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PHYSICS

Unconditional Fock state generation using arbitrarily

weak photonic nonlinearities

Andrew Lingenfelter'?*, David Roberts'? A. A. Clerk’

We present a mechanism that harnesses extremely weak Kerr-type nonlinearities in a single driven cavity to
deterministically generate single-photon Fock states and more general photon-blockaded states. Our method is
effective even for nonlinearities that are orders-of-magnitude smaller than photonic loss. It is also completely
distinct from so-called unconventional photon blockade mechanisms, as the generated states are non-Gaussian,
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exhibit a sharp cutoff in their photon number distribution, and can be arbitrarily close to a single-photon Fock
state. Our ideas require only standard linear and parametric drives and are hence compatible with a variety of

different photonic platforms.

INTRODUCTION

Single-photon Fock states are a fundamental resource needed in a
myriad of quantum information protocols and technologies. There
is as a result enormous interest in resource-friendly methods for
their production (I). A generic, well-studied mechanism is photon
blockade (2): Apply a monochromatic drive to a nonlinear photonic
cavity such that the drive is only resonant for the vacuum to one
photon transition but not for higher transitions. While conceptually
simple, this conventional photon blockade (CPB) mechanism re-
quires the single-photon nonlinearity to be much larger than the
loss rate. This regime can be achieved in highly nonlinear cavities
incorporating single atoms (3), quantum dots (4), or superconducting
qubits (5, 6). Unfortunately, this standard type of photon blockade
is completely out of reach in more conventional systems that exhibit
only weak nonlinearities (e.g., optical micro- or nanoresonators
fabricated using materials with intrinsic % nonlinearities).

The ability to realize effects akin to photon blockade in weakly
nonlinear systems would be an incredibly powerful resource. There
has thus been a flurry of theoretical activity to uncover possible
such mechanisms. Among the best known proposals is that of
“unconventional Photon blockade” (UPB), where states with
arbitrarily small g(2 (0) correlation functions can be generated using
extremely weak nonlinearities. UPB was originally proposed in (7)
and subsequently analyzed in many different works (8-17). It has also
been realized experimentally in a circuit quantum electrodynamics
(QED) platform (18) and in a quantum dot plus cavity setup (19).
Unfortunately, UPB is only capable of generating Gaussian states that
have positive-definite Wigner functions and that do not exhibit a
true cutoff in their photon number distribution (11); moreover, they
only exhibit suppressed intensity fluctuations in the limit where the
average photon number is vanishingly small. These features severely
limit their utility for many possible applications. We note that an alter-
native approach to stabilizing intracavity Fock states is to use dissipation-
engineering ideas [see, e.g., (20-23)]. These methods are, however, also
resource demanding and require strong, structured nonlinearities.

In this work, we propose and analyze a previously unidentified
photon blockade mechanism that (unlike UPB) deterministically gener-
ates truly non-Gaussian blockaded states (i.e., zero probability for
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more than one photon) using arbitrarily weak single-photon
nonlinearities (see Fig. 1). In further contrast to UPB, this can be
achieved while also having the single-Fock state probability to be
order 1. Our mechanism is based on using nonlinearity to modify
matrix elements of an effective cavity driving process, as opposed to
introducing nonlinearity in a spectrum (as is done in CPB), see
Fig. 2. In its simplest form, it reduces to realizing an effective
single-mode Hamiltonian of the form

Hyoax = Asa'(@'a-r)+h.c. (1)

where the parameter ris tuned to 1. h.c., hermitian conjugate. Here, @
is the cavity annihilation operator and A3 is the amplitude of an ef-
fective nonlinear driving process. By construction, this Hamiltonian
connects the vacuum and one photon states but does not allow
driving from |1) to the |2) photon state. Crucially, as this blockade
is a matrix element effect, it is effective even if cavity loss is much
larger than the nonlinearity A.

While the basic mechanism in Eq. 1 is extremely simple, it
describes an unusual nonlinear driving element. At first glance, it is
not at all obvious how to realize this Hamiltonian using standard
x? or ¥ type optical nonlinearities. Despite its exotic form, we
show that it can be achieved using standard ingredients: a standard
Kerr-type nonlinearity (strength U), along with standard single-
photon and two-photon (i.e., parametric) drives. Crucially, the
mechanism is effective even if the Kerr nonlinearity strength U is
much weaker than the cavity loss rate x. We also discuss how
our scheme can be realized using three-wave mixing type (i.e., x?)
nonlinearities.

In what follows, we analyze in detail the physics of our basic
mechanism and how it could be harnessed for a time-dependent
protocol that generates propagating Fock states in a variety of
realistic weakly nonlinear optical setups. We also discuss extensions
of our basic idea, where the same underlying mechanism can be
used to generate more complex blockaded states and even multi-
mode non-Gaussian entangled states (see the Supplementary
Materials). Note that the infinite-time, steady-state properties of a
damped cavity subject to the driving in Eq. 1 (in a displaced frame)
were studied in (24). While this steady state could be tuned to
realize a partial blockade effect, the effect was extremely limited.
The steady state never exhibited Wigner-function negativity and,
moreover, was exponentially fragile to imperfections (i.e., a small
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Fig. 1. Fock states with ultraweak nonlinearities. (A) Basic system: A nonlinear
cavity is subject to both one- and two-photon drives A, and A,. (B) Time depen-
dence of drive amplitudes for the protocol (see the “Generating single-photon
states in the laboratory frame" section). The key idea is to realize an effective
nonlinear one-photon drive in a displaced frame. (€) Numerical simulations of
performance including imperfections. Parameters are chosen such that the effec-
tive nonlinear drive amplitude &; = 2k and the final state has (1| p | 1) = 0.5. Left:
gm(O) of the prepared state including errors in the initial/final displacement operations;
these are modeled as added thermal noise (Ay, quanta). Note that with added thermal
noise, gm(O} must be greater than fAw. Right: Final gm(o) with imperfect drive-
amplitude matching &4, = 0 (cf. Eq. 7). Red dashed lines show intracavity photon
number | ap|? ~ (x/U)? during the intermediate part of the protocol.

deviation of the parameter r from an integer value completely
destroyed the partial blockade). The utility of this effect was thus
marginal. In contrast, our work here explores the finite-time dy-
namics of systems with this kind of nonlinear driving. We show
that, unexpectedly, our model exhibits metastability and two dis-
tinct slow relaxation time scales. The intermediate-time physics can
thus be extremely different from the ultimate steady state. In par-
ticular, this regime enables the near-perfect generation of Fock states
(including states with highly negative Wigner functions) in a way
that is robust against imperfections. We also stress that (24) did not
discuss or analyze a concrete implementation of Eq. 1 in a generic
driven Kerr cavity system or did it analyze an explicit time-dependent
Fock state generation protocol; it also did not identify, let alone
describe, quantitatively the unexpected long-lived metastability of
this system. These are all crucial and new features of our work.

