 Þ; (A0Þ

� 1þ k � ðk � k0Þ

 �2
k2ðk � k0Þ2

 !
I�k I

þ
k0xk dðxk þ xk0 � xk�k0 Þ (B)

� 1þ ðk � k0Þ2

k2k02

� �
I�k I

þ
k�k0xk dðxk � xk0 þ xk�k0 Þ (B0Þ

� 2Iþk�k0 I
�
k0xk dðxk þ xk0 � xk�k0 Þ (C)

� 2Iþk0 I
�
k�k0xk dðxk � xk0 þ xk�k0 Þ (C0Þ

þ 2Iþk0 I
�
k�k0xk dðxk þ xk0 � xk�k0 Þ (D)

þ 2Iþk�k0 I
�
k0xk dðxk � xk0 þ xk�k0 Þ

)
; (D0Þ
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where we have indicated four similar pairs of terms with (A), (A0), (B),
(B0), (C), (C0), (D), and (D0). After trivial changes of dummy variables,
we can show that each pair cancels out to zero. Specifically, for the
terms (A0) and (B0), we first interchange k0 and k � k0, and subse-
quently change the signs k ! �k and k0 ! �k0 (and make use of the
symmetry properties Ia�k ¼ Iak andx�k ¼ �xk). Then, one can easily
show that these terms exactly cancel out (A) and (B) terms, respec-
tively. For the terms (C0) and (D0), we simply make the change of
signs, k ! �k and k0 ! �k0, plus invoke appropriate symmetry
properties to cancel out the other two respective terms, (C) and (D). In
short, we have

X
a¼61

@

@t

ð
dk axkI

a
k ¼ �2

ð
dk k2�

X
a¼61

axkI
a
k : (19)

If we ignore the dissipation term on the right-hand side, then we have
the wave energy conservation theorem. That is, the exchange of wave
momentum and energy via three-wave resonance does not affect the
total energy content. It only leads to the redistribution of wave
momentum and energy, that is, the cascade of turbulence. This is, of
course, to be expected, since the three-wave resonance that leads to the
turbulent cascade does not alter the energy content until the cascade
reaches the scale, k / ��1=2, the so-called dissipation range, at which
point the turbulent energy is dissipated by viscosity or magnetic
resistivity.

The second implication of the weak MHD turbulence theory is
the inherent anisotropic nature of the turbulence spectrum.22,23 That
is, the cascade in directions transverse to the ambient magnetic field,
or equivalently, perpendicular to the Alfv�en wave propagation direc-
tion, is the dominant process. To see this, let us consider the three-
wave resonance conditions, which are given by xk þ xk0 � xk�k0

¼ 2k0kcA and xk � xk0 þ xk�k0 ¼ 2ðkk � k0kÞcA. This allows one to
write the wave kinetic equation (17) as

@Iak
@t

¼ �2k2�Iak�
pk2

2cA

ð
dk0
(

1þ ½k � ðk � k0Þ�2

k2ðk � k0Þ2

 !
Iak � 2Iak�k0

" #

� I�a
k0 d k0k
� �

þ 1þ ðk � k0Þ2

k2k02

� �
Iak � 2Iak0

� 	
I�a
k�k0d kk � k0k

� �
:

(20)

This result shows that the cascade process primarily affects the per-
pendicular wave vector, since the k0 integration along the parallel
direction is suppressed by the delta function conditions, dðk0kÞ and
dðk0k � kkÞ.

To see this more clearly, let us assume a Cartesian coordinate
system where both k and k0 vectors lie in the xz plane. In such a sit-
uation, since the y axis is a trivial coordinate, the problem effec-
tively reduces to a two-dimensional situation where physical
quantities are implicitly assumed as translationally invariant along
the y axis. Such an effective two-dimensional problem, however,
can be translated into a genuine three-dimensional result if we con-
sider a cylindrical, or azimuthal, symmetry associated with physical
quantities. Such a consideration will be relevant later, when we dis-
cuss the steady-state spectrum of the weak MHD turbulence. For
now, let us assume that k ¼ x̂kx þ zkz and k0 ¼ x̂k0x þ zk0z . Then,
Eq. (20) can be written as

@Ia kx; kzð Þ
@t

¼ �2k2�Ia kx; kzð Þ

� pk2

2cA

ð1
�1

dk0x

("
1þ

½kx kx � k0x
� �

þ k2z �
2

k2½ðkx � k0xÞ
2 þ k2z �

 !
Ia kx; kzð Þ

� 2Ia kx � k0x; kz
� �#

I�a k0x; 0
� �

þ 1þ ðkxk0x þ k2zÞ
2

k2 k02x þ k2z
� �

 !
Ia kx; kzð Þ � 2Ia k0x; kz

� �" #

� I�a kx � k0x; 0
� �)

: (21)

From this, it is clear that dynamical processes affect kx while changes
in intensity along kz come about only indirectly. As a consequence, we
may consider the dynamics along kx only by taking kz¼ 0 in Eq. (21),

@Wa kxð Þ
@t

¼ �2k2?�Wa kxð Þ

�pk2x
2cA

ð1
�1

dk0x Wa kxð Þ �Wa kx � k0x
� �
 �

W�a k0x
� ��

þ½Wa kxð Þ �Wa k0x
� �

�W�a kx � k0x
� �

g; (22)

where WaðkxÞ ¼ Iaðkx; 0Þ. This equation describes the perpendicular
cascade of highly anisotropic weak MHD turbulence along the perpen-
dicular direction.

