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Rigidity regulates the integrity and function of many physical and biological systems. This is
the first of two papers on the origin of rigidity, wherein we propose that “energetic rigidity,” in
which all non-trivial deformations raise the energy of a structure, is a more useful notion of rigidity
in practice than two more commonly used rigidity tests: Maxwell-Calladine constraint counting
(first-order rigidity) and second-order rigidity. We find that constraint counting robustly predicts
energetic rigidity only when the system has no states of self stress. When the system has states of
self stress, we show that second-order rigidity can imply energetic rigidity in systems that are not
considered rigid based on constraint counting, and is even more reliable than shear modulus. We
also show that there may be systems for which neither first nor second-order rigidity imply energetic
rigidity. The formalism of energetic rigidity unifies our understanding of mechanical stability and
also suggests new avenues for material design.

INTRODUCTION

How do we know if a material or structure is rigid? If
we are holding it in our hands, we might choose to push
on it to determine whether an applied displacement gen-
erates a proportional restoring force. If so, we say it is
rigid. A structure that does not push back, on the other
hand, would be said to be floppy. In this paper, we call
this intuitive definition of rigidity “energetic rigidity” by
virtue of the fact that small deformations increase the
elastic energy of the structure. In many situations of in-
terest, it is impossible or impractical to push on a struc-
ture to measure the restoring force. In designing new
mechanical metamaterials, for example, we would like
to sort through possible designs quickly, without having
to push on every variation of a structure. In biological
tissues such as the cartilage of joints or the bodies of
developing organisms, it is often difficult to develop non-
disruptive experimental rheological tools at the required
scale. Or we may wish to understand how some tissues
can tune their mechanical rigidity in order to adapt such
functionality into new bio-inspired materials. To that
end, we would like a theory that can predict whether a
given structure is energetically rigid rapidly and without
the need for large-scale simulations or experiments.

This has inspired the search for proxies: simple tests
that, when satisfied, imply a structure is energetically
rigid [1–5]. The standard (and first) proxy for rigidity in
particulate systems comes from Maxwell [1]. When two
particles interact, for example through a contact, that in-
teraction constrains each particle’s motion. “Structural
rigidity” refers to whether those interaction constraints
prevent motion in the system. If a system has fewer
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constraints than the particles have degrees of freedom,
it is said to be underconstrained and therefore one ex-
pects it to be floppy. In contrast, overconstrained sys-
tems are said to be “first-order rigid.” This thinking has
been successfully applied to many examples of athermal
systems, such as jammed granular packings, randomly
diluted spring networks, and stress diluted networks [6–
9]. A straightforward extension of Maxwell’s argument,
known as the Maxwell-Calladine index theorem [2, 10],
shows that one should also subtract the number of states
of self stress, configurations of internal forces that are
in equilibrium, because they arise from redundant con-
straints. In hinge-bar networks, these ideas can be ex-
ploited to design mechanical metamaterials with topo-
logically protected mechanisms [10–14].

Yet, this thinking is certainly wrong in general. It is
well-known that underconstrained spring networks can
be rigidified if put under enough strain [15–25]. And
there are special configurations of even unstressed net-
works, e.g. colinear springs pinned down at both ends or
honeycomb lattice in a periodic box [26], which are rigid
despite being under-coordinated. That this occurs be-
cause of nonlinear effects has already been highlighted by
mathematicians and engineers in the context of the bar-
joint frameworks, origami, and tensegrities [3–5, 27–29].
In particular, Connelly and Whitely [4] demonstrate that
there may exist states where a different proxy, termed
“second-order rigidity”, is sufficient to ensure that the
constraints are preserved. Because of these nonlinear
effects, determining whether even a planar network of
springs is rigid is NP-hard [30] and, consequently, there
is no simple theory that can determine if a mechanical
system is truly rigid. Maxwell constraint counting works
because these non-generic configurations are ostensibly
rare.

In many physical systems of interest, however, the dy-
namics or boundary conditions drive the system towards
specific, non-generic states [31]. These non-generic states
can behave differently than we would expect from rigid-
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ity proxies. For example, even in overconstrained elastic
networks, prestresses have been shown to affect the sta-
bility of the system [32]. As another example, deformable
particles with bending constraints have been observed to
jam at a hyperstatic point [33]. Therefore, instead of
demonstrating the existence of states that are first-order
or second-order (and thus structurally) rigid, we instead
ask a different question: what can we say about ener-
getic rigidity for systems that are at an energy minimum
and correspond to highly non-generic states selected by
physical dynamics? In particular, is it possible to find or
design structures where motions preserve the energy but
not the individual constraints? In an important sense,
such a structure would still be floppy.

To answer this question we develop a generalized for-
malism for understanding the rigidity of energetically
stable physical materials. Specifically, we demonstrate
that the onset of rigidity upon tuning a continuous pa-
rameter emerges from the effects of geometric incompat-
ibility arising from higher-order corrections to Maxwell-
Calladine constraint counting. Depending on the pre-
stresses in the system and features of the eigenvalue
spectrum, we identify different cases where first-order
or second-order rigidity imply energetic rigidity. We
also demonstrate cases where second-order rigidity is a
more reliable proxy for energetic rigidity than even the
shear modulus, the standard measure of rigidity used in
physics.

I. FORMALISM

In this section, we will introduce notation and summa-
rize some of the standard proxies of rigidity and struc-
tural rigidity that arise in physics and mathematics. We
assume the state of the system is described by Ndof gen-
eralized coordinates, xn. For example, the coordinates
{xn} might represent the components of the positions of
all vertices in a spring network or the vertices in a ver-
tex model. We assume that the energy of the physical
system can be characterized using M strains of the form
fα({xn}) satisfying a Hooke-like energy, E, of the form

E =
1

2

M∑
α=1

kαfα({xn})2, (1)

where kα > 0 is the stiffness associated with each strain.
Since the strain functionals fα({xn}) are in principle gen-
eral, energies of the form of Eq. (1) encompass a broad
array of physical systems with Hookean elasticity.