RESULTS

Basic mechanism and realization in a driven, weakly
nonlinear cavity

Despite wanting to realize a somewhat exotic nonlinear drive
(cf. Eq. 1), we will consider a physical system that is both conven-
tional and ubiquitous. It consists of a single mode of a bosonic res-
onator (frequency w,, lowering operator @) having a weak self-Kerr
nonlinearity U, which is subject to both one- and two-photon drives
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Fig. 2. Basic photon blockade mechanisms. Left: CPB mechanisms rely on the
nonlinearity U shifting the spectrum of the system; blockade thus requires U » x.
Right: Our new approach is based on engineering a nonlinear drive that has no
matrix element g,, connecting Fock states | 1) and | 2}. This blockade mechanism
is effective even if nonlinearity is arbitrarily weak.

with amplitudes A; and A,, respectively, and commensurate
drive frequencies 2m; = ;. Starting from the laboratory-frame
Hamiltonian, moving to the rotating frame set by w,, and making
a standard rotating wave approximation (RWA), we find (see
Materials and Methods)

Howa = Ua'a'aa +Ad"a + M a"+A8"8 +he) (2

Here, A = o, — ©, is the detuning of the drives from cavity reso-
nance. We stress that the two-photon drive A, can be realized in
many different ways. For example, one could use a weak nonlinear
coupling to a strongly pumped auxiliary mode or just simply apply
two additional (linear) drive tones to the main cavity mode
[see, e.g., (25)]. Our results below do not depend on the specific
method of implementation.

From a quantum optics perspective, our driven cavity mode
seems innocuous: It has an extremely weak Kerr nonlinearity and
simple quadratic driving terms (which on their own would only
generate simple Gaussian states). To obtain something more inter-
esting, our general approach is to use linear driving (i.e., a displace-
ment in phase space) to effectively enhance the effects of U. Such
linear displacements are often used to enhance the properties of
weakly nonlinear systems by yielding tuneable linear dynamics
(e.g., parametric amplifiers realized by driving weakly nonlinear
cavities or tuneable sideband interactions in quantum optomechanics
(26)). Such linear dynamics does not allow for the generation of
nonclassical, non-Gaussian states. Here, we show how a displace-
ment can be used to generate an effective nonlinear cavity drive
with a strength >>U. We note that linear driving has also been used
in circuit QED experiments to generate a tuneable longitudinal
coupling between a qubit and a cavity (27-29). The interaction in
those works is a single-photon cavity drive whose phase is controlled
by an auxiliary qubit. This is distinct from the kind of interaction we
realize, namely, a single-photon cavity drive whose magnitude is
controlled by the photon number of the cavity itself, as opposed to
that of a highly nonlinear auxiliary system.

We show that by moving to a displaced frame of the cavity,
@ — @ + o, where o is an arbitrary displacement parameter, we can
generate a displacement-enhanced nonlinearity that is precisely the
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term we seek to engineer (see Materials and Methods). Upon
moving to a displaced frame of the cavity, we find that the Kerr
nonlinearity generates, among correctlons to the other terms in H RWAs
the desired nonlinear drive A;@'a'a + h.c. with drive ampli-
tude A3 = 2Ua (see Materials and Methods, Eq. 15d).

Our goal is to realize (in our displaced frame) the ideal blockade
Hamiltonian

H g = R3a'(@'a - r)+h.c.)+Ua"a"aa (3)

To achieve this, we first decide on a desired strength for the non-
linear drive amplitude A; in i g target and pick the displacement pa-
rameter o to achieve this. This requires

x
oa—ap= F} (4)

We will typically want A3 2 x, implying that a large displace-
ment will be needed if the nonlinearity U is weak.

The last step is to pick our original drive parameters Aj, Az,
and A to make the remaining terms in the full displaced Hamiltonian

H, (see Eg. 14 in Materials and Methods) match q target- Lhis leads
to the choices

|A3|
A1—>A1b—A3[—r+ 2U2 + — 4U (Sa)
Ay = Ay = -A2/4U (5b)
A=Ay =-|As|HU (5¢)

With this choice of drive parameters and displacement parameter
o, our displaced-frame Hamiltonian H, has exactly the desired
form of the target blockade-producing Hamiltonian in Eq. 3. If we
pick r in Eq. 5a to be an integer, it follows that we can achieve
blockaded dynamics in the displaced frame. To be concrete, imagine
we tune parameters to achieve r = 1. If we then start the system in
the vacuum of the displaced frame (i.e., a coherent state in the lab
frame), then the full system dynamics will be confined to the Fock
states n = 0, n = 1 in the displaced frame, regardless of how small the
original value of U was.

We have thus demonstrated how the basic physics of Eq. 1 can
be realized using an arbitrarily weak Kerr nonlinearity and standard
one- and two-photon driving processes. Note that the magnitude of
the nonlinear driving in the displaced frame is the product of the
original Kerr nonlinearity U (which could be extremely small) and
the displacement o (which at this stage, we can assume to be very
large). There is, of course, an important caveat about our scheme at
this stage: As described, it only yields blockaded states and Fock
states in the displaced frame. As we show in the “Generating single-
photon states in the laboratory frame” section below, this is not a

1 e

4 = ~i[H ege D) + xDIGIP ©)

where H target 18 given by Eq. 3. We will consider the dynamics when
the parameter r is close to, but not identical, to its ideal value for an
n =1 Fock state blockade, i.e., r = 1 + 8r. In practice, r corresponds
to a failure to exactly match the one- and two-photon drive ampli-
tudes in the ideal required manner, as dictated by Egs. 5a and 5b.
Our focus here will be primarily on understanding the temporal
dynamics on time scales ¢ < 1/x and using this to identify optimal
parameters for generating Fock states.

