Bond-space operator disentangles quasi-localized and phononic modes in structural
glasses

Julia A. Giannini,™?>* David Richard,"3 M. Lisa Manning,"? and Edan Lerner®

! Department of Physics, Syracuse University, Syracuse, New York 13244, USA
2BioInspired Institute, Syracuse University, Syracuse, New York 18244, USA
3 Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
(Dated: May 11, 2022)

The origin of several emergent mechanical and dynamical properties of structural glasses is often
attributed to populations of localized structural instabilities, coined quasilocalized modes (QLMs).
Under a restricted set of circumstances, glassy QLMs can be revealed by analyzing computer glasses’
vibrational spectra in the harmonic approximation. However, this analysis has limitations due to
system-size effects and hybridization processes with low energy phononic excitations (plane waves)
that are omnipresent in elastic solids. Here we overcome these limitations by exploring the spectrum
of a linear operator defined on the space of particle interactions (bonds) in a disordered material. We
find that this bond-force-response operator offers a unique interpretation of QLMs in glasses, and
cleanly recovers some of their important statistical and structural features. The analysis presented
here reveals the dependence of the number density (per frequency) and spatial extent of QLMs
on material preparation protocol (annealing). Finally, we discuss future research directions and

possible extensions of this work.

I. INTRODUCTION

Glasses and other amorphous solids represent a class of
materials that is both relatively commonplace and highly
complex. Traditional glasses can be engineered to have
desired mechanical and optical properties and have been
used in commercial and technological applications for
decades [1-3]. Despite their familiarity, the fundamental
physics underlying several common features of glasses is
not yet well-understood. For example, thermodynamic
and mechanical properties of disordered solids such as
the dependence of heat capacity on temperature [4] and
material response to external deformation [5, 6] vary non-
trivially from those of crystalline solids.

While amorphous materials respond elastically to
small applied strain, they undergo irreversible structural
rearrangement for moderate deformation that is diffi-
cult to characterize and predict [3]. In early studies
of metallic glasses, researchers identified localized re-
gions of stress-induced plastic deformation that are re-
sponsible for yielding behaviors such as shear banding
and avalanches [7]. Falk and Langer analyzed microme-
chanical features that give rise to localized irreversible
rearrangements in simulated solids, and termed such
glassy defects “Shear Transformation Zones” (STZs) [8].
Recently, significant effort has been put into forming
structure-dynamics predictions for the failure behavior
of disordered solids [1, 3, 9-14]. These works attempt
to identify structural precursors to plastic deformation,
which occurs when glasses become unstable.

Many methods for detecting STZs in glasses build upon
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Goldstein’s Potential Energy Landscape (PEL) picture
[3, 13, 15-17]; for a disordered solid in d spatial dimen-
sions with a total potential energy U that depends on Nd
degrees of freedom, the PEL is a Nd-dimensional surface
that governs the system’s mechanics. It is commonly ac-
cepted that the intrinsic structural-mechanical disorder
of glasses is manifested in the complexity or “rugged-
ness” of the PEL, which features a multiplicity of local
minima that is exponential in the number of particles N.
Mechanically stable configurations sit in local minima
of the PEL, and applied deformation, forcing, or ther-
mal activity can push the system into adjacent minima,
constituting irreversible particle rearrangements. In the
framework of linear response theory, one analyzes local
curvatures of the PEL by computing the Hessian matrix

M= %, where X denotes particle coordinates. Di-
agonalization of M gives access to a glass’s vibrational
modes Jl, with associated vibrational frequencies wy, sat-
isfying M - 1/7[ :wfdjl (setting all masses to unity). Un-
der a restricted set of conditions [18-20], low-frequency
harmonic modes can cleanly localize on small groups of
particles and constitute good representations of STZs in
glasses [3, 21]. These soft quasilocalized modes (QLMs)
are key candidates for two-level systems whose presence
can explain the thermodynamic and mechanical anoma-
lies of glassy behavior [4].

QLMs are soft excitations that emanate from the struc-
tural disorder and mechanical frustration of glasses. A
subset of these excitations constitute glasses’ carriers of
plastic deformation [21]. It is now well-established that
the density D(w) of QLMs — per frequency and per par-
ticle — follows a universal form, scaling as w*, indepen-
dent of spatial dimension [22], glass preparation proto-
col [23, 24], or microscopic-interaction details [25]. How-
ever, (linear) continuum elasticity dictates that the vibra-


mailto:jagianni@syr.edu
mailto:e.lerner@uva.nl

(d) 100

1073

P(X)

0.25 0.5 0.1 1.0 10.0
LL//UJ() >\/>\o

FIG. 1. A single soft mode in a two-dimensional (2D) com-
puter glass with N = 4096 as revealed by (a) the Hessian
matrix M, and by (b) the bond-force-response operator A,
see text for details. The clear phonon hybridization of the
Hessian mode of panel (a) is entirely suppressed in the cor-
responding A-mode of panel (b), cleanly revealing a quasilo-
calized mode. (c¢) Harmonic spectrum D(w) vs. frequency w
for computer glasses in three dimensions (3D), featuring the
universal asymptotic ~ w? scaling. The vertical line marks
the expected lowest phonon frequency wpn = 2mcs/L with ¢
denoting the shear wave speed and L denoting the linear size
of the glass. All frequencies are divided by wo = ¢s/ao where
ag ~ pfl/d and p is the density of the system (with particle
masses set to unity). d) Distribution of eigenvalues P(\) of A
calculated for the same glasses as (c). All eigenvalues are di-
vided by Ao = Wo_2 for sake of comparison with the spectrum
of the Hessian. The observed P(A) ~ A~7/2 scaling at large
X echos the ~w? scaling of the nonphononic spectrum of (c),
as we explain in what follows. The vertical line marks the A
value corresponding to the expected lowest phonon frequency

in the system, Aph ~ w_};

tional spectrum of a solid must include long-wavelength
phononic excitations. Since QLMs and phonons are not
necessarily orthogonal, hybridization processes between
the two — as visualized in Fig. 1a — obscure the impor-
tant information contained in QLMs [19, 26].

