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On Montgomery’s pair correlation conjecture:
A tale of three integrals

By Emanuel Carneiro at Trieste, Vorrapan Chandee at Manhattan, KS,
Andrés Chirre at Trondheim and Micah B. Milinovich at Oxford, MS

Abstract. We study three integrals related to the celebrated pair correlation conjecture
of H. L. Montgomery. The first is the integral of Montgomery’s function F(«, T') in bounded
intervals, the second is an integral introduced by Selberg related to estimating the variance of
primes in short intervals, and the last is the second moment of the logarithmic derivative of the
Riemann zeta-function near the critical line. The conjectured asymptotic for any of these three
integrals is equivalent to Montgomery’s pair correlation conjecture. Assuming the Riemann
hypothesis, we substantially improve the known upper and lower bounds for these integrals by
introducing new connections to certain extremal problems in Fourier analysis. In an appendix,
we study the intriguing problem of establishing the sharp form of an embedding between
two Hilbert spaces of entire functions naturally connected to Montgomery’s pair correlation
conjecture.

1. Introduction

1.1. Background. Let {(s) denote the Riemann zeta-function and let

Yx) =Y A,

n<x

where A(n) = log p if n = p¥ for a prime p and k € N, and A(n) = 0 otherwise. In order to
study the distribution of primes in short intervals, Selberg [23] introduced the integrals

o T é-/ 1 a .
I(a,T) .—/; ?(E'i‘m-i-lt)
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fora > 0 and

Th 2
(L. sp.y= [ ({3 3) v -3) G

for § > 0. For 0 < B < 1, Gallagher and Mueller [12] proved that

B2 log> T
(1.2) JB.T) ~ =

Assuming the Riemann hypothesis (RH), Selberg [23] proved an upper bound for /(a, T') when
a > 10 and used this to show that

as T — oo.

log? T

(1.3) J(B.T)= Oﬂ( ) as T — oo

for 1 < B < 4. Selberg’s proof can be modified to show that the estimate in (1.3) holds for each
fixed B > 1. Assuming RH, for each § > 1, it is now known that there are constants D* such
that

2 2
8L <) < (D7 + o) - ETL

(1.4) (D™B +0(1))

as T — oo. In particular, we see that the dependence on the parameter § is linear. The proof
of the upper bound in this form was first given by Montgomery (unpublished) while alternate
proofs have been given in [12, 15-17]. The proof of the lower bound is due to Goldston and
Gonek [15].

1.2. Equivalences to Montgomery’s pair correlation conjecture. In order to study
the pair correlation of the zeros of {(s), for « € R and T > 2, Montgomery [20] introduced
the form factor

2w

F(a) = F(a,T) = Tlog T

> TV uy =y,
0<y,y’<T

where w(u) = 7y fuZ' Here the double sum runs over the ordinates y, )’ of two sets of non-

trivial zeros of {(s), counted with multiplicity. We use the shorthand notation F(«) for sim-
plicity, but the reader should always keep in mind that this is also a function of the parameter 7'.
It follows from the definition that F(«) is even and real-valued. Moreover, since

00
Z Tiot(l’—y/)w(y o J//) — 2”/ e—47r|u| Z Tiayezmyu

o<y,y’<T T o<y<T

2
du,

it follows that F(«) > 0 for all @« € R. Montgomery was interested in the asymptotic behavior
of the function F(«) since, by Fourier inversion, we have

log T L TlogT [® ~
a9 ¥ R0 Jur—y) = S [~ R Py
0<y,y'<T o

for any function R € L!(R) such that R € L!(R), where

R(a) = /oo e 727X R(x) dx

—00
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denotes the usual Fourier transform of R. Assuming RH, it is known that

loglog T
(1.6) F(a,T):(T_zl"‘llogT—i—laD(l—l-O( %)) as T — oo,
| log

uniformly for 0 < || < 1. This was proved by Goldston and Montgomery [17, Lemma 8],
refining the original work of Montgomery [20]. This asymptotic formula allows one to estimate
the sum on the left-hand side of (1.5) for R € L'(R) with supp(ﬁ) C [-1, 1]. Montgomery
conjectured that F(a) ~ 1 for || > 1, uniformly for & in bounded intervals. This is sometimes
called Montgomery’s strong pair correlation conjecture. This assumption, via approximating
the characteristic function of an interval by bandlimited functions, led Montgomery to further
conjecture that, for any fixed 8 > 0,

. TlogT p sin 7w\ 2
M NQBT):= Y I~ = /0{1—(7”)}(114 as T — oo.

0<y,y’'<T

2
0<y—y'<iFf

This is known as Montgomery’s pair correlation conjecture. Since there are ~ T log 7'/ (27)
non-trivial zeros of ¢(s) with ordinates in the interval (0, 7] as T — oo, the function N(8,T')
counts the number of pairs of zeros within  times the average spacing between zeros.

Assuming RH, from the works of Gallagher and Mueller [12], Goldston [14], Goldston,
Gonek and Montgomery [16], it is known that the following asymptotic formulas are equivalent
to the validity of Montgomery’s pair correlation conjecture in (I) for each fixed g > 0:

b+1L
1)) / F(a,T)da ~ ¢ as T — oo for any fixed b > 1 and £ > 0,
b

log®? T
T

() J(B.T) ~ (ﬁ - %)

as T — oo for any fixed g > 1,

1 —e 24

4a?

av) I(a,T) ~ ( )Tlog2 T as T — oo for any fixed a > 0.

Since Montgomery’s pair correlation conjecture remains a difficult open %)roblem, it is
natural to instead ask for upper and lower bounds for the functions N (8. T), |, If tF (o, T)da,
J(B,T),and I(a, T) in place of asymptotic formulas. Assuming RH, extending previous work
of Gallagher [11], it was shown in [3] that

N(T)(ﬂ — % + ﬁ + 0(%) + 0(1)) < N(B.T)
< N(T)(,B + ﬁ + 0(%) + 0(1)),

as T — oo, for all B > 0, by using (1.5), (1.6), and certain extremal functions of exponential
type. Here N(T') denotes the number of non-trivial zeros of {(s) with ordinates in the interval
(0, T], and the term % in the lower bound can be replaced by 1 if we further assume that almost
all zeros of {(s) are simple.

The purpose of this paper is to continue this direction of investigation and, using tools
from Fourier analysis, substantially improve the current upper and lower bounds for the inte-
grals in (II), (III), and (IV) assuming RH. As we shall see, novel insights and certain Fourier
optimization problems emerge when we treat each of these integrals.
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1.3. Summary of results. We now present an overview of some of our main results.
Theorems 1 and 3 below (and their corollaries) are representatives of a much more detailed
discussion that follows in Sections 2 and 3, respectively. These sample results already give
a clear perspective of the magnitude of the improvements in this paper over previous results.

1.3.1. The integral of F(«) in bounded intervals. An important feature of this paper
is the development of a general theoretical framework relating the objects we want to bound
in analytic number theory to certain extremal problems in Fourier analysis. For some of these
extremal problems, achieving the exact answer is a hard task, and we must rely on certain
test configurations to provide reasonable approximations. For instance, we define universal
constants C* and C™ in Sections 2.4.1 and 2.4.2 as solutions of two such extremal problems,
and use them to prove the following theorem.

Theorem 1. Assume RH, let b > 1, and let ¢ > 0 be an arbitrary number. For large X,
as T — 0o, we have

b+t
(CT—e)l+0(]) < / F(a,T)da < (CT + &) ¢ +0(1),
b
where the constants Ct and C™ are defined in (2.52) and (2.57), respectively.

We establish the bounds
(1.7) 0.9278 < C~ < C*T < 1.3302

for these universal constants, which immediately leads to the following corollary.

Corollary 2. Assume RH and let b > 1. For large £, as T — oo, we have
b+4
(1.8) 0.9278 € 4+ 0(1) < [ F(a,T)da < 1.3302¢ 4 o(1).
b

We use this theorem to give information about the distribution of primes in short inter-
vals. Furthermore, the work of Radziwitt [22] illustrates a connection between Theorem 1 and
the theoretical limitations of mollifying the Riemann zeta-function on the critical line (see Sec-
tion 2.5). Previously, the best known bounds in (1.8) were due to Goldston [13, Lemma A] and
Goldston and Gonek [15, Lemma], respectively, where an estimate with % in place of 0.9278 in
the lower bound and 2 in place of 1.3302 in the upper bound can be established for sufficiently
large £ by adding up integrals of length 2.

Theorem 1 and Corollary 2 are proved in Section 2, which actually brings a full discus-
sion on effective bounds for each » > 1 and £ > 0. This section is of utmost importance for us,
as it brings the foundations on the extremal problems in Fourier analysis that are connected to
bounding the integral of F(«), and how one can properly explore them. For instance, the proof
of the lower bound in (1.8), which treads strikingly close to the conjectured value of £ + o(1)
for large £, relies partly on the insight that Dirichlet kernels cannot be large and negative. In
fact, letting '

sin x

Co := min = —-0.21723...,
xeR X
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we see how the number

(1.9) 1+ %0 = 0.92758. ..

appears naturally in our discussion. We first obtain (1.8) with any constant smaller than (1.9)
multiplying £ in the lower bound, and any constant greater than % multiplying £ in the upper
bound. A minor, yet conceptually important, improvement leads us to sharpen these multi-
plying factors to 0.9278 in the lower bound and to 1.3302 in the upper bound. Our general
theoretical framework may be amenable to further slight numerical refinements through the
search of more complicated test functions. A posteriori, the reader will notice that the funda-
mental pillar of the Section 2 is Theorem 7, a powerful general result that governs all the others
in the section, including Theorem 1 and Corollary 2. We need a little bit of preparation in order
to present it.

1.3.2. Primes in short intervals. In (3.1) and (3.2) below, we properly define the
precise constants L* which can be approximated by

L™ =0.9028... and LT =1.0736....

Using the definitions of L*, a Tauberian argument, and the estimates for the integral of F (o)
in bounded intervals, we deduce upper and lower bounds for the (weighted) variance of primes
in short intervals.