Dynamics for ideal drive amplitude matching

For perfect parameter tuning &r = 0, we have ideal blockade dynamics
where the drive cannot connect the n = 1 and n = 2 Fock states.
Within the blockade manifold spanned by {|0),| 1)}, the cavity
behaves like a two-level-system, which is resonantly driven with
Rabi frequency o< As e, H yrger — As | 1){0| + h.c. As there is no
probability of having two or more photons, for this perfect tumng
of r, the equal-time g ? correlation function [defined as g 20)=
(@'a'aa)/(@'a)"] is always exactly 0. To generate a single-photon
state, we simply need to perform an effective n-pulse. This amounts
to turning on the one- and two- photon drives [with the ideal
amplitudes given by Eqgs. 5a and 5b for a time t, = /(2 | A3 | ). This
allows the perfect generation of a Fock state in the limit where f; <
1/x, requiring |A;|/x>>1. We stress that this condition can be met
evenif U< k.

Impact of imperfect drive-amplitude matching

We now consider what is likely the dominant error mechanism for
our scheme: the inability to perfectly match the drive amplitudes A,
and A, as required to achieve r = 1. For small mismatch &r, there is
only a weak matrix element connecting |1) to |2). As we will
show, this means that we still have approximate blockade physics
over a long time scale, enabling the production of nonclassical
blockaded states. The perfect single photon blockade we desire
requires matching the linear and cubic driving terms in the
displaced-frame Hamiltonian H(, (cf.Eq. 14),i.e. JA=-As (e, r=1).
Deviations from this amplitude-matching condition will then de-
grade our scheme. We thus define 81,, the dimensionless relative
amplitude error in the single-photon drive amplitude, via

X1=—K3(1 +87\.1) (7)

While, in general, both the magnitude and phase of 2, are
important, for the small deviations we focus on here, only the mag-
nitude matters. We take 1, real and positive for all of the numerical
simulations.

To get some analytic insight into the impact of this imperfection,
consider the most interesting regime of small imperfection |82, |
< 1 and large effective driving, | A;|>x. For short times, dissipa-
tlon can be neglected, and further, the dynamlcs will be restncted to
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states n =0V, n = 1 1n the displaced Irame, regardiess oI how small the
original value of U was.

We have thus demonstrated how the basic physics of Eq. 1 can
be realized using an arbitrarily weak Kerr nonlinearity and standard
one- and two-photon driving processes. Note that the magnitude of
the nonlinear driving in the displaced frame is the product of the
original Kerr nonlinearity U (which could be extremely small) and
the displacement a (which at this stage, we can assume to be very
large). There is, of course, an important caveat about our scheme at
this stage: As described, it only yields blockaded states and Fock
states in the displaced frame. As we show in the “Generating single-
photon states in the laboratory frame” section below, this is not a
true limitation, as we can easily harness this physics to generate true
laboratory-frame Fock states (see also Fig. 1).

Blockade dynamics in the presence of loss

Before addressing how one converts displaced-frame blockaded
states into truly blockaded states, we first investigate the dynamics
of our system in the displaced frame. We thus study displaced-frame
master equation

Lingenfelter et al., Sci. Adv. 7, eabj1916 (2021) 26 November 2021

amplltude €rror in the smgle—photon darive amplltude, via
K1=—K3(1 +8;t.1) (7)

While, in general, both the magnitude and phase of 8\, are
important, for the small deviations we focus on here, only the mag-
nitude matters. We take 8A, real and positive for all of the numerical
simulations.

To get some analytic insight into the impact of this imperfection,
consider the most interesting regime of small imperfection |, |
< 1 and large effective driving, | A3|>x. For short times, dissipa-
tion can be neglected, and further, the dynamics will be restricted to
the states |0), | 1), and |2) (as the leakage to higher levels is weak).
In this regime, we find that the instantaneous )(O; t) is time inde-
pendent and given by

g2(0;8) = |81, | 2 (8)

This suggests that highly blockaded states are possible without
requiring an incredibly precise balancing of drive amplitudes.
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In Fig. 3 (B and C), we show the results of a numerical simula-
tion of the effects of a nonzero drive-amplitude mismatch §i,. We
see that the intracavity average photon number shown in Fig. 3B
undergoes Rabi oscillations before leaving the blockaded subspace;
we also see that Eq. 8 provides a good description of the intracavity
gm(O) until a time t ~ 1/ | As|, after which there is a departure from
the blockaded subspace. The net result of our simulations and
analysis is that errors in amplitude matching do not prevent the
generation of useful blockaded states: For short times, the evolution
produces states with small g”(0) while, at the same time, having
appreciable nonvacuum population. As Fig. 3 shows, even for rela-
tive mismatches of 81, ~ 0.1, blockaded states with (a'4)~0.5 and
gm(O) < 0.1 can be produced.

Slow time scales, metastability, and blockaded states

in the infinite-time limit

While for applications, the relatively robust blockade physics we
obtain at short times is more than sufficient, it is also interesting to
ask about the nature of the long-time steady state. For 81, = 0, the
blockade is perfect for all times, and the steady state has no popula-
tion of higher Fock states. With imperfections, the situation is
different. We saw above that the short-time blockade physics is
relatively robust against amplitude mismatch errors. This, however,
is not true for the infinite-time state. As discussed in Materials and
Methods, for 8&; = 0, the system has a long-lived, metastable
high-photon number state that is only able to decay via quantum
tunneling. This manifests itself as an extremely slow relaxation rate
(i.e., dissipative gap)

T — e — e —
= (1)se = D06
= 1wk
E 10° | (), 0, =0 = 0.485
g LT T e eeeee——————— T |
2
10t
£ ah = 0.1 §h = 0.018
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o X =0.032 —— §x; = 0.0056
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0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Time st Time xt