To overcome the aforementioned phonon-hybridization
effects on QLMs, novel techniques and computational
frameworks have been developed. These include a family
of nonlinear excitations [13, 21, 26, 27], termed nonlin-
ear plastic modes (NPMs), that constitute solutions to
various nonlinear PEL-based micromechanical equations.
Importantly, nonlinear excitations do not hybridize with
phonons, and have been shown to converge in terms of
structure and energy to harmonic modes in the limit of

low frequency and in the absence of phonon hybridiza-
tion [13, 26-28]. While nonlinear excitations are reliable
representations of QLMs, some of them are challenging
to compute, as discussed in Ref. 21. In contrast, pseu-
doharmonic modes (PHMs) — introduced and discussed
in Ref. 21 — are a type of NPM that rely only on the
Hessian matrix and do not require computing high or-
der derivatives of the potential, but are still entirely ro-
bust against phonon-hybridizations. However, there is
currently no well-established way to obtain the full dis-
tribution of QLMs in glasses by computing NPMs.

Material preparation plays an important role in deter-
mining the characteristics of QLMs in glasses, and thus
directly impacts yielding behavior [29-32]. Building on
the resemblance between the spatial structure of QLMs
in computer glasses and the typical response of a ma-
terial to applied local force dipoles, recent work has i)
identified a characteristic energy scale associated with
QLMs and ii) studied the effect of thermal annealing on
their abundance, size, and stiffness (Refs. 24, 33, and 34).
These physical properties of QLMs are thought to con-
trol ductile/brittle failure in structural glasses [3, 24, 32].
Further, it was shown in Ref. 3 that structural analy-
ses which rely on the identification of quasi-localized soft
modes effectively predict yielding in a variety of model
glasses. Accordingly, the identification and characteriza-
tion of QLMs is very important for the efficacy of several
theoretical frameworks that make predictions about the
elasto-plastic deformation of glasses. For example, STZ
theory (Refs. 8, 35, and 36), Soft Glassy Rheology (SGR)
(Refs. 37 and 38), and elastoplastic modes (Ref. 39) all
rely on the existence of strain-accommodating defects.

Here, we study the statistics of a bond-force-response
operator A (referred to in what follows as the ‘bond oper-
ator’, for brevity) in the context of the properties of soft
excitations in structural glasses. In essence, the linear op-
erator A describes the local strain induced at one point
in the material, which results from applying a unit force
dipole elsewhere in the material (see precise definition be-
low). By construction, the contribution of phonons to the
bond operator is regular, allowing A to cleanly reveal the
populations of QLMs in model glasses. This operator was
first introduced in Ref. 40, where it was used to identify
the lengthscale associated with dipolar response fields in
disordered packings of soft disks. Inspired by Refs. 24
and 40, we thoroughly study the spectral properties of
A (see example in Fig. 1), and highlight its utility in re-
vealing the statistical, spatial and energetic properties of
soft quasilocalized modes in computer glasses.

This paper is structured as follows: Sec. II details the
ensemble of model glasses analyzed in our study; Sec.
IIT defines the bond operator and its properties; Sec. IV
presents our scaling predictions and numerical results re-
lated to the eigenspectrum of the bond operator, includ-
ing a discussion of the structural features of bond op-
erator modes and their correspondence to QLMs; Sec.
V includes a discussion of our results in the context of



recent work.

II. COMPUTER GLASS MODEL

In this work, we employ a model computer glass-
former which we refer to as Inverse Power Law (IPL)
soft spheres, describing the pairwise interaction between
particles. Glassy samples consist of N particles in d
spatial dimensions interacting via a radially symmetric
pairwise interaction potential given by u(r;;), where r;;
is the distance between particles ¢ and j. Configura-
tions are prepared with periodic boundary conditions and
energy-minimized according to the total potential energy
UX) = >_(i,jy wlrij), where the sum (i, j) runs over all
(unique) pairs of interacting particles. We note and em-
phasize that all spectral analyses presented in our work
were calculated for three-dimensional (3D) glasses, while
some results are obtained for 2D glasses for presenta-
tional and visualization purposes.

The IPL model is a polydisperse soft spheres model in
which particles interact via a purely repulsive pairwise

potential w(r;;) ~ Tz-jlo. We cut-off and smooth the po-
tential up to 2 derivatives, as described e.g. in Ref. 41,
where it is also explained how we handled sample-to-
sample finite-size effects that emanate from the random
drawing of the effective particle sizes from a fat-tailed
distribution [42]. The configurations we analyze in this
study were first equilibrated at a very broad range of
parent temperatures T}, using the swap Monte Carlo al-
gorithm [42-44] that allows for extreme supercooling.
Glassy configurations were formed by a conjugate gradi-
ent minimization [45] of equilibrium configurations. Our
glassy ensembles for each parent temperature 7}, consist
of 10,000 independent configurations of N =2000 parti-
cles in d=3 dimensions. In what follows, all dimensionful
observables are reported in simulational-units as spelled
out in Ref. 41