Theorem 3. Assume RH and let ¢ > 0 be an arbitrary number. For large B, as T — oo,
we have

log? T

(L™C™ —&)B +o(D)) <JB.T) < ((LTCT +&)B +o(1)) —

log? T
T

The multiplying factors L* arise from what we call sunrise approximations for the Fejér
kernel. Using the bounds for C* in (1.7), we deduce the following result.

Corollary 4. Assume RH. For large B, as T — 0o, we have

log>? T log?> T
OgT < J(B.T) < (14283 B + o(1)) —=—.

(1.10) (0.8376 B + o(1)) T

Previously, the best known bounds in (1.10) were implicit in the work of Goldston and
Gonek [15], yielding 0.153 in place of 0.8376 in the lower bound, and 10.824 in place of
1.4283 in the upper bound. In Section 3, we present a full discussion on bounds for J(8, T') for
each 8 > 1.

1.3.3. The second moment of the logarithmic derivative of {(s). Our next result
establishes the sharpest known bounds for /(a, T'), for any fixed @ > 0, assuming RH. Our
upper bound for /(a, T') uses a formula of Goldston, Gonek and Montgomery [16, Theorem 1]
combined with the solution of the Beurling—Selberg extremal problem for the Poisson kernel
given in [5, 7]. This argument is inspired by the previous calculations in [8] and [4], where
explicit formula methods were combined with the solutions of the Beurling—Selberg extremal
problem to give the sharpest known bounds for the modulus and argument of {(s) on the
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critical line, assuming RH. Our lower bound for /(a, T') also uses [16, Theorem 1] together
with a method developed in [3, Theorem 7] to prove the existence of small gaps between the
non-trivial zeros of ¢(s) using known pair correlation estimates.

(log T)!/4

a <

= Toglog 172> e have

Theorem 5. Assume RH. Then, for T~'(log T)3 <
(14+0(1)U(a)Tlog®T <1(a,T) < (1 +0(1)) Ut (a) T log*> T

as T — oo, where

1—(1+2a)e 24 1 1) - 1
U_(a) — ( + a)e — 4+ — e 2a(1+ﬁ)’
4a? 2a /3
U*a) = cotha B (cscha)?  cotha B l
4q? da 2 2

and the terms of o(1) are O(1/+/loglogT).

To compare Theorem 5 to the conjectural asymptotic formula in (IV), let

U*(a)
1—e—2¢°
4a?

Then G~(0%) =1, GT(0T) = §, ming>0 G~ (a) = 0.899... attained at ag = 0.998.... ., and
maxg>o G (a) = 1.434 ... attained at ag = 0.620. ... Both G*(a) — 1 rapidly as a — oo,
for example G~ (a) > 0.999ifa > 4.55and G+ (a) < 1.001 ifa > 5.83. See Figure 1. Assum-
ing RH, in the range 7! log® T < a <« 1, Goldston, Gonek and Montgomery [16] had previ-
ously proved that

(1+o0()V (@ Tlog®T < I(a,T) < (1 +0(1)) V() Tlog?T,

G*(a) =

where )
_ 1 — (14 2a)e2a 2
vV -
(@) 4a? 3 (e%a — g2a)
and 5
1 — (14 2a)e2@ 29
VT(a) = .
@) 442 T e

The bounds in Theorem 5 are sharper for any fixed a > 0 and substantially better for small a.
See Figure 2.

1.3.4. Hilbert spaces and the pair correlation of zeta zeros. In Appendix B, we
revisit the framework of [3] to find the sharp form of an embedding between two Hilbert
spaces of entire functions naturally connected to Montgomery’s pair correlation conjecture.
Using tools from complex analysis, interpolation, and variational methods, we are led to the
intriguing result presented in Theorem 19.

1.4. Notation. Throughout the paper, | x | denotes the largest integer that is less than or
equal to x; [x] denotes the smallest integer that is greater than or equal to x; and {x} = x — [ x|
denotes the fractional part of x. We also write x4 := max{x, 0} and y g for the characteristic
function of a set E. The real part of complex number z is denoted by Re(z) and its imaginary
part by Im(z).
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Figure 1. Plots of G~ (a) and Gt (a) for0 <a < 7.
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Figure 2. Plots of U~ (a)/V " (a) for0 <a < 4and Ut (a)/V T (a) for0 < a < 6.

2. The integral of F(«) in bounded intervals

2.1. Fourier optimization. We start with a broad principle to generate upper and lower
bounds for the integral of F(«) in bounded intervals. This is motivated by some particular con-
structions of Goldston [13] and Goldston and Gonek [15], though we now set up the problem
in a more general framework.

Throughout the paper we let # be the class of continuous, even, and non-negative func-
tions g € L1(R) such that g(e) < 0 for |a| > 1. One can check, via approximations of the
identity, that if g € 4, then g € L!(R). For each g € +, we define the quantity

1

@1 p(g) = 3(0) + / 7)ol da,

which is always non-negative since [g(«)| < g(0) forall « € R. In fact, (2.1) is strictly positive
if g #£0.If g € A, from (1.5), the fact that F is non-negative, and (1.6), we observe that

2 , logT ,
(2.2) TlogT0<§5Tg((y—y)7)w(y—y)
o0 1
= /_ g(a) F(a,T)da < /_1§(a) F(a,T)da
= p(g) +o(1)

as T — oo. We define Ao C # as the subclass of continuous, even, and non-negative functions
g € L'(R) such that supp(g) C [—1, 1]. If g € Ao, then we have equality in (2.2), and also the
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alternative representation

00 : 2
(2.3) p(g) =g(0)+/ g(X){l— (Smﬂx) }dx,

oo X

which follows by Plancherel’s theorem.

2.1.1. Three extremal problems in Fourier analysis. We now introduce the following
problems.

Extremal Problem 1 (EP1). Let £ > 0 and consider a finite collection of functions
g1,82,...,8N € A and points &1, &5, ..., En € R such that

N
(2.4) D gie—§) = yo.0@)
ji=1
for all @ € R. Over all such possibilities, find the infimum

N
(2.5) WE() :=inf ) p(g)).

Jj=1

Extremal Problem 2 (EP2). Let £ > 0 and consider a finite collection of functions
g1,82,---,8N € s and points £1, &>, ..., Ex € R such that

N
(2.6) D G@—§&) = 1@
!
for all @ € R. Over all such possibilities, find the supremum
N
2.7) W) :=sup Y (2g;(0) — p(g)))-
j=1

Extremal Problem 3 (EP3). Let b, 8 € R with b < 8 and consider a finite collection
of functions g1, g2,...,gN € s, points 11,72,...,ny € R, and values ry,1,..., vy € R
withr; <0if g; € A\ Ao (j =1,2,..., N), such that

N
(2.8) D &ia—n) < xp.p(@)
—

forall « € R, and

N N
(2.9) Re( > ety (x)) > 1 gi(x)

j=1 j=1

for all x € R. Over all such possibilities, find the supremum

N
(2.10) Wi (b. B) :=sup Y _ (g, (0) + v (p(g)) — g (0))).
j=1



Carneiro, Chandee, Chirre and Milinovich, A tale of three integrals 9

Remark 1. Note that by a uniform translation of all the points £; one can consider any
interval of length £ in (2.4) and (2.6) instead of the interval [0, £]. The situation is slightly
different in (EP3) since, for fixed functions g; and values r;, condition (2.9) is not necessarily
invariant under translations of the points 7, and hence the answer may depend on the particular
interval [, B] that we choose in (2.8). Throughout this section, we reserve the variable £ for
the length of the interval, hence the change of variables B = b + £ is sometimes used. In (2.9)
note that the choice r1 = rp = --- = ry = —1 is always admissible.

Remark 2. In the next subsections, we see that collections of functions and points that
satisfy (2.4), (2.6), or (2.8)—(2.9) indeed exist. We do not take the supremum and infimum over
empty sets.

At this point we collect some basic facts about the newly introduced functions W+, W~
and W, .

Proposition 6. The following statements hold:

(i) The functions € — Wt (), L — W~ (L) and L — W (b, b + L) are non-decreasing for
beRandl > 0.

(ii) Foreach b € R and £ > 0 we have

(2.11) W) < W, (b,b+1).
(iii) Foreach {1,£2 > 0 we have

(2.12) WH(Ly+4L2) < WHU)+WT () and W (€1 +4€2) > W (L) + W (£2).
(iv) For b < ¢ < d we have

(2.13) W (b.d) > WS (b.c) + W, (c.d).

Proof. (i) This should be clear from the definitions of the extremal problems (EP1),
(EP2) and (EP3).

(ii) Assume that (2.6) is verified. Then, letting n; = &; + b, we verify condition (2.8) with
B = b+ £. We may choose r{ =1, =--- =1y = —1in (2.9) to arrive at inequality (2.11).

(ii1) Assume that

. ({gljj}]].vzll, {Sl,j}]].vzll) verifies (2.4) with £ = {1, and
o ({82.,/1)2,. {62,/ }112,) verifies (2.4) with £ = £,

Ni+N> {§3 j}N1+N2

Then the collection ({g3,; } ) verifies (2.4) with £ = €1 + £,, where

j=1 j=1
g1,j forl < j < Ny,
83, = ;
’ g2,j-N, for Ny +1=<j <N;+ Na,

£ £1, forl < j < Ny,
3,j = .
J £ j-n, +€1 for Ny +1<j <N;+ Ny

This leads us to (2.12) for W™ . A similar concatenation argument yields the inequality for W™
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(iv) Assume that
* ({& j}N_l1 {m, j}N_l1 {ry, j}N_ll) verifies (2.8)—(2.9) for the interval [b, ¢], and
* ({82, /} =1 {Uz,j} 2. 112, ]} 1) verifies (2.8)—(2.9) for the interval [c, d].

Then the collection ({g3,J} A UE J}N1+N2 {rs, J}N1+N2) verifies (2.8)—(2.9) for the inter-
val [b, d], where

& forl < j < Ny,
07 {gz,,-—zv1 for Ny +1 < j < N+ Na.
o m forl < j < N1,
B {ﬂz,j—Nl for Ny +1 < j < Ni + Na.
and
_ forl = j < Ny,
B {Tz,j—Nl for Ny +1=<j < N1+ Ns.
This leads us to (2.13). m)

2.1.2. A general bound. We now relate the three extremal problems introduced above
to the integral of F(«) in the following general result.