Fig. 3. Impact of mismatched drive amplitudes on blockade dynamics. (A) Average
intracavity photon number versus time (log axes) for values of the dimensionless
relative amplitude mismatch &, (cf. Eq. 7). One clearly sees two distinct time
scales: The desired low-amplitude blockaded state is reached on a time scale ~1/x,
whereas if 81, = 0, then there is a much slower heating to a high amplitude state,
[ese (cf. Eq. 10). Note that all of the 84, shown are much larger than the “antiresonance”
width Arfor these parameters (cf. Fig. 6), i.e., the steady-state blockade is destroyed
for all &, shown. (B) Zoom-in on short-time behavior of (A), linear axes. The dashed
curve is the ideal 81, = 0 steady-state average photon number. (C) Instantaneous
intracavity correlation function gm(o; t), for various imperfection levels &i,. Dashed
lines correspond to the short-time analytic result in Eq. 8. For all plots, we use
parameters U = 0.4x and A3 = 2x.
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(cf. Eq. 23 and preceding discussion in Materials and Methods).
This exponentially small dissipative gap directly leads to the ex-
treme fragility of the steady-state photon blockade to even minuscule
mismatches of drive amplitude. A simple perturbative argument
suggests that the steady state blockade is lost when |81 | = Ydow/X,
i.e., even when | 8A; | <1 (cf. "Photon blockade in the infinite-
time steady state” in Materials and Methods). This fragility makes
the steady-state effect essentially unattainable in experiment. Note
that the extreme sensitivity of the steady state to relative drive am-
plitudes was first observed without explanation in (24); the qualita-
tive and quantitative explanations of this phenomenon provided
in Materials and Methods is, however, new to this work.

One might worry that this small dissipative gap should also have
made the finite-time blockade physics presented above highly fragile.
This is not the case: For an imperfect system that starts from vacuum,
there is a distinct metastable regime of relevance whose physics is
controlled by a different time scale unrelated to 1/yslow. The relevant
rate I'.s. now corresponds to a slow escape from the blockaded sub-
space. For imperfect amplitude matching (81, # 0), there is a weak
coupling between blockaded and unblockaded subspaces. Once in
the unblockaded subspace, the system can eventually populate
the weakly metastable, high-amplitude state. While this escape de-
stroys the blockade and results in a very large average photon number
in the steady state, this corruption occurs over a very slow time scale
1/Tesc. The slow heating associated with this phenomena can be
seen in Fig. 3A.

The escape rate I'.;c can be estimated using a Fermi’s Golden
Rule (FGR) argument where 8A; (the imperfection in the single-
photon drive amplitude) is treated as a perturbation. This is consistent
with the numerically observed behavior that the average intracavity
photon number approaches its steady-state value exponentially.
Defining 8A; = A3 x 81, an approximate FGR calculation yields
(see Materials and Methods)

|87, |2

- (10)

FCSC =c
with ¢ is a dimensionless number. While, in general, it will depend
on other parameters in the unperturbed Hamiltonian, for x> A,
we find that it is constant: ¢ = 1. In contrast, for the regime of interest
x ~ A3, a simple analytic estimate is not possible. We do, however,
find from numerics in this regime (i.e., by fitting the long-time
relaxation of the average photon number shown in Fig. 3A) that
¢ = 0.25 in this regime. The overall form of I, reflects two basic
facts: The cavity can only leave the blockade subspace through the
very small matrix element o« §A}, and the cavity must jump into
energy eigenstates, which are not localized to the Fock state | 2> but
spread out in Fock space and thus harder to jump into. The latter
effect leads generically to c < 1.

The slow escape rate I, defines a time window over which the
blockaded subspace is isolated from the rest of Hilbert space. To
prepare Fock states, one just needs this time to be long compared to
inverse drive amplitudes. In practice, this leads to the weak con-
straint on drive-amplitude matching 8 < 1. This is to be contrasted
against the exponentially more demanding condition needed for
blockade physics in the steady state, 8, < Yow/X. The vast difference
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in these conditions means that our blockade mechanism is with
reach of various experimental platforms, whereas in contrast, the
steady-state version of the effect is completely impractical.

Photon blockade with weak drive
The short-time blockade physics we have considered so far re-
quires A3 > k. Via Eq. 4, we see that this is possible even if U < x, as
long as we use a large displacement op. While at a fundamental
level, such large displacements pose no problems, but at a practical
level, they can create issues. We will see this explicitly in the next
section, where we discuss in detail how to turn the displaced-frame
Fock states produced by Eq. 3 to true laboratory-frame Fock states.
Given this possible concern, it is also interesting to ask about the
dynamics of system where | A3 | < x, a regime that could be reached
with small U and modest displacements a. Consider first the case where
the drive amplitudes are perfectly matched, implying r = 1 in Eq. 3.
In this case, the system approaches the infinite-time, perfectly block-
aded steady state on a time scale ~1/x. This state has zero probability
for having more than one photon, and the single photon occupancy is

4| As/x|?

= (11)
1+8|As/x|?

APt = =) [1) =

Hence, having a weak A;/x does not break the blockade but just
reduces the population of the one photon state. On the bright side,
in this weak drive regime, the blockade much more robust to
amplitude mismatch errors. Figure 4A shows the transition from
the underdamped regime A; > x/4, where coherent oscillations are
visible, to the overdamped regime where the cavity exponentially
relaxes to the steady state. The robustness of the overdamped blockade
is shown in Fig. 4A where the g(z)(O; t) of the overdamped blockade
remains near the amplitude-mismatch-limited value g(z)(O; t) =

|8A,|* given by Eq. 8 for long times even as the underdamped
blockade experiences a large rise in gm(O; t) for times xt ~ 1.

Generating single-photon states in the laboratory frame

Our discussion so far has established how, using a cavity mode with
an extremely weak Kerr nonlinearity U < x and standard one- and
two-photon drives, it is possible to generate truly photon-blockaded
states in a displaced frame. In the displaced frame and for ideal
matching of drive amplitudes, these states have zero population of
states with two or more photons and, moreover, can have a popula-
tion of the | 1) Fock state that approaches one. We also showed that
this physics is robust, again modest errors in matching the two drive
amplitudes appropriately.

We discussed the displacement transformation & — @ + a that
led to the Hamiltonian in Eq. 14 as a passive transformation. To
make use of this idea to generate true Fock states, we now view the
displacement as an active transformation: A short, high-amplitude
one-photon drive will be used to initially and rapidly displace the
cavity state by an amplitude a;. A similar protocol will then be used
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Fig. 4. Photon blockade dynamics with weak A5 drive. As discussed in the text,
the resource requirements of our scheme are greatly reduced if one only tries to
achieve a nonlinear drive A3 < k. (A) Average intracavity photon number versus
time for an imperfect drive amplitude matching &, = 0.01, for different A As
expected, (i) (t) approaches its steady state value (cf. Eq. 11) in a time ~1/x. Re-
ducing A3 reduces this value. (B) Instantaneous intracavity 9[2](0; t) of the cavity as
a function of time, with 81, = 0.01. Even for modest drives A3 < x, a good blockade is
achieved at short times. For all plots, U= 0.075x.

