
Avalanche dynamics in sheared athermal particle packings occurs via localized
bursts predicted by unstable linear response
Ethan Stanifer∗ and M. Lisa Manning‡

Under applied shear strain, granular and amorphous materials deform via particle rearrangements, which can be small and localized or
organized into system-spanning avalanches. While the statistical properties of avalanches under quasi-static shear are well-studied, the
dynamics during avalanches is not. In numerical simulations of sheared soft spheres, we find that avalanches can be decomposed into
bursts of localized deformations, which we identify using an extension of persistent homology methods. We also study the linear response
of unstable systems during an avalanche, demonstrating that eigenvalue dynamics are highly complex during such events, and that the
most unstable eigenvector is a poor predictor of avalanche dynamics. Instead, we modify existing tools that identify localized excitations in
stable systems, and apply them to these unstable systems with non-positive definite Hessians, quantifying the evolution of such excitations
during avalanches. We find that bursts of localized deformations in the avalanche almost always occur at localized excitations identified
using the linear spectrum. These new tools will provide an improved framework for validating and extending mesoscale elastoplastic models
that are commonly used to explain avalanche statistics in glasses and granular matter.

1 Introduction
Can we predict how amorphous materials such as bulk metallic
glasses1,2, dense colloidal suspensions3, and foams4,5 fail under
stress? While most foams and crystalline metals are ductile and
fail homogeneously, bulk metallic glasses fail catastrophically via
shear bands or system-spanning avalanches1,6, despite their oth-
erwise desirable material properties. What microscopic properties
generate this macroscopic difference in yielding behavior? Such a
fundamental description would allow rational material design to
control failure mechanisms such as shear bands and avalanches2.

Unfortunately, it remains unclear what micro- or meso-scopic
features govern this brittle-to-ductile transition. Previous work
on athermal avalanches have largely focused on systems under
athermal quasistatic shear, where configurations are analyzed be-
fore and after the system spanning rearrangements7,8. A few
works have also focused on packings sheared under finite strain
rate8–10. These studies evaluate the size, statistics, and/or shape
distribution of these avalanches as a function of material proper-
ties, often with a focus on the ductility of the initial configura-
tion8,11.

Phenomenological work has focused on understanding the
transition from ductile to brittle failure in terms of macroscopic
system parameters such as composition, temperature, or prepa-
ration12–14. Recently some authors have used mesoscopic elasto-
plastic models to investigate the origin of the transition from a
brittle-to-ductile behavior13,14. In these models, it is assumed
the system is comprised of independent, mesoscopic yielding re-
gions and that the stress to yield x in each region is taken from
a specified distribution P0(x) that captures different preparation
protocols. In poorly annealed systems, the mean of P0(x) is ex-
pected to be small, while in well-annealed systems it is large. This
hypothesis is strongly supported by work from Patinet et al.15

who explicitly measure local yield stresses, with some assump-
tions and caveats, in simulated granular systems. Other models
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such as Shear Transformation Zone (STZ) and Soft Glassy Relax-
ation (SGR) also describe localized regions that deform and fail
within the glassy systems16–18.

At a microscopic level these models assume that plasticity
is controlled by "shear transformations", the discrete localized
events where a small number of particles rearrange locally, which
release the accumulated stress18,19. This is corroborated by sev-
eral manuscripts showing that the full displacement field of an
avalanche is well-fit by a set of Eshelby transformations, each
centered in a localized region of high deformation20,21. Simi-
lar to elastoplastic models14,22, this implies system-spanning re-
arrangements occur as sequential bursts of localized motion al-
though the temporal dynamics of these localized bursts have not
been well-studied. Such dynamics are important, as the models
differ in their predictions for how defects are coupled dynami-
cally during an avalanche. Elastoplastic models couple defects
by explicitly quadrapolar elastic stress fields while the STZ/SGR
models couple defects via local structural changes and noise. In
order to test these predictions for coupling between soft regions
during avalanches, we first need a robust method for extracting
the temporal dynamics of soft regions from unstable amorphous
packings.

Unlike dislocations in crystalline solids, defects in amorphous
solids are not easily identified by the local geometry. One way to
find soft, defect-like regions is via direct measurements of local
yield stress by Patient and collaborators15 discussed above. Addi-
tionally, quite a few new techniques have been developed to iden-
tify structural indicators that predict plasticity. Some focus on the
linear or nonlinear response near an instability 23–28, while oth-
ers use machine learning techniques29,30 or identification of high
energy motifs31. Recently, many of these have been compared on
the same set of data across the brittle-to-ductile transition, and
one conclusion of that work is that structural defect indicators
based on linear response are surprisingly predictive32.

Linear response indicators are computed from the hessian:
H = ∂ 2U/∂ui∂u j, where U is the potential energy and ui is the
displacements of particle i33. One such structural indicator is sim-
ply a weighted superposition of the lowest energy eigenmodes of
the dynamical matrix, or vibrational modes. The resulting field
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is termed "vibrality"34, or "soft spots" if the field is clustered23.
Of course, the lowest energy vibrational mode just before the in-
stability is precisely the initial motion during the avalanche23,35,
and the nonaffine displacement field is dominated by these low-
energy modes close to the instability, as well23,25,32.

However, structural metrics based on linear response may fail
to predict large avalanches because they are computed once
before the avalanche, and can not be computed during the
avalanche. That is because these methods assume a positive-
definite dynamical matrix, but during most of the avalanche dy-
namics, the Hessian matrix has at least one negative eigenvalue.
Therefore, it is obvious to ask whether some of the methods
for identifying soft spots in positive-definite Hessians can be ex-
tended to Hessians describing unstable systems.

In this manuscript, we develop such extensions and calculate
soft spots in order to investigate how they evolve over the course
of an avalanche. To understand whether we can really describe
avalanches as bursts of localized motions, we also develop a new
method for isolating non-affine movements in the D2

min field16

using an extension of persistent homology. This allows us to ro-
bustly separate an avalanche into a set of localized rearrange-
ments. Finally, we compare these rearrangements to evolving soft
spots to understand how soft spots are coupled to generate the
observed dynamics.

These methods may be useful not only for quasistatically
sheared athermal systems, but potentially many other unstable
systems such as active matter systems, which may be amenable
to similar techniques, or thermal systems which are typically not
in mechanical equilibrium.