Theorem 7. Assume RH, letb € R and £ > 0. Then, as T — oo, we have
(2.14) W) + o(1) < WS (b.b + £) + o(1)

b+L
< / F(a,T)da
b
< W) + o(1).
Proof. The first inequality on the left-hand side of (2.14) was already established in

Proposition 6 (ii).
Assume that (2.4) holds. Then, using (2.4), (1.5) and (2.2) we have

b+t N R
/b F(o)da 5;/RF(a)gj(a — b—§)da

log T
— TIG+EN=r) o
TlogTZ > (=) Jwr =7)

Jj=1 0<y,y’'<T

Z > gJ((V V)—) w(y —y")

j=1 0<y,y’'<T

<
- TlogT

IA

N
> p(gj) +o(D),

J=1

which leads us to the upper bound in (2.14).
Now assume that (2.8) and (2.9) hold, with 8 = b + £. For the lower bound, we are
inspired by a trick of Goldston [13, p. 172]. Letting m, denote the multiplicity of a zero 5 iy
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of {(s), we use (2.8), (1.5), (2.9), and (2.2) (recall that r; < 0if g; € A \ o) to get

b+¢ N
(2.15) [ F(o)da > Z/ F(a) gj(o —nj) da
b j= R

:TlogTZ > T

Jj=1 0<y,y'<T

- gj ((V - V’)M) w(y —y")

2
~ TlogT TZ{gJ(O) 2. my

0<y<T
A log T
Tin(r=v) 4. — = —
+ > g/((y V)h)w()/ )/)}
0<y,y’'<T
J/#y’
> - Z g;(0) Z my
- TlogT
o<y<T
logT
+r ) gj((V—V/)T) w(V—)’/)}
o<y,y’'<T
y#y'
m ¥
— TIOgTZ{gJ(O)(l—rJ) > my
j= o<y<T
+ryooy gj((V—V/)Y) w(V—V/)}
0<y,y’'<T
N

> (g0 +vj(p(g)) — g (0)) + o(1).

j=1

Here we have used the trivial bound

Z my = Z TlogT as T — oo
o<y<T o<y<T
to derive the final inequality. This leads us to the lower bound for the integral of F () in
inequality (2.14). |

Remark. Itis an interesting problem to determine when the lower bounds in Theorem 7
start beating the trivial bound of 0. For instance, in Theorem 9 below we show that W= (£) > 0
for £ > 6 —2+/6 = 1.10102... .

In the case b = 1 we may take advantage of the symmetry around the origin and (1.6) to
provide alternative upper and lower bounds as follows.

Corollary 8. Assume RH and let B > 1. Then, as T — 00, we have

—(_ B
(2.16) w— 1+ o(1) 5/1 F(o, T)da < W— 1+ o(1).
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Proof. The estimate in (1.6) implies that

1
2.17) / F(a)da =2 + o(1).
—1

Using (2.17) and the fact that F(«) is even we have

B B
(2.18) / F(o) da :2/ F(a)da + 2+ o(1).
—-B 1
The desired bounds in (2.16) now follow from (2.18) and Theorem 7. O

2.1.3. Strengths and limitations. Finding the exact answer in the general case of
extremal problems (EP1), (EP2) and (EP3) above is, in principle, something non-trivial. There
are too many parameters in play. On the other hand, an advantage of this method and Theorem
7 is that, for a fixed interval [b, b + £], it is possible to bring in sophisticated computational
tools to approximate the solutions of these extremal problems.

As noted in Proposition 6 (ii) and Theorem 7, the extremal problem (EP2) provides a
weaker lower bound than (EP3), but has the advantage of being a simpler problem. In fact, if
one wants to obtain effective estimates for all intervals in a more systematic way, it is simpler to
narrow down the search to certain families of functions within the subclass +¢ and work with
(EP1) and (EP2) to start. We proceed along these lines in the next subsection. We note that the
larger class # has proved useful to sharpen some bounds in the theory of the Riemann zeta-
function via sophisticated numerical experimentation [9] and, though numerics is not our main
focus here, we have already laid the foundational theoretical framework for such endeavors.

Montgomery and Taylor [21] showed that for each function 0 # g € A one has

pe)
g0) —

with equality if and only if

1
(2.19) Cur i= 5 + 273 cot(272) = 1.32749 ...,

C

m(cos(nx) — 2%71')6 cot (2_%) sin(zrx))2 (c >0).

glx) =

For an alternative proof using reproducing kernel Hilbert spaces, see [3, Corollary 14]. See also
[18, Appendix A]. Assuming that (2.4) holds, we integrate to get

N N
‘ ) — Fia—§E))d doa = ¢.
(2.20) J;g,(m /R (J;g,(a é,)) o> /R Xo.01(0) da

If all functions g; are in the subclass A, from (2.19) and (2.20), we see that

N N

(2.21) > p(gj) = Cur ) g;(0) = Cur £ = (1.32749...) L.
j=1 Jj=1

Analogously, if in extremal problem (EP2) we restrict our attention to functions g; in the
subclass g, by integrating (2.6) and using (2.19), we get

N

(2.22) > " (28/(0) = p(g))) < (2— Cur) £ = (0.67250...) L.
j=1
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These are universal limitations of this method when using the extremal problems (EP1) and
(EP2) restricted to the subclass #¢. For the lower bound, in the regime when £ is large, we see
in Section 2.2 that we can in fact get very close to the threshold (2.22) but, at the end, with the
refined framework of Section 2.3 we see that the extremal problem (EP3) yields a substantially
better lower bound. For the upper bound, we show in Section 2.2 and Section 2.4 that we can
get very close to the threshold (2.21).

2.2. Stacking triangles. A simple and effective way to use Theorem 7, with the lower
bound given by (EP2), is by considering the functions g; being triangles. The linearity allows
for a reasonable control over restrictions (2.4) and (2.6). In fact, the key observation here is that
the superposition (addition) of equally spaced triangular graphs morally results in a constant
function. This idea is already hinted in the work of Goldston and Gonek [15, Lemma], and we
further explore it here. For 0 < A < 1, consider the Fourier pair

: 2
(2.23) Ka(x) = A(SIMAX) and  Ka(F) = (1_@) _
TAX A +

Note that the graph of EZ is a triangle with base 2A (centered at the origin) and height 1. In
this case, (2.1) yields

AZ
(2.24) p(Kn) =1+ .

We establish the following effective bounds.

Theorem 9 (Triangle bounds). Assume RH, let b > 1, and let £ > 0. Then, as T — o0,
we have

b+4L
f;(ﬁ) +o0(1) < / F(o, T)da < ‘61’(5) + o(1),
b
where

3
Se+n+iE - E a0 -0 fort=1,
. 3
225 ef@=qmn{fe+n+4L -L-Lla-e-*,,

(I+o)(1+ 625121-25)2)} for0 <t <1,
ith ¢ = -3035 L
with ¢ = max{6~ 3{3, 2_@} and
2
226) €L(l) = 2(e—n— 22+ () (g - U fore =2,
' A - (2
(E_l_ﬁ)+ for0 < <2.

Before moving on to the proof of Theorem 9, let us make a few comments. The main
point of this theorem is to bring in some relatively simple bounds, that can be explicitly stated
for all £. Nevertheless, we pay attention to some important details that could be useful in other
contexts. For instance, note that the functions £ ‘Gf (€) are continuous and non-decreasing.
Note also that our bound ‘C’r (€) (which comes from a particular choice of functions in (EP1))
establishes that

2.27 lim WT () = lim €)= 1.
220 Jp VO = g SO
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In fact, from (1.6) we get ffs F(o)da > 1 4 o(1) for any fixed ¢ > 0. Then, from Theorem 7
we get
L= WHO) <ef ()

for all £ > 0, and we may pass the limit as £ — 07 to obtain (2.27). Recall that we cannot rule
out the existence of delta spikes in F(«) for |o| > 1. The connection between this phenomenon
and the so-called alternative hypothesis to Montgomery’s strong pair correlation conjecture is
investigated by Baluyot in [2].

In the regime 0 <{ <1, our upper bound ‘61' (€) is realized by the first function for
% <{<6;=0.3576...and 0.7222 ... = 6, <€ < 1, and by the second function for 0 < £ < %
and 0; < { < 6, (and in this range the transition of ¢ occurs at 3 = 0.5297...). We note that
the lower bound €, ({) in (2.26) starts to be non-trivial at £ = 6 — 24/6 = 1.10102. . .. Finally,
we note that Theorem 9 recovers a result of Goldston and Gonek [15, Lemma, equations (3), (4)
and (5)] in the cases 0 < £ < 2 (lower bound) and £ = 1 (upper bound), and refines it in all the

other cases. Figure 3 brings the plot of our triangle bounds for small values of £.

Proof of Theorem 9. The idea here is simply to establish that
(2.28) €L ) =W () =WwH) <€),

and the result will follow from Theorem 7. Let us split the proof into its different regimes.

Step 1: Upper bound. The strategy here is to consider n big triangles and two small
triangles, one at each end, to adjust for the fractional part of £. Specifically, in the setup of
extremal problem (EP1), we consider a configuration with N = n + 2 functions given by
& =g3=-=gnr1 = K (the triangle of height 1 and base 2; if n = 0 this block is dis-
regarded) and &1 = gn12 = AKa (the triangle of height A and base 2A), where 0 < A < 1.
Assume further that

(2.29) (n—1)+2A =¢

and observe that condition (2.4) is verified for the translates givenby &1 = 0,§;, = (j —2) + A
forj =2,3,...,n+ land &,42 = (n — 1) + 2A. For this particular configuration, we have

n+2 4n Az

2.30 ) =—+2A1+—).