III. BOND-FORCE-RESPONSE OPERATOR
A. Definitions and formalism

The bond operator described in detail below is defined
in and acts upon the space of interacting pairs or bonds.
We restrict the discussion to systems for which this bond-
space is a vector space of dimension Ny, > Nd, i.e. larger
than the system’s configuration space, of dimension Nd.
Each component in bond space pertains to a single pair of
interacting particles. For the N = 2000, d = 3 configu-
rations that are the focus of this study, N, ~ % = 15350
where z ~ 15.35 is the approximate average number of
pairwise interactions per particle. Below we follow the
notation convention that, unless otherwise specified, low-
ercase variables (such as the pairwise distances r, be-

tween interacting particles) represent bond-space quan-
tities, while uppercase variables (such as particle coordi-
nates X ) represent coordinate-space quantities. Vectors
or operators in bond-space are indexed with Greek let-
ters, while those in coordinate-space are indexed with
Latin letters [40, 46]. We will use vector and bra-ket

notation interchangeably as it is convenient.

We consider first the change dr, in the length of the
o™ bond (consisting of particles i and j), which results
from imposing a (small) displacement R to particle co-
ordinates. To first order in the imposed displacement’s
magnitude, the distance r,, is extended or compressed by

oro = Xy - (0F; — oR;) (1)

where )?ij =X jf)_('i is the difference vector that extends
from particle j to particle i, and Xij Efij/|fij\ is the
corresponding unit vector. Eq. (1) constitutes a linear
transformation from coordinate-space vectors to bond-
space vectors via the N, x Nd dimensional operator S,
defined precisely as

Spp = Jra
90X,

(2)

Using this definition, it is convenient to express Eq. (1)
for the vector |dr) containing the extension/compression
of all bonds in the system in bra-ket notation as [47]

67) = S|OR). (3)

Furthermore, to map a bond-space vector to coordinate
space, we apply the transpose of S, ST. For example, if
we have a set of interparticle forces | f) and wish to obtain
the net force on each particle |F), we simply compute
|F) = ST|f). Refs. 40 and 46 discuss the utility of S and
ST further. We note that these operators are referred to
elsewhere as the compatibility and equilibrium or rigidity
matrices respectively [48].

We consider next the change in length of bond S that
results from applying a unit dipolar force to the ath
bond [40]. A schematic of the relevant objects to this
computation in an example 2D system are shown in
Fig. 2. We define the bond-space vector |a) to contain all
zeros, except for the entry corresponding to the o™ bond
whose value is unity. A particular bond « is highlighted
in panels (a) and (b) of Fig. 2. Operating with ST on
|a) corresponds to a coordinate-space unit dipole |Z(®))
such as that depicted in Fig 2a, namely,

E@) = 8T]a). (4)

The (linear) displacement response [§R(*)) to such an
applied force is simply

|6R@)) = M~HE) = M~18Ta), (5)

as shown for example in Fig. 2a. Note that M~! is
here the pseudo-inverse of M, which has d translational



FIG. 2. Bond operator formalism. For an example 2D IPL
system: a) Coordinate space unit dipole on «, |E<°‘)) and dis-
placement response |§R(*)) b) Contact network around « c)
Contact network around . Inset: A,z measures the change
in length of bond § in response to an applied dipolar force on
.

zero modes. Last, we project the displacement response
field |§R(*)) onto a dipole constructed on the Bt bond
(Fig 2¢), to obtain the (a, ) element of the Ny x Ny-
dimensional, symmetric and positive semi-definite bond-
force-response operator 4. This element is thus given
by

Aas = (EPR) = (a|SM™1ST|B) (6)

which is schematically shown in the inset of Fig. 2¢, where
B is extended by a small amount due to the deformation
induced by the applied force on «.

In the discussion that follows, it will be useful to con-
sider an expression for the bond operator in terms of the
full eigenmode decomposition of M:

Nd—

s ST
A= z W (7)
=1

where w; and |¢;) are the eigenfrequencies and corre-
sponding eigenvectors of the Hessian. Particularly, writ-
ing A in this way illustrates how its spectral properties
can be understood from that of M. We proceed by not-
ing a few additional features of A that are relevant to
its utility in connecting micromechanical information to
overall material behavior.

B. Zero-modes of A are states of self-stress

Bond-space vectors |n) that belong to the left-nullspace
of S represent states of self stress (SSS): sets of bond
extensions/compressions that do not alter the state of

force balance of a system, but still introduce mechani-
cal stresses [49]. That is, SSS satisfy ST|n) = 0. Given
the definition of A above (Egs. 6 and 7), its zero modes
will then be exactly the SSS of the system. For granular
packings near the unjamming transition, Maxwell con-
straint counting implies that # SSS ~ N¢z/2 where 6z
is the number of excess contacts (past isostaticity) per
particle [48]. It follows, given the dimensionality of the
bond operator, N, ~ Nz/2, that the number of nonzero
modes of the bond operator is ~ Nd.

C. A within continuum linear elasticity

It is possible to write an exact expression for A within
linear continuum elasticity, however it is more insight-
ful and less cumbersome to spell out scaling arguments
to highlight its expected long-wavelength properties. To
this aim, we consider the elastic Green’s function G(7)~
r~(4=2) (in @>2 dimensions) of a linear-elastic, homo-
geneous, and isotropic solid [50]. The displacement field
due to a dipole of length ag scales as agVG ~agr— (4=,
The strain field at distances r from the imposed dipole is
thus expected to scale as a3V2G ~a2r~9. Noticing that
A behaves as the gradient of the displacement field that
results from applied force dipoles, we conclude that

A7) ~ 77 (®)

The scaling relation given by Eq. (8) was validated nu-
merically in Refs. [13, 40]. The 7~¢ decay of interactions
is indeed expected for interacting dipoles, and forms the
basis of lattice models of glassy excitations [51-53], lend-
ing further support to the relevance of A in the present
discussion.