2 Methods

2.1 Simulating dynamics of the sheared granular packing

We study bidisperse granular packings. Particles interact with a
Hertzian contact potential where the potential energy as a func-
tion of distance is given by

V
(
ri j
)
=

2
5

(
1−

ri j

ri + r j

) 5
2

(1)

where ri j is the distance between particle i and j, and ri and r j

are the radii of particles i and j respectively36. We study 50:50
mixtures of particles with a size ratio of 1:1.4 in order to suppress
crystallization37. Two-dimensional systems are initialized with
random positions in a square periodic simulation box with equal
parts small and large particles. The systems are then instanta-
neously quenched to zero temperature via FIRE energy minimiza-
tion38.

After the quench process, the systems are strained using Lees-
Edwards boundary conditions39. These boundary conditions are
periodic with a shift while crossing the top and bottom boundary
proportional to the strain imposed on the system. To identify the
onset of instabilities and avalanches, we first simulate athermal
quasistatic shear (AQS) by taking a small shear step and mini-
mizing the total energy of the system using a FIRE minimization
algorithm. Since the system is allowed to relax as long as nec-
essary to find an energy minimum after each shear step, by def-

inition of quasistatic shear , this approximates a strain rate that
approaches zero in large systems.

Following each strain step, the shear stress of the minimized
configuration is measured using the distances and forces between
all pairs of particles:

σxy = ∑
〈i j〉

−→r i j,x
−→
f i j,y. (2)

If the instantaneous change in shear stress is larger than a speci-
fied threshold of N×10−4 where N is the system size. , which sig-
nifies an instability, we use a linear bisection algorithm to identify
the precise strain at which the instability occurs40. Using this pro-
cedure, we are able to isolate the system just before and just after
an instability corresponding to a particle rearrangement within a
strain window of 0.01

N2 .

Once we have identified a particle rearrangement event, we
then wish to simulate the dynamics of that event. In athermal
quasistatic shear, the minimum energy states at the end of an
avalanche are usually found using fast algorithms, such as conju-
gate gradient minimization or FIRE, that do not necessarily corre-
spond to realistic dynamics38. To maintain physically reasonable
dynamics, we instead minimize energy using a computationally
expensive steepest descent algorithm with an adaptive timestep.
The timestep of the minimization is determined throughout the
algorithm such that no particle moves more than 1% of the av-
erage particle radius in a single frame. Furthermore, if the force
in the new configuration after a timestep,

−→
F (t +dt), is more than

orthogonal to the previous force,
−→
F (t), ie.

−→
F (t) · −→F (t + dt) < 0,

the step is reversed and the timestep is halved until the new force
is in the correct direction or

−→
F (t) · −→F (t + dt) ≥ 0. This method

is equivalent to a noiseless molecular dynamics simulation in the
overdamped limit where the velocity, −→v , is given by the force,

−→
F ,

with some damping coefficient, Γ,

−→v = Γ
−→
F . (3)

This damping coefficient determines the timescale of the molec-
ular dynamics simulation. We choose this term to be unity to set
the natural timescale where the velocity of the simulation is given
directly by the force.

2.2 Quantifying plasticity using D2
min

Plasticity in disordered systems is well captured by D2
min, a mea-

sure of the nonaffine motion16 D2
min compares two configurations

of a system over a specified radius, in this case five average parti-
cle radii:

D2
min,i

(−→
X 1,
−→
X 2

)
= ∑

j:ri j<5r̄

(−→ri j2−Si
−→ri j1
)2

, (4)

where
−→
X 1 and

−→
X 2 represent the two configurations being com-

pared, ri j is the distance between particles i and j, r̄ is the average
particle radius, −→ri j1 and −→ri j2 are the vectors that separate particles
i and j in the first and second configuration respectively, and Si

is the best-fit affine transformation that minimizes D2
min,i. The de-

tails of this affine transformation can be found in the ESI†.



As is standard16, to compute D2
min one must choose a length-

scale for the neighborhood over which the affine and non-affine
transformations are computed. Consistent with previous work,
we choose 5r̄. Smaller lengthscales cause the algorithm to fail as
the particle may not be in the convex hull of the neighborhood,
while larger lengthscales result in D2

min fields that are more homo-
geneous and fail to capture localized rearrangements. Because
the neighborhood around particle i is determined by distance, it
can change between the two configurations and therefore we use
the union of these two neighborhoods to define the set of parti-
cles j for each particle i. Since we use a 50:50 binary mixture the
average radius is the average of the radii of the two species.

Our goal is to measure instantaneous plasticity over time.
Therefore, we measure D2

min,i between two configurations sepa-
rated by a small time window throughout the minimization. The
bursts of localized deformation have a duration on the order of
one natural time unit, so we choose to measure the plasticity over
a time window, ∆t, of 0.2 natural time units to obtain good reso-
lution. Furthermore, by choosing a time window larger than our
frame rate, we are able to compute a moving average of the D2

min
field over time. We denote the plasticity measured at time t with

D2
min,i(t) = D2

min,i

(
−→
X
(

t− ∆t
2

)
,
−→
X
(

t +
∆t
2

))
(5)

where
−→
X (t ′) is the configuration at time t ′. This measure is a

scalar field measured on each particle over space and time.

3 Results

3.1 Plastic deformation in avalanches occurs in bursts.

Examples of the D2
min,i field, defined in Sec 2.2, during one

avalanche are shown in Fig. 1 A, B, and C.

As shown in Fig. 1(D), the maximum value of D2
min,i over par-

ticles i exhibits clear bursts of motion where the maximum value
increases by orders of magnitude rapidly and decreases quickly.
Furthermore, the D2

min fields shown in panels(A-C) in Fig. 1 cor-
respond to the peaks of the three largest bursts of motion. These
panels illustrate that the location of these bursts of motion are
different for each burst. Movies which show the spatial extent of
the D2

min as a function of time are included in the Supplementary
Information.

For each avalanche, t = 0 corresponds to the time at which the
instability occurs. However, we note that the first burst of lo-
calized deformation is often quite delayed. In the example in
Fig. 1, the first burst doesn’t begin until 868 natural time units af-
ter minimization starts. Leading up to that point there is very little
motion or activity. This delay occurs because the system begins
very near the saddle point instability that triggers rearrangement.
Near this saddle point the net force on the system is very small
and since the velocity in steepest descent is given by the force,
the velocity is also small. It takes time for the system to leave the
saddle point behind and approach the time of interest. Similarly,
after all the rearrangements have finished, the system relaxes to a
minimum and becomes increasingly slow as it approaches. These
build-up and relaxation phases take up the bulk of the time during
steepest descent minimization, taking on the order of hundreds or

thousands of time units, while the system only rearranges for on
the order of tens of time units for the system sizes we study of
1024 particles.