(2.30) ;p(gj) T+ (+3)
When £ € N, since 0 < A < 1, the identity in (2.29) can only be verified if (7, A) = (¢, %) or
(¢ —1,1). Among these two possibilities, the former optimizes equation (2.30), yielding the
upper bound %E + % When £ ¢ N, from (2.29) we may have (n, A) = (|£] + 1, %{E}) or
(14, %(1 + {£})). The minimum of these two in (2.30) yields the quantity
0 1

R A SN

Note that the transition between the two possibilities occurs when {{} =

4

5(6 + 1)+
J5—-1
R

Step 2: Alternative upper bound when 0 < ¢ < 1. When £ is small, it is slightly
better if we consider just one triangle. Let g1 = (1 + ¢) K (the triangle of height 1 + ¢ and



Carneiro, Chandee, Chirre and Milinovich, A tale of three integrals 15

1 E 4
0.75 3f
. /
/ 1,
| = i i i i
-0.5 0 0.5 1 15 2 2.5

0 1 2 3 4

Figure 3.  On the left, the birth of the idea. Thls is the construction of the upper bound €+ (¢) when
£ =25 withn=2and A = 4 where the triangular graphs add up to the functlon on
the top (in purple), that majorizes the characteristic function of the interval [0,2.5]. On
the right, the plots of £ — t?:' (€) (in green), £ = € ({) (in blue) and the conjectured
asymptotic £ (in orange), for 0 < ¢ < 4.5.

base 2A). For % <A<landc > ﬁ such that
1 L/2
I+c A
this triangle contains a segment of length £ at height 1. In other words, under (2.31), we have
the validity of (2.4) for & = g. In this case, we have

2 2 2
(2.32) plg1) = (1 +c)(1 + AT) = +c)(1 L+ )

(2.31)

12¢2

and we may minimize it over c¢. From calculus, we see that this amounts to solving a cubic

polynomial,
12) 4 B
1+ — 72 ¢’ —3c—-2=0.

This can be computed explicitly and yields a solution of the form
c=67303 + O(E%) (as € — 0).

For simplicity, we take

Wi

¢ = max 6_%6 ,L .
2—4

Plugging this choice of ¢ in (2.32) leads to the remaining upper bound stated in (2.25).

Step 3: Lower bound The quantity appearing in (2.7) for K is

2

(2.33) 2KA0) — p(Ka) = 2A — 1 — AT.

Hence, it is only profitable to include a triangle EX in our configuration if the quantity in (2.33)
is non-negative, that is, if A > 3 — /6 = 0.5505....If 0 < £ < 2, we just choose g} = @2
and £ = % in (2.6), provided that % > 3 — /6, otherwise we go with the trivial lower bound 0.

If £ > 2, the idea here is to consider n big triangles and (possibly) one small triangle
at the end to adjust for the fractional part of £. We let n = [£| — 1 and A = %(1 + {£}).
Observe then that n + 2A = £. In the setup of extremal problem (EP2), we consider a configu-
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ration with N = n orn + 1 functions givenby g1 = & = --- = g» = Ky and gp41 = AKa,
with & = j for j = 1,2,...,n and §,41 = n + A, where the last pair (g,+1, En+1) is only
included if A > 3 — /6. Observe that (2.6) is verified, and this configuration yields our desired
lower bound

o 2 A2
> (28(0) — p(g))) :—n+A(2A—1——) . O
= 3 3 ).

Observe that, when ¢ is large, the effective upper bound in Theorem 9 with the multiply-
ing factor % is very close to the conceptual threshold (2.21) for the extremal problem (EP1)
restricted to ¢, and almost yields what we claim in Corollary 2, but not quite there yet. We
return to this point in Section 2.4. As for the lower bound in Theorem 9, when ¢ is large,
the multiplying factor % is very close to the threshold (2.22) for the extremal problem (EP2)
restricted to #Ayg.

2.3. Dirichlet kernels. We now discuss the reach of the extremal problem (EP3) in the
setup of Corollary 8. The case when the lower endpoint b is equal to 1 is precisely the situation
that is most useful when bounding the integral J(8, T') in the next section.

2.3.1. Minima of Dirichlet kernels. Forn € Z>¢ we consider the Dirichlet kernel Dy,
given by
sin((n + %)x)

sin(%)

(2.34) Dp(x)= Y e =142 cos(kx) =
k=—n k=1

Let us define the minimum

(2.35) m(n) ;= mi w

n - = min D, (x),
0el0,27] sin 6 x€R n(¥)

and the universal constant

sin x

(2.36) Co 1= min =—0.21723....
xeR X
In Appendix A, we briefly verify the bounds
2 —1  wm(n 5.4935
(2.37) P Ak . () RS SR
for n > 1, which in particular implies that
lim m(n) = 2¢yp.
n—oo n

Hence, the moral is that Dirichlet kernels cannot be too negative when compared to their
maximal value (attained at the origin). One of the main insights here is how to properly take
advantage of that information in our context.

2.3.2. A max-min optimization. We establish the following effective upper and lower
bounds for the integral of F(«) in the interval [1, 8]. Our lower bound is stated in terms of the
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minima m(n) and, although our main focus is the behavior for large 8, we try also to be careful
for small values of 8. In the argument below, we choose the degree of the Dirichlet kernel in
order to optimize the effect that the minimum tu(n) is not too negative.

Theorem 10 (Symmetric bounds). Assume RH and let B > 1. Let ¢y be given by (2.36)
and ‘61 given by (2.25). Then, as T — oo, we have

B
(2.38) €= (1.B) + o(1) < / F(e,T)da < €+ (1, ) + o(1),
1
where
+
(2.39) et(1,p) = NG ;2’3) —1
and
240 € 0.5 = maxGu(h) = (142 Y1) - - TE
neN 3 3
Here the functions {Gy, },eN are given by
@41) G (B) =min{(ﬂ +%—2)+,%}

and, forn > 2,

: B 2 . B
(242) G,(B) = (n—%) min{l,g}_'_m(n_l)(mln{z n _m1n{21, s +%)—1.

Before moving to the proof of this result, let us make a few comments. Observe that when
2 is integer, the constant in (2.39) is reduced to

+ _4e vt
€ (1,/3)—3(13 1)+8-

We have also already observed that the function B — €7 (1, B) is continuous and non-decreas-
ing. Note that (2.37) guarantees that the maximum in (2.40) is attained for some n < 13
(from that value on we actually have G, () < 0). In particular, the function  — €7 (1, ) is,
locally, a maximum of a finite number of continuous functions, hence it is also continuous. It is
also clear that 8 — €7 (1, B) is non-decreasing. The particular choice n = [f] > 3 in (2.40)
(which is generally near-optimal) gives us the effective lower bound

e z1p) -+ W=D

= (1+ 2 )ap - n- 5

3 ’

stated in (2.40). Note the use of (2.37) in the last inequality above. Observe that, for large S,
the multiplying factor

co
1+ 3 =0.92758 ...
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on the right-hand side of (2.40) is only slightly short of the conjectured value of 1 in (II), and
is one of the highlights of this theorem. The first few values of m(n) are

5
O =1, ml)=-1, w@)=-7,
147 + 7
w(3) = T ~1.63113..., w(4) = —2.03911....
27

Our lower bound €7 (1, B) starts to be non-trivial at ; = 1.57735 ... and from that value up
to B = 1.77243 ... the maximum in equation (2.40) is attained when n = 1. From 5 up to
B3 = 3.02404 ... the maximum is attained when n = 3. From f3 up to B4 = 4.04983 ... the
maximum is attained when n = 4 and so on. In particular, we have

79
€7(1.2) = 52 = 036574

o

31

€ (1,3) = = = 1.29166. ..,
24

€ (1,4) =2.22814... .

See Figure 4 for the graphs of B +— €7 (1, ) and B — €~ (1, B) for small values of 8.

6 ‘ ‘ ‘ 6

5[ 1 sl

af 1 al

3+ 1 3L

T / 2r ]

| i /—//

ol s i i i i I i i i i i i ‘
1.0 15 2.0 25 3.0 35 4.0 45 1.0 15 2.0 25 3.0 35 4.0 45

Figure 4. On the left, the competition between the lower bounds G, for n =1,2,3,4,5. On
the right, the plots of g — €1 (1, 8) (in red), B — €~ (1, B) (in purple) and the con-
jectured asymptotic 8 + B — 1 (in orange), for small values of 8. In this symmetric
setup, these always do better than the triangle bounds S +— ‘Cr (B —1) (in green) and
B — €, (B — 1) (in blue) coming from Theorem 9.

We remark that, in this symmetric setup, the bounds coming from Theorem 10 are better
than the triangle bounds coming from Theorem 9, that is, for all 8 > 1, one has

+
(2.43) et(1.p) = G fﬂ) —1=€[ (-1
and
(2.44) (L) =€, (B-1).

Inequality (2.43) is a routine explicit computation. Inequality (2.44) follows from (2.40) for
large B (say, for B > 12) and for small 8 we verify it numerically. Figure 4 also illustrates this
dominance.
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Remark. In the small range % <pB < 1—71 we note that Radziwitt [22] obtains, with
different methods, the lower bound

e 3
/ F(a,T)da 2,3—5-1-0(1) as T — oo
1
for the integral of the variant f(oz, T) defined in (2.60).
Proof of Theorem 10. The upper bound in estimate (2.38) plainly follows from Corol-
lary 8 and (2.28).

For the lower bound, first let n» € N, n > 2 and let A = min{l, g} In the setup of
extremal problem (EP3), we consider a configuration with N = 2n — 1 functions given by

g1=8 == g1 =EZ, nj=m—j)A forj=12,....2n—1,
andry =1y =+ = 1rp,—1 = T given by

KA (x)Re 2n—1 e2m'(n—j)Ax
(2.45) r= aC)Re(2)=) )

2n — 1)K
k6% (2n — 1)K a(x)
Dp—12rAx) wm(n—1)
= min = .
xeR  (2n—1) 2n —1

Definition (2.45) assures the validity of (2.9). Observe also that (2.8) is verified (with b = —f),
that is,

2n—1 n—1

(2.46) Y Kala—(n—j)A)= Y Kale+kA) = xpp@)
j=1 k=—(n—1)

for all « € R. Therefore, recalling (2.24), the outcome appearing in (2.10) for this particular
configuration is

2n—1 )
3 (g7(0) + r(p(g)) — g7(0) = 2n — DA + m(n — 1)(1 LA A)

3
j=1
=W, (=B.B).