A question that naturally arises relates to the steady-state spectrum,
which points to the third implication of the present problem. Let us
assume a steady state and ignore dissipation in Eq. (22). Let us also assume
that in the steady state the weak MHD turbulence is in balance, WþðkxÞ
¼ W�ðkxÞ ¼ WðkÞ, that is, uk � bk ¼ 0, and for the sake of notational
simplicity, we suppress the subscript x, and write k¼ kx. Then, we have

0¼
ð1
�1

dk0 Wðk0ÞþWðk�k0Þ

 �

WðkÞ�2Wðk0ÞWðk�k0Þ
� 

: (23)

Obviously, the constant WðkÞ ¼ W0 satisfies the above. Of course,
WðkÞ ¼ W0 over an entire spectral range may lead to divergence
when integrated over an infinite range of k, but constantW(k) may be
realized over a finite space. Note that an inverse power-law spectrum
k�s also leads to divergence at k¼ 0, but such a distribution can be
realized over a finite k domain. Consequently, one cannot blindly
apply the power-law spectrum over an entire domain. Nevertheless,
suppose that the spectrum is given by a power law,

WðkÞ / 1
ks
: (24)

Then, we have

0¼ 2
ks

ð1
�1

dx
xs

� 2
ð1
�1

dx
xsðk� xÞs ;

¼ 2 1þ ð�1Þs

 �

ks

ð1
0

dx
xs

� 2
ðk
�1

dx
xsðk� xÞs � 2ð�1Þs

ð1
k

dx
xsðx� kÞs ;

¼ 2 1þ ð�1Þs

 �

ks

ð1
0

dx
xs

� 2ð�1Þs
ð1
�k

x�sðxþ kÞ�s dx� 2ð�1Þs

�
ð1
k
x�sðx� kÞ�s dx: (25)

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 082306 (2021); doi: 10.1063/5.0062561 28, 082306-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


Upon making use of the following integral identity:ð1
u
x�sðx � uÞ�s dx ¼ u1�2sBð2s� 1; 1� sÞ

¼ u1�2s Cð2s� 1ÞCð1� sÞ
CðsÞ ; (26)

we obtain

0 ¼ 2 1þ ð�1Þs

 �

ks

ð1
0

dx
xs

: (27)

From this, it is clear that all odd integer s values satisfy the equation.
Note that the second and third terms on the right-hand sides of
second and third lines in Eq. (25) exactly cancel each other out. This
means that the steady-state weak MHD turbulence spectrum along the
perpendicular direction is not unique such that multiple solutions are
possible including WðkxÞ ¼ const and WðkxÞ / k�1

x ; k�3
x ; k�5

x . Note
that even more divergent spectra of the type k2nþ1

x ; n ¼ 0; 1; 2; 3;…
are also possible in a mathematical sense, although for all practical pur-
poses, power-law solutions with positive spectral indices are not of par-
ticular physical significance. Of these possible solutions, we are
particularly interested in WðkxÞ / k�1

x since this solution is related to
the steady-state spectrum discussed in the literature, namely, that the
perpendicular spectrum of weak MHD turbulence is / k�2

? .22 In order
to recover such a relationship, we invoke the conservation relationship
between the Cartesian representation in the two-dimensional sheet dis-
cussed thus far and three-dimensional turbulence with cylindrical (or
azimuthal) symmetry,ð1

�1
WðkxÞ dkx ¼ 2p

ð1
0
Wðk?Þ k?dk?: (28)

Upon substituting WðkxÞ ¼ Ck�1
x on the left-hand side, changing the

dummy integral variable from kx to k?, and extending the perpendicu-
lar k? integral on the right-hand side to negative range of k? under
the assumption that the intensity is invariant under the change of sign
of k? (which is justified a posteriori), we have

C
ð1
�1

k�1
? dk? ¼ p

ð1
�1

Wðk?Þ k?dk?: (29)

A direct comparison of both sides of the equality leads to the desired
result,

Wðk?Þ /
1
k2?

: (30)

We have also solved the evolution equation (22) by numerical
means. MHD has no characteristic scale, but suppose that we normal-
ize the equation into a dimensionless form by introducing an arbitrary
scale length, L, and normalize the wave numbers with respect to L. We
also consider the dimensionless time with respect to L and Alfv�en
speed cA. The dissipation rate is also normalized into a dimensionless
form. Finally, the Els€asser wave energy density is also written in
dimensionless form,

x ¼ k?L; T ¼ cAt
L

; � ! �

LcA
; WaðxÞ !

pWaðkxÞ
2L2c2A

: (31)

Then, we have

@WaðxÞ
@T

¼ �2x2�WaðxÞ þ 4x2
�ðx

0
dsW�aðsÞWaðx � sÞ

þ
ð1
0
dsW�aðsÞWaðx þ sÞ þ

ð1
x
dsW�aðsÞWaðs� xÞ

� 4WaðxÞ
ð1
0
dsW�aðsÞ

�
; (32)

where we have rewritten the s integrals as integrals over positive s only
by making use of the symmetryWað�sÞ ¼ WaðsÞ.

