

1 **Pauses during communication release behavioral habituation through**
2 **recovery from synaptic depression**

4 Tsunehiko Kohashi^{1,2}, Adalee J. Lube¹, Jenny H. Yang¹, Prema S. Roberts-Gaddipati¹,
5 and Bruce A. Carlson^{1,*}

7 ¹Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
8 ²Neuroscience Institute, Division of Biological Science, Graduate School of Science,
9 Nagoya University, Nagoya, Japan

10
11 Corresponding Author:
12 Bruce A. Carlson
13 Washington University in St. Louis
14 Department of Biology
15 1 Brookings Drive
16 Campus Box 1137
17 St. Louis, MO 63130-4899
18 USA
19 Phone: (314) 935-3487
20 e-mail: carlson.bruce@wustl.edu

21 **SUMMARY**

22 During interactive communication, animals occasionally cease producing communication
23 signals. The behavioral significance of resumed communication signals following a
24 cessation, or silent pause, has been described in human speech: word recognition by
25 listeners is enhanced after silent pauses, and speakers tend to place such pauses prior
26 to words that are contextually unpredictable and that therefore have high information
27 content¹⁻⁵. How central nervous systems process signals following pauses differently from
28 signals during continuous communication has not been studied at a cellular level. Here
29 we studied behavioral and neurophysiological impacts of pauses during electric
30 communication in mormyrid fish. We found that isolated fish produced fewer and shorter
31 pauses than fish housed in pairs, and that fish tended to produce burst displays
32 immediately following pauses. In the electrosensory pathway, sensitivity to pauses first
33 arose in the midbrain posterior extrolateral nucleus (ELp): evoked field potentials were
34 enhanced as pause duration increased, with a time constant of ~1 s. Intracellular
35 recording from single ELp neurons suggested that this increased sensitivity resulted from
36 a pause-associated recovery from synaptic depression that was induced by the preceding
37 stimulation. Behavioral responses were also facilitated by longer pauses, with a similar
38 time constant of ~1 s. Further, during natural electric communication between pairs of fish,
39 the insertion of artificial pauses resulted in increased signaling by the receiving fish
40 immediately following the pause. Thus, our results suggest that pauses during
41 communication release sensory circuits from synaptic depression, thereby maximizing
42 the physiological and behavioral effects of subsequent communication signals.

43

44 **RESULTS**

45 The mormyrid *Brienomyrus brachystius* produces electric organ discharges (EODs) with
46 inter-pulse intervals (IPIs) that are typically around 10-500 ms⁶. Fish also occasionally
47 cease discharging for longer durations (Figure 1A). Since mormyrids use EODs not only
48 for communication but also for actively sensing their surroundings⁷, we first asked
49 whether long pauses are potentially related to communication between animals, by
50 comparing distributions of IPIs under different social conditions. Figure 1B exemplifies
51 sequences of IPIs recorded from an animal housed in isolation (isolated fish) and an
52 animal housed with another individual (paired fish). There was a highly significant
53 interaction effect between housing condition and the frequency distribution of IPIs. In
54 particular, isolated and paired fish differed in the long tail end of their IPI distributions,
55 with paired fish generating more IPIs >500 ms (Figure 1C).

56 Using this value as a pause threshold, we quantified pause frequency (number of

57 pauses/recording duration), pause duration, and pause duty cycle (pause frequency x
58 mean pause duration) for each individual during both day and night recordings. Paired
59 fish generated more pauses of longer duration compared to isolated fish, both during the
60 day (1.2 ± 0.5 pauses/min and 1.5 ± 0.3 seconds/pause vs. 0.5 ± 0.2 pauses/min and 0.9
61 ± 0.2 seconds/pause) and night (2.0 ± 0.5 pauses/min and 2.0 ± 0.3 seconds/pause vs.
62 0.7 ± 0.4 pauses/min and 1.4 ± 0.3 seconds/pause). The resulting pause duty cycle was
63 larger in paired fish, though this difference was only significant during the night, when
64 mormyrids are most active (Figure 1D).

65 We further investigated the temporal dynamics of electric signaling by comparing
66 the timing of pauses and three previously described burst displays called scallops, rasps,
67 and accelerations⁸. A cross-correlation analysis revealed that fish generated all three
68 displays with an increased probability immediately following pause offset (Figure 1E).

69 Mormyrids have an identified sensory pathway (Knollenorgan, or KO) that is
70 dedicated to processing the electric communication signals of neighboring fish (Figure
71 2A)^{9,10}. We hypothesized that sensitivity to pauses arises in the midbrain posterior
72 extero-lateral nucleus (ELp), the first stage in this pathway in which single-neuron tuning
73 to IPI variation has been found¹⁰⁻¹⁴. To test this hypothesis, we first performed *in vivo* field
74 potential recordings using electrosensory stimuli that mimic the EODs of a neighboring
75 conspecific. We applied two electrosensory stimulus trains that were separated by a
76 pause of varying duration (Figure 2A). Each train consisted of 10 bipolar square pulses
77 with behaviorally relevant duration and intensity, and the pulses were separated by 30
78 ms IPIs.

79 Single-pulse electrosensory stimulation elicited field potentials in ELp with a peak
80 latency of ~7 ms, as shown in previous studies^{11,15-18} (Figures 2B and S1A). These
81 evoked potentials were attenuated by 45% with a time constant of 42.4 ms during the first
82 stimulus train (Figure S1B). The second stimulus train evoked an attenuated response
83 when the pause duration was short (Figures 2B). However, the amplitude of onset evoked
84 potentials recovered gradually as pause duration increased, with a time constant of ~1 s
85 (Figure 2B). By contrast, in the anterior extero-lateral nucleus (ELa), one step earlier in
86 the pathway, evoked field potentials (peak latency: ~3 ms^{11,15-18}) showed virtually no
87 change in amplitude during stimulus trains and thus were insensitive to pauses (Figures
88 2C and S1). These results suggest that ELp is the first region in the KO pathway where
89 pauses affect the sensory processing of electric communication signals.