As a concrete example, for a d−dimensional spring net-
work of N vertices connected via M springs with rest
length L0 in a fixed periodic box, Ndof = dN and the
strain associated with spring α connecting vertices i and
j at positions Xi and Xj is simply the strain of the
spring, fα = Lα − L0, where Lα = |Xi − Xj | is the
actual length of the spring. Without loss of generality,

we absorb kα into fα by re-scaling it by
√
kα and writing

E =
∑M
α=1 f

2
α/2.

We can capture the intuitive notion of rigidity or flop-
piness by considering the behavior of Eq. (1) under defor-
mations. A system is energetically rigid if any global mo-
tion that is not a trivial translation or rotation increases
the energy. We define a global motion as one that ex-
cludes rattlers and danglers; while this restriction is not
strictly required in our analysis, it conforms to standard
practice. If there exists a nontrivial, global motion that
preserves the energy, we call the system floppy. If, for
a given system at an energy minimum, all the strains
vanish, fα = 0 for all α, and the system is unstressed.
Otherwise, we say the system is prestressed.

The relationship between structural and energetic
rigidity arises when we treat the generalized strains, fα,
as the constraints in Maxwell-Calladine counting argu-
ments. However, while structural rigidity depends on
geometry only, we will see that energetic rigidity must
depend on the particular energy functional. Neverthe-
less, it is natural that a useful definition of floppiness
would depend on the energy functional itself.

A. Standard proxies of energetic rigidity

Experimentally, the standard proxy used to determine
whether the system is energetically rigid is the shear
modulus, G, defined as the second derivative of energy
with respect to a shear variable γ in the limit of zero
shear [34, 35]:

G =
1

V

d2E

dγ2

=
1

V

(
∂2E

∂γ2
−
∑
l

1

λl

[∑
n

∂2E

∂γ∂xn
u(l)n

])
, (2)

where V is the volume of the system while λl and u
(l)
n

are respectively the eigenvalues and eigenvectors of the
Hessian matrix, Hnm = ∂2E/∂xn∂xm, and the sum ex-
cludes eigenmodes with λl = 0. When G 6= 0, the system
is certainly energetically rigid. Note that this is closely
allied with the mathematical notion of prestress stabil-
ity [4] (see Appendix A). On the other hand, if Hnm

has global, nontrivial zero eigenmodes (or more precisely,
zero eigenmodes that overlap with the shear degree of
freedom), G = 0 [34].

Importantly, defining rigidity based on G is not equiv-
alent to energetic rigidity. Specifically, G 6= 0 implies the
system is energetically rigid, but G = 0 does not imply
floppiness. As highlighted in Appendix A there may be
quartic corrections in δxn that increase the energy even
with vanishing shear modulus. Moreover, in many cases
of interest these quartic corrections are expected to dom-
inate precisely at the onset of rigidity.

A definition of rigidity based on G is equivalent to
examining the Hessian matrix H directly: if H is positive
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A system is . . . when . . .
Energetically rigid any nontrivial global motion increases the energy
Structurally rigid no nontrivial global motion preserves the constraints fα
First-order rigid no nontrivial global motion preserves the constraints fα to first order
Second-order rigid no nontrivial global motion preserves the constraints fα to second order

TABLE I. Different definitions of rigidity.

definite on the global, non-trivial deformations, then the
system is also energetically rigid. Writing out the Hessian
matrix in terms of the constraints, we find

Hnm =
∂2E

∂xn∂xm
=
∑
α

[
∂fα
∂xn

∂fα
∂xm

+ fα
∂2fα

∂xn∂xm

]
= (RTR)nm + Pnm, (3)

where

Rαn =
∂fα
∂xn

(4)

is known as the rigidity matrix. We call (RTR)nm the
Gram term (as it is the Gramian of rigidity matrix), and
Pnm the prestress matrix because it is only non-zero if
fα 6= 0 (Gram term and prestress matrix are sometimes
called stiffness matrix and geometric stiffness matrix re-
spectively in structural engineering [4, 27]). If the Hes-
sian has at least one global nontrivial zero direction, we
obtain the necessary (but not sufficient) condition for
floppiness,∑

nm

Pnmδxnδxm = −
∑
nm

(RTR)nmδxnδxm

= −
∑
α

(∑
n

∂fα
∂xn

δxn

)2

, (5)

where the sum over α is over all constraints and, again,
trivial Euclidean modes have been excluded. Analogous
to our discussion of G above, a definition of rigidity based
on H is also not equivalent to energetic rigidity, due to
the importance of quartic terms in cases of interest (in-
cluding at the transition point).

B. Proxies of structural rigidity: the first- and
second-order rigidity tests

The existence of any global, non-trivial, and continu-
ous motion of the system xn(t) that preserves the con-
straints fα({xn(t)}) implies the system is floppy. A sys-
tem is structurally rigid when no such motions exist, a
definition highlighted in Table I. Energetic rigidity is not
necessarily equivalent to structural rigidity when the sys-
tem is prestressed (E > 0), though the two are the same
when E = 0, as discussed in more detail later.

Though determining whether a system is structurally
rigid is NP-hard [30], there are several simpler conditions
that, if they hold true, imply that a system is structurally

rigid [2–5]. These tests, and in particular the first- and
second-order rigidity tests, are reviewed in more detail in
Appendix A and briefly summarized in Table I.

Here, we assume that strains in the system are small
and that fα is smooth near fα = 0. This allows us to ex-
pand fα for small perturbations. The first-order rigidity
test arises by considering first-order perturbations to the
constraints, δfα =

∑
n ∂fα/∂xnδxn. We define a linear

(first-order) zero mode (LZM) δx
(0)
n as one that preserves

fα to linear order,∑
n

∂fα
∂xn

δx(0)n =
∑
n

Rαnδx
(0)
n = 0, ∀α. (6)

We can see that LZMs are in the right nullspace of the
rigidity matrix. Excluding Euclidean motions, a nontriv-
ial LZM is often called floppy mode (FM) in physics [10].
A system with no nontrivial LZM is first-order rigid and,
indeed, in such systems first-order rigidity implies struc-
tural rigidity as defined in Table I [3, 4].

Naive constraint counting suggests that an overcon-
strained system (Ndof < M) is rigid while an undercon-
strained system (Ndof > M) must be floppy. If Rαn is
full rank for a domain of configurations, this intuition is
assuredly true. Yet, there are examples of contrivances
that appear overconstrained yet move [36], as well as un-
derconstrained systems that are rigid.