3.2 Avalanches can be decomposed into bursts of localized
deformation.

It appears that the bursts of localized motion are localized to rel-
atively small groups of particles. To investigate this, we introduce
a novel clustering algorithm taking inspiration from persistent ho-
mology41 and hierarchical density-based clustering methods42.

Our goal is to highlight isolated peaks in the nonaffine motion
in this system over space and time to quantify whether the mo-
tion during an avalanche occurs in localized bursts. The simplest
criteria would be a threshold on the nonaffine motion. However,
it is clear that applying a bare threshold to a function could eas-
ily lose significant peaks and may not well separate the largest
peaks if they are too close together spatially or temporally . Fur-
thermore, this kind of clustering is very sensitive to the threshold
value which must be determined arbitrarily.

By contrast, persistent homology is a sophisticated analysis
method for robust characterization of topological features of a
set of data or a function over space. It can be used to character-
ize the height and spatial extent of topological features like local
maxima and minima41. This method has been used to quantify
the typical heights and sizes of the peaks in a test function and
separate them from noise. A schematic diagram of an example
test function φ(x) is shown in Fig. 2(A), and the corresponding
standard persistent homology tree diagram is shown in Fig. 2(B).

In this procedure, a threshold is lowered from the largest value
to the lowest value of the function φ(x). Everything above the
threshold value is clustered. When the threshold is lowered be-
low the apex of a peak, a new cluster is formed and the height of
the apex is referred to as the birth point, B, of the cluster. As the
threshold is further lowered, eventually the saddle point which
separates 2 or more maxima will be reached and the clusters that
were isolated from one another will merge. In typical persistent
homology approaches this merging point will mark the "death"
of all but one of the previously separated clusters defining the
death point, D, for these clusters. The typical approach can also
result in overlapping clusters, which would be problematic for
our task here. Therefore, we take a different approach where a
saddle point is marked as the death point of all the merging clus-
ters and the birth point of a new cluster consisting of the merged
cluster. This information allows us to construct a tree diagram
which consists of the height of birth events φ(B) and the height
of death events φ(D) with edges connecting the clusters to the
clusters they merge to become. The leaves of this tree diagram
correspond to the local maxima in the evaluated function.

In general, it is expected that some of these leaves are the result
of random fluctuations. To separate signal from noise, one can
identify a set of criteria to "prune" the leaves of the tree diagram
that correspond to maxima that are simply noise fluctuations, as
illustrated by the dotted lines for the two highest branches in
Fig. 2(B). The remaining leaves identify signals within the clus-
tered function.
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Fig. 1 Sequential snapshots of the D2
min field are shown in panels (A), (B), and (C). (D) The maximum D2

min,i over i as a function of time for an
example avalanche in a system of 1024 particles. Red symbols indicate the times at which the snapshots were extracted.

For our problem, we must cluster in space and time simultane-
ously, which requires that we choose how often to sample in time
and set a conversion constant, c, between distances in time and
distances in space. To ensure good temporal resolution of defor-
mation, we choose a frame rate of 0.01 natural time units, which
corresponds to a variable number of simulation steps due to the
adaptive timestep of the steepest descent method, discussed in
Section 2.1. Next, we define a characteristic length scale for the
dynamics of interest, which is roughly the length scale of shear
transformation zone also used in the D2

min calculation16. In 2D,
this is about five particle radii, or lchar = 5r̄. Similarly, the charac-
teristic timescale should be roughly the time required for a rear-
rangement of a shear transformation zone, on the order of a natu-
ral time unit. Here we use tchar = 0.1, corresponding to 10 frames,
which is half the ∆t = 0.2 chosen for calculating D2

min. Then the
conversion constant is c= lchar/tchar = 50 in units of natural length
over natural time. The distance between two particles in space-
time is then given by the usual distance with periodic boundary
conditions in space, d(−→x i,

−→x j), modified by the temporal distance

d̃(i, j) =
√

d2(−→x i,
−→x j)+ c2(t j− ti)2, (6)

where −→x i and ti are the position and time of particle i. Following
the procedure described above for the test function φ(x) in Fig.2A
and B, we set a threshold at the maximum value of the D2

min,i
field and as the threshold is lowered we cluster all particles with
a D2

min,i above this threshold. A particle, i, belongs to a cluster
if there is any particle in the cluster which is within a distance
lchar of particle i using the space-time distance measure above.

Throughout this process, the birth and death points are noted for
each cluster as well as the points which are contained in each
cluster at their death point. This information is used to develop a
persistence tree diagram like that shown in Fig. 2 B.

We next need to develop a criteria for pruning the tree and
separating signal from noise. Using our altered approach to avoid
overlapping clusters, we found that the standard persistent ho-
mology metric for thresholding based on persistence (i.e. the dis-
tance of the birth-death coordinate from the diagonal in the tree
diagram) did not generate a bimodal distribution of persistence
times. Therefore, it was difficult to identify a persistence thresh-
old that separated signal (long-persistence clusters) from noise
(short persistence clusters). Instead, we use ideas from hierar-
chical density-based clustering. Specifically, after investigating
many possibilities, we choose to prune the persistent homology
tree based on a threshold for the volume of the identified cluster,
where the volume is the sum over the number of particles in the
cluster in each frame. A volume of 500, for instance, corresponds
to a cluster which may have 5 particles for 100 frames, 100 par-
ticles for 5 frames, or some other combination where the number
of particles in each frame can vary. All leaves with volumes below
the volume threshold are pruned. The rationale for this approach
is that it highlights clusters that are both persistent and involve a
sufficiently large region of space-time. To show how this pruning
algorithm works in the example of Fig. 2A, the clusters associated
with leaves of the tree diagram are highlighted by several colors.
If the two central peaks are pruned due to their small size (cor-
responding to removal of the dashed lines in Fig 2(B)), the new
cluster would correspond to the entire volume above the dashed



line in Fig 2(A).

Next, we must identify the optimal volume threshold. Small
clusters that correspond to noise are expected to jump around in
space and time as the threshold is changed, while our signal –
localized bursts of deformation – should be robust with respect
to changes in threshold. Therefore, our approach is to calculate
the relative mutual information between the clusters identified at
different volume thresholds, where mutual information is a mea-
sure of the amount of information one variable contains about
another. High mutual information means that the clusters do not
change much when the threshold is changed, while low mutual
information means the clusters change a lot as the threshold is
changed. Therefore, if there is a value of the threshold that gen-
erates good separation between signal and noise in this persis-
tent homology representation, we expect to find a plateau in the
mutual information, which would indicate that the value of the
threshold does not strongly impact the clusters found. In other
words, all thresholds thV in the plateau region are sufficient to
separate signal from noise.