IV. SPECTRAL PROPERTIES OF THE BOND
OPERATOR

A. Low-frequency contributions to the bond op-
erator

As stated in the introduction, our goal behind study-
ing the bond operator A is to propose a systematic route
to overcome the hybridization of phonons with QLMs,
in order to cleanly access the latter. It is convenient to
assess the contributions of low-frequency modes of M to
A by writing M~ in its eigenbasis as in Eq. 7. In this
subsection, we specifically examine the relative contribu-
tions of QLMs and phonons to the construction of A.
Intuitively, one can consider these two different contri-
butions to individual elements A, of the bond opera-
tor by comparing the projections of each type of mode
(phononic and quasi-localized) onto pairs of coordinate-
space dipole vectors |2(®)) and [E(?) via Egs. 4 and 6.
Visually, as depicted in Figs. lab, the typical structure



of phonons is very dissimilar to that of a local dipole,
whereas QLMs highly resemble dipoles and dipolar re-
sponse fields (Fig. 2a).

1. Phonon contributions to A

Here, we show that phononic modes of the Hessian
have a regular (O(1)) contribution to A. As stated above,
computing elements of A involves projecting the eigen-
modes of the Hessian onto the dipole vectors |Z(*)) and
|=(®). Since phononic modes of M are extended plane
waves and vary slowly in space, we expect them to have
small projections onto local dipoles.

More specifically, consider the following expression for
the contributions of phonons ¥y ;) to A:

2
bl Wph,i

T

Ap =3 S|Wpn1) (Yphi|S )
where wp); is the eigenfrequency associated with |Upy ;).
According to Egs. 1 and 2, S|Upy;) picks up local dif-
ferences of the wave-like mode |¥,; ), and is thus ex-
pected to scale as the spatial gradient of |¥pp ), namely
S|Upni) ~ aoV|¥pn,). Polarization vectors in phonons
vary on the scale of their wavelength, so we conclude that
|S|¥ph,1)| ~wph,. Thus, the numerator of Eq. 9 (repre-
senting the projection of M eigenmodes onto dipoles) is
on the order of w2, ; and Ap, ~ O(1). We thus conclude
that phononic contributions to A are small compared to
those of QLMs, as we show next.

2. QLM contributions to A

Similarly, we now consider the contributions of low-
frequency QLMs to A. As observed in Refs. 24, 33, and
34, the structure of QLMs is characterized by a disor-
dered core and algebraically decaying quadrupolar field.
In contrast to plane wave excitations, the disordered core
of a QLM features highly nonaffine displacements, which
are expected to have large projections onto local dipoles
|=(®)). This implies that contributions to A from QLMs
are dominant compared to other excitations. Consider
the sum

Z SIVarmi) (Pqrm,|ST

AQLM == 9 (10)

QLM,! w‘%LMJ
where |¥qra,) is a QLM with frequency wqrm,i. Given
the propensity of QLMs for extending/compressing pair-
wise bonds in their cores, we conclude that S|Uqrm ;) ~
O(1). In contrast to phononic contributions to A, we ex-
pect that QLMs of frequency wqrm contribute terms of
order wéEM to A.

Importantly, the considerations described above lead
us to expect A to predominantly contain information
about disorder-related soft modes in model glasses that
are un-obscured by phononic modes. Thus, we expect
that the eigen-spectrum of the bond operator should sup-
press phonon hybridization and cleanly reflect the full
distribution of QLMs in the system.

B. Eigenvalue distribution of A
1. High-) scaling of bond operator spectrum

As previously noted, in the framework of using the har-
monic approximation to identify glassy instabilities, one
is generally interested in the low-frequency regime of the
eigenspectrum of the Hessian, where universal D(w) ~ w?
scaling is prevalent [22]. Since A is directly related to the
inverse Hessian, in the results that follow we will equiva-
lently be interested in studying the high-eigenvalue scal-
ing of A (Fig. 1d). Examining Eq. 7, we see that the
eigenvalues A of A should scale as the inverse squared
frequencies of the Hessian: A ~w™2. Applying a trans-
formation of variables to convert from D(w) ~ w* to some

P()), we obtain:
P(A) ~ D(w(N)|dw/dX| ~ A~3. (11)

More generally, for D(w) ~ w?, we equivalently have

P(A) ~ A~"%". Thus, we have formed a simple scal-
ing prediction for the bond operator eigenspectrum. As
we will see, this scaling is robust in the spectrum of A
for a variety of computer glass ensembles. Last, it is
important to note that the transformation of variables
performed here preserves the prefactor A, of the ~ w?
scaling (i.e. D(w)= Azw?), and so we expect to observe
P(X\)~AgA"7/2 as discussed extensively below.

2. Results: bond operator spectrum

To study the full distribution of disorder-related modes
in our model glasses, we computed and diagonalized A
for 10,000-configuration ensembles as noted above, pre-
pared in d=3 with N = 2000 particles at four different
parent temperatures 1), € {0.32,0.45,0.60, 1.00}. Fig. 3a
shows the distributions of eigenvalues for these samples.
The high-\ regime robustly displays the A\~7/2 scaling
predicted in Eq. 11, especially for less-deeply annealed
glasses such as those with 7}, 2 0.5. We also observe that
the prefactor A, associated with the \~7/2 power law in-
creases with larger T},. This is expected, as previous work
has shown that the overall number of QLMs depends
strongly on equilibrium parent temperature [23, 24, 33].
We will address this point thoroughly to follow.