When an underconstrained system is rigid, it must
be in configurations for which Rαn fails to be full rank.
Thus, the system must exhibit a state of self stress, de-
fined as a vector σα in the left nullspace of the rigidity
matrix: ∑

α

σαRαn = 0, ∀n. (7)

The Maxwell-Calladine index theorem (also known as the
rigidity rank-nullity theorem) states that Ndof − M =
N0−Ns, where N0 is the number of LZMs and Ns is the
number of states of self stress [2].

To understand this case, we study motions that pre-
serve fα to second order in δxn. Taylor expansion of fα
results in:

δfα ≈
∑
n

Rαnδxn +
1

2

∑
nm

∂2fα
∂xn∂xm

δxnδxm = 0, (8)

where we used Eq. (4) for the linear term in the expan-
sion. If the only LZMs that satisfy Eq. (8) are trivial
ones, the system is called second-order rigid and, conse-
quently, is structurally rigid [3, 4]. It can be shown that
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a LZM, δx
(0)
n , must satisfy∑
α

∑
nm

σα,I
∂2fα

∂xn∂xm
δx(0)n δx(0)m = 0, ∀I (9)

for all states of self stress σα,I and solutions to Eq. (7)
to be a second-order zero mode ([4, 5]; Appendix A).

Testing for second-order rigidity is not always easy,
particularly when there are more than one states of self
stress [29]. Thus, it is useful to define a stronger rigidity
condition called prestress stability which looks for a sin-
gle self stress, σα,I for which Eq. (9) has no solution [4].
If such a self stress exists, the system is said to be pre-
stress stable, and in the case of underconstrained systems
it is second-order rigid as well. Note that the inverse is
not always true, i.e., second-order rigidity does not im-
ply prestress stability: for a second-order rigid system
with more than one self stress, individual FMs could still
satisfy Eq. (9) for some self stresses, but there is not a
self stress for which all FMs satisfy Eq. (9). Connelly
and Whitely have shown, however, that a system that is
first-order rigid is also prestress stable [4].

Finally, we note that going beyond second order is less
helpful than one might suppose. There are examples of
systems that are rigid only at third order or beyond yet
remain floppy [37].

C. How common are non-generic states?

As we have seen, being able to use Maxwell constraint
counting as a proxy for rigidity relies on being in a generic
configuration. One might suppose that such cases must
be rare but, in fact, non-generic configurations seem to
arise physically quite often. Consider the Euler-Lagrange
equations for a system with the energy of Eq. (1) at an
extremum, ∑

α

fα
∂fα
∂xn

=
∑
α

fαRαn = 0, ∀n. (10)

For a system that is not prestressed, fα = 0 and the
above equation is satisfied trivially. For a system that
is prestressed, fα 6= 0, fα must be a state of self stress.
Note, however, the converse is not true. The existence
of states of self stress only depends on the geometry of
the system and does not imply that the system has to be
prestressed. For example, take a system with constraints
fα({xn}) = Fα({xn})− Fα at a particular mechanically
stable configuration {x̄n} that has a state of self stress
and choose Fα = Fα({x̄n}). The system will be un-
stressed at {x̄n} but still has a state of self stress. An
example is the honeycomb lattice in a periodic boundary
condition where all edge rest lengths are set to be equal
to the actual edge lengths.

Thus if we put a system under an external tension so
that it is unable to find a stress-free configuration under
energy minimization, it will naturally evolve to a non-
generic configuration having at least one self stress. In

these cases, it would be surprising for Maxwell constraint
counting to work; then the relationship between energetic
and structural rigidity becomes more complex.

II. RELATING STRUCTURAL RIGIDITY TO
ENERGETIC RIGIDITY

If a system is structurally rigid, can we also say it is
energetically rigid? More specifically, when do the prox-
ies of structural rigidity actually imply energetic rigidity?
The number of self stresses, it turns out, can be used to
classify the relationship between structural and energetic
rigidity.

Case 1: The system has no self stresses (Ns = 0)

When a system has no self stresses, first-order rigidity
– i.e., constraint counting – is a good proxy for energetic
rigidity. Since there are no self stresses, Eq. (10) implies
that the system is also unstressed, and Eq. (5) reduces
to ∑

α

(
∑
n

∂nfαδxn)2 = 0. (11)

The solutions are LZMs, δx
(0)
n (Eq. (6)). If a system

does not have any FMs, it is energetically rigid. An en-
ergetically rigid system with no states of self stress is
also called isostatic. This also means that there are no
motions that preserve fα even to first order, thus the
system is first-order rigid. Examples of systems belong-
ing to Case 1 include underconstrained and unstressed
spring networks, unstressed vertex models with no area
terms, and the special, non-generic frames described in
Figs. 4(a)-(c) of [10].

Case 2: The system has at least one self stress
(Ns ≥ 1)

Once a system has a self stress, the relationship be-
tween energetic rigidity and structural rigidity becomes
more subtle. Even a system that is first-order rigid may
not be energetically rigid under some conditions. For in-
stance, jammed packings of soft particles are first-order
rigid. However, in these packings, one can increase the
prestress forces (for example by multiplying all the con-
tact forces by a constant value as is shown in [38]) and
push the lowest non-trivial eigenvalue of the Hessian to
zero without leading to any particle rearrangements. In
this case, the system is first-order rigid but not necessar-
ily energetically rigid, and thus first-order rigidity does
not always imply energetic rigidity (Fig. 1).

An underconstrained system may also be structurally
rigid but not necessarily energetically rigid. For exam-
ple, consider an underconstrained system that is prestress
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stable for self stress σα,1. Choose a prestress along this

self stress, f̃α = cσα,1 for some c > 0 which defines an

energy functional Ẽ =
∑
α f̃

2
α/2. It follows from the

assumption of prestress stability that the prestress ma-

trix P̃nm defined for Ẽ is positive definite on the space
of FMs. Therefore, if the actual energy of the system

E = Ẽ, Hnm would be positive definite and the system
energetically rigid at quadratic order.