1) Initial displacement: With the cavity initially in vacuum |0},
we rapidly displace the cavity (using the one-photon drive) to the
coherent state | ay) (see Eq. 4).

2) Fock state generation: We next turn on the two-photon drive
and set both the drive amplitudes A; and A, to their ideal values
given by Egs. 5a and 5b. We then let the system evolve for an opti-
mally chosen time Tyjoc ~|A3| . This will prepare to good approx-
imation a single-photon blockaded state in the displaced frame.

3) Final displacement: Last, we turn off the two-photon drive
and adjust the amplitude of the one-photon drive A, such that
rapidly displaces the cavity by an amount —a;. This then shifts our
displaced-frame blockaded state to laboratory-frame blockaded state
(ideally the state | 1)).

The end result of the three steps above is a blockaded, approxi-
mate single-photon state in the cavity. To turn this into a more
useful propagating single-photon state, we imagine a situation where
the cavity is overcoupled to a waveguide or transmission line. In this
case, one simple waits at the end of step three. The intracavity state
will then preferentially leak out into waveguide as an approximate
Fock state in a propagating mode with an exponential profile. Note
that while overcoupling will increase «, this is not overly detrimental
to our protocol. As we have stressed, our protocol can be effective
even if the Kerr nonlinearity U is much smaller than the total loss
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states 1n a displaced Irame. In the displaced Irame and Ior 1deal
matching of drive amplitudes, these states have zero population of
states with two or more photons and, moreover, can have a popula-
tion of the | 1) Fock state that approaches one. We also showed that
this physics is robust, again modest errors in matching the two drive
amplitudes appropriately.

We discussed the displacement transformation @ — @ + o that
led to the Hamiltonian in Eq. 14 as a passive transformation. To
make use of this idea to generate true Fock states, we now view the
displacement as an active transformation: A short, high-amplitude
one-photon drive will be used to initially and rapidly displace the
cavity state by an amplitude a. A similar protocol will then be used
to undo this displacement at the end of the blockade protocol. In
what follows, we discuss each step of this protocol in detail, includ-
ing a treatment of error mechanisms associated with imperfect dis-
placements.

Protocol overview
The basic idea of the full scheme is sketched in Fig. 5. It has three
main steps:

Lingenfelter et al., Sci. Adv. 7, eabj1916 (2021) 26 November 2021

displaced-Irame DlocCKaded state to laboratory-Irame blockaded state
(ideally the state | 1)).

The end result of the three steps above is a blockaded, approxi-
mate single-photon state in the cavity. To turn this into a more
useful propagating single-photon state, we imagine a situation where
the cavity is overcoupled to a waveguide or transmission line. In this
case, one simple waits at the end of step three. The intracavity state
will then preferentially leak out into waveguide as an approximate
Fock state in a propagating mode with an exponential profile. Note
that while overcoupling will increase x, this is not overly detrimental
to our protocol. As we have stressed, our protocol can be effective
even if the Kerr nonlinearity U is much smaller than the total loss
rate x of the cavity.

The initial and final displacements in our protocol are of course
key aspects needed to achieve our final, laboratory-frame photon-
blockaded state. As discussed, these should correspond to ampli-
tudes o, and — o respectively, where this amplitude is determined
by Eq. 4. A failure to perform this ideally represents another possi-
ble experimental imperfection that would degrade from our scheme.
Even if the one-photon drive used to perform these displacements
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Fig. 5. Fock state generation protocol timing diagram. Top: Three steps of the
generation protocol described in the “Protocol overview” section. The gray regions
are the initial and final cavity displacements, which are implemented by applying
strong one photon drives (A,) to the cavity for a short displacement time 1y < x 1
Ramped two-photon drives (A;) are also applied to correct unwanted squeezing
generated by U during these displacement operations. The white region represents
the displaced-frame Fock state generation step; here, one- and two-photon drive
amplitudes are tuned to their ideal values as given by Egs. 5a to 5c. The evolution
here occurs for a duration tpieck ~ | K3| ! that can be optimized, during which the
cavity evolves under Eqg. 13. Bottom: Cavity phase space diagram showing sche-
matically the evolution of the cavity state in the laboratory frame.

can be calibrated perfectly, the weak cavity nonlinearity U can cause
errors during steps 1 and 3 of the protocol. The dominant error is
an unwanted parametric drive generated via U; this could be
canceled by also applying a compensating two-photon drive A; # 0
during steps 1 and 3; this is depicted in Fig. 5. In what follows, as
opposed to focusing on a particular mechanism, we use a general
model to characterize errors in the displacement steps (steps 1 and 3)
of our general protocol.

Numerical results

Having outlined our full protocol, we numerically study its perform-
ance. Step 2 is modeled exactly, by evolving our system as per the
full master equation in Eq. 13. The possibly imperfect displacement
operations in steps 1 and 3 are modeled as a combination of a
perfect displacement and the injection of thermal noise (correspond-
ing to 7y, thermal quanta). Formally, this corresponds to a Gaussian
additive noise channel (30). Note that this additive thermal noise
rapidly degrades the blockade. If we start with a perfect Fock state
| 1) and add Ay, thermal quanta (via an additive Gaussian noise
channel), then one can show that g(z)(O) > 4 fiy,. Further details are
provided in the Supplementary Materials, as are results for limita-
tions arising from classical displacement and phase noise.

In addition to displacement errors, we consider drive amplitude
mismatches, which we discussed in the “Impact of imperfect
drive-amplitude matching” section. The results of that analysis
apply here, but as a check, we perform the full Fock state generation
protocol with small 81 # 0. The figure of merit for the Fock state
generation protocol is the instantaneous second-order coherence
gm(O) at the end of the protocol as a function of U/x.