The clarity of the P(A\) ~A~7/2 scaling observed here
contrasts typical D(w)~w? spectra, which are often ob-
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FIG. 3. Spectrum of bond operator for varying material

preparation protocols. a) Distribution of A eigenvalues for
four different T,. Darker colors (top) represent deeper an-
nealing. The scale triangles depict the predicted high-A
P()\) ~ X772 power law and mid-A P(\) ~ A~2 scaling re-
spectively. b) Participation ratio of particle force modes mul-
tiplied by N as a function of A for varying T}, color scale as
in (a). We use the plateau values of Ne in the high-\ regime
to extract QLM length scales £ from A modes.

scured by the presence of phononic excitations. Phonons
in the spectrum of M in finite-size solids introduce a
system-size dependence that does not exist in that of A.
For example, the typical frequency of the first phonons in
a solid of size L is wpp =2me, /L where ¢, is the shear wave
speed. In finite-size solids the lowest-frequency phonons
usually appear in quantized bands [19], rendering D(w)
explicitly system-size dependent. This can be seen in
Figs. lcd, as there is a clear phonon peak in the spec-
trum of the Hessian, but not in that of the bond opera-
tor. The spectrum of A is thus system-size independent
as demonstrated in Appendix B. We emphasize that the
scaling behaviors of D(w) and P(\) are equivalent, but
the bond operator recovers the result more cleanly than
the Hessian alone by virtue of its ability to de-hybridize
phononic and quasi-localized soft modes of the system.

We finally note that, in the mid-\ regime of the bond
operator spectrum, we observe clear P(\) ~ A~2 scaling
independent of T},, which is reminiscent of D(w)~w scal-
ing observed at intermediate frequencies in the density of
states of lattice models for interacting glassy QLMs [51-
53]. This observation further elucidates A’s utility for

identifying and analyzing non-phononic excitations.

3. Results: localization of high-\ eigenmodes

An important feature to observe in disordered solids
is the presence of a length scale associated with QLM’s
core size [24]. Toward this goal, we analyze the participa-
tion ratio profile of bond operator eigenmodes as a func-
tion of their associated eigenvalues A. Specifically, we
use coordinate-space modes derived from high-\ modes
of the bond operator (which we will define as “particle
force modes” and discuss in detail below) to compute
participation via

e(F) = m (12)

L o\27
N (F-F)

where the sums are over particle indices and F; is the
d dimensional vector prescribing the force on 4 in the
aforementioned coordinate-space mode. This analysis is
summarized in Fig. 3b, which shows Ne(\) for the same
group of glass ensembles as in Fig. 3a. The low-\ regime
is characterized by very localized modes that quickly in-
crease in participation with growing A. These correspond
to high-stiffness excitations such as Eshelby-like defor-
mations on a small number of particles, transitioning to
more extended modes that apply small forces to many
particles. See Appendix A for further details regarding
the participation of intermediate-A A eigenmodes.

More interestingly, for high A, the coordinate-space A
modes become localized and strongly resemble QLMs,
reaching a plateau in participation as indicated by the
horizontal lines in Fig. 3b. By identifying the partici-
pation for which the Ne profile reaches 15% above its
plateau value, we extract the typical number n of par-
ticles that participate in QLM-like excitations obtained
from A, usually ~ 10s of particles. Each n thus gives a
characteristic QLM length scale £ via

€ = agnt (13)

where ag = (V/N)'/4 is a characteristic interparticle
distance. As we will discuss, the length-scale associ-
ated with high-\ eigenmodes decreases significantly with
deeper annealing, in agreement with other methods for
investigating the interplay of material preparation and
QLM properties [24, 33, 34].

C. Eigenvectors of A and their connection to
QLMs

1. Relevant modes and spatial decay

In the discussion that follows, we will define a family
of modes that can be derived from the bond operator
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FIG. 4. Eigenmodes of A and their correspondence to PHMs. a) high-A bond force mode |f) obtained by diagonalizng .A.
Red-colored bonds represent extension and blue-colored bonds represent compression. Line opacity and thickness are adjusted
to reflect the magnitude of extension or compression, and we color only the top 10% (in magnitude) of bonds. b) Particle
force mode |F) (blue) corresponding to the bond force mode in (a) and related psuedo-harmonic force mode |Fpg) (orange).
c) Particle displacement mode |D) (green) corresponding to the particle force mode in (b) and related psuedo-harmonic
displacement mode |Dpg) (purple). d) Spatial decay profiles of polarization vector magnitudes as a function of distance from
disordered core. Colored points for each type of mode are the same as in (a)-(c). e€) Convergence of particle displacement and
particle force modes to their corresponding PHMs. The results shown in (d) and (e) are for our ensemble of 3D IPL glasses,

whereas (a)-(c) are presented in 2D for ease of visualization.

and briefly formulate scaling arguments that predict their
characteristic spatial decay.

a. Bond force modes. By diagonalizing A we ob-
tain its eigenvectors, which we will refer to as bond force
modes, denote |f), and interpret as fields of bond ex-
tension/compression forces. Bond force modes are Ny-
dimensional, and can also be understood as fields that
describe local strain on the scale of particle bonds.

b. Particle force modes. To instead study bond force
modes in coordinate space, we compute particle force
modes |F), via |F) = ST|f). Particle force modes are
Nd-dimensional and can be interpreted as applied forces
on each particle that constitute an equivalent deforma-
tion to the corresponding bond force mode.