However, E = Ẽ is only guaranteed if the system is
prestressed along a unique state of self stress. For exam-
ple, one can imagine a prestress stable system with more
than one self stress that is driven to fα =

∑
I cIσα,I

by the dynamics such that Hnm is not positive definite.
Conversely, only if the system is energetically rigid at
quadratic order, it is guaranteed to be prestress stable.
For instance, a system may be energetically rigid at quar-
tic order, which is the case for underconstrained systems
at the critical point of rigidity transition as we will see
later; such a system is second-order rigid (Appendix A)
but not necessarily prestress stable.

We now ask the question: when does first- or second-
order rigidity imply energetic rigidity? We identify two
cases (Case 2A and 2B), which encompass several ex-
amples of physical interest, where both first-order and
second-order rigidity imply energetic rigidity, and demon-
strate that second-order rigidity is a better proxy for en-
ergetic rigidity than the shear modulus. We identify a
third case (Case 2C) where neither first- or second-order
rigidity imply energetic rigidity – for example there may
be systems with large prestresses that do not preserve fα
to second-order but preserve energy. We classify these
distinct cases using the eigenspectrum of Pnm and the
states of self stress. In all the cases, we will assume that
if the system has FMs, at least one is global.

Case 2A: The system is unstressed (Pnm = 0)

This case includes systems with either no prestress,
fα = 0, or systems for which the prestress is perpen-
dicular to its second-order expansion such that Pnm =∑
α fα∂n∂mfα = 0. If the system is first-order rigid, it is

again energetically rigid. If there are global FMs, G = 0;
however, it can be shown (Appendix A) that the fourth
order expansion of energy for these modes will be

δE ≈ 1

8

Ns∑
I=1

[∑
α,nm

σα,I ∂n∂mfα δx
(0)
n δx(0)m

]2
(12)

Therefore, if the system is second-order rigid in the space
of its global FMs, it is energetically rigid even though
G = 0. Examples include random regular spring net-
works with coordination number z = 3 and vertex models
exactly at the rigidity transition.

Case 2B: Pnm is positive semi-definite

For a system with a positive semi-definite Pnm, the
Hessian has a zero eigenmode if and only if both LHS
and RHS of Eq. (5) are zero for δxn. The RHS is zero
only for LZMs. Then if the system is first-order rigid,
it is again energetically rigid. For a system with global
FMs, we reduce Eq. (5) to∑
nm

Pnmδx(0)n δx(0)m =
∑
nm

∑
α

fα∂n∂mfαδx
(0)
n δx(0)m = 0,

(13)

where x
(0)
n is now a global FM. We show below that

second-order rigidity implies energetic rigidity, but de-
pending on Ns, G may be zero.

If the system has a single self stress: Calling this
state of self stress σα, we conclude from Eq. (10) that
fα ∝ σα, meaning Eq. (13) is identical to Eq. (9) in this
case. This means that if this system is second-order rigid,
it is energetically rigid and G > 0. We demonstrate in
a companion paper [39] that both spring networks under
tension and vertex models with only the perimeter term
fall into this category.

If the system has multiple self stresses: In Ap-
pendix A we show that if the system is second-order
rigid in the space of global FMs, it is energetically rigid
(Eq. (12)). However, the Hessian may still have zero
eigenmodes if in the minimized state fα is a linear com-
bination of self stresses that satisfies Eq. (13). This sug-
gests that the system may be energetically rigid but with
G = 0. We have not been able to identify an example
of a second-order rigid system with multiple self stresses
and G = 0, but if one exists, it may lead to interesting
ideas for material design.

Case 2C: Pnm has negative eigenvalues

In this case, we have been unable to derive analytic re-
sults for whether first-order or second-order rigidity im-
plies energetic rigidity. As the models that fall into this
class are quite diverse, it is likely that more restrictive
conditions are necessary in specific cases to develop ana-
lytic results.

One example in this category is vertex models with
an area term in addition to a perimeter term when pre-
stressed. In the companion paper [39], we demonstrate
numerically that in such models there is always only one
state of self stress that is non-trivial, and that Pnm has
negative eigenvalues. However, the Hessian itself is still
positive-definite (excluding trivial LZMs) and therefore
the system is energetically rigid. Another example is a
rigid jammed packing, which exhibits quite different be-
havior for the eigenspectra of Pnm.

More generally, we cannot rule out the possibility that
there may be examples where the Hessian of a first-order
or second-order rigid system could have global zero di-
rections for non-zero modes. Such a system would be
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marginally stable because if any negative eigenmode of
Pnm becomes too negative, the Hessian would have a
negative direction and the system would not be at an
energy minimum anymore. Furthermore, states of self
stress place the same constraints as in Eq. (9) on these
non-zero modes. If those constraints are not satisfied, the
energy would increase at fourth order (Appendix A), sug-
gesting that again the shear modulus could be zero while
the energy is not preserved. Even though it is highly
non-generic, this case could aid in the design of struc-
tures that become unstable by varying the prestress [32]
or new materials that are flexible even though individual
constraints are not preserved.

Fig. 1 summarizes the cases describing when either
first-order or second-order rigidity imply energetic rigid-
ity. In Appendix A, we provide another flowchart (Fig. 2)
to clearly establish the connection between energetic
rigidity and structural rigidity as understood by mathe-
maticians. We also provide several propositions to show
that energetic rigidity and structural rigidity are inter-
changeable when E = 0 but not necessarily otherwise.
For instance, it can be shown that first-order and second-
order rigidity both imply structural rigidity [5], but we
saw that they do not always imply energetic rigidity. This
is because for a system which possesses self stress at an
energy minimum, mathematicians only require the exis-
tence of a linear combination of self stresses that would
make the system rigid [4], however, that particular self
stress may not be the linear combination of self stresses
that the system chooses as its prestress based on external
forces [31].

𝑁" = 0 𝑁" > 0

𝒫'( ≥ 0 𝒫'( has negative eigenvalues

𝑁*
(,,'.) > 0

1st order rigidity

energetic rigidity

1st order rigidity

energetic rigidity

2nd order rigidity

energetic rigidity

System dependent

Does either first-order or second-order rigidity imply 
energetic rigidity?

𝑁*
(,,'.) = 0

FIG. 1. Flowchart of Cases summarizing the classification
of systems based on the findings of second-order rigidity for-

malism. N
(g,nt)
0 refers to the number of global non-trivial

LZMs (i.e. global FMs).

