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On Montgomery’s pair correlation conjecture:
A tale of three integrals

By Emanuel Carneiro at Trieste, Vorrapan Chandee at Manhattan, KS,
Andrés Chirre at Trondheim and Micah B. Milinovich at Oxford, MS

Abstract. We study three integrals related to the celebrated pair correlation conjecture
of H. L. Montgomery. The first is the integral of Montgomery’s function F.˛; T / in bounded
intervals, the second is an integral introduced by Selberg related to estimating the variance of
primes in short intervals, and the last is the second moment of the logarithmic derivative of the
Riemann zeta-function near the critical line. The conjectured asymptotic for any of these three
integrals is equivalent to Montgomery’s pair correlation conjecture. Assuming the Riemann
hypothesis, we substantially improve the known upper and lower bounds for these integrals by
introducing new connections to certain extremal problems in Fourier analysis. In an appendix,
we study the intriguing problem of establishing the sharp form of an embedding between
two Hilbert spaces of entire functions naturally connected to Montgomery’s pair correlation
conjecture.

1. Introduction

1.1. Background. Let �.s/ denote the Riemann zeta-function and let

 .x/ D
X
n�x

ƒ.n/;

where ƒ.n/ D logp if n D pk for a prime p and k 2 N, and ƒ.n/ D 0 otherwise. In order to
study the distribution of primes in short intervals, Selberg [23] introduced the integrals
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for a > 0 and

(1.1) J.ˇ; T / WD

Z T ˇ

1

�
 

�
x C

x

T

�
�  .x/ �

x

T

�2 dx
x2

for ˇ � 0. For 0 � ˇ � 1, Gallagher and Mueller [12] proved that

(1.2) J.ˇ; T / �
ˇ2

2

log2 T
T

as T !1:

Assuming the Riemann hypothesis (RH), Selberg [23] proved an upper bound for I.a; T /when
a � 10 and used this to show that

(1.3) J.ˇ; T / D Oˇ

�
log2 T
T

�
as T !1

for 1 < ˇ � 4. Selberg’s proof can be modified to show that the estimate in (1.3) holds for each
fixed ˇ > 1. Assuming RH, for each ˇ > 1, it is now known that there are constants D˙ such
that

(1.4)
�
D�ˇ C o.1/

�
�

log2 T
T

� J.ˇ; T / �
�
DCˇ C o.1/

�
�

log2 T
T

;

as T !1. In particular, we see that the dependence on the parameter ˇ is linear. The proof
of the upper bound in this form was first given by Montgomery (unpublished) while alternate
proofs have been given in [12, 15–17]. The proof of the lower bound is due to Goldston and
Gonek [15].

1.2. Equivalences to Montgomery’s pair correlation conjecture. In order to study
the pair correlation of the zeros of �.s/, for ˛ 2 R and T � 2, Montgomery [20] introduced
the form factor

F.˛/ WD F.˛; T / D
2�

T logT

X
0<
;
 0�T

T i˛.
�

0/w.
 � 
 0/;

where w.u/ D 4
4Cu2

. Here the double sum runs over the ordinates 
; 
 0 of two sets of non-
trivial zeros of �.s/, counted with multiplicity. We use the shorthand notation F.˛/ for sim-
plicity, but the reader should always keep in mind that this is also a function of the parameter T .
It follows from the definition that F.˛/ is even and real-valued. Moreover, sinceX

0<
;
 0�T

T i˛.
�

0/w.
 � 
 0/ D 2�

Z 1
�1

e�4�juj
ˇ̌̌̌ X
0<
�T

T i˛
e2�i
u
ˇ̌̌̌2

du;

it follows that F.˛/ � 0 for all ˛ 2 R. Montgomery was interested in the asymptotic behavior
of the function F.˛/ since, by Fourier inversion, we have

(1.5)
X

0<
;
 0�T

R

�
.
 � 
 0/

logT
2�

�
w.
 � 
 0/ D

T logT
2�

Z 1
�1

bR.˛/F.˛/ d˛

for any function R 2 L1.R/ such that bR 2 L1.R/, where

bR.˛/ D Z 1
�1

e�2�i˛x R.x/ dx
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denotes the usual Fourier transform of R. Assuming RH, it is known that