Dividing by 2 and subtracting 1, we have

A_z_é)_1<w_1
<= ,

2.47) Gu(B) := (n — %)A + m(n — 1)(% + G >

and the lower bounds with each of these functions G, (8), for n > 2, follow from Corollary 8.
We can now optimize the choice of the parameter n here. Note that n = 1 would have given
a negative value for the term on the left-hand side of (2.47), and that is the reason we are not
considering it for the moment. Therefore, we define the function G differently.

When 1 < 8 < 2 and we consider n = 2 in the configuration above, note that A = %
and we may replace (2.46) by the slightly stronger inequality

1
. —A
( Z Ka(o + kA)) + % Xia<lal<13(@) = x[—p.p1(a).
k=—1
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Following the same computation as in (2.15) for the integral of F'(«) from —f to B, using (1.6)

and the fact that r = @ = —%, we would then obtain

B 1 2
/1 F(a)dazzA—i-3—A—2+o(1):ﬁ+£—2+o(1).

This is the function we called G1(B) in (2.41) (technically speaking, its non-negative part).
This concludes the proof of Theorem 10. O

For completeness, we record here the most refined explicit versions of upper and lower
bounds for the integral of F (o) over a generic interval, by combining Theorems 9 and 10.

Corollary 11. Assume RH, let f > b > 1 and set L = 8 —b. Then, as T — 00, we

have 8
e~ (b, B) +o(l) < /b F(a, T)da = €*(b, ) + o(1),
where
(2.48) €~ (b. B) = max{€y (£). €~ (1. ) —€F(1.b)}
and
(2.49) €% (b, ) = min{€] (0), €F (1, p) — € (1,h)}.

Proof. The triangle bounds come directly from Theorem 9, while the identity

B B b
(2.50) / F(o)da = / F(o)da — / F(o) da
b 1 1
allows us to use the symmetric bounds from Theorem 10. O

Note that the bounds €% (b, B) in (2.48) and (2.49) are continuous functions of two vari-
ables. For a fixed b > 1, the lower bound in (2.48) is going to be €~ (1, ) — O(1) for large f.
As observed in (2.40), this comes with a multiplying factor of

o
I+ N 0.92758 ...

which is almost what we claim in Corollary 2 but, technically speaking, not quite there yet. We
return to this point in the next subsection.

2.4. Proof of Theorem 1 and Corollary 2.

2.4.1. Upper bound. A natural idea to deal with the asymptotic upper bound is to
morally consider, in the formulation of (EP1), copies of a single function g. Let A; C 4 be
the subclass of bandlimited functions in #, i.e. the functions g € + such that g has compact
support. Note that A9 C #A; C #. For each g € #, we define its periodization on the Fourier
side

Pg(a) =Y Z(a+n).

nez
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This is a continuous and 1-periodic function, and

1
(2.51) /0 Pz(a)da = /]Rg(a) da = g(0) > 0.

For our next extremal problem, it is convenient to restrict matters to the subclass .

Extremal Problem 4 (EP4). Find the infimum

(2.52) Cti= inf — P& .
0#geA; MINg<g<1 |P§(0l)|

Let us see how this fits into our framework of problem (EPI). Let 0 # g € 4, and
assume that

(2.53) 021021 | Pg(a)| # 0.

Since Pg is 1-periodic and continuous, from (2.51) and (2.53) we must have Pg() > 0 for
all 0 < o < 1. By multiplying g by an appropriate constant (note that the ratio in (2.52) is
invariant under such operation), we may hence assume that

2.54 in |Ps = min Pz(a) = 1.

(2.54) Ogggll g(@) 0Zas1 g
Assume that supp(g) C [-M, M], where M € N. Given £ > 0 large, in the setup of (EP1) let
N = [£] +2M — 1 and consider the configuration given by g1 = g = --- = gy = g and
g€ =(j—M)forj=1,2,..., N.From the fact that g is continuous and supp(g) C [-M, M],
together with (2.54), we have

N
(2.55) Y &a—§) = Pyla) = 1
=1

for 0 < o < [£] (and in particular for 0 < o < £). Every term in the sum on the left-hand side
of (2.55)is zero if « < —2M + 1 or @ > [£] + 2M — 1, hence the sum itself is zero in this
range. If the sum is non-negative in the remaining set [-2M + 1,0] U [[{£], [£] 4+ 2M — 1], we
will have achieved (2.4). There is, however, the possibility that the sum on the left-hand side of
(2.55) is negative in some parts of the set [-2M + 1,0] U [[£], [£] 4+ 2M — 1], but this is not
going to be a big issue here, for in this case we can fix the situation in order to achieve (2.4) by
further including in our configuration a finite number of triangles of the form ¢K1, where the
number of triangles and their height ¢ may depend on g, but not on £. We have then showed
that
W) <€p(g) + 0(),

where the constant in O(1) may depend on g, but not on £. This implies that, for any fixed
¢ > 0, we have
W) <€(CT +e¢)

for large £. Hence, for any fixed & > 0, from Theorem 7 we have

b+{
/ F(a,T)da < £(CT + &)+ o(1)
b

for large £, as T — oo. This establishes the upper bound proposed in Theorem 1.
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Finding the exact value of the constant C* seems to be a hard problem. At the moment we
can provide a reasonable approximation by working within the subclass A9 C #A. If g € A,
a classical result of Krein [1, p. 154] guarantees that g(x) = |h(x)|?, where & € L?(R) and
supp(ﬁ) C [—%, %] As we have seen in Theorem 9, a natural choice is

. 2
¢(x) = Ky (x) = (S”””) ,

TX

for which g(@) = (1 — ||)+ has the triangular graph. This corresponds to the choice
h(a) = X[_%,%](a)

in Krein’s decomposition, and yields the outcome of %. We experimented with polynomial
perturbations of low degree (up to 8) of this function and the search routine provided some
better options, for instance

(@) = (10 4 202 — 350%) X1, 1y(@),
which yields the outcome

p(g)

: —1.33017... .
ming<q<1 | Pz ()]

This establishes the rightmost inequality in (1.7) and hence the upper bound proposed in
Corollary 2.

2.4.2. Lower bound. The idea here is similar, now considering copies of a suitable
function g € # in the centered formulation of (EP3). Let g € + and assume that g(0) > 0 (this
assumption is harmless here since g(0) = 0 would yield an undesirable negative numerator in
the formulation (2.57) below). For m € N we define

(2.56) Kn(g) = max ’;)/g\(a + n).

Note that

0 m m %)
/_1 (nzoiﬁ(a +n>) do = /_1 (@) da > /_wg(a)da — (0).

Hence K;,,(g) > g(0) > 0. The fact that the maximum is indeed attained in (2.56) follows from
the fact that the sum is continuous and goes to zero as |o| — oo (Riemann-Lebesgue lemma).
We observe that { K, (g) }meN is @ non-increasing sequence and set

K(g) == lim Kn(g) = g(0) > 0.

Let cg be the constant given by (2.36). We consider the following extremal problem.

Extremal Problem 5 (EP5). Find the supremum

_ g(0) + co(p(g) — £(0))
2.57 C =

37 0#geh K(g)

g(0)>0
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Let us see how this fits into the framework of (EP3). Let 0 # g € 4 with g(0) > 0 and
assume without loss of generality that K(g) = 1. Given § > 0 small, let mo = mo(§) be such
that

(2.58) 1< Kn(g) =1+36

for m > my. Let B be large, in particular with 2| 8| > mo + 2, and set n = | B]. In the frame-
work of (EP3) we let N = 2n — 1 and consider the configuration given by

Fl=f = =Fwm = lgﬂ, nj=@m—j) forj=12...2n-1
andry =1y =+ = 121 = r given by
2n—1
o BRI M) Dy @rn) w1
o g(x) a — o -1
gicx%]lio (2n—1) 85 xeR (2n—1) 2n —1

This assures the validity of (2.9). From the fact that g € A (in particular, the condition g(a) < 0
for |a| > 1), together with (2.56) and (2.58), one can verify (2.8) (with b = —f). For this
configuration, the outcome appearing in (2.10) yields

@n—-1 ( D -
53 ( ©0) + = —=(p(g) - (0))) < Wi (=B.B).

By using (2.37), we arrive at the inequality

p We (=B.8)
0 0)) —01) < ——,
7580 + colp(e) — 2(0)) - 0(1) = ==
where the constant in O(1) may depend on g, but not on . Therefore, for any fixed ¢ > 0, we
have =

for large f. Hence, for any fixed ¢ > 0 and b > 1, from Corollary 8 and a decomposition as
in (2.50) we have

b+1L
E(C_—8)+0(1)§/b F(a,T)da

for large £, as T — oo. This establishes the lower bound proposed in Theorem 1.

As in the extremal problem (EP4), the precise value of the constant C™ is unknown to us
but we can provide a reasonable approximation by working within the subclass g C . In this
case, note that Ky, (g) = K1(g) for all m € N. As argued before, if g € 4o, Krein’s decom—
position [1, p. 154] guarantees that g(x) = |h(x)|?, where & € L?(R) and supp(h) C [ l].
We have seen in Theorem 10 that the choice

. 2
g(x) = (S“;Zx) |

corresponding to 71\(05) = X1 ](a), yields the outcome

€o
1+? =0.92758 ... .
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Experimenting with polynomials perturbations of low degree (up to 8) of this function, the
search routine provided some slightly better options, for instance

h(e) = (5- az)x[_%’%]((x),
which yields the outcome
g(0) + co(p(g) — £(0))

K(g)

This establishes the leftmost inequality in (1.7) and hence the lower bound proposed in Corol-
lary 2.

=0.92781....