III. DISCUSSION AND CONCLUSIONS

We term an “energetically rigid” structure as one
where any sufficiently small applied displacement in-
creases the structure’s energy. Our focus on motions
that preserve energy contrasts with previous work on
structural rigidity that has focused on motions that pre-
serve constraints. There are interesting differences be-
tween the two approaches. Unlike structural rigidity, en-
ergetic rigidity is not defined solely by the geometry –
predictions also depend on the energy functional. Here
we studied a Hooke-like energy that is quadratic in the
constraints, which is the simplest nontrivial energy func-
tional that encompasses a large number of physical sys-
tems, but other choices are possible. On the other hand,
this choice opens the possibility that in some structures
there may exist motions that preserve the energy with-
out preserving individual constraints. Importantly, the
framework developed here would allow us to identify such
systems as floppy.

Specifically, we want to understand under which pre-
cise circumstances structural rigidity implies energetic
rigidity, and in the process identify underlying geomet-
ric mechanisms that are responsible for rigidity in spe-
cific materials. It is understood that predicting whether
a planar graph is structurally rigid is already an NP-
hard problem, and so previous work has proposed several
“quick” tests for rigidity, which work in limited circum-
stances. One test is the Maxwell-Calladine index theo-
rem, also called first-order rigidity, which tests whether
the constraints fα that define the energy functional can
be satisfied to first order. Another test is second-order
rigidity, which checks whether constraints can be satisfied
to second order.

In this work we have developed a systematic framework
that clarifies the relationship between energetic rigidity
and these other previously proposed rigidity tests. We
demonstrate that first-order rigidity always implies ener-
getic rigidity when there are no states of self stress. How-
ever, when the system does possess states of self stress,
the eigenvalue spectrum of the prestress matrix Pnm con-
trols whether first- or second-order rigidity (or neither)
implies energetic rigidity. In a companion paper [39], we
study several physical systems of interest, and demon-
strate that for some second-order rigidity is sufficient to
guarantee energetic rigidity, while for others it is not.
In particular, we use the formalism developed here to
demonstrate that several important biological materials
are second-order rigid and identify specific features of the
eigenvalue spectrum and states of self stress, which drive
biological processes, that arise due to second-order rigid-
ity.

When the prestress matrix is indefinite or negative
semi-definite, we can still show analytically that at the
rigidity transition, second-order rigidity implies energetic
rigidity. But away from the transition point neither first-
order nor second-order rigidity guarantee energetic rigid-
ity.
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Moving forward, it would be useful to identify features
that distinguish examples in this category, dividing it into
sub-cases that are at least partially analytically tractable.
One intriguing possibility is to classify a structure’s re-
sponse to applied loads. For example, one could artifi-
cially increase the prestresses in a structure, multiply-
ing Pnm by a coefficient ε > 1, which will only increase
the overall magnitude of the state of self stress but not
change the geometry of the network or the Gram term in
the Hessian.

This also suggests that it may be possible to program
transitions between minima in the potential energy land-
scape via careful design of applied load. For example,
while the type of spring network we study in our com-
panion paper is completely tensile for L0 < L∗0 [39], one
could create spring networks with both tensile and com-
pressed edges [32] or a tensegrity with tensile cables and
compressed rods. It will be interesting to see if we can
design such systems to have a negative-definite prestress
matrix. If so, applied loads may destabilize the struc-
ture along a specified mode towards a new stable config-
uration. These instabilities can also lead to more com-
plex behaviors like dynamic snap-throughs, which can be
identified using dynamic stability analyses [40].

A related question is whether we can move such a sys-
tem from one energy minimum to another in a more effi-
cient manner. Traditionally, to push a system out of its
local minimum into a nearby minimum, one rearranges
the internal components of the system locally or globally,
while it is rigid, by finding a saddle point on the energy
landscape. An alternate design could be to (1) apply a
global perturbation that makes the system floppy, (2) re-
arrange its components at no energy cost, and (3) apply
a reverse global perturbation to make it rigid again. In
other words, the fact that the system can transition from
rigid to floppy using very small external forces without
adding or removing constraints could help us generate

re-configurable materials with very low energy cost. In
spring network systems, we have already been able to
identify specific examples with this property, and future
work will focus on quantifying the number of such config-
urations and developing optimization algorithms to find
ones with specific functionality, driving metamaterial de-
sign.

Another interesting avenue for design is to perturb the
energy functional itself. In this work we focused on an
energy that is Hookean in the constraints, but it would
be interesting to explore whether different choices of en-
ergy functional still generate the same relationships be-
tween energetic rigidity and first- or second-order rigidity
identified in Fig 1. If not, such functionals may enable
structures with interesting floppy modes.

Taken together, this highlights that the subtleties in-
volved in determining energetic rigidity could be ex-
ploited to drive new ideas in material design. With
the framework described here, we now fully understand
when we can use principles based on first-order con-
straint counting or second-order rigidity to ensure en-
ergetic rigidity in designed materials. Moreover, there
may be some new design principles available, especially
for dynamic and activated structures, if we focus on cases
where these standard proxies fail.
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Appendix A: Derivation of second-order rigidity condition and implications for energetic rigidity

In Sec. A 1, we summarize the basic definitions and important theorems on structural rigidity in bar-joint frame-
works. Several of these theorems are adapted from [4]. In Sec. A 1 a, we relate structural rigidity to energetic rigidity.
These results are summarized in Fig. 2. We also provide derivations of second-order rigidity and energetic rigidity
that we have omitted from the main text.

1. Basic results on structural rigidity

Let xn be a point in a space of configurations and let Fα({xn}) be a set of measures (for example, in a fiber
network Fα({xn}) might give the length of the fibers). From now on we denote the configuration {xn} as x for
simplicity. We start with some basic definitions:

Definition: A nontrivial isometry (or, sometimes, flex) is a one-parameter family of deformations, x(t), such that
Fα(x(t)) = Fα (for some Fα) and x(t) is not a translation or rotation. We similarly refer to a nontrivial deformation
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as any deformation δx(t) that is not a translation or rotation.

Definition: A linear zero mode, also known as a first-order isometry or a first-order flex, at a configuration x̄, ẋ, is
a nonzero solution to the equation

∑
n ∂nFα(x̄)ẋn = 0 for all α. A system is first-order rigid if there are no solutions

to this equation other than Euclidean motions.