The mutual information is constructed by measuring the en-
tropy between datasets I and J given by:

M(I,J) = ∑
x∈[I]

∑
y∈[J]

px,y log2

(
px,y

px py

)
, (7)

where px, py, and pxy are the probability of a particle being in set
x, set y, or both simultaneously respectively. In this case the sets
x and y are given by the datasets I and J, eg. pI is the probabil-
ity of a particle being in set I which is computed by the number
of particles in set I divided by the total number of particles in
the simulation time window, pJ is similarly computed for set J,
and pIJ is the probability of a particle in both sets computed by
the size of the intersect between sets I and J divided by the to-
tal number of particles again. The relative mutual information
between datasets I and J is computed by normalizing by the mu-
tual information by the average information entropy between the
datasets which is computed by finding the mutual information of
a cluster field with itself:

m(I,J) =
M(I,J)√

M(I, I)∗M(J,J)
. (8)

Our goal is to use the cluster volumes to separate signal from
noise, by studying how the mutual information between clusters
changes as a function of volume threshold, illustrated in ESI Fig
S1†. First, imagine an ideal case where the where the clusters
that correspond to noise have a lower volume, with a distribution
characterized by a mean thn

v and width dvn, and clusters that cor-
respond to signal have a larger volume with a distribution charac-
terized by mean ths

v and width dvs. Then a 95% confidence inter-
val around the maximum value of the relative mutual information
will be roughly dvn for smaller values of thv (thv < thn

v +dvn) and
will change rapidly to a different, presumably larger value dvs for
larger values of ths

v (thv > ths
v +dvs).

Therefore, in our data, we search for a threshold at which
the 95 % confidence interval rises rapidly and reaches a plateau,
which should correspond to a volume that distinguishes between

Fig. 2 An extended persistent homology procedure for clustering
D2

min. (A) A schematic diagram of a function φ(x) to be clustered using
persistent homology. (B) The persistence tree for the example field in
panel A, where φ(B) represents the birth height and φ(D) represents the
death height of a cluster/peak. Each node in the plot corresponds to a
cluster with a volume v, and we prune this tree by applying a threshold thv
on cluster volumes. (C) The ratio thU

v /thL
v describing the 95% confidence

interval around the maximum relative mutual information of cluster fields
vs. threshold thv, as described in the main text. Away from zero, this
function achieves a broad maximum around thv ∼ 500.

signal and noise. A subtlety, as discussed the ESI, is that there is
also a trend where the information entropy, H(I)≡M(I, I), in the
cluster field, I, increases with increasing threshold. To account for
this effect, we study the confidence interval of the relative mutual
information on a logarithmic scale, which, as discussed in the ESI
is equivalent to studying the ratio of the upper and lower contours
of the relative mutual information in threshold space thU

v /thL
v .

Fig 2C shows this ratio as a function of threshold volume thv.
There must be a peak at zero as the lower contour is restricted to
be positive, and then we see a dip and a rapid increase in the ratio
and a maximum around thv ∼ 500, followed by a rough plateau.
This indicates that thresholding on cluster volumes indeed sepa-
rates signal from noise, with an optimal value close to thv = 500,
and we use that value for the remainder of this work. This mini-
mum cluster volume corresponds to a localized burst of deforma-
tion that contains roughly 10 particles and lasts 50 frames or 0.5
natural time units.

In Fig. 3(A), we show a space-time plot of the clusters of non-
affine motion, as measured by the D2

min. Note that this system has
periodic boundary conditions in the x- and y- directions, so some
of the bursts of localized deformation cross this boundary. Addi-
tionally, because the distance cutoff for clustering is 5 times the
average radius, there are some clusters which appear to have gaps
in space and time between two or more components. However, it
is guaranteed that these gaps are smaller than the characteristic
length lchar. These clusters meaningfully highlight nonaffine mo-
tion in the system during an avalanche. In Fig. 3(B), we show the
nonaffine motion occurs in peaks over time, where the black curve



Fig. 3 (A) A space (X,Y) and time plot illustrating the clusters identified
by our persistent clustering algorithm in one example avalanche. Colors
indicate unique cluster IDs. (B) The black line illustrates the maximum
value of D2

min,i over all i at each point in time on a logarithmic scale, for
the same avalanche as shown in Fig 5. The colored peaks are a plot the
maximum D2

min,i within each identified cluster over the period of time the
cluster exists. Colors indicate the same cluster ID as in panel A.

shows the D2
min,i(t) maximized over all particles in the system, in-

dicating that avalanches occur in bursts of motion. The localized
clusters on this nonaffine motion are well separated in time and
space and represent the local maxima as seen in Fig. 3 B, where
the clusters clearly highlight the peaks in motion over time. Note
that our persistent homology approach allows us to identify sig-
nificant bursts with relatively small values of D2

min, which would
have been missed if we instead used an approach with an absolute
threshold on D2

min .
From the beginning of the first burst of localized deformation to

the end of the last burst, on average the bursts of localized defor-
mation account for 63± 19% of the nonaffine motion while only
accounting for 4±2% of the spacetime volume. These clusters are
localized, typically involving less than 100 particles at any given
time. The distribution of the spatial extent of the bursts of lo-
calized deformation is shown in Fig. 4(A). This distribution has a
heavy tail such that the majority of the bursts are relatively small,

where the median of this distribution shows half of the bursts of
localized deformation involve fewer than 61 particles. Our data
appears to be consistent with a log normal distribution, which is
represented by the black dashed line in Fig. 4(A).

Additionally, we investigate the duration of these bursts of lo-
calized deformation. In Fig. 4(B), we see that the duration of
bursts of localized deformation are distributed around unity with
a mean value of 2.7 natural time units. Since the duration has a
mean that is comparable to the standard deviation but is required
to be positive, we hypothesize the distribution of the duration of
bursts of localized deformation follows a log-normal distribution,
which is shown by the black dashed line and again is consistent
with the data.

The observation that both distributions are log-normal indi-
cates that individual bursts possess well-defined mean sizes and
durations. This is consistent with assumptions of elastoplastic
models14,22 where localized plastic events are coupled via long-
range elastic interactions to generate power-law distributions for
total avalanche size.

Perhaps surprisingly, the duration and the size of each burst
of localized deformation do not appear to have a strong correla-
tion, as shown in Fig. 4(C). In other words, larger bursts do not
seem to take longer to complete than smaller bursts of localized
deformation.