c. Particle displacement modes. Recall that har-
monic vibrational modes (of the Hessian) and QLMs are
typically viewed as putative displacement fields about
a mechanically stable configuration that can represent
structural instabilities or loci of potential plastic yielding.
Thus, we compute Nd-dimensional particle displacement

modes |D) by applying the inverse Hessian to a particle
force mode: |D) = M~1ST|f).

d. Pseudoharmonic displacement modes. As previ-
ously noted, several recent works (Refs. 3, 13, 21, 26-28)
have formulated and studied NPMs and PHMs as faith-
ful representations of structural instabilities in model
glasses. Significantly, these modes resist hybridization
with phononic excitations, which is a notable shortcom-
ing of traditional harmonic vibrational modes [21]. Here,
we focus on PHMs as a benchmark for using modes of
the bond operator to identify QLMs in model glasses.
We first provide background information about formu-
lating PHMs, and then define the corresponding PHMs
to particle displacement modes and particle force modes.

Pseudo-harmonic modes (PHMs) 7 rely only on the
harmonic approximation of the energy, and can be ob-
tained by minimizing the cost function [21]

_ Mz
Z(i,j)(gij $Zij)?

with respect to the field 2. Here the notation M : 2%

o) = (14)



denotes a double-contraction of the field 2’ with the Hes-
sian, the sum in the denominator is over all interacting
particle pairs ¢j, and Z;; = Z;—7;. Fields 7 associated with
low-lying minima of C(2) satisfy 0C/0%]z = 0; they fea-
ture small stiffness (given by the numerator of Eq. 14),
and small participation ratio (thereby maximizing the
denominator) [21]. Thus, long-wavelength plane waves
are suppressed and disorder-related excitations (QLMs)
are clearly identified. In practice, PHMs can be obtained
by starting with an initial guess 2y and minimizing the
cost function via a routine such as conjugate gradient.
This highlights a major benefit of the bond operator ap-
proach compared to nonlinear frameworks such as PHMs
— namely, it does not require obtaining relevant initial
guesses to identify each QLM, as explained in [13, 21, 26].
Conversely, examining the high- regime of the bond op-
erator spectrum provides direct access to the population
of QLMs in glassy samples, and requires no ad hoc in-
puts, as we show below. For further information regard-
ing PHMs, see references [21, 27].

Now, if we use a particle displacement mode as the
initialization for computing a PHM, Zj — | D), we obtain
|Dpr), a Nd-dimensional pseudo-harmonic displacement
mode that corresponds to |D). In other words, |Dpp)
should be viewed as | D) with obscuring de-localized fea-
tures removed by the PHM protocol.

e. Pseudoharmonic force modes The forces that re-
sult from displacing the system via |Dpy) are simply
given by |Fpy) = M|Dppg), which we thus define as
pseudo-harmonic force modes. We reemphasize that in
the analysis presented here, we will use comparisons be-
tween |D) and |Dpg) (and |F') and |Fpg)) to determine
how close particle displacement and particle force modes
are to their pure QLM-counterparts.

f- Spatial decay In general, it has been noted in Refs
18, 26, and 28 that the spatial structure of QLMs is char-
acterized by a disorderd (dipole-response-like) core, dec-
orated by a decaying field that scales as ~ r~ (@1 where
r is the distance from the core. Since |Dpp) is a faithful
representation of a QLM, we expect that its decay will
match this profile. We can similarly examine the struc-
ture of |Fpp). Using arguments related to the definition
of pseudoharmonic modes as fields minimizing Eq. 14
(see Refs. 21 and 28), we predict that pseudoharmonic
force modes decay spatially as the cube of the gradient
of |DPH>- Thus, | ‘FPH>| ~ 7179 for d=3.

2. Results: spatial structure and correspondence to PHMs

As discussed above, we can use the formalism of
the bond operator to study a family of disorder-related
modes that represent structural precursors to plasticity
in model glasses. Here, we discuss the resemblance of
coordinate space representations of bond operator eigen-
vectors to their corresponding PHMs. For ease of visu-
alization, Fig.s 4a-c show high-A modes derived from the

bond operator in a representative 2D IPL system with
N =4096 particles. The bond force mode |f) depicted in
Fig. 4a shows a field of extensions/compressions localized
on a core of bonds. We note here that bond force modes
can be interpreted as local strain fields due to the bond
operator’s relationship to the elastic Green’s function as
noted above. This set of bond forces translates to a par-
ticle force mode |F) and pseudo-harmonic force mode
|Fpr) that are similarly localized, as shown in Fig. 4b.
Fig. 4c shows the particle displacement mode |D) and
pseudo-harmonic displacement mode |Dpg) that consti-
tute the (linear) response of the system to the applied
forces |F) and |Fppy) respectively. Significantly, we see
that |D) closely resembles |Dpg). These displacement
modes illustrate typical features of QLMs: low-stiffness
excitations that localize on a distinct group of particles
and have spatial structures characterized by a disordered
core and radially decaying field.

We will now quantify the spatial structure and the con-
vergence of |F') and |D) to their pseudo-harmonic coun-
terparts. Fig. 4d shows the decay profiles of the coor-
dinate space modes discussed above. We computed the
running median of the magnitude of polarization vectors
on particles in each mode as a function of radius r away
from the core of the mode, where the core position is
approximated by the location of the particle with the
largest polarization vector magnitude. The results were
averaged over 1000 high-A modes from 3D, IPL systems
with N =2000 particles, and T, =0.45. As is expected for
QLMs, |D) and |Dpy) decay spatially as ~r~ (@1 =y—2
in 3D [26]. More surprisingly, |F) falls off with the same
scaling, indicating that the forces prescribed by the high-
A bond operator mode behave similarly to their corre-
sponding displacements. This behavior of |D) and |F)
is reminiscent of low-frequency harmonic modes, where
the force and displacement modes are in the same direc-
tion. Conversely, |Fpy) decays much faster than |F):
| |[Fpr)| ~ 779, in agreement with our prediction. This
difference in spatial decay is consistent with the clear
variation in general structure between the two types of
particle force modes. Significantly, we have shown that
high-\ modes of the bond operator are robust representa-
tions of phonon-free QLMs in model glasses, highlighting
A as a reliable source of useful micromechanical informa-
tion.