Definition: A self stress, σα, at x̄ is a nonzero solution to
∑
α σα∂nFα(x̄) = 0 for all n.

Definition: A second-order isometry (or a second-order flex) at x̄ is a first-order isometry that also satisfies the
system of equations

∑
α

∑
nm σα,I∂n∂mFα(x̄)ẋnẋm = 0, where {σα,1, σα,2, · · · , σα,Ns} is a basis of self stresses at x̄.

A system is second-order rigid if it has nontrivial zero modes but no nontrivial second-order isometries.

We finally have a main result of rigidity theory: a system that is either first-order or second-order rigid, is struc-
turally rigid [4]. It can be hard – still – to test for structural rigidity at second order because it involves solving a
system of quadratic equations. It is, therefore, convenient to introduce a stronger condition:

Definition: A system is prestress stable at x̄ if there is a self stress at x̄, σα, such that
∑
α σα∂n∂mFα(x̄) is positive

definite on every nontrivial zero mode.

With this definition, we prove that a system that is prestress stable at x̄ is also second-order rigid at x̄ (and hence,
structurally rigid). This follows because there is a self stress σα such that

∑
α σα∂i∂jFα(x̄) is positive definite on

nontrivial first-order flexes. We can construct a basis for the self stresses with σα as one of its elements. Therefore,
it is second-order rigid as well.

According to Connelly and Whitely [4], there are examples of second-order rigid structures that are not prestress
stable in 2D and, especially, 3D. The notion of prestress stability is related to notions of an energy.

Note also that a system that is second-order rigid is not necessarily prestress stable. Examples appear in Connelly
and Whitely. However,

Proposition: A system that is second-order rigid but has one self stress is prestress stable. This is also in [4].

Since the system is second-order rigid but has one self-stress,
∑
nm σα∂n∂mf(x̄)ẋnẋm 6= 0, it must be true that

cσα∂n∂mf(x̄) is positive definite for some, potentially negative, c. Then choosing Fα = Fα(x̄)−cσα makes the system
energetically rigid to quadratic order and, hence, prestress stable. The complete proof can be found in [4].

a. Energetic rigidity

A proper understanding of the rigidity of a mechanical system requires an energy functional. To formulate this, we
assume we have a system of measures, Fα({x}). From this we define generalized strains, fα(x) =

√
kα (Fα(x)− Fα)

that measure the deformation of our system from the local equilibrium Fα and kα > 0 is an elastic modulus. We then
assume a neo-Hookean energy functional of the form

E(x) =
1

2

∑
α

f2α(x). (A1)

As an example, for a fiber network, Fα(x) measures the distance between two vertices and Fα is the equilibrium
distance between vertices. For a vertex model, on the other hand, the fα might measure the deviation of the cell
perimeters and areas from their equilibrium values.

We say that a system is energetically rigid at x̄ if there exists a c such that E(x̄+εδx) > E(x̄) for any nontrivial defor-
mation δx and any 0 < ε < c. In other words, it is energetically rigid if all sufficiently small, finite deformations increase
the energy. This conforms to the intuitive notion that a system is rigid if deforming it increases the energy. Similarly,
a system is energetically rigid at nth order at the configuration x̄ if δEn =

∑
i1···in ∂i1 · · · ∂inE(x̄)δxi1 · · · δxin > 0 for

any nontrivial deformation, δx but δEm = 0 for all deformations for m < n.
Unsurprisingly, the notion of energetic rigidity is closely allied with structural rigidity and its various proxies. These

notions are, however, not identical, and here we discuss the many interconnections between structural and energetic
rigidity. These relationships are summarized in Fig. 2. Important to note is that the dashed arrows signify that while
the implication can be proved for some choice of self stress, it is not guaranteed that a given system has picked that
particular self stress at the energy minimum (i.e. the actual prestress may be a different linear combination of self
stresses). The numbers labeling the propositions below refer to the arrows in Fig. 2 labeled with the same number.
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Energetic rigidity

E(x̄) = 0 structural rigidity

Energetic rigidity
E(x̄) > 0

Prestress stability

1st order rigidity

Energetic critical point

E(x̄) > 0 has a self stressx̄

2nd order rigidity

NS = 1

1

2

3

4

5

∃Fα

∃Fα

E′ ′ (x̄) > 0

FIG. 2. Relations between various definitions for a given configuration x̄. The numbers on arrows refers to propositions
with the same numbers. We can see that only when the system is unstressed (E(x̄) = 0), energetic rigidity and structural
rigidity are equivalent (one is always guaranteed to imply the other). Dotted arrows labeled with ∃Fα mean that the implication
is only valid for specific choices of Fα and thus prestress. E′′(x̄) > 0 denotes energetic rigidity at quadratic order (positive-
definite Hessian). Dashed arrow with Ns = 1 means that the implication is guaranteed when there is only one state of self
stress.

Before finally proceeding, we finally note that we are assuming that the space of configurations has no boundary; any
restrictions on what x can be must be carried by the energy functional.

Proposition: (1) Energetic rigidity at x̄ with E(x̄) > 0 implies x̄ is a critical point of the energy.
Let x̄ be a point that is energetically rigid. This means that E(x̄ + εδx) > E(x̄) for all nontrivial δx and for all
0 < ε < c. Taking the derivative with respect to ε gives

lim
ε→0+

∂εE(x̄+ εδx) =
∑
n

∂nE(x̄)δxn. (A2)

If this were not a critical point then taking δx → −δx would give us a nontrivial deformation that decreases the
energy for some ε that was small enough. Therefore, it must be a critical point.

Proposition: (2) If the point x̄ is a critical point of E(x̄) > 0, there is a self stress at x̄. If there is a self-stress at x̄,
there is a specific choice of Fα such that x̄ is a critical point of E(x).
We first assume x̄ is a critical point with E(x̄) > 0. Then ∂nE(x̄) = 0, which requires

0 =
∑
α

[Fα(x̄)− Fα] ∂nFα(x̄). (A3)

Since E(x̄) 6= 0, Fα(x̄) 6= Fα. Therefore, Fα(x̄)− Fα is a self stress.
Now assume that we have a point x̄ where σα is a self stress. Then choose Fα = Fα(x̄)− cσα. We can now verify

that x̄ is a critical point of E(x) =
∑
α[Fα(x)−Fα(x̄) + cσα]2 for any c.