3.3 Eigenvalue dynamics in unstable systems are highly
complex.

In viscously damped inertial dynamics, the equation of motion for
a given particle i is given by

mi
−→a i =

−→
f i−Γ

−→v i, (9)

where mi is the mass of particle i, −→a i is the acceleration of the par-
ticle,

−→
f i is the force on the particle, Γ is the damping coefficient,

and −→v i is the velocity of the particle. In overdamped Brownian
dynamics, the left-hand side of Eq. 9 is set to zero, under the as-
sumption that the damping term is significantly larger than the
inertial term. Therefore, in overdamped dynamics the velocity is
directly proportional to the force . We choose a damping coef-
ficient of unity such that

−→
V =

−→
F , where each capitalized vector

contain Nd entries corresponding to the individual vector compo-
nents for each particle, where N is the number of particles and d
is the number of dimensions.

We compute the forces in this system by taking the derivative
of the total energy, U , with respect to particle positions,

−→
F iα =

∂U
∂xiα

, (10)

where the subscript i indicates particle i and the subscript α indi-
cates components along the x-axis or the y-axis. We can further
compute the change in the force over time to investigate the evo-
lution of structure on short timescales via a time derivative

d
−→
F iα

dt
=

∂ 2U
∂xiα ∂x jβ

dxiα

dt
. (11)

The rightmost term is simply the velocity which is equivalent to



Fig. 4 (A) The distribution of the size of the identified bursts of localized
deformation in 100 avalanches. The dashed line shows a log normal
distribution. (B) The distribution of the duration of bursts of localized
deformation. The dashed line shows a lognormal distribution with the
same mean and standard deviation as the duration histogram. (C) A
histogram where the colorscale indicates the probability density of finding
a localized burst of deformation with a given size and duration, identified
over 100 avalanches.

the force in this simulation and the second order partial derivative
of the energy is the Hessian matrix, Hi jαβ . Thus, the change
in force is governed by the relation between the force and the
Hessian:

d
−→
F

dt
=−H

−→
F . (12)

When we project the force into the eigenbasis of the Hessian,
we find a differential equation for the evolution of the force in the
direction of each eigenvector:

d
dt

FI(t) =−λIFI(t), (13)

where FI = 〈
−→
F |ûI〉, and λI and ûI are the Ith eigenvalue and as-

sociated eigenvector respectively. If we assume the eigenbasis of
the Hessian doesn’t change quickly relative to the timescale of the
force, an assumption we will check later, we can integrate this dif-
ferential equation to find an exponential function over time:

FI(t) = FI(0)e−λIt . (14)

In mechanically unstable systems where the Hessian possesses
at least one negative eigenvalue, the force along these unsta-
ble directions grows over time, and the rate of growth depends
on the magnitude of the associated eigenvalue. If the eigenval-
ues are large the force quickly tracks the eigenvalue, and it is
therefore tempting to speculate that the deformation field sim-
ply follows the most negative eigenvalue, perhaps with near-
instantaneous eigenvalue-switching events, where mode associ-
ated with the lowest eigenvalue changes character, due to struc-
tural rearrangements and associated contact changes. Specifi-
cally, an eigenmode is said to change character when its direction
in configuration space which changes particularly rapidly at these
near-instantaneous events. In random matrix theory, these are
"narrowly avoided eigenvalue crossings", where the eigenvector
associated with the lowest eigenvalue is replaced by a new eigen-
vector, although eigenvalue repulsion prevents the eigenvalues
from actually "crossing".

In our unstable system, we investigate the dynamic behavior
of the eigenvalues of the Hessian during deformation in order to
probe the curvature of the energy landscape along the minimiza-
tion path. If the potential energy landscape was simple we would
expect a single negative eigenvalue that becomes positive as the
system approaches the energetic minimum. In Fig. 5, we show
the lowest ten eigenvalues over the course of an avalanche. This
is the same avalanche example shown in Fig 3, and the red and
green regions, respectively, correspond to times with bursts of lo-
calized deformation with the same color shown in those plots.

Initially, there is only one negative eigenvalue before the main
rearrangements occur and, after the entire avalanche is complete,
all eigenvalues become positive as the system approaches the
minimum, as expected.

One observation is that, unlike in a simple picture of a single
saddle point, many eigenvalues can become negative between the
initial configuration, near a saddle point, and the final configura-
tion at a local minimum in the energy landscape. As can be seen
in the dashed lined associated with the right axis in Fig. 5, there
can be as many as 5 or 6 negative eigenvalues as the system re-
arranges. This is indicative of the system passing nearby many
saddle points or higher order saddle points during deformation,
although our data do not distinguish between these two cases.
Another observation is that the eigenvalue dynamics are highly
complex, with multiple timescales including very rapid jumps.

To better understand these dynamics and their relationship
with the force, we further zoom in on the events associated with
the red and green bursts of localized deformation. The red burst
is small in magnitude and well-isolated in space and time from
other bursts, while the green burst is not.

In Fig. 6 (A), the left (blue) axis quantifies the instantaneous
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Fig. 5 Left axis: The lowest 10 eigenvalues of the Hessian as a function
of time for a single avalanche simulation shown by solid lines. Right axis:
The count,nn, of eigenvalues below zero as a function of time shown by
dashed line.

change in the angle ∆θΨmin of the eigenvector with the most neg-
ative eigenvalue, which we term the "lowest eigenvector" and
denote Ψmin which directly captures changes to the "character"
of the eigenmodes. Spikes in ∆θΨmin correspond to "eigenvalue-
switching" events, where the lowest eigenvector changes charac-
ter rapidly, likely due to a change in the contact network. The
right (orange) axis quantifies π/2−θF ·Ψmin, where θF ·Ψmin is the
angular difference between the force F and Ψmin. The dashed
(orange) line corresponds to the difference between the instanta-
neous force and the lowest eigenvector at the start of the burst,
Ψmin(tini), where tini is determined as the earliest point that the
burst has been identified while the solid orange line corresponds
to the difference between the instantaneous force and the current
lowest eigenvector Ψmin(t). When the force is precisely tracking
the eigenvector, this quantity is large (close to π/2), but it ap-
proaches zero if the force is orthogonal to the eigenvector.

In this simple isolated burst, we see that are are a handful
of rapid, well-separated eigenvalue-switching events. Before the
largest such event, the force tracks the lowest eigenvector pre-
cisely and the solid orange curve remains close to π/2. After the
largest event, the solid orange curve drops to near zero, indicating
that the force is nearly orthogonal to the lowest eigenvalue. Then,
over a characterstic timescale governed by the magnitude of the
eigenvalue, the force to begin to track the new lowest eigenvector
and the solid orange curve rises again towards π/2. The dashed
line remains low after the eigenvalue switching event, highlight-
ing that the force is no longer tracking the eigenvector that was
lowest at the beginning of the burst. Taken together, these data
suggest that well-isolated bursts of localized deformation follow
our simple sequential picture quite well.