In Fig. 1, we showcase a sample result where we initiated
the computation with an identical Gaussian spectral profile for
both WðxÞ ¼ WþðxÞ ¼ W�ðxÞ ¼ W0 exp ½�ðx � x0Þ2=D�, where
W0 ¼ 0:1; x0 ¼ 0:2, and D ¼ 0:005. We have considered a range of
normalized perpendicular wave numbers, 0 < x ¼ kxL < 1, and have
solved the evolution equation (32) up to T¼ 500. The initial profile is
plotted with dots, while the snapshots at different times, T¼ 100, 200,
300, 400, and 500, are plotted by means of colored curves, with corre-
sponding time intervals indicated with a color scheme. As one can see,
the initial Gaussian profile gradually evolves into a quasi-power-law
spectral profile characterized by k�1

x by the forward cascade process,
which translates to k�2

? , as noted above, in agreement with Ref. 22. We
have also considered normalized dissipation rate of � ¼ 10�4, but the
numerical solution is hardly affected even if we set � equal to zero.
Note that the quasi-exponential turnover feature near maximum
xmax ¼ kxL ¼ 1 is simply the result of the boundary condition rather
than dissipation by finite resistivity. We find that this result is rather
interesting. Despite the prediction that any of the spectral forms
WðkxÞ ¼ const and/or WðkxÞ ¼ k2nþ1

x ; n ¼ 0;61;62;63;…, can
be realized, which follows from the strict mathematical analysis of
steady-state equation, the numerical solution shown in Fig. 1 nonethe-
less corresponds to k�1

x spectrum over a finite range, which implies
k�2
? spectral shape in 3D geometry with cylindrical (or equivalently,
azimuthal) symmetry.

FIG. 1. Initially Gaussian profileWðxÞ ¼ WþðxÞ ¼ W�ðxÞ ¼ W0 exp ½�ðx � x0Þ2=
D�, where W0 ¼ 0:1; x0 ¼ 0:2, and D ¼ 0:005, evolves into a power-law spectral
profile characterized by k�1

x by forward cascade, which translates to k�2
? , in agreement

with Galtier et al.22
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IV. SUMMARY AND CONCLUSIONS

The study of magnetohydrodynamic (MHD) turbulence is
important due to its varied applications including its role not only in
heating the solar corona and acceleration of the wind but also in other
astrophysical and laboratory environments.1–4,25–28 In the present
paper, we reformulated the weak MHD turbulence theory22,23 under a
slightly different approach often employed in the Langmuir/ion–
sound wave kinetic weak turbulence theory.41,43,46 We have confirmed
that the weak anisotropic MHD turbulence energy spectrum in the
asymptotically steady state behaves as k�2

? , where k? represents the
wave number perpendicular to the ambient magnetic field, in agree-
ment with Refs. 22 and 23. This is rather interesting since such a
quasi-steady-state solution, according to purely mathematical reason-
ing, is not a unique solution and that other spectra are theoretically
possible. Nevertheless, our numerical computation demonstrated that
the k�2

? (or in a two-dimensional sheet-like geometry, k�1
x ) spectrum

is indeed reproduced as a quasi-steady-state solution.
An important point of the present work is that the standard

methodologies widely employed in the MHD (and fluid) turbulence
problem and the kinetic plasma turbulence situations are mutually
equivalent such that these methodologies and approaches may be
employed interchangeably for other more complex situations.
Nonetheless, we find that the standard method involved in the kinetic
plasma turbulence theory, which involves the shortcut two-time scale
analysis and the iterative solution-based construction of the three-
body correlation function, offers the possibility of a more convenient
pathway to construct a similar analysis for more complex problems.

Before we close, we mention that the weak MHD turbulence the-
ory as discussed in this paper, or for that matter, any other turbulence
theory based on fluid equations, lacks the crucial element of wave–
particle interaction process. Instead, MHD or fluid turbulence theories
only deal with the process of spectral transfer of wave energy. In order
to encapsulate the wave–particle aspect of the problem, one needs to
move beyond the fluid models of turbulence and incorporate kinetic
effects. Some discussions along such a line of approach may represent
the issue of absorption and emission of low-frequency fluctuations by
particles. For instance, Refs. 50–52 investigated the issue of spontane-
ous thermal emission of Alfv�enic fluctuations by means of kinetic the-
ory, which could, in principle, be coupled to the wave kinetic equation
for Alfv�enic turbulence once the MHD weak turbulence theory is
reformulated within the framework of plasma kinetic theory. Such a
task is, however, beyond the scope of the present paper.
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