2.5. Limitations to mollifying {(s) on the critical line. We now comment on an
application of our explicit bounds for F(«). Following Radziwitt [22], let

12T . L2
J(Myg) ::T/;" [1—¢(5 +it)Mg(5 +ir)|”dt,

where

My = Y W

n<T?
is a Dirichlet polynomial with a(1) = 1 and a(n) <, n® for all ¢ > 0. For a fixed 6 > 0, an
important problem in the theory of the zeta function is to choose My(s) so that d(My) is as
small as possible, e.g. [10,19]. In [22, Theorem 1], it is shown that there is an absolute constant

¢ > 0 such that

(2.59) J(Mg) > g

when 7 is sufficiently large. When 6 < 1, an unpublished argument of Soundararajan is pre-
sented which shows that d(My) > % 4+ o(1), as T — oco. Assuming RH, Radziwilt further
connects the problem to the pair correlation of the zeros of {(s), by using a slight variant of our
F(«) function, namely,

~ ~ 2 . ,
(2.60) F(x):= F(a.T) = Tlon = Z Ty (y —y').
& T<y,y'<2T

Under the additional assumption" that a(p) < 1 for primes p, for fixed # > 0 and sufficiently
large 7', [22, Theorem 3] gives

1 1+9+8~ -1
2.61) J(Myg) > (5 +/ Fa,T) da)
1

assuming RH, where ¢ > 0 is arbitrary. Note that when 6 is large, under Montgomery’s strong
pair correlation conjecture, ¢ in inequality (2.59) can be taken to be 1~. Based upon these
results, Radziwitt suggests that inequality (2.59) holds with ¢ = 1 for all 6 > 0.

With the alternative definition (2.60) we still have the validity of (1.5), (1.6) and there-
fore (2.2), and our framework yields the exact same bounds of Sections 2.1-2.4 for the integral
of F(a) in bounded intervals. Relation (2.61) immediately leads us to the following corollary
of Theorem 10.

D In [22], the assumption is a( pk) < 1 for primes p and k € N, but it is sufficient to assume only the case
k = 1 in Radziwitt’s proof.
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Corollary 12. Assume RH. For fixed 0 > 0 and Mgy(s) as above, assume also that
a(p) < 1 for primes p. Then, as T — o0, we have

-1
J(Mg) > (% +et(1, 1+ 9)) + o(1).

When 6 is large, from (2.61) and the discussion in Section 2.4.1 we see that, under RH
and a(p) < 1, the value of ¢ in (2.59) can be taken to be constant less than 1/C*. We have

seen that .

— >
Ct  1.3302
which is close to the conjectured bound of 1.

> 0.7517,

3. Primes in short intervals

3.1. Sunrise approximations to the Fejér kernel. In this subsection we develop some
preliminaries for the upcoming discussion on the integral J(B, T'). The following extremal
problem in analysis is going to be relevant for our purposes.

Extremal Problem 6 (EP6). Construct continuous functions g : [0, 00) — R verify-
ing:
(i) g* are non-increasing,
(i) 0= g~ (x) = (F%)? < g*(x) forall x > 0,

(iii) fooo g (x)dx is as large as possible and fooo g7 (x) dx is as small as possible.

This problem admits unique solutions with the functions g¥ constructed as follows. We

have o,
- () (Slix) if0<x <m,
xX) =
& 0 ifx >m,
with
_ fooo g_(x) dx 2 (7 [sinx)?
O X

The construction of g7 is as follows. Let 0 = mqo < m1 < my < m3 < ... be the sequence

of local maxima of (sin x/x)? in [0, o0). For each k > 1, let ay € (mj_y,my) be such that
< a 2 _ <] m 2 . . + .

(“g—k") = (“;’n—k") (note that such ay, indeed exists). Then g is defined by

(Siﬂ)z ifx € [mg_y,ax),k >1,

X

(Sinﬂ)2 if x € [ag.myp). k > 1

mg

gt(x) =

(see Figure 5) and a numerical verification yields

3.2) Lt Jo gfdx z/oog+(x)dx — 1.0736... .
0

Jo (S‘Ex) g
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025

o0z

015 -
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ooar

Figure 5. Plots of (22X)2 and g* (x) for2 < x < 11.

The idea to consider this pair of functions is inspired in the classical sunrise lemma in harmonic
analysis. When the sun rises over the graph of the Fejér kernel from the right (resp. from the
left) the visible portion is g% (resp. g 7). Throughout this section we reserve the notation g+
for these sunrise approximations, and L* for the constants in (3.1) and (3.2).

3.2. Asymptotic inequalities. The following lemma is a modification of Goldston
[14, Lemma 2], replacing the assumption of asymptotic relations in that paper by inequalities in
the present setting. The sunrise approximations g=(x), from Section 3.1, play important roles
in the proof below.

Lemma 13. Let f :[0,00) X [2,00) — R be a non-negative continuous function such
that f(t, 1) < log?(t + 2). Let K(T,n) := [, f(t,n)dt and ¢ > 0.
() Suppose K(T,n) < (c +0(1))T, as T — oo, uniformly for nlog=3n < T < nlog>n.
Then )
f (Sm(" )) flemdr = (e +o(h) LY«
0

t

ask — 0, forn < %

(ii) Suppose (c+o(1)T < K(T,n) < T, as T — 0o, uniformly for nlog=>n < T < nlog> 1.

Then - )
/ (Sm(’”)) f(z,n)drz(c+o(1))gL—K
0

t

as k — 0, forn < %

Proof. We only prove part (i), as the proof of part (ii) follows the same outline. We

suppose that n =< % and divide the integral to be bounded into four ranges:

 (sin(kt 2 nlog™3n nlogn nlog3 n 00
f ( ( )) f(t,n)dt=/ +/ +/ +/
0 ! 0 nlog™3n  Jnlogn nlog3 n

=: A1 + Az + A3 + Aa.
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The main contribution will come from A,, while the integrals Ay, Az and A4 will contribute
an error term. Using the fact that £ (¢, n) < log?(¢ + 2), we have

log—3 : 2
Ay :Kzfon ) ”(sm(/ct)) f(t,n)de

Kt
3

nlog™"n n
< K2/ log?(t 4+ 2) dr < k2
0

logn logn

and

o0 sin(kt)\ 2 0 og?t 1 K
A4=/ ( ( )) Fe, ) de <</ la« <« —.
nlog®n t nlog3n 1 nlogn  logn

Since f is non-negative, we use integration by parts to get

nlog’n sin(ct) )2 nlog*n
As :/ ( ) F ) dr 5/ ~ (K(t, ) dt
nlogn 4 nlogn I
K(nlog®n, K(nlogn, nlog®n
_ K@ 0g3n77)_ (n ognzn)+2/ L k@
(nlog” n)? (nlogn) nlogn 1
K
< —

< )
nlogn — logn

We now analyze the contribution from the integral A,. Using integration by parts, we have

lo : 2 lo
aa = [ (D) pemar = [T gt fama
n n

3 Kt

log™ " n log™ " n
nlogn , K
= /c2/ (—g+(/<t)) K(t,n)dr + O(—)
nlog73n log n

where we have used the fact that g7 (x) < min{1, xlz} to estimate the error term above. Since
g7 is non-increasing and absolutely continuous, we get

nlogn , 5 [ logn ,

? f (g (kn)) K(t,mdt <« / (—gT (k1)) t (c +o(1))dt.
nlog—>n nlog > n

Again using that g7 (x) < min {1, xlz}, an integration by parts yields

nlogn , nlogn K
K2/ (—g+(Kt)) rdt = K2/ gt(kt)dt + 0 —)
n logn

log™3n nlog™3n

3

[e%e} nlog—”n
= /<2/ gt (kt)dt —K2/ gt (kt)dt
0 0

& K
—/<2/ gt (kt)dr + 0(—)
nlogn 10g77

o0 K
=/<[ g+(t)dt+0(—).
0 logn

Combining estimates, the lemma follows. |
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3.3. Relating primes in short intervals to pair correlation. Our next theorem gives
an explicit relationship between the integral J(B, T) and the integral of F(«) in bounded
intervals.

Theorem 14. Assume RH and let B > b > 0. Let L™ and L™ be the constants defined
in (3.1) and (3.2). Then, as T — oo, we have

log? T

B—e
3.3) L_( lim liminf F(a,7)do + 0(1))

g0t T Jpie
<J(B.T)—=J(b.T)
log®> T

B+e

< L+( lim limsup F(a,7)da + 0(1))
e—>01T 100 Jph—¢

Remark. From (1.2) and (1.6) it should be clear that, when 0 < b < 1, the lower end-

points in the integrals appearing in (3.3) can be taken to be b (instead of b + & and b — ¢,

respectively). For the lower bound when 0 < b < 1 and the upper bound when 0 < b <1

this follows directly by equation (1.6). For the lower bound when b = 1, we estimate instead
J(B,T)— J(1 —§,T) and then send § — 0 using (1.2).

From (1.2), Theorem 10, Corollary 11 and Theorem 14 (including the remark thereafter)
we immediately get the following corollary.

Corollary 15. Assume RH and let B > 1. Then, as T — oo, we have

log? T
T

(3.4) (L—t?—(l,m T o(l)) < JB.T)

2
< (L+ et(1,p) + % i 0(1)) log T

T

In general, if B > b > 1, as T — 00, we have

log? T

(3.5) (L7€ (b, B) +o(1)) =

<J(B.T)-J(b.T)

2
< (LT et (. B) +o(1)) logT r

Previously, assuming RH, Goldston and Gonek in [15] had proved that for any » > 0 one
has
log®> T log®> T
T <Jb+2,T)—Jb,T) <(21.647 + 0(1)) T
as T — oo. As we already observed in the introduction, from this estimate one can deduce
that, for large f3,

(0.307 + o(1))

log? T log? T
OgT < J(B,T) < (10.8248 + o(1)) OgT

(the lower bound actually holds for all 8 > 1). In direct comparison, (2.48), (2.49) and (3.5)

(0.1538 + o(1))
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imply that
2 long
3.6 -L 1
3o (31 +0m)%

as T — oo. The constants in (3.6) are %L_ = 0.6018...and 14—5 Lt =4.026....Forlarge S,
inequality (3.4) in Corollary 15 implies that, in (1.4), D™ can be taken to be any constant
less than L™ (1 + %0) = 0.8374... while D can be taken to be any constant greater than
%L+ = 1.431.... These values are substantially closer to the conjectured value 1. We now
establish the further small improvement proposed in Theorem 3 and Corollary 4.

log? T

<Jb+2,T)-Jb,T) < (1745 LT+ 0(1))

Proof of Theorem 3 and Corollary 4. From Theorem 14 and Theorem 1, we see that, for
large B, the value D in (1.4) can be taken to be any constant greater than L™ C™. We have
shown that LTC* < L*(1.3302) < 1.4283. Similarly, Theorem 14 and Theorem 1 show that
the value D™ in (1.4) can be taken to be any constant less than L~ C™. We have showed that
L™C™ > L7(0.9278) > 0.8376. This completes the proof. |

Proof of Theorem 14. 'We partially follow the idea developed by Goldston and Gonek
in [15]. Throughout the proof let

0<a;<ap<asz<ay
be fixed real numbers (that will be conveniently specialized later). We let
g ‘= gaiaraz,as - R —>C
be a Schwartz function verifying
gl <lonR, supp(g) Clai1,as], g =1on]az, a3z

Then, from definition (1.1), we plainly see that

o0 2
67 S-S < [ (vf (x ; %) ) - %) ‘3(11;’:;)
< J(a4,T)—J(a1,T).