Numerical simulations of our full time-dependent protocol for
various choices of U/x are shown in Fig. 1C. In each case, parameters
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Fig. 6. Steady state photon number antiresonance width as a function of U/A ;.
Full width at half maximum (FWHM) of the steady-state photon number at the
single-photon blockade antiresonance as a function of U/A; as measured by the
small deviation 84, (cf. Eq. 7).

are chosen to produce (in the ideal case) a state where the blockaded
state has (1| p|1) = 0.5. The numerical results show that the blockade
protocol is effective even for U/x = 0.03 and, moreover, is robust
against both small displacement errors and small amplitude
match errors. There is no fundamental limit against applying our
protocol for even smaller values of U. Numerics becomes some-
what unwieldy, given the large displacements a; ~ x/U that are
required.

DISCUSSION

A key virtue of our scheme is that it is extremely generic: There are
many different kinds of systems that can realize weakly nonlinear
electromagnetic modes with one- and two-photon drives. In the
context of weakly nonlinear optical cavities, the primary experi-
mental challenge for implementation is the large cavity displacements
required, a ~ x/U. For typical low-loss silicon microresonators, the
intrinsic x** nonlinearity yields U/x ~ 107® (31). The % of silicon
nitride is typically even smaller (32-34). While the large displace-
ments and intracavity powers required in such systems to achieve
o ~ x/U may be possible given the pulsed nature of our scheme, a
safer route would be to follow the general ideas in the “Photon
blockade with weak drive” section. Here, one uses displacements
much smaller than x/U, making constraints on power handling
much more reasonable. This results in a perfect blockade and states
with vanishingly small g(z)(O). The price to pay, however, is that the
average photon number will also be very small. We stress that even
in this regime, the states generated have a strong advantage over the
UPB mechanism of (7): Unlike UPB, our states are non-Gaussian
and have zero population of higher Fock states.

An alternative route for implementation in optical cavities would
be to use x(z) nonlinearities in materials with broken inversion
symmetry like silicon nitride or aluminum nitride. These nonlineari-
ties are parametrically larger than the corresponding x?; a recent
experiment even achieved a single-photon x@ nonlinearity that
was ~0.01x (35). We stress that while our scheme requires a Kerr-type
four-wave mixing nonlinearity, this can be achieved starting with
three-wave mixing x@ processes that generate a nonlinear coupling
to a detuned auxiliary mode (36). To the second order in this
coupling, one generates the desired self-Kerr interaction U needed
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for our scheme. Despite being the second order, this can still be
orders-of-magnitude larger than an intrinsic % @ nonlinearity.

While optical cavities are one possible domain of application,
they are not the only candidate. Our ideas could also be exploited in
parametrically driven nanomechanical systems with weak intrinsic
Duffing nonlinearities [see, e.g., (37)], as well as in microwave
cavity systems. A current trend in quantum information processing
with superconducting circuits is to store and process information in
high-Q microwave cavities [see, e.g., (38, 39)]. In such schemes,
detuned qubits are often used to induce weak nonlinearities in the
principle bosonic modes. A key limitation in these approaches is
that the qubit also induces additional loss mechanisms. Our ideas here
suggest a path to circumvent this. One could use extremely large
qubit-cavity detunings, resulting in not only very weak induced
cavity nonlinearities but also weak induced dissipation. Our scheme
shows that such weak nonlinearities could still be harnessed to
produce nonclassical states.

In this work, we have described a previously unidentified basic
route to generating photonic states that are blockaded: They have a
sharp cutoff in their photon number distribution, having zero prob-
ability to have more than r photons in the state. This is accomplished
by using standard tools (a weak Kerr nonlinearity, one- and two-
photon drives) to realize an effective nonlinear drive, cf. Eq. 3. In
stark contrast to the well-studied UPB mechanism (7), our scheme
can generate truly blockaded states and states that do not need to be
infinitely close to being vacuum. In principle, our basic mechanism
is effective even for arbitrarily weak nonlinearities U < x. In practice,
limitations will arise from the inability to perfectly match the one-
and two-photon drive amplitudes and the inability to apply the re-
quired displacement transformations perfectly. We showed that the scheme
nonetheless can be effective even if these imperfections are present.

While our analysis focused on generating states that approxi-
mate single-photon Fock states, the idea is much more general. By
picking the parameter r in Eq. 3 to be an integer larger than one
(which then influences the choice of drive amplitudes via Egs. 5a
and 5b), one can generate higher-order blockaded states: states that
are confined to the manifold spanned by Fock states |0), |1}, ..., | 7).
Further, the same basic idea can used to generate nonclassical,
multimode entangled states. One again realizes the nonlinear driv-

ing Hamiltonian in Eq. 3 in a displaced frame, but now the mode @

is actually a collective mode of two or more distinct cavity modes.
Generating a Fock state in this collective mode directly corresponds
to a W-style entangled state. More details are provided in the
Supplementary Materials.

In summary, we believe that the mechanism discussed here will
prove to be valuable tool for generating nonclassical photonic states
in a variety of platforms where only weak nonlinearities are achiev-
able. It could also conceivably be harnessed as a tool for quantum
simulation, i.e., to realize models of strongly interacting photons.
Our ideas are compatible with a wide variety of bosonic systems,
including optical and microwave cavities, as well as more general

A~

two-photon drives. The starting laboratory-frame Hamiltonian is
thus (h=1)

+

H=oaa+ —(a+a*)

+(Are ™ 4 Aje™) (@ +a") (12)

+(Aze @ 4 A;ei‘”zt) (aa +atah

Note that the only nonlinearity in this Hamiltonian is Kerr inter-
action U, which we will allow to be extremely weak, i.e., U < x,
where x is the cavity loss rate. The two-photon drive A; is a
standard parametric drive and can be realized without requiring a
strong single-photon nonlinarity.

We choose the drive frequencies to satisfy w, = 2w; = 2(o, — A),
implying that they are equally detuned from the resonance by an
amount A. We also work in the standard regime where w, is the
largest frequency in the problem, allowing us to make an RWA on
both the nonlinearity and drive terms. Making the RWA and work-
ing in the rotating frame set by the drive frequency ,, we obtain
Eq. 2. Note that we have normal-ordered the nonlinearity; thus, the
nonlinearity strength in i rwa is U. Note also that normal-ordering
shifts the resonance to @, = o, + 2U; we implicitly assume the de-
tuning from resonance in Hpwa is thus A= o, - @,

Displacement transformation
We use strong driving to enhance the effects of Uin Hrwa. We also
include single-photon loss at a rate x using a standard Lindblad
master equation description. Letting § denote the reduced density
matrix of the cavity mode, we have

da 5 A J
Ep—_l[HRWA»P]‘FK.D[a]p (13)
where D[2]0 = (@0 a' -
sipative superoperator.