Fig. 4e shows the convergence of |D) to the structure
of |Dpy) and |F) to |Fpp) respectively, as a function of
A. We compute and average the overlap of these pairs of
modes (simply defined as 1—(V|Vpy) for V— D, F') for
the same data as in Fig. 4d. In the limit of large A, |D)
converges quickly as ~A~% to its PHM, whereas |F) does
not. This suggests that small variations between | D) and
|Dppr) give rise to large differences in the according force
modes. In other words, there is some allowable variation
in sets of applied forces that could still give rise to QLM-
like displacement fields.



D. Effect of thermal annealing on QLM properties
reflected by A

The results presented in Fig. 3 showed that the statis-
tics of QLMs in glassy samples can be cleanly observed
in A spectra for a variety of T,. We emphasize that
these features are generically difficult to extract from the
density of modes of the Hessian due to system size and
hybridization effects. As discussed thoroughly in Ref. 24,
there are three notable QLM features that vary drasti-
cally with deeper annealing (decreasing T},): depletion of
the density N of disorder modes in the system; shrinking
of the QLM lengthscale £; and stiffening of the potential
energy landscape (typically measured by the frequency
wg of soft modes). Our results from analysis of the bond
operator robustly support these claims. By fitting our
distributions of A eigenvlaues from Fig. 3a to the scaling
relation P(\) ~ Ag A~7/2 in the large eigenvalue regime
associated with QLMs, we obtain the values of the pref-
actors A, which vary with T},. As is discussed extensively
in Ref. 24, an integral over the density of modes (or bond
operator eigenvalues) shows that A, encodes important
information about both the density A" and stiffness w, of
glassy QLMs.

In their recent work, Rainone et. al. used a charac-
teristic QLM frequency w, extracted from the average
response of glassy samples to applied dipolar forces to
disentangle contributions to the D(w)~ w?* prefactor by
N and a multiplicitive factor of w,® that arises from in-
tegrating the density of modes over a finite range [24].
The authors then study the effect of annealing on QLM
depletion by measuring N as a function of T,,. Fig. 5
shows our extracted P(\) prefactors as a function of par-
ent temperature overlaid on the data reproduced from
[24, 33]. To remove the overall scale that differs between
the two datasets, we divide the P()\) prefactors by that
of the high T}, ensemble, and report values of the ratio
Ra, =Ag/Ag T, 00 As we see, there is good agreement
between the observed trend in both studies. Thus, the
bond operator spectrum is a reliable way to recover A,
as a function of annealing. Notably, the values of A, vary
by three orders of magnitude within the range of 7}, that
we explored.

Next, we examine the effect of annealing on the QLM
length scales extracted from the participation plateaus in
Fig. 3b via Eq. 13. We compare these lengths, shown in
the inset of Fig. 5, to those reported in Ref. 24. Rainone
et. al. computed their QLM length scales for each sample
parent temperature via the relation £ =2mc, /wg where w,
is the dipolar response-derived characteristic frequency
and cg is the shear wave speed. Again, we divide the
& values by the high temperature case and report the
ratio Re =£/&1, o0 for ease of comparison. Interestingly,
despite seemingly different approaches for identifying the
QLM length scales, our results agree quite well. These
results further elucidate the utility of the bond operator
to provide important insight into the properties of glassy
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FIG. 5. Effect of thermal annealing on A, and £. Prefactor
ratios Ra, extracted from P()) distributions in Fig. 3a as a
function of parent temperature (open blue circles), overlaid
on data reproduced from Ref. 24 (black connected dots). The
inset shows the QLM length scale ratio R¢ extracted from
the participation plateaus in Fig. 3b as a function of parent
temperature (open red circles), also overlaid on data from
Ref. 24 (black connected dots).

QLMs a function of material preparation/memory.

V. SUMMARY, DISCUSSION AND OUTLOOK

Overall, we have shown that the bond force response
operator, A, is a powerful object that cleanly provides
insight into many statistical and structural features of
glassy instabilities. The operator acts on bond space vec-
tors and gives the deformation induced in particle bonds
in response to a set of applied compressions/extensions.
We provide intuition and numerical evidence for why
a bond-space perspective on instabilities in disordered
solids is valuable. Contrasting the spectrum of vi-
brational modes of the Hessian which is complicated
by finite size effects and hybridization processes, the
bond operator cleanly captures the statistics of disorder-
related modes in model glasses. In other words, we
have shown that the spectrum of A is system-size in-
dependent, and appears to efficiently de-hybridize low-
frequency QLMSs from phononic excitations. The high-
eigenvalue scaling of the bond operator that we have mea-
sured, P(\) ~ A~7/2 is equivalent to the universal low-
frequency D(w)~w? law [22-25]. We explored the spec-
tral properties of the bond operator and highlighted the
direct correspondence between its high-eigenvalue eigen-
modes and QLMs. By examining ensembles of swap
Monte Carlo IPL model glasses, we further explored the
effect of deep annealing on QLM properties. Reliably
identifying and understanding glassy defects is an im-
portant step toward building a comprehensive theory of
the rheology of disordered materials.