Proposition: (3) If the configuration x̄ is energetically rigid at E(x) with E(x̄) = 0 then x̄ is structurally rigid.
On the other hand, if x̄ is structurally rigid, then there exists a choice of equilibrium measures, Fα, such that x̄ is
energetically rigid with E(x̄) = 0.



10

We first assume that x̄ is structurally rigid. Then let Fα = Fα(x̄). We get E(x̄) = 0. Let δx be any nontrivial
deformation. Since Fα(x̄ + cδx) 6= Fα for sufficiently small c we must have E(x̄ + cδx) > 0 implying the system is
energetically rigid.

Now assume we have an energy such that x̄ is energetically rigid with E(x̄) = 0. Then Fα(x̄) = Fα. Since
E(x̄+ cδx) > 0 for appropriately chosen c, we must have Fα(x̄+ cδu) 6= Fα.

Proposition: (4) Let x̄ be a local minimum of E(x) such that E(x̄) 6= 0 and suppose that x̄ is energetically rigid.
Then the system is structurally rigid at x̄ as well.
Suppose that x̄ is an extremum of E(x) such that E(x̄) 6= 0 but such that x̄ is energetically rigid. That is, all
nontrivial directions raise the energy further. Then there cannot be any nontrivial isometries x(t) passing through x̄
since if there were E would have to be constant along them and this contradicts the assumption.

Note that this can be extended to energy maxima as well. The converse need not be true though. If a system is
rigid at x̄, choosing Fα so that x̄ is an extremum does not mean that it will be energetically rigid. Let’s suppose that
x(t) is a one-parameter family of constant energy trajectories. Then

∂tE[x(t)] = 0 =
∑
α

∑
n

[Fα(x(t))− Fα]∂nF(x(t))ẋn. (A4)

This can only be true if x(t) are all extrema of E with E(x(t)) 6= 0. In addition, there must be at least one self stress
along the entire trajectory x(t).

The notion of prestress stability is intimately related to energetic rigidity at quadratic order. The next proposition
establishes the equivalence of prestress stability (as defined above) and energetic rigidity to quadratic order:

Proposition: (5) A system is prestress stable at x̄ if and only if there is a choice Fα such that it is an extremum of
the energy with E(x̄) 6= 0 and is energetically rigid at quadratic order.

To prove this we first assume that the system is prestress stable and let σα be the self stress such that∑
α σα∂n∂mFα(x̄) is positive definite on nontrivial first-order flexes. Then define an energy functional

E(x) =
∑
α

[Fα(x)−Fα(x̄) + cσα]
2
, (A5)

where c > 0 is some arbitrary number. We can now check that x̄ is an extremum, ∂nE(x̄) = c
∑
α σα∂nFα(x̄) = 0.

Computing the Hessian, we find

Hnm =
∑
α

∂nFα(x̄)∂mFα(x̄) + c
∑
α

σα∂n∂mFα(x̄). (A6)

This is positive definite on nontrivial first-order flexes by the assumption of prestress stability, for any c. On modes
that are not nontrivial first-order flexes, we can always choose c > 0 sufficiently small that the first term dominates
(choose c to be smaller than the smallest eigenvalue of the Gram term). Therefore, x̄ is an energetically stable
extremum of E(x) when Fα = fα(x̄)− cσα.

Going the other way, let’s assume that our system is energetically rigid at quadratic order at an extremum x̄. Then
let ẋn be any nontrivial, first-order flex. We have∑

nm

Hnmẋnẋm =
∑
nm

∑
α

[Fα(x̄)− Fα]∂nF(x̄)ẋnẋm > 0. (A7)

That implies that Fα(x̄)− Fα is a self stress and that it is prestress stable.
It is worth noting that prestress stability at x̄ does not imply that a system is energetically rigid at x̄ for a particular

choice of Fα, only for some choice.
We have already seen that second-order rigidity does not imply prestress stability in the last section. Here we

note that prestress stability and energetic rigidity are not identical either. In particular, a system that is prestress
stable may not be energetically rigid for a particular choice of Fα. Suppose that a system is prestress stable but
has a self stress σα for which the prestress matrix is not positive definite on the nontrivial first-order flexes. Choose
Fα = Fα(x̄)− cσα. This shows that the system with this choice is not energetically rigid at quadratic order. In other
words, the prestress that the system picks at x̄ may not be one that makes the system prestress stable. If there is
only one self stress and the system is prestress stable, then energetic rigidity and prestress stability trivially imply
each other.

Finally, the following proposition deals with the nonlinear nature of rigidity:

Proposition: A system is energetically rigid at x̄ with E(x̄) = 0 to fourth order if it is second-order rigid.
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This proposition shows that even if the standard checks of energetic rigidity (e.g. shear modulus) suggest floppiness,
the system may still be energetically rigid to finite deformations. We will prove this proposition in the following section,
where we also show a more detailed derivation of the equations in section I. All of these results demonstrate that the
relationships between all of these notions of rigidity are, in fact, quite subtle.

2. Second-order rigidity and energetic rigidity

Our goal here is to derive conditions for second-order zero modes and study the energy of systems that are second-
order rigid. We will show that a system that has no prestress (Case 2A) but is second-order rigid is energetically rigid
as well at fourth order in deformations. For prestressed systems, we show derivations of our claims for Case 2B and
2C.

Take constraints fα on a given system, e.g., fα({xn}) may be the displacements of edges of a graph from their

equilibrium lengths. The energy functional is E = k
∑M
α=1 f

2
α/2 where M is the number of constraints. We set k = 1

without loss of generality. For a more general case with constraint dependent stiffnesses kα, we can simply re-scale
the constraints to f ′α =

√
kαfα. Imagine that x̄n is at a critical point of E.