[ logx
& log T

2 dx

x2

From [15, equation (8)], with e =1+ %, we have
© X x\?
69 [ (v(xeg)-vem-7)
2, % (sin(kr)\* log T
—ooer () (Be(en50)
2 1
) dr + 0(7).

logT

Z 8 (()/ —1) 2—)

b4
Y

The implicit constant in the error term above may, in principle, depend on the function g. From

now on let us write

2 dx

x2

2

+

2

S =

logn\[*
Zg((l—)/)g)‘ +

14

logn
Zg(()’ —1)7)

14
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Using [14, equations (5.1), (5.2) and (5.3),2 we get

T (o]
/ f(t,ndt = ZT/ F(a,T) |§(a)|2d0! + o(T),
0 0

uniformly for nlog™3 n < T < nlog> n. In this range of T and 7, using our assumptions on g
and the fact that /' > 0, we arrive at

as as

3.9 (Zlifg%,%f/ F(a,t)da +o(1))T < (2/ F(a,T)da —I—o(l))T
an . az
< [ rema
0
< (2/ 4F(oz, T)da—l—o(l))T

1

as
< (2 lim sup F(a,7)da + 0(1)) T.

T—>00 ai

Upper bound. From the fast decay of g and the classical estimate for the number of
zeros in an interval, one can show that f(z,7) < log?(t + 2) (see, for instance, [15, p. 618]).
Then, by (3.9) and Lemma 13 (i), we obtain

00 . 2 aq
(3.10) [ (Sm(’”)) F ) di < (ZIimsup F(a,r)da+o(1))gL+K
0

t r—00 Ja
as k — 0, for n < % Choosing n = T in (3.10), and combining with (3.7) and (3.8) (recall
that k = ﬁ(l + 0(1))), we get
log? T

T

J(as, T)—J(az, T) < (limsup [a4 F(oa,7)da + 0(1))L+

T—00 1

as T — oo. At this point we can take az = B, a, = b, a; — ay and ag — a;r to conclude.

Lower bound. By (3.9) and Lemma 13 (ii) we have

0 /i 2 as
G.11) /‘ (sm(Kl)) f(t,n)de > (2liminf/ F(a,t)da —|—0(1))%L_K
0 T—>00 a

! 2

ask — 0, forn < % As before, choosing 7 = T in (3.11) and combining with (3.7) and (3.8),
we get

a3 log? T
J(@aq, T)y—J(a1,.T) > (liminf/ F(a,7)da + 0(1))L_
=00 J4, T
as T — oo. We now take aq = B,a1 = b, ar — af' and a3 — aj to conclude. D

4. The second moment of the logarithmic derivative of {(s)

4.1. Preliminaries. We start by presenting some auxiliary tools for the upcoming proof
of Theorem 5.

2) See also [15, equation (7)], where there seems to be a typo and the lower endpoint of the integral should
be zero.
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4.1.1. Relating I(a, T) to the Poisson kernel. Our starting point for the proof of
Theorem 5 is a result of Goldston, Gonek and Montgomery which, assuming RH, relates the
integral /(a, T') to the Poisson kernel

b

Lemma 16. Assume RH and let 0 < a < /logT. Then

log T 1 (T !
M) = 10T Y b (=) B Yoty =)= 5 [ 0?5 ) o

0<y,y’<T

log* T
+ 0( o8 )+ O(aTlogT),

a?

— _4 3
where w(u) = yERyeR

Proof. This formula is stated in [16, Theorem 1] without the weight function w(y — ')
in the double sum over zeros and with the constraint 0 < a < 1. The proof in [16] goes through
unchanged with the condition 0 < a < /log T and a calculation in [16, Section 2, p.115]

shows that the factor w(y — y’) can be added at the expense of a term thatis O(aT log T). ©

4.1.2. Extremal bandlimited approximations. Our argument for the upper bound for
the second moment of the logarithmic derivative of {(s) is related to the following extremal
problem in Fourier analysis.

Extremal Problem 7 (EP7). Fix b > 0 and let h;(x) be the Poisson kernel defined
in (4.1). Find a continuous and integrable function mp : R — R such that

(1) hp(x) <mp(x) forall x € R,
(ii) supp(mp) C [—1,1],
(i) [g (mp(x) — hp(x)) dx is as small as possible.

This is called the Beurling—Selberg majorant problem (for the function /5). As discussed
in [5, Lemma 9], the solution of this particular problem comes from the general Gaussian
subordination framework of Carneiro, Littmann and Vaaler [7]. Such an extremal function
exists and is unique, being given by

b )(ez”b + e727mb _ 2cos(2nx))

b2 1+ x2 (e”b _ e—nb)z

mp(x) = (

Its Fourier transform is given by

7 sinh(27b(1 — |a[))

(@) = 7 (sinh(h))2

Xi—1,17(a).

3 The weight function w(u) = 2h3 (1) is also a Poisson kernel, but we keep Montgomery’s notation w ()
to illustrate the connection to the Fourier inversion formula (1.5).
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4.1.3. A weighted integral of F(«). For the lower bound in Theorem 5 we shall use
a different approach rather than bandlimited approximations. Following Goldston [13, Sec-
tion 7], we define the function

&
() = /1 (& — a)F() da

and we observe that 3”(§) = F(§) for & > 1. The following lemma gives a non-trivial lower

& 1
bound for I (&) when & > 1 + 7

Lemma 17. Assume RH. Then, as T — oo, we have
g2 1 5 [loglogT
JE) = — -+ 0 _—
SO =5 =83 O Tioer

Proof. 'This is a slight refinement of [3, Lemma 17], using (1.6) in the proof that appears
there. m)

uniformly for & > 1.

4.2. Proof of Theorem 5.

4.2.1. Upper bound. We use the special function mp(x) and Lemma 16. Since 71 («)
and F(«) are even and supp(mp) C [—1, 1], by (1.5) and (1.6) we have

log T
> hasa ((V - V’)%)w(y — ¥

0<y,y’<T
log T
< > mgm ((V - V’)ﬁ)w(y -
0<y,y’<T
TlogT (! _
= g / Mg n () F(o) da
21 -1

1 .
sinh(2a(1 — «)) s loglog T
=TlogT _— T~ logT){1+0(,/———)d
°8 {/0 2 (sinh a)? (o + ogT)( 1+ log T *
cotha  (cscha)?  cotha 1 loglog T
=TlogT — o\(—-+1)———— ;.
o8 { 4a? 4a * 2 * a * logT

where the big-O term is obtained by using the fact that 0 < a < /log T'. Since

T
t
/ 1og2(—) dt = Tlog® T + O(T log T),
1 21

the upper bound in Theorem 5 now follows from Lemma 16 by using the additional constraints

log T)3/2 log )1/
42) Qog )= _ o (oeT) ™
T (loglog T)1/2
and the fact that Ut (a) = £ — 1 + O(a) asa — 0T and U (a) ~ ﬁ as a — oo, in order
to group the error terms.
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4.2.2. Lower bound. We now use Lemmas 16 and 17. Since Zb (@) = we270lal by
(1.5), (1.6), and the fact that F(«) is even, we have

log T
> hasn ((V - V’)%)W(V — ")

o<y, y’'<T
TlogT [°° ~
= 2 / hgjn (o) Fa) da
T )

1
loglog T
:TlogT{/ e_za“(a+T_2°‘10gT)(1+O(‘/%))da
0 log T

+ /100 e24% F(a) da}

1—(1+2a)e7 2% 1 loglog T 00
_Trogr | IZ 20 1 o [logloe T +/ e29% F(q) dat b,
4a? 2 log T 1

where the big-O term is obtained by using the fact that 0 < a < /log T. To estimate the
integral from 1 to oo, we integrate by parts twice (from the work of Goldston [13, Section 7]
we have 37(£) = O(£) and 3(§) = O(£?) for £ > 1). Since 3(1) = 3’(1) =0 and I (a) > 0
for « > 1, we apply Lemma 17 to deduce that

o0 oo
/ e24% F(a) da = 4a2/ I () e 2% da
1 1
o0 2 1
> 4a2/ 1 (% —a+ 5)6_2““ da
1+%
O(az‘/%/wl aze_za“da)
0g 1+
2a /3 a logT

T
t
/ logz(z—) dt = Tlog®> T + O(T log T),
1 T

the lower bound in Theorem 5 now follows from Lemma 16 by using the additional constraints

in (4.2) and the fact that U~ (a) = ﬁ — % + 0(@?) asa — 0t and U~ (a) ~ # asa — 0o,
in order to group the error terms. This concludes the proof.

+
1

Again since

A. Minima of Dirichlet kernels

Complementing the discussion in Section 2.3.1, we present a brief proof of inequal-
ity (2.37). Let mi(n) as in (2.35) and ¢ as in (2.36).

Proposition 18. For each n € N, the following bounds hold:
2r—1  wm(n) 5.4935
< + .