As we have discussed, existing frameworks such as
NPMs and PHMs have successfully identified populations
of QLMs in disordered solids [21, 27]. Since NPMs re-
quire the computation of high order derivatives of the
potential energy of the system, and both methods require
initial guesses to find representations of QLMs via mini-
mization of a nonlinear cost function, a relative strength
of A is that it provides direct access to the full spec-
trum of phonon-free QLMs. We have shown that parti-
cle displacement modes |D), derived directly from high-
A modes of the bond operator, quickly converge struc-
turally to their corresponding PHMs.

Previous work used the response of disordered packings
to local force perturbations (applied dipolar extension) as
well as the density of harmonic modes D(w) to determine
the annealing dependence of QLM depletion, shrinking,
and stiffening [24, 33, 34]. In our analysis of the bond
operator, we measured P(\) prefactors A, as a function
of parent temperature 7}, and found good agreement with
the results of Ref. 24. Additionally, we used the high-
A plateau observed in the participation profile of bond
operator modes to identify a length scale £ that decreases
with deeper annealing. Conveniently, by computing only
the bond operator, we gain access to spatial, mechanical,
and statistical properties of glassy excitations that are
important to popular theoretical frameworks such as STZ
theory, SGR, and elastoplastic models.

We note that computing the bond operator for large
systems remains challenging, as fully diagonalizing the
Hessian is computationally intensive. However, the bond
operator is a useful tool for analyzing glassy instabilities
in small systems, for example, packings of a few thousand
particles whose typical interaction range does not exceed
a few particle diameters. Still, it may be possible to ex-
tract the same information that we have presented here
using approximations of the bond operator such as from a
partial sum over the low-frequency modes of the Hessian
as in Eq. 7, or a cut-off on the inter-particle interaction
range in systems where long-range interactions may not
be important to the overall micromechanics; these are
avenues for future work. Furthermore, the bond opera-
tor could provide valuable insight into the structure of a
variety of glass-forming models such as Stillinger-Weber
or sticky spheres [21, 54].

In this work we focused solely on annealing as a prepa-
ration protocol that effects the mechanical features of
the resulting material. However, given the bond oper-
ator’s strength as a tool for studying QLMs and their
properties, it would be illuminating to utilize it in future
analyses of a broad range of computer glass ensembles.
In particular, thoroughly studying the (phonon-free) vi-
brational spectra of loosely compressed particle packings
near the unjamming transition would help inform current
theories for glassy instabilities and rigidity. Such a study
could help answer open questions about distinct popula-
tions of extended and localized low-frequency vibrations
in low-coordination solids.
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Appendix A: Intermediate-\A modes of A
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FIG. 6. a) Participation ratio as a function of A eigenvalue A
for particle force modes (blue, bottom) and particle displace-
ment modes (green, top). Markers represent the participa-
tions and eigenvalues associated with the sample |D) and |F)
modes in (b) - (g), which are arranged in the same order. b)
- d) particle displacement modes corresponding to the profile
in (a), arranged from low to high A from left to right. e) -
g) particle force modes corresponding to the profile in (a),
arranged from low to high A from left to right.

Similarly to Fig. 3b in the maintext, in Fig. 6a we show
the participation ratio (multiplied by system size) as a
function of A for a small ensemble of particle force modes
and particle displacement modes derived from eigenvec-
tors of A. The data presented here is from ~ 150 IPL
glasses in 2D with N =4096 particles and T, =0.7. We



see that the participation profiles for the two types of
modes vary by an overall factor for most of the range
in A, but the trends and tendency toward a plateau are
the same. In panels (b)-(d) and (e)-(g) of Fig. 6, we
show example |D) and |F) modes respectively that lie in
the intermediate-\ regime of the spectrum. Approaching
higher A, the modes begin to resemble QLMs.

Appendix B: A spectrum and system size depen-
dence
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FIG. 7. P(\) and D(w) distributions for ensemble of har-
monic sphere packings. Spectra for varying system sizes are
represented with different shape/color of marker as shown.
a) Full P()) spectrum, where the scale triangle represents
P(\)~A~"/2 scaling. b) The low-frequency D(w) is shown to
emphasize the presence of phonons. The scale triangle rep-
resents D(w) ~ w? scaling. Dashed vertical lines depict the
lowest phonon frequency given by wpn =2mcs /L where corre-
sponding peaks are visible.
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To show that A’s eigenspectrum is independent of sys-
tem size, we analyzed a variety of 3D 50:50 bidisperse
harmonic sphere packings prepared at pressure p = 0.1
expressed in simulational units. The ratio of diameters
of large and small spheres is set to 1.4. The harmonic
spheres interact via the pairwise potential

3k(rig —loij)% rij <loj
O, Tij > lg,ij

where k (set to unity) is a spring constant associated
with the bond (particle pair) ij and ly ;; is the bond rest
length. All ly ;; are set to the sum of the radii of particles
t and j, los; =d;+d;. We created glasses at the desired
target pressure using the FIRE energy minimization al-
gorithm [55]. See Ref. 41 (discussion of Hertizan sphere
packing preparation) for further details of the implemen-

tation. Here, we analyze 1000 independent configurations
for each N €{1000, 2000, 4000}.

By comparing panels (a) and (b) of Fig. 7, we see
that P()) is independent of system size, while D(w) has
phonon peaks in the spectrum that change frequency as
a function of simulation box size L (such a peak is also
clearly visible in Fig. 1 in the main text). This empha-
sizes the utility of the bond operator for investigating the
phonon-free spectrum of QLMs in model glasses.
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