90 To obtain insights into cellular mechanisms underlying the recovery of ELp evoked
91 potentials during pauses, we performed whole-cell patch recording from ELp neurons in
92 an *in vitro* whole-brain preparation^{14,19,20}. In this preparation, local ELp circuitry remains

93 intact and IPI selectivity of ELp neurons can be reproduced in a behaviorally relevant way
94 by direct stimulation of afferent inputs from ELa. As exemplified in Figure 2D, ELa
95 stimulation evoked synaptic depolarizations, or excitatory postsynaptic potentials
96 (EPSPs), in ELp neurons (14 cells, 4 fish). These stimulus-evoked EPSPs summated, but
97 were also attenuated throughout the stimulus train in every neuron we tested. We
98 measured EPSP amplitude as the change in membrane potential from the minimum to
99 the maximum that immediately followed each stimulus pulse (Figure S1A). On average,
100 EPSPs were attenuated by 57% (range: 33-87%) with a time constant of 61.9 ms during
101 the first stimulus train (Figure S1B). Stimulus-evoked EPSPs recovered partially after a
102 pause of 200 ms, but remained significantly attenuated (0.63 ± 0.06 relative to the first
103 EPSP, $t_{13} = -6.39$, $p < 10^{-4}$, one-sample t-test against 1.0). Recovery from this attenuation
104 showed a similar time course to the recovery of ELp evoked potentials (Figure 2D).

105 We next asked whether GABAergic inhibition could be contributing to the
106 suppression of EPSPs after short pauses. Although short-term facilitation has never been
107 observed for excitation or inhibition in ELp neurons²¹⁻²³, it is possible that potentiated
108 inhibition following the first stimulus train could suppress responses to the onset of the
109 second stimulus train. However, close inspection of synaptic responses revealed that the
110 earliest depolarizing components of synaptic responses following stimulus pulses were
111 greatly reduced following short pauses (Figure S2A). These short-latency responses are
112 due to monosynaptic excitation from ELa^{22,24}, whereas all inhibitory inputs to ELp neurons
113 are due to local, polysynaptic pathways^{21,23}, suggesting that these attenuated responses
114 were due to depression of excitatory inputs from ELa rather than inhibition. Indeed, a
115 single neuron with responses that were dominated by inhibition showed no evidence of
116 potentiated inhibition following short pauses (Figure S2B).

117 Long-lasting inhibition following the last pulse in the first stimulus train could also
118 suppress responses to the onset of the second stimulus train. However, we saw no
119 evidence for elongated inhibitory responses at the end of the first stimulus train (Figure
120 S2B). Further, there was no correlation between pause duration and the difference
121 between ELp neuron membrane potentials immediately preceding the onset of the first
122 and second stimulus trains (Figure S2C).

123 To definitively address whether inhibition contributes to the suppression of
124 responses following short pauses, we performed *in vivo* field potential recordings from
125 ELp before and after blocking GABAergic inhibition²⁵. The amplitude and waveform of
126 evoked potentials were affected by blocking inhibition (Figure S3A, B), but the attenuation
127 of responses during the first stimulus train and the recovery of responses following
128 pauses both showed very similar dynamics compared to control conditions (Figure S3C,

129 D). This strongly suggests that inhibition is not responsible for the suppression of
130 responses following short pauses.

131 The above results demonstrate that pauses allow ELp circuitry to recover from
132 synaptic depression and thereby maximize the responsiveness of ELp neurons to
133 electrosensory stimuli occurring immediately after pauses. We next examined the
134 behavioral consequences of this effect. Mormyrid species including *B. brachystomus*
135 respond to a novel stimulus with a transient increase in EOD rate, called the 'novelty
136 response'^{17,26,27}. In response to a single electrosensory stimulus train of ten pulses, as
137 used in the *in vivo* evoked potential experiments, animals exhibited a novelty response in
138 which EOD rate returned to the resting level within a few seconds after the stimulus
139 (Figure 3A, B). When we delivered a second stimulus train after a long pause following
140 the first train, the animals exhibited a second novelty response similar to the first (Figure
141 3C). However, when pause duration was short, the second response transient summed
142 with the first, but with a smaller amplitude (Figure 3C).

143 To quantify this behavior, we counted the number of EODs emitted within a two-
144 second window after the onset of both stimulus trains (Figure 3B, C, gray shading),
145 subtracted the single-train response from the double-train response, and then normalized
146 to the single-train response. This analysis revealed that, when pause duration was 200
147 ms, the response to the 2nd train was significantly smaller than the single-train response
148 (for 0.2 ms pulses: normalized response of 0.28 ± 0.13 , $t_5 = -5.62$, $p = 0.002$; for 2 ms
149 pulses: 0.30 ± 0.13 , $t_5 = -5.50$, $p = 0.003$; one-sample t-tests against 1.0). As pause
150 duration increased, the response to the second train increased and approached the
151 single-train response with a time constant of 1.0 s (Figure 3D).

152 For the following reasons, we concluded that the weak responses to the second
153 train following short pauses were not due to a saturation of EOD rate. First, *B. brachystomus*
154 can generate EODs at a much higher rate than we observed: the shortest IPI previously
155 observed is ~8 ms, corresponding to a frequency of ~125 Hz^{8,28} (Fig. 1). Second, fish
156 increased the amplitude of the novelty response as stimulus intensity increased up to 320
157 mV/cm, and the intensity we used (104 mV/cm) was in the middle of this dynamic range
158 (Figure S4A, B). Third, the number of EODs emitted after the second train, but without
159 subtracting the single-train response, was not larger than the single-train response at any
160 pause duration tested (Figure S4C). Finally, a similar recovery of the second train
161 response with increasing pause duration was observed when the fish were stimulated
162 with shorter pulses (Figure 3D), which are effectively weaker stimuli that reduce the
163 overall activation of electroreceptors¹⁷. These results suggest that the response specific
164 to the second train was habituated when only a short pause was presented after the first

165 train. The close match of recovery time constants between the behavioral response and
166 ELp synaptic response further suggests that synaptic depression and its recovery in ELp
167 circuitry is a key mechanism underlying habituation and recovery of behavioral responses.

168 Finally, we tested the behavioral impact of pauses under more realistic conditions.
169 As illustrated in Figure 4A, we mediated electric communication between two fish in real
170 time, by connecting two sets of the behavioral setup used in Figure 3. In brief, we recorded
171 the EOD times of the two animals simultaneously and each recorded EOD immediately
172 triggered stimulation of the other fish (<0.5 ms delay). Stimulation of one fish was
173 occasionally blanked for two seconds to artificially insert pauses during the ongoing
174 electric communication.