Fig 6(B) shows the same quantities during the green localized
burst. First, we notice that there are quite a few rapid changes
to the lowest eigenmode over time. Moreover, the timescale be-
tween such switching events is smaller than the "force-tracking"
timescale associated with the magnitude of the eigenvalue, and
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Fig. 6 Left axis (blue) The instantaneous angular change in the lowest
eigenmode, ∆θΨmin, as a function of time. Right axis (orange) The angle
of the force with respect to the lowest eigenmode Ψmin(t), solid; the angle
of the force projected into the lowest eigenmode at the beginning of the
deformation Ψmin(tini), dashed. (A) The eigenvector dynamics during a
well-isolated localized burst deformation (the event bounded by the red
dotted lines in Fig. 5). (B) The eigenvector dynamics during an event
with multiple localized deformations simultaneously ( the event bounded
in time by the green dashed lines in Fig. 5).

so the force almost never matches the lowest eigenvalue, as the
solid orange curve representing π/2−θF ·Ψmin drops and rises sev-
eral times and and approaches zero by the end of the burst. Since
these more complex events are quite common, it is clear that the
lowest eigenmode is not a good predictor of deformation. This
raises the question: are there other indicators based on linear re-
sponse that would be more stable and therefore more predictive
during an avalanche?

3.4 Soft spots can be identified from a superposition of low-
est eigenvalues

As there are rapid changes to the lowest eigenmodes, rather than
measuring the overlap with each mode individually, we compute
a field similar to the vibrality34 over space and time. Vibrality,
Ψ, quantifies the susceptibility of particle motion to infinitesimal
thermal fluctuations in the limit of zero temperature and is pro-



portional to the Debye-Waller factor. Ψ is defined as:

Ψ =
dN−d

∑
k=1

|Ψk|2

ω2
k

, (15)

where N and d are the system size and dimensionality respec-
tively and the sum runs over the entire set of eigenvectors Ψk

with frequency ωk.

To improve performance, we made some alterations to the stan-
dard vibrality. First, as computing the full sum over the entire
set of eigenvectors at every time step is computationally inten-
sive, we computed the partial vibrality sums over the k∗ modes
with the lowest eigenvalues, for varying k∗. For stable Hessians
and for our system size of interest, we found a partial sum over
the lowest eight eigenmodes approximates the true vibrability to
within 98%. We expect the number of modes needed to capture
the salient features of the structure to increase linearly with sys-
tem size, though we reserve this for future work.

Second, in the standard vibrality indicator, individual modes
are comprised of phonons hybridized with quasi-localized exci-
tations27. To remove the phonons, we first compute the non-
affine field of each eigenmode by applying the D2

min algorithm
on each eigenvector as if it were a displacement field, with the
same lengthscale used to quantify deformation, five average par-
ticle radii. In other words, for each eigenmode, we compute D2

min
between the current configuration, X1, and a deformed configu-
ration: X2 = X1 + vi, where vi is the ith eigenmode. Third, be-
cause the eigenvalues for unstable Hessians are both positive and
negative, and therefore the frequency is not well-defined, we re-
move the weighting with frequency in Eq. 15. We then calculate a
new vibrality-like metric, which we term non-affine vibrality and
denote Ψ̃, as the magnitude of the unweighted sum of the non-
affine field associated with the eight lowest eigenmodes of the
Hessian. This can be quickly computed at each timepoint t during
a steepest descent minimization routine, as it requires only a par-
tial diagonalization of the Hessian, and captures quasi-localized
excitations in the eigenmodes of unstable Hessians.

Having identified the non-affine vibrality Ψ̃ as an efficient struc-
tural indicator field for Hessians with negative eigenvalues, we
next seek to cluster the field into "soft spots" that can be directly
compared with bursts of localized deformations. We found that
we were unable to identify soft spots in space and time using the
same persistent clustering algorithm used to compute the bursts
of localized deformation. This is because while the localized
bursts of deformation possess relatively well-defined character-
istic length and timescales (see Fig 4), we observe that soft spots
exhibit a very large variation in time: some are very short-lived
while others remain for the length of the avalanche. This means
there is no choice of volume threshold that separates noise from
signal in the persistent homology diagrams.

Although there is no characteristic timescale for soft spots,
there is a clear length scale. Therefore, we first use the the per-
sistent clustering algorithm to cluster Ψ̃ as a function of space
only at each time slice. In Fig. 7 A, we show a snapshot of these
space-only clusters at a particular time. Several of these clusters
appear to be discontinuous. This is because the clustering lenth-
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Fig. 7 (A) The clustered soft spots identified in a single time frame, with
periodic boundary conditions in space. Colors index distinct clusters. (B)
Soft spots identified one frame later. (C) Probability distribution ρ of
the fraction of the system fs labeled soft in each frame.

scale is lchar which is larger than a particle diameter. In Fig. 7 B,
we show the identified clusters at the next time step. Note that
the soft spots near the center of the first frame are joined together
in the second frame. To determine how to group these space-only
clusters in time, we compute the relative mutual information be-
tween space-only clusters in adjoining time frames. We expect
that spots with large mutual information across time should be
grouped together, and those with low information should not.

In order to separate the information values of objects which
overlap and an object that overlaps with the complement of an-
other object, we use a modified form of the mutual information
between two discrete fields computed as

M̃(I,J) = ∑
x∈[I,∼I]

∑
y∈[J,∼J]

px,y log2

(
px,y

px py

)
sgn
(

pI,J− pI pJ
)
, (16)

where x is the discrete field of the burst of localized deformation,
y is the discrete field of soft spots, and px, py and px,y are the
probabilities that an arbitrary point in the discrete fields is x in
the discrete field formed from the bursts of localized deformation,
or y in the soft spot field, or both, respectively. Therefore, the
term for x = I and y =∼ J investigates the likelihood of particles
being in soft spot I but not in soft spot J and all such pairs are



studied. The Sign function , sgn, in this definition gives positive
information if the overlap between I and J is greater than the
expected and negative if I is better correlated to the complement
of J. This allows the removal of pairs where the standard measure
of the mutual information is high because of the overlap between
one set and the complement of the other set. The information
entropy, H̃(I), is given by the mutual information of a discrete
field with itself, H̃(I) = M̃(I, I).