The trick is now to show that with appropriate parameter
tuning, a simple displacement of our weakly nonlinear Hamiltonian
in Eq. 2 can yield exactly the kind of nonlinear driving interaction
we are looking for. In particular, we want a Hamiltonian that is uni-
tarily equivalent to H target in Eq. 3, where the parameter r will be set
to a positive integer. This Hamiltonian describes a nonlinear driving
process that can pump up an initial vacuum state to the n = r Fock
state but no higher.

To achieve this equivalence, we consider a displacement trans-
formation to a new frame where the original photonic vacuum is
shifted to the coherent state | —a); we leave the amplitude o un—
specified for the moment. This required unitary is D, = exp (aa'
@), which transforms the lowering operator as @ — @ + a. In thls
new displaced frame, the master equation for our system has the
same form as Eq. 13 but with a modified displaced Hamiltonian H,

{a@'a, 9] }/2) is the standard Lindblad dis-

H, = vatataa +Aa'a
“ (14)
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Ing rlamiltonlan in £q. 5 1n a displaced Irame, but now the mode a
is actually a collective mode of two or more distinct cavity modes.
Generating a Fock state in this collective mode directly corresponds
to a W-style entangled state. More details are provided in the
Supplementary Materials.

In summary, we believe that the mechanism discussed here will
prove to be valuable tool for generating nonclassical photonic states
in a variety of platforms where only weak nonlinearities are achiev-
able. It could also conceivably be harnessed as a tool for quantum
simulation, i.e., to realize models of strongly interacting photons.
Our ideas are compatible with a wide variety of bosonic systems,
including optical and microwave cavities, as well as more general
superconducting circuit QED setups.

MATERIALS AND METHODS

RWA Hamiltonian

A crucial result of this work is that to implement the nonlinear photon
drive of Eq. 1, we require only a single mode of a bosonic resonator
with a weak self-Kerr nonlinearity U and standard one- and

Lingenfelter et al., Sci. Adv. 7, eabj1916 (2021) 26 November 2021

10 a posilive Integer. 1nis Hamiltonian describes a noninear driving
process that can pump up an initial vacuum state to the n = r Fock
state but no higher.

To achieve this equivalence, we consider a displacement trans-
formation to a new frame where the original photonic vacuum is
shifted to the coherent state | —a); we leave the amplitude o un-
specified for the moment. This required unitary is D, = exp (aa" -
o @), which transforms the lowering operator as & — @ + . In this
new displaced frame, the master equation for our system has the
same form as Eq. 13 but with a modified displaced Hamiltonian H,

=)

Ha = Ua~a*aa+ Kf’ (14)
+(Ka" +Ka'a" +Ksa'a'a+hoc)

All of the terms in the original laboratory-frame Hamiltonian
appear in H, but with altered coefficients; we also generate the
desired nonlinear single-photon driving term A. The displaced-frame
Hamiltonian parameters are

A=A+4U|a|? (15a)
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Kl=A1+uA+2a*A2+2U|a|2cz—%i1coz (15b)
A=A, +Ud® (15¢)
A;=2Ua (15d)

Notice that by picking the displacement o and the laboratory-
frame Hamiltonian parameters Aj, A, and A, we have complete
control over all of the displaced-frame Hamiltonian parameters. In
particular, the choices in Eqs. 4 and 5 lead to the target Hamiltonian
Jai target- In addition, notice that the displacement transformation
modifies the Lindblad dissipator as D[@]~»D[a + a], which we
rewrite as D[d]-i[(-iax/2)a" + h.c.,p]. The induced coherent
linear drive component has been absorbed into A, in Eq. 13b. The
net result is that the damping rate of the cavity is the same in the
displaced frame.

Photon blockade in the infinite-time steady state

The main focus of our work is understanding Fock state generation
using the dynamics of Eq. 13 for times much shorter than the full
relaxation time of the system. Here, we comment on features of the
infinite-time steady state. The properties of this steady state were
discussed in (24) using an exact-solution technique.

As discussed, when r is exactly tuned to an integer, the steady
state exhibits blockade: the steady state photon number distribution
truncates at n = . Unexpectedly, this blockade phenomenon is lost
even for extremely small deviations of r away from an integer. This
manifests itself as an antiresonance phenomenon when the average
photon number in the steady state, (1 ), is plotted versus r. There is
a sharp dip in this quantity when r is an integer, with the width of
these features Ar << 1. This behavior is illustrated in Fig. 6, where we plot
the full-width half-maximum Ar for the antiresonance in (fi(r) )ss
centered at r = 1. We plot this width as a function of A3/ U. The plot
shows an exponential dependence on this parameter. Away from
the blockade point r = 1, the steady-state photon number is approx-
imately constant and has a large value >1.

Both the large average steady-state photon number away from
integer r and the extremely small antiresonance widths can be
understood starting with a semiclassical analysis, which reveals a
large-amplitude metastable state. The semiclassical equation of
motion for the amplitude a = (@) that follows from Eq. 13 is

%a =-2iUa’a’ - 2iKsa’a - iKsa’ + iKsr - Ko (16)

For r = 0 (nonlinear drive only) and x = 0, the steady-state solu-
tions to this equation are g = 0 (with multiplicity 2) and

Uha=~S555 (17)

Because we always assume a regime where U < A3, this ampli-
tude is typically very large. Including nonzero k and r, we find that
the first-order correction to this amplitude is small. To the first or-
der, we have

3As ik . 2U
Oha=—F577 ———=t+t——=—7 18
772U T 2R, 9A, (18)
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We can also confirm that this is an accurate description of the
large-amplitude state by numerically finding the fixed points to
Eq. 16 without assuming small r and x.

Next, we show that this semiclassical solution is stable by per-
forming a standard linear stability analysis of the semiclassical
equations. The eigenvalues of the linearized equations of motion for
a and o* about oy, are

A2 2
- _Kyp3 33, _8U
Aa= 2113\/52(](1 271_\%1*) (19)

which have negative real parts, indicating linear stability at the
semiclassical level. Turning to the quantum problem, our system
always has a unique steady state, which, for integer r, is a blockaded
state. Hence, for integer r, the above semiclassically stable state is
only unstable due to quantum effects (i.e., precisely the blockade
physics we have described, which is intimately tied to the discrete-
ness of photon number).