175 Figure 4B shows exemplary time courses of EOD rate around artificial pauses,
176 recorded from one fish in three different conditions: when the fish was receiving artificial
177 pauses (receiver, top), when the fish's own EODs were blanked (sender, middle), and
178 when the electric communication was not disrupted (bottom). As expected from the
179 previous experiment, receiver fish exhibited a transient increase in EOD rate at pause
180 offset. Interestingly, receiver fish also increased EOD rate upon pause onset. By contrast,
181 sender fish showed no obvious change in EOD rate in response to artificial pauses, even
182 though the sender fish received the pause-induced response of the receiver fish. These
183 results suggest that receiver responses are induced by pause onset and offset, not by
184 response feedback from the sender.

185 We repeated the same experiment on five fish in total (each fish was paired with
186 four other fish). We quantified behavioral responses as the number of EODs emitted
187 within two-second windows immediately before pause onset (baseline), after pause onset,
188 and after pause offset. Receivers emitted significantly more EODs at pause onset and
189 pause offset compared to baseline, whereas neither sender nor control fish exhibited
190 significant changes in EOD production (Figure 4C). These results suggest that pauses
191 during electric communication facilitate behavioral responses from receivers upon the
192 resumption of signaling.

193

194 **DISCUSSION**

195 We found that mormyrids actively generate pauses, and that pauses facilitate behavioral
196 responses of receivers to subsequent signals by releasing habituation that occurs during
197 continuous communication. Electrophysiology and pharmacology demonstrated that
198 pauses inserted within a train of afferent sensory inputs allow for recovery from short-term
199 synaptic depression of network activity in the midbrain ELp. The time course of recovery
200 from this depression closely matched that of behavioral habituation, suggesting that this

201 neurophysiological process is a predominant driver of enhanced behavioral responses to
202 resumed communication signals after pauses.

203 We observed increased signaling at both the onset and offset of artificially inserted
204 pauses. Signal production of receivers during pausing by senders has also been
205 described in communicating birds^{29,30} and frogs^{31,32}. Increased signaling at pause onset
206 is similar to the omitted stimulus response that has been described in vertebrate visual,
207 auditory, and somatosensory systems, which has been interpreted as a response to
208 novelty³³. Increased signaling at pause offset is also likely a form of novelty response,
209 which has been described in both mormyrid and gymnotiform electric fishes^{26,34}. Both
210 types of novelty responses might result from deviations of sensory input from an internal
211 template of expected input based on recent experience. Mormyrids may be an excellent
212 system for identifying such a template and determining the underlying mechanisms for
213 novelty detection.

214 Previous studies have shown that ELp neurons exhibit IPI tuning across intervals
215 ranging from 10 to 100 ms¹¹, which results from the integration of excitation and
216 GABAergic inhibition that vary in the dynamics of their temporal summation and short-
217 term synaptic depression^{21,35}. Short-term depression is ubiquitous in the synaptic
218 responses of ELp neurons recorded both *in vivo* and *in vitro*^{21,22,24,35}. For high-pass
219 neurons, inhibition depresses more rapidly than excitation, leading to increased
220 responses at high rates of synaptic input²¹. However, this response is transient;
221 regardless of their IPI tuning, the responses of ELp neurons steadily decrease in
222 response to sustained stimulation over longer timescales due to short-term depression.
223 This may be an adaptation to reduce resources devoted to sensory processing, as an
224 ongoing stream of signals from a neighboring fish provides less information over time.
225 Pauses, then, may be an adaptation of senders to release the sensory system of receivers
226 from depression.

227 Pauses have been studied in acoustic communication including human speech^{5,29-}
228 ³². Mormyrid and gymnotiform weakly electric fish are also known to pause during electric
229 communication^{6,36-40}. To our knowledge, however, only human studies have payed
230 particular attention to the behavioral, or psycholinguistic, significance of the resumed
231 communication signals after silent pauses. Our finding that burst displays tend to occur
232 immediately after pauses in mormyrids is similar to the finding that human speakers tend
233 to place pauses prior to words with high information content¹. Interestingly, the relevant
234 timescales for pauses in human speech are roughly similar to those in the electric
235 communication of mormyrids, occurring in the range of hundreds of milliseconds to
236 seconds^{4,5}. Neurophysiological recording of brain activities, such as

237 electroencephalograms³, have been applied in human studies, but information about
238 cellular mechanisms underlying these responses is lacking. Thus, the present study is
239 the first to propose a cellular model to account for the role of silent pauses in the sensory
240 processing of upcoming signals: continuous speech could depress the activity of sensory
241 circuits in listeners through short-term synaptic depression, and silent pauses would
242 release the depression, thereby maximizing the impact of sensory inputs resulting from
243 the resumed utterance.

244

245 **ACKNOWLEDGEMENTS**

246 This research was supported by grants from the National Science Foundation (IOS-
247 1050701 and IOS-1755071 to B.A.C.), the Japan Society for the Promotion of Science
248 (KAKENHI Grant Number 15H06269 and Postdoctoral Fellowship for Research Abroad
249 to T.K.) and the Narishige Neuroscience Research Foundation (to T.K.). The authors
250 declare no competing financial interests.

251

252 **AUTHOR CONTRIBUTIONS**

253 Conceptualization & Methodology, T.K. and B.A.C.; Investigation & Formal
254 Analyses, T.K., A.J.L., J.H.Y., P.S.R-G., and B.A.C.; Writing – Original Draft, T.K.; Writing
255 – Review & Editing, B.A.C.

256

257 **DECLARATION OF INTERESTS**

258 The authors declare no competing interests.

259 **FIGURE LEGENDS**

260

261 **Figure 1. Paired fish paused more than isolated fish.**

262 (A) Electrical recording from a freely moving mormyrid, *B. brachystius*. Mormyrid
263 electro-communication consists of a fixed electric organ discharge (EOD, displayed in
264 head-positive polarity) produced with variable interpulse intervals (IPIs). The changes in
265 EOD amplitude are due to movement of the fish relative to the recording electrode, not
266 to changes in EOD amplitude emitted by the fish. Discharging occasionally ceases for
267 longer than typical IPIs (pause). (B) Example sequences of IPIs recorded from
268 individual fish housed in different social conditions. Paired fish tended to generate
269 pauses (IPIs > 500 ms, red circles) more frequently than isolated fish. (C) IPI frequency
270 distributions from 20 social fish and 12 isolated fish are shown as average (\pm SEM)
271 normalized histograms with a bin size of 0.1 in common logarithm. There was a highly
272 significant interaction effect between social housing condition and the frequency
273 distribution of IPIs (two-way repeated-measures ANOVA: $F_{40, 1200} = 3.79$, $p < 0.001$). A
274 pause threshold of IPIs > 500 ms was used to quantify pauses as this value captures
275 the difference in the tail end of the distributions at long IPIs. (D) Pause duty cycle
276 (pause frequency \times mean pause duration) reflects the percentage of time spent pausing
277 during a recording. Paired fish produced significantly higher pause duty cycles than
278 isolated fish during the night (Mann-Whitney $U_{28} = 136$, $p < 0.03$), but not during the day
279 (Mann-Whitney $U_{27} = 82$, $p > 0.75$). Sample sizes reflect the number of fish that
280 generated pauses relative to the total number of fish recorded from. (E) Cross-
281 correlation analysis of the timing of burst display onset relative to pause offset. Insets
282 show an expanded view of the x-axis near the origin. Fish generated scallops, rasps,
283 and accelerations with an increased probability immediately following pause offset.
284