At a critical point,
∑
α fα({x̄n})∂mfα({x̄n}) = 0. Let {σα,1, · · · , σα,Ns

, eα,1, · · · , eα,M−Ns
} be an orthonormal basis

in RM where
∑
α σα,I · ∂nfα({x̄n}) = 0 (so σα,I are self stresses). Let us further assume fα({x̄n}) = Cσα,1 with

C > 0, which we can do without loss of any generality.
To find zero modes, we Taylor expand fα for small perturbations around x̄n. To easily keep track of the order of

expansion, we parametrize deformations in time so that at an infinitesimal time δt we have a deformation xn(δt) such
that xn(0) = x̄n. We then have

fα({xn(δt)}) ≈ Cσα,1 +
∑
n

∂nfαẋnδt+
1

2

[∑
n

∂nfαẍn +
∑
nm

∂n∂mfαẋnẋm

]
δt2 +O(δt3), (A8)

where partial derivatives are evaluated at x̄n. Also, ẋn is short hand for ẋn(0) and ẍn is short hand for ẍn(0). That
is, these are explicitly independent vectors that determine the first two terms in a Taylor expansion of xn(t) around
t = 0.

It is useful to project fα({xn(δt)}) along the orthonormal basis vectors

∑
α

σα,Ifα({xn(δt)}) ≈ CδI1 +
∑
α

∑
nm

σα,I∂n∂mfαẋnẋmδt
2, (A9)

∑
α

eα,Ifα({xn(δt)}) ≈
∑
α

eα,I
∑
n

∂nfαẋnδt+
1

2

∑
α

eα,I

[∑
n

∂nfαẍn +
∑
nm

∂n∂mfαẋnẋm

]
δt2. (A10)

To find second-order zero modes, modes that preserve fα to second order, Eqs. (A9-A10) imply the system∑
α

eα,I
∑
n

∂nfαẋn = 0

∑
α

eα,I

[∑
n

∂nfαẍn +
∑
nm

∂n∂mfαẋnẋm

]
= 0∑

α

∑
nm

σα,I∂n∂mfαẋnẋm = 0

where the first equation implies ẋn is along a linear zero mode (note that
∑
n ∂nfαẋn must have a non-zero projection

on at least one eα,I since it is perpendicular to all self stresses σα,I by definition), the middle equation is associated
to the curvature of the linear zero mode as we proceed along t, and the last equation gives an additional quadratic
constraint that these tangents must satisfy to be second-order zero modes. Multiplying the last equation by δt2, we
recover Eq. (9).

Notice that the middle equation always has a solution. To see this, we note that it is a linear equation of the form
Aẍ− b = 0. Since b is explicitly in the image of A, ẍ has a solution that is unique up to zero modes. Since the linear
zero modes are already included in ẋn, we can choose ẍn to be orthogonal to them without loss of generality. With
that choice, the matrix

∑
α eα,I∂nfα is invertible.

Putting all of this into the energy, we find that
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E ≈ 1

2

M−Ns∑
I=1

[∑
α

eα,I
∑
n

∂nfαẋn +
1

2

∑
α

eα,I

[∑
n

∂nfαẍn +
∑
nm

∂n∂mfαẋnẋm

]
δt

]2
δt2 (A11)

+
1

2

[
C +

1

2

∑
α

∑
nm

σα,1∂n∂mfαẋnẋmδt
2

]2
+

1

8

Ns∑
I=2

[∑
α

∑
nm

σα,I∂n∂mfαẋnẋm

]2
δt4.

What we are interested in is whether we can find a solution xn(t) such that E(t) increases, decreases, or stays
constant to a particular order in δt.

Let us consider what happens when C → 0 first. Note that some systems may not be able to achieve a state with
C = 0 because of the way they are prepared. Here, we assume that the energy can be continuously modulated to
zero. Such a system is not prestressed, but can still possess self stresses (e.g. the onset of geometric incompatibility
[24]). In that case,

E ≈ 1

2

M−Ns∑
I=1

[∑
α

eα,I
∑
n

∂nfαẋn +
1

2

∑
α

eα,I

[∑
n

∂nfαẍn +
∑
nm

∂n∂mfαẋnẋm

]
δt

]2
δt2 (A12)

+
1

8

Ns∑
I=1

[∑
α

∑
nm

σα,I∂n∂mfαẋnẋm

]2
δt4.

The energy is constant as long as the coefficients of δt2, δt3, and so on vanish. These lead to∑
α

eα,I
∑
n

∂nfαẋn = 0, (A13)

to second order, and we have the two equations

∑
α

eα,I

[∑
n

∂nfαẍn +
∑
nm

∂n∂mfαẋnẋm

]
= 0, (A14)

and ∑
α

∑
nm

σα,I∂n∂mfαẋnẋm = 0, (A15)

to fourth order. The third order term already vanishes if the quadratic term vanishes. These are the three equations
that defined a quadratic isometry previously. Hence, E is constant along any quadratic isometry. Similarly, if E is
constant along a direction, the trajectory must be along a quadratic isometry. So at the critical point, second-order
rigidity implies energetic rigidity to this order in δt. This also proves the last proposition in the previous section.

Now, one might wonder what happens as C increases. We then have

E =
C2

2
+

1

2
δt2

M−Ns∑
I=1

(∑
α

eα,I
∑
n

∂nfαẋn

)2

+
∑
α

∑
nm

Cσα,1∂n∂mfαẋnẋm


+

1

2
δt3

M−Ns∑
I=1

(∑
α

eα,I
∑
n

∂nfα ẋn

)(∑
α′

eα′,I

[∑
n

∂nfα′ ẍn +
∑
nm

∂n∂mfα′ ẋnẋm

])
(A16)

+
1

8
δt4

M−Ns∑
I=1

(∑
α

eα,I

[∑
n

∂nfαẍn +
∑
nm

∂n∂mfαẋnẋm

])2

+
1

8
δt4

Ns∑
I=1

[∑
α

∑
nm

σα,I∂n∂mfαẋnẋm

]2
.

The second-order term is the Hessian. If that has a direction that is negative, then we have not expanded around
a local minimum. However, one can ask whether or not zero directions might arise even if the system is second-order
rigid. For that to happen, however, ẋn cannot be along a zero mode. If it was along a zero mode and the Hessian
was zero, the fact that the system is second-order rigid would imply that the energy increases to fourth order. If ẋn
was not along a zero mode and the Hessian was zero, for it to not increase the energy to the fourth order, it has to
satisfy Eq. (A15), similar to second-order zero modes (this system would belong to Case 2C).
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