Fig. 8 The cumulative distribution Φ of the relative mutual information
between soft spots identified in each time frame separated by the time
window of 0.1 natural time units or less averaged over 180 avalanches.
These overlaps are separated into cases where the soft spot splits into
two soft spots (Split) and where two soft spots merge into one (Merge)
which have nearly identical distributions.

To determine an information threshold, we analyze the rela-
tive mutual information probability distribution for simple events
where a soft spot in one frame overlaps with two in another
frame, shown in Fig. 8. We find that the median value for these
types of events is 0.25, and so we choose that as a threshold. As
discussed in the ESI†, this also corresponds to an inflection point
between a sharp low-information peak (spots that don’t overlap)
and a flat high-information distribution (spots that do overlap).
We have also checked that varying this threshold slightly does not
significantly change our results. In the example shown in 7(A)
and (B), the upper right overlapping space-only cluster has large
enough mutual information to be identified with the space-only
cluster in 7(B). Specifically, the smaller cluster has 17.6% relative
mutual information with the blue cluster in 7(B) while the larger
cluster has 49.0% relative mutual information. This procedure
generates from the field Ψ̃ a discrete set of space-time clusters
which we term "soft spots". Fig 7(C) is a histogram of the fraction
of the system that is labeled as a soft spot in each time step across
150 avalanches, illustrating that our procedure labels about 10-
25% of the system as soft spots, which is consistent with previous
methods23.

3.5 Bursts of localized deformation occur at dynamically
changing soft spots

To understand how soft spots correlate with bursts of localized
deformation, we study the mutual information between these
fields43. Specifically, we use a normalized form of the mutual in-
formation called the proficiency, which measures how well each
soft spot predicts the spatio-temporal location of each burst of

localized deformation:

χIJ =
M̃(I,J)
H̃(I)

, (17)

where M̃(I,J) is the modified mutual information between soft
spot J and burst of localized deformation I and H̃(I) is the infor-
mation measure of the burst of localized deformation I.
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Fig. 9 Probability distribution function ρ of proficiency χ between all
bursts of localized deformation and all soft spots (blue dashed line), and
the maximum proficiency χmax for each burst of localized deformation
(red solid line), from 180 avalanches.

The proficiency is near unity when the spatial location of a soft
spot overlaps very well with the spatial location of a burst of local-
ized deformation and occurs at the same time. If the proficiency
is very near zero, then the soft spot and the burst of localized de-
formation have little to no overlap in space and time. The prob-
ability distribution function for the proficiencies between all soft
spots and bursts of localized deformation is shown by the blue
dashed line in Fig. 9. The vast majority of proficiencies are very
small or negative, indicating that as expected, most soft spots do
not overlap with a plastic event at a given instant in time. In
contrast, the maximum proficiency for each burst of localized de-
formation,χmax , shown by the solid red line in Fig. 9, exhibits a
bi-modal distribution. The peak at high χ indicates a real overlap
between a soft spot and a burst of deformation, while the peak
at low χ is consistent with background noise. Therefore, we de-
fine the threshold for overlap at the minimum between these two
peaks (χ = 0.01), shown by the vertical dashed line in Fig. 9.

Fig. 10(A) illustrates the relationship between bursts of defor-
mation and soft spots across a single avalanche. Soft spots are
indexed by an integer S in order of their start times, and bursts
are similarly indexed by an integer B. The colormap indicates
the proficiency between each soft spot and a burst of localized
information. This example highlights several features that are
common to avalanches we studied: i) almost all bursts of defor-
mation are associated with at least one soft spot – in this example,
all bursts of localized deformation have greater than 1% correla-
tion with at least one soft spot, ii) a small number of bursts are
associated with more than one soft spot, iii) many soft spots are
not involved at all throughout the entire avalanche, iv) some soft
spots show up in more than one burst (i.e. those spots rearrange
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Fig. 10 (A) Overlap between 76 identified soft spots and 12 bursts of
localized deformation in a single avalanche. The grayscale colormap
indicates the proficiency χ between each soft spot, indexed by S in order
of start time, and each burst of localized deformation indexed by B in
order of start time. (B) Number of soft spots associated with a single
burst of localization. The probability distribution ρ of bursts of localized
deformation that overlap (possess a proficiency χ > 0.01) with n soft spots
across 180 avalanches, indicating that most bursts are associated with
one soft spots, though a few are associated with 2 or more.

more than once). To get a better idea of the statistics of these
features across multiple examples, Fig. 10(B) shows the fraction
of bursts of localized deformation that have an overlap (a profi-
ciency greater than the threshold 0.01) with n soft spots. Only
3.5% of bursts do not overlap with a predicted soft spot, and the
majority overlap with one soft spot. This data is consistent with
the hypothesis that bursts of localized deformation occur when a

structural defect, or soft spot, reaches its yield stress and deforms.
Importantly, many of the soft spots we identify are not present

at the start of the avalanche; they appear instead later in the
avalanche as a result of the avalanche dynamics. Figure 11 shows
the distribution of soft spot start times normalized by the total
duration of the avalanche, averaged over 180 avalanche trajecto-
ries. While 13% of the soft spots already exist in the mechanically
stable state before the avalanche starts, illustrated by the peak on
the left-hand side of Fig.11, the remaining distribution is rela-
tively flat, suggesting that soft spots are equally likely to form at
any time during the remainder of the avalanche.

Fig. 11 The distribution ρ of start times (ts) for soft spots throughout
the avalanches where they appear. The start time is normalized such
that the instability that triggers the avalanche is occurs at t = 0 while
the avalanche ends and the system finds a new stable state at t = 1.

4 Discussion and Conclusions
In this manuscript, we studied the overdamped dynamics of
avalanches in athermal disordered particle packings under ap-
plied shear. Using a set of new persistent-homology-based cluster-
ing algorithms, we find that the plastic motion in avalanches gen-
erally occurs as sequential bursts of localized deformation. This
observation is consistent with elastoplastic theories that explicitly
predict avalanches to occur as a sequence of triggered localized
rearrangements.

Using the normal modes of the Hessian, we probe the curva-
tures of the unstable system. One important observation is that
there are multiple negative eigenmodes that exchange charac-
ter extremely rapidly – on timescales quite a bit shorter than
even those localized bursts of deformation. Therefore, the low-
est eigenmode is not predictive of the deformation field in such
avalanches. Instead, we develop a vibrality-like structural indi-
cator, Ψ̃ that is quick to compute, and we cluster this structural
indicator field into discrete soft spots that can be directly com-
pared with bursts of localized deformation.