285 **Figure 2. Neurons in the midbrain ELp responded more strongly to stimuli
286 following longer pauses due to recovery from synaptic depression.**

287 (A) Top, Experimental design for recording evoked field potentials in response to
288 electrosensory stimulation. Field potentials were recorded *in vivo* from the midbrain ELa
289 or ELp in response to electrosensory stimulation applied transversally across the body
290 (arrows). Stimuli consisted of two trains of 10 bipolar square pulses (0.2 ms duration,
291 104 mV/cm) delivered with a 30 ms IPI, separated by a non-stimulating period of
292 varying duration (pause). Bottom, Anatomy of the Knollenorgan electrosensory
293 pathway. Knollenorgan primary afferents project ipsilaterally to the hindbrain nELL via
294 the posterior lateral line nerve (nPLL). Neurons in the nELL project bilaterally to the ELa

295 in the midbrain, which projects ipsilaterally to the adjacent ELp. (B, C) Stimulus-evoked
296 field potentials in ELp (B) and ELa (C) recorded from a single fish. Examples are
297 average responses to 20 presentations of a single stimulus pulse (left) or stimulus train
298 with a pause duration of 200 ms (top middle) or 4000 ms (bottom middle). Timing of
299 each stimulus pulse (stim.) is indicated underneath each trace. Plots to the right
300 summarize the amplitude of evoked potentials in response to the eleventh stimulus
301 pulse (i.e. the first stimulus after the pause). Data were normalized to the amplitude of
302 the response to the first pulse, and were then plotted against pause duration. ELp field
303 potentials attenuated rapidly during the first stimulus train and recovered following
304 pauses with a time constant of 1.2 s (magenta line; single-exponential fit). ELa field
305 potentials exhibited minimal attenuation during stimulus trains (magenta line indicates
306 1.0). Similar results were obtained with a stimulus intensity of 34 mV/cm (time constant
307 of ELp recovery = 1.4 s). (D) Pauses released ELp neurons from synaptic depression.
308 Left and Middle, Whole-cell recording of an ELp neuron in an *in vitro* whole-brain
309 preparation. Postsynaptic potentials were evoked by direct electrical stimulation of ELa,
310 with timings as noted in B and C (left: single-pulse stimulation, middle: pulse trains).
311 Arrowheads indicate stimulus artifact. Right, The EPSPs recovered following pauses
312 with a time constant of 1.3 s (magenta line; single-exponential fit). See Figures S1, S2
313 and S3 for further additional analyses.
314

315 **Figure 3. Pauses released habituation of behavioral responses to electrosensory**
316 **stimuli.**

317 (A) Setup for the behavioral playback experiment. Uniform electrosensory stimuli were
318 presented to the fish using stimulus electrodes spanning the length of both sides of the
319 chamber (thick black lines). EOD timing was determined using a pair of recording
320 electrodes located at each end of the chamber (gray circles). (B, C) Behavioral responses
321 to a single stimulus train (B) or double trains (C) of bipolar square pulses (2 ms duration,
322 104 mV/cm peak-to-peak amplitude), with pulse timings as in Figure 2. Upper traces
323 represent the time course of instantaneous EOD rates estimated by convolving EOD
324 times with a 300 ms wide Gaussian filter, averaged over 40 repetitions. Lower traces
325 indicate timing of the stimulus trains. Gray bars indicate the response windows in which
326 the number of EODs were used to quantify responses. The windows started with each
327 stimulus train and ended 2 s after the end of each train. (B) In response to a single
328 stimulus train, fish exhibited a transient increase in EOD rate that returned to baseline
329 after ~2 s. (C) The second stimulus train elicited behavioral responses as large as the
330 first train after pauses of 4000 ms (bottom). With shorter pauses of 200 ms (top), the

331 response to the second train partially overlapped the first response. The additional
332 increase in EODs, however, was smaller than the single-train response, suggesting
333 habituation of behavioral responses to the second train. (D) Behavioral responses to the
334 second stimulus train were normalized by the single-train response and plotted against
335 pause duration. We tested 6 fish with bipolar square pulses of 2 ms (magenta) and 0.2
336 ms (blue) duration, which is relevant to the extremes of observed conspecific EOD
337 durations⁴⁸. Stimulus intensity was the same as in B and C. Behavioral responses
338 following pauses recovered from habituation with similar time constants to the recovery
339 of ELp synaptic responses from depression (1.0 s, single-exponential fits). See Figure S4
340 for further additional analyses.

341

342 **Figure 4. Experimentally inserted pauses during interactive electric**
343 **communication enhanced behavioral responses to subsequent communication**
344 **signals.**

345 (A) Experimental setup to mediate real-time electric communication. EOD timings of two
346 fish in different tanks were recorded simultaneously. Each fish was stimulated using the
347 EOD timings and waveform of the other fish (curved arrows). Stimulation from one fish
348 (sender) was occasionally blanked for two seconds to artificially provide the other fish
349 (receiver) with pauses. Fish enclosures are the same as in Figure 3A. (B) Time course of
350 EOD rates around artificial pauses, obtained from one fish under three different conditions.
351 Instantaneous EOD rate was calculated as in Figures 3B, C (100 repetitions). The fish
352 was paired with the same fish in all three conditions. Top, When the fish was provided
353 artificial pauses (receiver), it increased its EOD rate at both pause onset and offset. The
354 gray bar indicates the timing of the artificial pause. Middle, no obvious change in EOD
355 rate was observed when artificial pauses were given to the other fish (sender). Bottom,
356 control EOD rate that was obtained when no artificial pauses were applied to either of the
357 fish (no pauses). (C) Number of EODs emitted within two-second windows after pause
358 onset and pause offset (5 fish). Values were normalized by the EOD number emitted
359 within two seconds prior to pause onset (baseline). There was a significant interaction
360 effect between experimental conditions (receiver, sender, or no pauses) and the time
361 windows ($F_{4,16} = 4.84$, $p = 0.009$, two-way repeated-measures ANOVA). A post-hoc
362 multiple comparison analysis (Holm-Sidak method) further revealed that the receiver
363 emitted significantly more EODs at pause onset and pause offset compared to baseline
364 ($t_4 = 4.40$ and 5.02 , respectively, $p < 0.001$, triple asterisks), whereas neither the sender
365 nor the control fish (no pauses) exhibited significant changes ($t < 0.5$, $p > 0.94$).