2co — < 2c¢o
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Proof. We rewrite (2.34) as

“ k1
Dy(x)=1+2n Z cos(xn—)—.
njln
k=1
Using the mean value theorem, we get, for x > 0,
z k1 ! “ k\ 1
- |- t)dt - |- t)dt
Zcos(xnn)n /(; cos(xnt) Zcos(xn ) Zf cos(xnt)

k=1 k=1
n

k

[:l (cos(xn%) — cos(xnt)) dt

Therefore,

2 sin(nx)

1
(A1) -+ x< <—+
n n nx

Let x; = 4.49340. .. be the unique real positive number such that

. osinx sin xp
Cco = min = = —-0.21723....
xeR X X1

Plugging x,, = 71 in (A.1), we obtain

m(n D, (x 1 2sin(nx 1 2 sin(x X 5.4935
() _ Dnlen) 1 2sinna) L 28000 0y
n n nxy n X1 n

S

On the other hand, using the fact that D, (x) is an even periodic function with period 27, it
follows that m(n) = minxe[o ,,] Dy (x). Let & € [0, ] be a real number where such minimum
is attained. If 2+1 <§&< 2n+1,usmg (A.1) we get

mn) _ Da®) 1, 4r @r—1)

_ >2 _
n n "~ n co 2n +1 co

If 2211 < & < 7, using the fact that sint > % forz € [0, 5] we have

w(n) _ Dy(§) _ sin((n + 3)E) e T S5 SO S |
n n n sin(%) n sin(%) né 6n

Finally, in the cases 0 < £ < 22’_{_1 or 2:+1 <& <5707 +1’ it is clear that D, (&) > 0, and such

points will not be points where the global minimum is attained. This concludes the proof. O

B. Hilbert spaces and pair correlation

B.1. Sharp equivalence of norms. We conclude by revisiting a result of [3], a paper
that provides a study of the pair correlation of zeros of zeta via the framework of Hilbert
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spaces of entire functions. Let us first recall some basic terminology. For A > 0 we say that
an entire function f : C — C has exponential type at most 2 A if, for all ¢ > 0, there exists
a positive constant C, such that | f(z)| < Cs e+l for all z € C. Let B2(7A) be the
classical Paley—Wiener space, i.e. the Hilbert space of entire functions of exponential type at

most 7 A with norm
00 . 1
| fll2 = (/ | £ (x)] dx) < 0.
—00

Functions in B (7 A) have Fourier transforms supported in the interval [—%, %] (by the Paley—
Wiener theorem). For a survey on such spaces, their interpolation formulas and some classical
applications to analytic number theory we refer the reader to the work of J. D. Vaaler [24].

Write )
sinwx
d,u(x)z{l—( ) }dx
X
for the pair correlation measure and denote by B, (7, ;) the normed vector space of entire
functions f of exponential type at most 7 with norm

1 2 = ( / | f(x)lzdu(x))z o

Using the uncertainty principle for the Fourier transform, it was shown in [3, Lemma 12] that
the vector spaces 85 () and B, (7, 1) are the same (as sets), with the norms being equivalent.
That is, there is a universal constant D > 0 such that

(B.1) D fll2 =1/ le2@w = 1712

whenever f € B8, (). In particular, B85 (7, ) is also a Hilbert space. It should be clear that
the inequality on the right-hand side of (B.1) is sharp and that there are no extremizers. In
fact, given any fo € B> (), the sequence f,(z) := fo(z —n) is an extremizing sequence as
n — oo. In this appendix we discuss the problem of finding the value of the sharp constant D.

Extremal Problem 8 (EP8). Find

[valF; _
(B.2) D?:= in —L2(2<m ) — inf —p(gl £(0)
J€Bo(m) “f”z gEho 2(0)
S#0 g#0

Remark. We comment briefly on the equality between the infima above, as it relates to
the class 4o defined in Section 2.1, the quantity p(g) defined in (2.1) (which is equal to (2.3)
in this case), and some of the other extremal problems that have been considered in this paper.
This is essentially a consequence of the Paley—Wiener theorem and Krein’s decomposition
[1, p. 154]: a continuous and non-negative function g € L'(R) has supp(g) C [—1, 1] if and
only if it is the restriction to R of an entire function of exponential type 27 (that we keep calling
g(2)) and g(z) = f(2) f(Z) for some f € B, (). The fact that we can restrict the search on
the right-hand side of (B.2) to even functions comes from a standard symmetrization procedure:
if g is not even, we can consider h(x) = %(g(x) + g(—x)) without affecting the ratio.

Finding the sharp forms of embeddings between function spaces is usually a rich and
non-trivial problem in analysis. As we shall see, extremal problem (EP8) has a particularly
intriguing answer.
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Theorem 19. We have

1
D2:1—m20.3244...,
JT

where 0 < 8 < 3 is the unique solution of

(mO)tan(f) =1 (0 =0.27385...).
Moreover, there is a unique (up to multiplication by a non-zero complex constant) extremal
Junction f € Ba(rw) such that || f || 2@/ f l2 = D, namely

sint(z +60) sinm(z—0)

(B-3) /@) = 7(z 4+ 0) 7(z —0)

The proof we present here is based of functional analysis and variational calculus con-
siderations. We first establish the existence of an extremizer and then study the corresponding
Euler-Lagrange equation that arises on the Fourier side.* These methods are also applicable in
determining the sharp embeddings between Hilbert spaces naturally associated to families of
L-functions; see [6, Appendix].

B.2. Proof of Theorem 19.

B.2.1. Existence of extremizers. The first step is to show that there exists f € B, ()
that extremizes (B.2) (i.e. such that || f'{|2(4y)/[l.f 2 = D). As we have argued in (B.2) and
the remark thereafter, it is enough to find an extremizer in the class #¢ defined in Section 2.1
for

(B.4) 1-D?:= su S s ) dx.

geho  Jooo g(X) dx
g#0

Let {gn}n>1 C o be an extremizing sequence for (B.4), normalized so that | g, |1 = 1 for

all n. Hence,
00 . 2
/ gn(x)(smnx) dx - 1 —D?
oo TX

as n — oo. Recall that supp(g,) C [—1, 1] and that || g, |lcoc = €n(0) = ||gnll1 = 1. Therefore
18115 < 2]1&nll2 < 2,and we see that {g, }»>1 is a bounded sequence in B (27). By reflexiv-
ity, passing to a subsequence if necessary, we may assume that g, converges weakly to a certain
g% € B,(27). In particular,

2 2

and hence gﬁ = 0. Since 13’2(27r) is a reproducing kernel Hilbert space, we also have the
pointwise convergence

ghx) dx = g¥(y)

m(y —x ~o0 n(y —x)

4 In the arxiv version of this paper https://arxiv.org/abs/2108.09258 we present an alternative
proof of this result using interpolation formulas and working mainly on the entire function side.

lim gn(y) = lim / (%) sin 27 (y — x) dx — / sin27(y — Xx)
n—o00 n—oo | )
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forall y € R. Hence g# is even and non-negative on R. Moreover, by Fatou’s lemma, it follows
that
(B.6) lg%ll1 < liminf[|ga 1 = 1.
n—>o0o

which implies that g‘i € sAg. From (B.5) and (B.6), we see that this particular gti is an extrem-
izer for (B.4).

B.2.2. Solving the Euler-Lagrange equation. For a generic 0 # 1 € B, (m) let us
write

f | (x)| (qmnx) dx.

(B.7) d(h) = f_oo )2 dx
For instance, for h(x) = % we have ®(h) = % Let 0 # f € B>(wr) be a maximizer
for (B.7), normalized so that || /|| = 1. That is,
o(f)=1-D%
In what follows let us write K1(x) = (Sm Z x)2 recalling our notation (2.23). For any func-

tion h € By () with ||k|[2 =1 and h L f, we have ©(f + ¢h) < ®(f) for any ¢ € R, with
equality if ¢ = 0. Therefore

0= %cb(f + sh)L:O = 2Re( /_ N F)h(x) K (x) dx).

Similarly, for ¢ € R,

0 o I
0= gcb(f + ieh)L:O = 2Im(/;oo S(xX)h(x)K1(x) dx).

We then conclude that

o0

o= [~ reokiimen = [~ (7 oy e

—00
Since this holds for any function & with 4 L f in B,(rr), the function ? must verify the
following Euler—Lagrange equation:

(B.8) (/= K) g9 =07

as functions in Lz[—%, %], for some 1 € C. At this point observe that (B.8) yields

1-p2=a(f) = [ (F+K)@F@da=n

Hence 1 € R and we have seen that 1 > n > %

Since the left hand side of (B.8) is continuous in [—%, %], we may assume that f is
continuous in [— 2 2] and hence

(B.9) (7 + ) (@) = / 7 K- de = 17 (@)

foralla € [—5 ] Since K; 1 is a Lipschitz functlon the integral in (B.9) (as a function of «) is

differentiable for all ¢ € (—5, 5) Recalling that (K 1) (@) = x(=1,0)(@) — x(0,1)(), and that
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supp(f) C [~3. 3], we have

=

o
(B.10) -, f(é)d§+/ S =n() (@) (2e(-3 1))
-1 o
The left-hand side of (B.10) is again differentiable in «, and an application of the fundamental
theorem of calculus now yields

27 (@) =n()"(@ («e(-11)).

The general solution of this linear differential equation is
~ TNE —ia./?
fla) = (A em‘/; + Be m\/;))((_%’%)(a),

where A, B € C. Plugging this back into (B.10), we find the relation

cos(ﬁ)m — B)=0.
2. 2

Since n > 5 > =, we have cos(ﬁ) > 0 and therefore A = B # 0. Evaluating (B.9) at

2
T
o = 0, we arrive at the condition

B.11) (75 ) () =1

that determines our 7 uniquely (n = 0.67551 . ..). Finally, the nor¥nalization I ? [ =111 = 1
together with (B.11) yields the value |A| = ((2n + 1)/(8n + 2))2.

In sum, our extremal function is unique (up to multiplication by a complex number) and
its Fourier transform, with the substitution § = (2721)~2, is given by

F (o) =24 cos(276 @) X1 (@),

which, by Fourier inversion, leads us to (B.3).
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