Returning to the quantum problem, we find that upon numeri-
cally diagonalizing H block i Eq. 1, there is an eigenstate | ®) with
photon number (7)o = | atna | > where ana is given by Eq. 19. Focus-
ing on the single photon blockade, r = 1, we numerically diagonalize
the Liouvillian Eq. 13, which reveals that there is generically a single
nonzero eigenvalue Y.y, Which is significantly smaller than x; all
other decay rates are order x or larger. We seek to show that this
eigenvalue corresponds to the decay of the Hamiltonian eigenstate
| @) and that the value is exponentially small in A5/ U.

Working under the assumption that | ®) is the state whose
decay is given by the Liouvillian eigenvalue Yo, we use the first-
order degenerate Liouvillian perturbation theory to estimate Y-
The exact eigenstates within the single photon blockade manifold
{10),| 1)} are given by

lya)= %(u» + [1)); E-=FAs (20)

Note that these span the {| 0), | 1)} manifold so that (0|®) =
(1| ®) = 0. Using the numerically computed | ®), we find that it is
reasonably well apzproximated by the coherent state |an,) with
overlap |{an,| @) |” > 0.96 for U < A;. We enforce orthogonality
with the blockade eigenstates (Eq. 20), which gives us the approxi-
mate eigenstate

10)= Allan) - e 10) —ame =) @)

where N is the normalization constant. Under the assumption that

| ¢) is an approximate eigenstate of H plock, the relevant three-
eigenstate degenerate manifold of the unperturbed Liouvillian
EO = —i [ Hbluck"] is { I ‘I’+> (‘V+ I > I W—) (‘U— I 3 I ¢> (¢' I } (the third
exact eigenstate is | ®) (@ | of course). The perturbation is single
photon loss

L, = xDJ[a] (22)

where D[X] is the standard Lindblad dissipator. We diagonalize
the three state subspace with respect to £, and compute the eigen-
values. The irrelevant eigenvalues are y, = 0, whose eigenvector is
the x < A; limit of the single photon blockade steady state, and
Y1 = k/2, whose eigenvector describes population imbalance relative
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to the steady state. The final eigenvalue is the only one whose eigen-
vector involves | ¢) (6| and for U < A is given by

Yslowz‘c|aha|2(1+2|aha|2)e_mm|2 (23)

This shows that the dissipative gap of the blockade Liouvillian
spectrum is exponentially small in U/A3 <1 due to a quasistable
eigenstate of the coherent Hamiltonian. We thus have provided a
quantitative and intuitive understandingof the unexpected sensitivity
of the steady state to small deviations of r away from integer values,
explaining the unexpectedly sharp antiresonance phenomena
found in (24).

Estimation of ',

We provide details here on how to use FGR to estimate the slow rate
Iesc (c.f. Eq. 10), which governs escape from the blockaded subspace
in the presence of imperfect drive amplitudes. Consider first
the simple case where k < As;. We write the system Hamiltonian
H= ﬁo +(8A,a" + h.c.), where ﬁo is the ideal Hamiltonian with
perfect drive amplitude matching (i.e., H 0= H target With 7 = 1,
c.f. Eq. 3). Treating the last term as a perturbation and letting | ¢;) (E;)
denote eigenstates (eigenvalues) of H o, application of FGR yields

_ ~ At 2 'YJI' 2
Fesc J_E{m?]_),’]ocml(ttyl 8A1a70.)] @B+ 7/ (24)

Here, | ¢.) are the two blockade-subspace eigenstates of H,, and
AE = E; — E,. The last factor in Eq. 24 corresponds to the lifetime-
broadened density of states of each unblockaded eigenstate; for
weak «, the decay rate y; = x(¢;|@ 12 ¢;). This general form matches
that of Eq. 10, with a prefactor ¢ that in general depends on the un-
blockaded eigenstates of H  and hence U/A3. We find good agree-
ment between Eq. 24 (computed from exact diagonalization) and
the rate extracted from numerical simulations of the system dynamics
for weak k. As an example, we consider A3 =100 . For U/A3=0.2,
the estimate is ¢ = 0.0051 and the extracted value from the dynamics
is ¢ = 0.0047, and for U/A; = 0.3, the estimate is ¢ = 0.0036 and the
extracted value is ¢ = 0.0045. These are typical of this parameter re-
gime. The small value of ¢ here directly reflects the delocalization of
the unblockaded eigenstates.

For more general regimes, it is trickier to directly apply FGR, as
one can no longer treat the effects of k by simply lifetime broadening
each unperturbed eigenstate. For k >> A3, one can use the fact that
the large dissipation will disrupt the formation of coherent eigen-
states outside the blockaded subspace. In this case, we can estimate
I'esc by considering a transition from either |¢.) to the Fock state
| 2), whose decay rate is simply 2x. This leads to an approximate
decay rate corresponding to Eq. 10 with parameter-independent
constant ¢ = 1. For the most relevant regime x ~ A, it is difficult to
rigorously calculate the decay rate as neither k nor the unblockaded
coherent dynamics can be treated perturbatively. As discussed in
the "Slow time scales, metastability, and blockaded states in the

o~ e 1. eem . - omn 1 P 1.
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For more general regumes, 1t 15 rickier to directly apply FGk, as
one can no longer treat the effects of k by simply lifetime broadening
each unperturbed eigenstate. For x >> A3, one can use the fact that
the large dissipation will disrupt the formation of coherent eigen-
states outside the blockaded subspace. In this case, we can estimate
I'esc by considering a transition from either |¢.) to the Fock state
| 2), whose decay rate is simply 2x. This leads to an approximate
decay rate corresponding to Eq. 10 with parameter-independent
constant ¢ = 1. For the most relevant regime x ~ A3, it is difficult to
rigorously calculate the decay rate as neither x nor the unblockaded
coherent dynamics can be treated perturbatively. As discussed in
the "Slow time scales, metastability, and blockaded states in the
infinite-time limit" section, numerically a good agreement is found to
the general form in Eq. 10 with ¢ ~ 0.25. Heuristically, this is consist-
ent with the results presented above; the slightly smaller value of ¢
corresponds to the partial delocalization of unblockaded eigenstates.
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