366

367 **STAR METHODS**

368

369 **RESOURCE AVAILABILITY**

370 **Lead Contact**

371 Further information and requests for resources and reagents should be directed to and
372 will be fulfilled by the Lead Contact, Bruce A. Carlson (carlson.bruce@wustl.edu).

373

374 **Materials Availability**

375 This study did not generate new unique reagents, strains, or lines.

376

377 **Data and Code Availability**

378 The datasets supporting the current study have not been deposited in a public repository
379 but are available from the corresponding author on request.

380

381 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

382 We used adult individuals of both sexes of the weakly electric mormyrid fish *Brienomyrus*
383 *brachystius*, ranging from 6.2 to 22.8 cm in fork length. The fish were obtained through
384 commercial vendors and housed in groups with a 12h:12h light/dark cycle, temperature
385 of 25-28 °C, pH of 6-7, and water conductivity of 200-400 µS/cm. Fish were fed live black
386 worms four times per week. All procedures were in accordance with guidelines
387 established by the National Institutes of Health and were approved by the Animal Care
388 and Use Committee at Washington University in St. Louis.

389

390 **METHOD DETAILS**

391 **EOD recordings and interpulse interval analysis**

392 Recordings of EOD times, which were originally collected in a previous study from 16
393 mature males and 16 mature females⁴¹, were analyzed to investigate differences in
394 discharge patterns between fish under different social conditions. In brief, the fish were
395 divided into two groups: (1) 'isolated', in which the fish were housed in isolation (6 males
396 and 6 females) and (2) 'paired', in which a single male and a single female were housed
397 together in an aquarium (10 males and 10 females). Fish were acclimated to their housing
398 conditions for several days before recording. Paired fish were briefly separated using a
399 plastic barrier during the recording. Every fish was recorded once during the daytime and
400 once during the nighttime. The duration of each recording session was 10-25 min.

401 For each recording, we generated an interpulse interval distribution. We then
402 averaged the daytime and nighttime histograms from each fish, yielding one histogram

403 per individual. We then normalized each individual's histogram to an integral of 1. Finally,
404 we averaged the normalized histograms across individuals to obtain an overall average
405 interval distribution (Figure 1C). We counted all intervals >500ms as a pause, and, for
406 each recording, we determined pause frequency (number of pauses/recording duration),
407 the duration of each pause, and pause duty cycle (100 x pause frequency x mean pause
408 duration = percentage of recording spent pausing).

409 To analyze the temporal relationship between pauses and three previously defined
410 burst displays⁸, we performed a cross-correlation analysis between the timing of pause
411 offset and the timing of display onset in each recording. The resulting cross-correlograms
412 were averaged across all recordings to obtain an overall average cross-correlogram.

413

414 **Evoked potential recording**

415 Sensory-evoked field potentials were recorded in five fish as described previously^{11,17}. In
416 brief, while being anesthetized by respiration with 100 mg/l MS-222, fish were submerged
417 underwater, except for the dorsal surface of the head, in a recording chamber, and ELa
418 and ELp were exposed. Once the surgery was complete, we switched respiration to
419 aerated freshwater to bring the fish out of anesthesia. A pair of electrodes was placed
420 next to the caudal peduncle to monitor EOD command times. The EOD command triggers
421 inhibition of the electrocommunication pathway in the hindbrain⁴². Therefore, any
422 repetition in which the fish emitted an EOD command 2-4 ms before any pulse in the
423 stimulus train was ignored.

424 Recording electrodes (o.d. = 1.00 mm, i.d. = 0.50 mm; A-M Systems model
425 626000) were pulled with a Sutter P-97, broken to a tip diameter of ~15 µm and filled with
426 3 M NaCl. The electrodes were inserted into either ELa or ELp. Evoked field potentials
427 were amplified 1000x, band-pass-filtered from 10 Hz to 5 kHz with a differential AC
428 amplifier (A-M Systems model 1700), and digitized at 97.6 kHz (Tucker-Davis model RX8).
429 Evoked potentials were identified to be from ELa or ELp, based on their characteristic
430 shape and timing^{11,15,16}.

431 We delivered transverse electrosensory stimulus pulses (bipolar square pulses
432 with 0.2 ms duration) using electrodes located on the sides of the tank. The pulses were
433 generated at 97.6 kHz (Tucker-Davis model RX8), attenuated (Tucker-Davis model PA5),
434 and isolated from ground (A-M Systems model 2200). The stimuli were either single
435 pulses or two separated pulse trains, each of which consisted of 10 pulses with constant
436 intervals of 30 ms. We chose 30 ms intervals because these reliably elicit synaptic
437 depression in ELp neurons^{21,22} and are towards the high-frequency end of interval
438 distributions in *B. brachystius*, but not at the extreme (the shortest intervals observed are

439 ~10 ms)^{8,28,38}. The two pulse trains were separated by a pause of 200-4000 ms. Each
440 stimulus set was repeated 20 times for averaging, with an inter-stimulus interval between
441 repetitions of 4 s. Stimuli were delivered at intensities of 34 and 104 mV/cm as measured
442 from the center of the recording chamber in the absence of a fish. These values
443 approximate stimulus intensities resulting from the EODs of a neighboring fish at different
444 distances, and are within the dynamic range of the knollenorgan sensory pathway⁴³⁻⁴⁶.
445 Evoked field potential amplitudes were measured as the negative peak of the evoked
446 potential within 15ms following each stimulus, relative to the pre-stimulus baseline.
447 Stimulus generation, data recording, and averaging were performed in MATLAB
448 (Mathworks, Natick, MA, USA).