We find that bursts of localized deformation almost always oc-
cur at soft spots predicted by our structural indicator. In large
avalanches, some of these soft spots are not in the low-energy
spectrum at the beginning of the instability, and arise due to the



dynamics of the avalanche itself. We find that some bursts are
associated with multiple soft spots, and that the same soft spot
can sometimes appear in two different bursts, indicating that the
same spot rearranges more than once during a single avalanche.

This initial study develops a set of tools that could be broadly
useful for analyzing dynamics and structure during avalanches in
computer-generated glasses, potentially addressing many long-
standing questions in the field. One important question is
whether a rearranging defect triggers the next defect via a simple
elastic kernel, as proposed in elasto-plastic theories, via diffusion
of structural or effective-temperature like variables, as proposed
in Soft Glassy Rheology18 and Shear Transformation Zone16 the-
ories, or perhaps a non-trivial combination of such effects44. By
studying how these bursts of localized deformation are coupled in
space and time, it should be possible to determine whether they
are consistent with elastic propagation at speed set by the elas-
tic moduli. Moreover, it may be possible to determine how the
newly formed soft spots are correlated with deformation and de-
termine if that is consistent with theories that postulate diffusion
of structural information.

This study has focused on two-dimensional disc packings gen-
erated via infinite temperature quench, as visualizing structural
defects and their evolution over time is much easier in 2D than
3D. However, all of the techniques developed here should be fairly
straightforward to extend to 3D sphere packings. In addition, sys-
tems prepared via infinite temperature quench are highly ductile
and do not exhibit localized shear bands or large stress drops at
the yielding transition. Therefore, it will be very interesting to
use these new tools to study avalanches in systems that are brittle
and where the avalanche is highly localized in space.

Although these methods have been applied to relaxing ather-
mal disordered systems, other unstable systems could also be an-
alyzed using these tools. For instance, studies of the structural
evolution of packings in the presence of thermal fluctuations have
focused on the inherent, or energy minimized, states or on free-
energy minimized configurations. Similarly, studies of active sys-
tems, such as crowds of humans or dense packings of driven col-
loidal particles, have relied on structural evaluations of mechani-
cally stable reference states. In both cases, instantaneous evalua-
tion of the structure of these mechanically unstable systems was
not available. It will be interesting to see if the unstable struc-
tural indicators we identify in this work are also predictive of the
dynamics there.
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1 D2
min Computation

As described in the main text, the D2
min is a measure of the local

non-affine deformation between two configurations,
−→
X 1 and

−→
X 2:

D2
min,i

(−→
X 1,
−→
X 2

)
= ∑

j∈∂ i

(−→
X 2i−

−→
X 2 j−Si

(−→
X 2i−

−→
X 2 j

))2
, (18)

where ∂ i is the set of particles that are defines as the neighbor-
hood of particle i which we have determined in the main text
via the distance from particle i in both configurations and Si is
the best-fit affine transformation around particle i such that any
other transformation in place of Si results in a larger value for the
D2 measure. This best-fit affine transformation can be found by
calculating

Xi,αβ = ∑
j∈∂ i

(−→
X 2i−

−→
X 2 j

)
α

(−→
X 1i−

−→
X 1 j

)
β

(19)

and
Yi,αβ = ∑

j∈∂ i

(−→
X 1i−

−→
X 1 j

)
α

(−→
X 1i−

−→
X 1 j

)
β
. (20)

The best-fit affine transformation is given by Si = XiY−1
i

16.

2 Cluster Mutual Information
In ESI Fig. 12, we show the relative mutual information between
the clusters identified at different size thresholds where the x-
and y- axes indicate the volume thresholds of the cluster sets to
be compared, and the color indicates the relative mutual informa-
tion. We highlight using black lines the contours which indicate
the size thresholds where this mutual information decreases be-
low 95%. Note that the relative mutual information always takes
a value between 0 and 1.

As discussed in the main text, we would like to identify regions
where the confidence interval associated with the maximal mu-
tual information changes rapidly and reaches a broad maximum.
A challenge is that the information entropy, H, of the set of clus-
ters identified at a particular threshold increases with increasing
threshold as shown in ESI Fig 1 (B). This information entropy is
found by computing the mutual information of a field with itself
or computing the shannon entropy:

H(I) =− ∑
x∈[I]

px log2 (px) . (21)

To find an balance between a wide confidence interval for the rel-
ative mutual information while still maintaining low information
entropy – with low information entropy at smaller threshold val-
ues – we study the ratio thU

v /thL
v between the value of the thresh-

old associated with the upper curve thU
v , highlighted in magenta

in Fig S1(B), and the value of the threshold associated with the
lower curve thL

v , highlighted in green in Fig S1(B). This is equiva-

lent to the width of the confidence interval for the relative mutual
information on a log scale. This ratio is shown in the main text in
Fig 2(C).

Fig. 12 A) The colorscale represents the relative mutual information
between the clusters identified at one volume threshold thv, x-axis, com-
pared to those at a different volume threshold th′v, y-axis. For each volume
threshold thv, we identify two other volume thresholds, thU

v and thL
v , at

which the relative mutual information of the clusters at thv compared to
the clusters thU

v and thL
v decreases to 95%. We order these thresholds

such that thL
v < thv < thU

v . The contour generated by this upper thresh-
old, thU

v , as a function of volume is plotted with the pink curve, while the
contour generated by the lower threshold, thL

v , is plotted with the green
curve. B) The information entropy of the sets of clusters identified at
each volume threshold thv.



Fig. 13 The probability distribution ρ of the relative mutual information
between soft spots identified in each time frame separated by the time
window of 0.1 natural time units or less averaged over 180 avalanches.
These overlaps are separated into cases where the soft spot splits into
two soft spots (Split) and where two soft spots merge into one (Merge)
which have nearly identical distributions.

3 Soft Spot Temporal Overlap
By computing the smooth derivative of the cumulative distribu-
tion of the relative mutual information between soft spots, m,
shown in Fig. 8, we show the probability distribution of m in
ESI Fig. 13. This smooth derivative has been calculated at each
point in the cumulative distribution by selecting all points with
relative mutual information within 0.03 of the point in question
and computing the best fit slope.

One possible interpretation of these data is that there is a peak
of low-information m-values centered around m≈ 0.15 which cor-
responds to spots that don’t overlap much and should not be
merged together while there is a broader, nearly flat distribution
of higher m-values that correspond to soft spots that should be
identified and merged together. The “cusp” between these two
distributions could be estimated as the black dashed line, which
happens to be the median and is the value we chose.
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