449 In 4 fish, we assessed the role of inhibition in suppressing evoked potential
450 responses following short pauses using SR-95531 (gabazine), a high-affinity, competitive
451 inhibitor of GABA_A receptors. After recording baseline responses to all stimuli, we added
452 15 μ l of 5 mM gabazine in Hickman's Ringer to the brain cavity surrounding ELa/ELp²⁵.
453 Then, we again obtained responses to all stimuli. In response to gabazine application, the
454 rate of EOD command production increased dramatically, likely due to effects on ELa/ELp
455 as well as the adjacent cerebellum and optic tectum. This made it impractical to ignore
456 repetitions in which the fish emitted an EOD command 2-4 ms before any pulse in the
457 stimulus train. We therefore increased the number of repetitions to 40 to minimize the
458 effect of occasionally blocked responses on average responses. There was no apparent
459 tendency for EOD commands to occur at a specific time during stimulus trains, and thus
460 there was no systematic suppression of responses to particular pulses during trains.
461

462 **Whole-cell recording from ELp neurons**

463 We used an *in vitro* whole-brain preparation that was developed in previous studies^{19,20}.
464 In brief, we anesthetized fish in 300 mg/L MS-222, and then performed a craniotomy in
465 ice-cold, oxygenated artificial cerebrospinal fluid (ACSF; composition in mM: 124 NaCl,
466 2.0 KCl, 1.25 KH₂PO₄, 24 NaHCO₃, 2.6 CaCl₂, 1.6 MgSO₄.7H₂O, and 20 glucose, pH
467 7.45; osmolarity: 310 mOsm) containing 1 mM kynurenic acid (KA) to reduce potential
468 excitotoxicity. The valvula cerebellum and dorsal part of the hindbrain were removed by
469 suction while in ACSF, leaving the remainder of the brain intact. After one hour of
470 equilibration at room temperature (23-27 °C), the brain was transferred to a recording
471 chamber (Warner Instruments RC-26GPL) and secured by two slice anchors (Warner
472 Instruments SHD-26GH) placed on the bottom and the top of the brain. The chamber was
473 then placed on a recording platform (Burleigh Gibraltar). On the platform, the brain was
474 continuously perfused (flow rate: approximately 1 ml/min) with oxygenated ASCF at room

475 temperature for one additional hour before we started recording to wash out KA. We
476 visualized ELp neurons using transmitted light microscopy in an upright microscope
477 (Olympus BX51WI) in combination with a Newvicon tube camera (DAGE-MTI NC-70).

478 We performed whole-cell intracellular recordings using filamented, borosilicate
479 patch pipettes (1.00 mm outer diameter; 0.58 mm inner diameter) with tip resistances of
480 4-8 M Ω . The electrode internal solution contained the following (in mM): 130 K gluconate,
481 5 EGTA, 10 HEPES, 3 KCl, 2 MgCl₂, 4 Na₂ATP, 5 Na₂phosphocreatine, and 0.4 Na₂GTP,
482 pH 7.3-7.4 (osmolarity: 280-290 mOsm). Recordings were amplified using a MultiClamp
483 700B amplifier (Molecular Devices), digitized at a sampling rate of 50 kHz (Molecular
484 Devices Digidata 1440A) and saved to disk (Molecular Devices Clampex v10.2).

485 To stimulate excitatory inputs to ELp, we placed an array of stimulus electrodes in
486 ELa, just anterior to the ELp border^{12,19,20}. The array consisted of four channels of bipolar
487 stimulation (8 electrodes total; FHC models CB and MX). We delivered isolated, biphasic
488 square current pulses (100 μ s total duration; less than 200 μ A amplitude) through four
489 separate isolated pulse generators (A-M Systems model 2100). We stimulated ELa with
490 single pulses as well as two separated pulse trains, each of which consisted of 10 pulses
491 with constant intervals of 30 ms. The pulse trains were separated by a pause of 200-
492 10,000 ms. Each stimulus set was repeated 5 times for averaging, with an inter-stimulus
493 interval between repetitions of 4 sec (for 200-4000 ms pause duration) or 10 sec (for 10
494 sec pause duration). Amplitude of the postsynaptic potentials evoked by each pulse
495 during stimulus trains was measured as the maximum membrane potential following each
496 stimulus pulse minus the minimum membrane potential between the stimulus pulse and
497 this maximum.

498

499 **Modeling**

500 We modeled short-term depression of synaptic responses during stimulus trains
501 according to the following equation:

502

$$503 \frac{dP_{rel}}{dt} = \frac{P_0 - P_{rel}}{\tau}$$

$$504 P_{rel}(t) \rightarrow P_{rel}(t)f_D, \text{ if } t = t^k$$

505

506 where P_{rel} is the probability of neurotransmitter release, P_0 is the steady-state release
507 probability, τ is the time constant of recovery in P_{rel} , f_D is a depression factor that ranges

508 from 0 to 1, and t^k is the last spike-time of the presynaptic input⁴⁷. Thus, every time there
509 is a presynaptic spike, P_{rel} is depressed by the fraction f_d and it recovers towards P_0 with
510 time constant τ . We obtained best-fit parameters to f_d and τ from observed EPSP and
511 evoked potential amplitudes.

512 We fit the recovery of evoked potentials, synaptic responses, and behavioral
513 responses following pauses according to the following equation:

514

515
$$P_{rel} = P_0 - ae^{-t/\tau}$$

516

517 where P_{rel} is response amplitude, P_0 is the steady-state response, t is pause duration, a
518 describes the degree of response suppression at short pauses, and τ is the time constant
519 of response recovery.

520

521 **Behavioral playback**

522 The setup for behavioral playback experiments was described in detail elsewhere^{17,27}. In
523 brief, each fish was placed in a rectangular PVC enclosure (3.5 x 3.5 x 20 cm). Uniform
524 electric stimuli were presented to the fish using Ag/AgCl stimulus electrodes spanning the
525 length of both sides of the enclosure, with recording electrodes on each end of the
526 enclosure (Figure 3A). Biphasic square pulses (2 or 0.2 ms in total duration) were
527 delivered using the same equipment as in evoked potential recordings. Stimuli were
528 delivered at an intensity of 104 mV/cm as measured from the center of the enclosure in
529 the absence of a fish. Recorded signals were amplified 100x and band-pass-filtered (A-
530 M Systems model 1700). Recordings were digitized at 97.6 kHz (Tucker-Davis model
531 RX8). MATLAB was used to generate stimulus waveforms and time-stamp the fish's EOD
532 times.

533 Behavioral responses to each stimulus train were measured as the number of
534 EODs occurring within a time window starting at train onset and ending 2 s after the end
535 of the train. The EODs generated within the overlapping window between the first train
536 and second train were counted only once. We counted the total number of EODs in both
537 windows, then subtracted the response to a single stimulus train. To normalize, the
538 response was further divided by the response to a single stimulus train. Thus, the resulting
539 measure represents how the total response deviated from that expected due to a linear
540 summation of responses to the two trains, in which a value of 1 represents the expected
541 response. We collected responses to 20-40 repetitions of the stimulus for averaging

542 (inter-stimulus intervals between repetition: 20 sec). To minimize habituation, fish were
543 allowed at least 1 min of rest between stimulus sets.

544

545 **Interactive communication between two fish**

546 Electric communication between two fish was mediated by the behavioral playback
547 system as if the animals stimulated each other directly with their own EODs, but isolated
548 the electric sense and allowed us to interrupt the communication. Animals, housed
549 separately in different aquarium tanks, were placed in the same PVC enclosures used in
550 the behavioral playback experiments (Figure 4A). EOD times were recorded
551 simultaneously from the two fish and were immediately used to stimulate the other fish
552 with individual EOD waveforms recorded from the same pair of fish. Stimulus intensity
553 was fixed at 320 mV/cm peak-to-peak. Temporal delay between recording and stimulation
554 was minimized by the Tucker-Davis RX8 processor (300-500 μ s).

555 To test behavioral effects of pauses during communication, we artificially inserted
556 pauses into stimulus trains by blanking transmission of EOD times of one fish for 2
557 seconds once every 10 seconds. Behavioral responses were quantified as the average
558 number of EODs (100 repetitions) within two-second windows immediately before
559 blanking (baseline), after pause onset, and after pause offset.

560

561 **QUANTIFICATION AND STATISTICAL ANALYSIS**

562 All statistical analyses were performed using SigmaPlot 12 (Systat Software, San Jose,
563 CA, USA) or SPSS v. 27 (IBM, Armonk, NY, USA). Logarithmic-transformation was
564 applied when a data set failed the Shapiro-Wilk test for normality ($p < 0.01$). Values are
565 reported as the mean \pm SEM.

566

567 **KEY RESOURCES TABLE**

568 This study did not include genetically modified organisms or strains, cell lines, special
569 reagents, unique software, or experimental models.

570 **REFERENCES**

571

572 1. Goldman-Eisler, F. (1958). Speech production and the predictability of words in
573 context. *Quarterly Journal of Experimental Psychology* 10, 96-106.

574 2. Goldman-Eisler, F. (1958). The predictability of words in context and the length of
575 pauses in speech. *Language and Speech* 1, 226-231.

576 3. MacGregor, L.J., Corley, M., and Donaldson, D.I. (2010). Listening to the sound of
577 silence: disfluent silent pauses in speech have consequences for listeners.
578 *Neuropsychologia* 48, 3982-3992.

579 4. Goldman-Eisler, F. (1961). The Distribution of Pause Durations in Speech.
580 *Language and Speech* 4, 232-237.

581 5. Rochester, S.R. (1973). The significance of pauses in spontaneous speech.
582 *Journal of Psycholinguistic Research* 2, 51-81.

583 6. Carlson, B.A. (2002). Electric signaling behavior and the mechanisms of electric
584 organ discharge production in mormyrid fish. *J Physiol (Paris)* 96, 405-419.

585 7. von der Emde, G., Amey, M., Engelmann, J., Fetz, S., Folde, C., Hollmann, M.,
586 Metzen, M., and Pusch, R. (2008). Active electrolocation in *Gnathonemus petersii*:
587 behaviour, sensory performance, and receptor systems. *J Physiol Paris* 102, 279-
588 290.

589 8. Carlson, B.A., and Hopkins, C.D. (2004). Stereotyped temporal patterns in
590 electrical communication. *Animal Behaviour* 68, 867-878.

591 9. Xu-Friedman, M.A., and Hopkins, C.D. (1999). Central mechanisms of temporal
592 analysis in the knollenorgan pathway of mormyrid electric fish. *J Exp Biol* 202,
593 1311-1318.

594 10. Baker, C.A., Kohashi, T., Lyons-Warren, A.M., Ma, X., and Carlson, B.A. (2013).
595 Multiplexed temporal coding of electric communication signals in mormyrid fishes.
596 *J Exp Biol* 216, 2365-2379.

597 11. Carlson, B.A. (2009). Temporal-Pattern Recognition by Single Neurons in a
598 Sensory Pathway Devoted to Social Communication Behavior. *J Neurosci* 29,
599 9417-9428.

600 12. George, A.A., Lyons-Warren, A.M., Ma, X., and Carlson, B.A. (2011). A diversity
601 of synaptic filters are created by temporal summation of excitation and inhibition.
602 *J Neurosci* 31, 14721-14734.

603 13. Baker, C.A., and Carlson, B.A. (2014). Short-term depression, temporal
604 summation, and onset inhibition shape interval tuning in midbrain neurons. *J
605 Neurosci* 34, 14272-14287.

606 14. Velez, A., Kohashi, T., Lu, A., and Carlson, B.A. (2017). The cellular and circuit
607 basis for evolutionary change in sensory perception in mormyrid fishes. *Scientific
608 reports* 7, 3783.

609 15. Amagai, S. (1998). Time coding in the midbrain of mormyrid electric fish. II.
610 Stimulus selectivity in the nucleus extrolateralis pars posterior. *J Comp Physiol A*
611 182, 131-143.

612 16. Szabo, T., Enger, P.S., and Libouban, S. (1979). Electrosensory systems in the
613 mormyrid fish, *Gnathonemus petersii* : special emphasis on the fast conducting
614 pathway. *J Physiol (Paris)* 75, 409-420.

615 17. Lyons-Warren, A.M., Hollmann, M., and Carlson, B.A. (2012). Sensory receptor
616 diversity establishes a peripheral population code for stimulus duration at low
617 intensities. *J Exp Biol* 215, 2586-2600.

618 18. Velez, A., and Carlson, B.A. (2016). Detection of transient synchrony across
619 oscillating receptors by the central electrosensory system of mormyrid fish. *eLife*
620 5.

621 19. Ma, X., Kohashi, T., and Carlson, B.A. (2013). Extensive excitatory network
622 interactions shape temporal processing of communication signals in a model
623 sensory system. *J Neurophysiol* 110, 456-469.

624 20. Kohashi, T., and Carlson, B.A. (2014). A fast BK-type KCa current acts as a
625 postsynaptic modulator of temporal selectivity for communication signals. *Frontiers
626 in cellular neuroscience* 8, 286.

627 21. Baker, C.A., and Carlson, B.A. (2014). Short-term depression, temporal
628 summation, and onset inhibition shape interval tuning in midbrain neurons. *The
629 Journal of Neuroscience* 34, 14272-14287.

630 22. Ma, X., Kohashi, T., and Carlson, B.A. (2013). Extensive excitatory network
631 interactions shape temporal processing of communication signals in a model
632 sensory system. *Journal of Neurophysiology* 110, 456-469.

633 23. George, A.A., Lyons-Warren, A.M., Ma, X., and Carlson, B.A. (2011). A diversity
634 of synaptic filters are created by temporal summation of excitation and inhibition.
635 *Journal of Neuroscience* 31, 14721-14734.

636 24. Kohashi, T., and Carlson, B.A. (2014). A fast BK-type KCa current acts as a
637 postsynaptic modulator of temporal selectivity for communication signals. *Frontiers
638 in Cellular Neuroscience* 8, 286.

639 25. Lyons-Warren, A.M., Kohashi, T., Mennerick, S., and Carlson, B.A. (2013).
640 Detection of submillisecond spike timing differences based on delay-line anti-
641 coincidence detection. *Journal of Neurophysiology* 110, 2295-2311.

642 26. Post, N., and von der Emde, G. (1999). The "novelty response" in an electric fish:
643 response properties and habituation. *Physiol Behav* 68, 115-128.

644 27. Carlson, B.A., Hasan, S.M., Hollmann, M., Miller, D.B., Harmon, L.J., and Arnegard,
645 M.E. (2011). Brain evolution triggers increased diversification of electric fishes.
646 *Science* 332, 583-586.

647 28. Carlson, B.A. (2002). Electric signaling behavior and the mechanisms of electric
648 organ discharge production in mormyrid fish. *Journal of Physiology Paris* 96, 405-
649 419.

650 29. Brumm, H. (2006). Signalling through acoustic windows: Nightingales avoid
651 interspecific competition by short-term adjustment of song timing. *J Comp Physiol
652 A Neuroethol Sens Neural Behav Physiol* 192, 1279-1285.

653 30. Hultsch, H., and Todt, D. (1982). Temporal Performance Roles during Vocal
654 Interactions in Nightingales (*Luscinia-Megarhynchos* B). *Behav Ecol Sociobiol* 11,
655 253-260.

656 31. Zelick, R.D., and Narins, P.M. (1982). Analysis of acoustically evoked call
657 suppression behaviour in a neotropical treefrog. *Animal Behaviour* 30, 728-733.

658 32. Zelick, R.D., and Narins, P.M. (1983). Intensity discrimination and the precision of
659 call timing in two species of neotropical treefrogs. *J Comp Physiol A* 153, 403-412.

660 33. Schwartz, G., Harris, R., Shrom, D., and Berry, M.J. (2007). Detection and
661 prediction of periodic patterns by the retina. *Nature Neuroscience* 10, 552-554.

662 34. W, H. (1980). The evaluation of electroreceptive feedback in a gymnotoid fish with
663 pulse-type electric organ discharges. *Journal of Comparative Physiology* 138, 173-
664 185.

665 35. George, A.A., Lyons-Warren, A., and Carlson, B.A. (2010). GABAergic inhibition
666 shapes interpulse interval tuning in the electrosensory system of mormyrid electric
667 fish. In 9th International Congress of Neuroethology. (Salamanca, Spain).

668 36. Hagedorn, M., and Heiligenberg, W. (1985). Court and Spark - Electric Signals in
669 the Courtship and Mating of Gymnotoid Fish. *Animal Behaviour* 33, 254-265.

670 37. Moller, P., Serrier, J., and Bowling, D. (1989). Electric organ dishcharge displays
671 during social encounter in the weakly electric fish *Brienomyrus niger* L.
672 (Mormyridae). *Ethology* 82, 177-191.

673 38. Wong, R.Y., and Hopkins, C.D. (2007). Electrical and behavioral courtship displays
674 in the mormyrid fish *Brienomyrus brachystius*. *J Exp Biol* 210, 2244-2252.

675 39. Metzner, W., and Viete, S. (1996). The neuronal basis of communication and
676 orientation in the weakly electric fish, *Eigenmannia*. 2. Electrolocation and
677 avoidance of jamming by neighboring conspecifics. *Naturwissenschaften* 83, 71-

678 77.

679 40. Stöckl, A., Sinz, F., Benda, J., and Grewe, J. (2014). Encoding of social signals in
680 all three electrosensory pathways of *Eigenmannia virescens*. *Journal of*
681 *Neurophysiology* **112**, 2076-2091.

682 41. Carlson, B.A., and Hopkins, C.D. (2004). Stereotyped temporal patterns in
683 electrical communication. *Animal Behaviour* **68**, 867-878.

684 42. Bell, C.C., and Grant, K. (1989). Corollary discharge inhibition and preservation of
685 temporal information in a sensory nucleus of mormyrid electric fish. *J Neurosci* **9**,
686 1029-1044.

687 43. Lyons-Warren, A.M., Hollmann, M., and Carlson, B.A. (2012). Sensory receptor
688 diversity establishes a peripheral population code for stimulus duration at low
689 intensities. *J Exp Biol* **215**, 2586-2600.

690 44. Amagai, S. (1998). Time coding in the midbrain of mormyrid electric fish. II.
691 Stimulus selectivity in the nucleus extrolateralis pars posterior. *Journal of*
692 *Comparative Physiology A* **182**, 131-143.

693 45. Amagai, S., Friedman, M.A., and Hopkins, C.D. (1998). Time coding in the
694 midbrain of mormyrid electric fish. I. Physiology and anatomy of cells in the nucleus
695 extrolateralis pars anterior. *Journal of Comparative Physiology A* **182**, 115-130.

696 46. Friedman, M.A., and Hopkins, C.D. (1998). Neural substrates for species
697 recognition in the time-coding electrosensory pathway of mormyrid electric fish.
698 *Journal of Neuroscience* **18**, 1171-1185.

699 47. Dayan, P., and Abbott, L. (2001). *Theoretical Neuroscience: Computational and*
700 *Mathematical Modeling of Neural Systems*, (Cambridge, MA: The MIT Press).

701 48. Carlson, B.A., Hopkins, C.D., and Thomas, P. (2000). Androgen correlates of
702 socially induced changes in the electric organ discharge waveform of a mormyrid
703 fish. *Horm Behav* **38**, 177-186.

704