(1.6) F.˛; T / D
�
T �2j˛j logT C j˛j

��
1CO

�s
log logT

logT

��
as T !1;

uniformly for 0 � j˛j � 1. This was proved by Goldston and Montgomery [17, Lemma 8],
refining the original work of Montgomery [20]. This asymptotic formula allows one to estimate
the sum on the left-hand side of (1.5) for R 2 L1.R/ with supp.bR/ � Œ�1; 1�. Montgomery
conjectured that F.˛/ � 1 for j˛j > 1, uniformly for ˛ in bounded intervals. This is sometimes
called Montgomery’s strong pair correlation conjecture. This assumption, via approximating
the characteristic function of an interval by bandlimited functions, led Montgomery to further
conjecture that, for any fixed ˇ > 0,

N.ˇ; T / WD
X

0<
;
 0�T

0<
�
 0� 2�ˇlogT

1 �
T logT
2�

Z ˇ

0

²
1 �

�
sin�u
�u

�2³
du as T !1:(I)

This is known as Montgomery’s pair correlation conjecture. Since there are � T logT=.2�/
non-trivial zeros of �.s/ with ordinates in the interval .0; T � as T !1, the function N.ˇ; T /
counts the number of pairs of zeros within ˇ times the average spacing between zeros.

Assuming RH, from the works of Gallagher and Mueller [12], Goldston [14], Goldston,
Gonek and Montgomery [16], it is known that the following asymptotic formulas are equivalent
to the validity of Montgomery’s pair correlation conjecture in (I) for each fixed ˇ > 0:Z bC`

b

F.˛; T / d˛ � ` as T !1 for any fixed b � 1 and ` > 0;(II)

J.ˇ; T / �

�
ˇ �

1

2

�
log2 T
T

as T !1 for any fixed ˇ > 1;(III)

I.a; T / �

�
1 � e�2a

4a2

�
T log2 T as T !1 for any fixed a > 0:(IV)

Since Montgomery’s pair correlation conjecture remains a difficult open problem, it is
natural to instead ask for upper and lower bounds for the functionsN.ˇ; T /,

R bC`
b F.˛; T / d˛,

J.ˇ; T /, and I.a; T / in place of asymptotic formulas. Assuming RH, extending previous work
of Gallagher [11], it was shown in [3] that

N.T /

�
ˇ �

7

6
C

1

2�2ˇ
CO

�
1

ˇ2

�
C o.1/

�
� N.ˇ; T /

� N.T /

�
ˇ C

1

2�2ˇ
CO

�
1

ˇ2

�
C o.1/

�
;

as T !1, for all ˇ > 0, by using (1.5), (1.6), and certain extremal functions of exponential
type. Here N.T / denotes the number of non-trivial zeros of �.s/ with ordinates in the interval
.0; T �, and the term 7

6
in the lower bound can be replaced by 1 if we further assume that almost

all zeros of �.s/ are simple.
The purpose of this paper is to continue this direction of investigation and, using tools

from Fourier analysis, substantially improve the current upper and lower bounds for the inte-
grals in (II), (III), and (IV) assuming RH. As we shall see, novel insights and certain Fourier
optimization problems emerge when we treat each of these integrals.
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1.3. Summary of results. We now present an overview of some of our main results.
Theorems 1 and 3 below (and their corollaries) are representatives of a much more detailed
discussion that follows in Sections 2 and 3, respectively. These sample results already give
a clear perspective of the magnitude of the improvements in this paper over previous results.

1.3.1. The integral of F.˛/ in bounded intervals. An important feature of this paper
is the development of a general theoretical framework relating the objects we want to bound
in analytic number theory to certain extremal problems in Fourier analysis. For some of these
extremal problems, achieving the exact answer is a hard task, and we must rely on certain
test configurations to provide reasonable approximations. For instance, we define universal
constants CC and C� in Sections 2.4.1 and 2.4.2 as solutions of two such extremal problems,
and use them to prove the following theorem.

Theorem 1. Assume RH, let b � 1, and let " > 0 be an arbitrary number. For large `,
as T !1, we have

.C� � "/ `C o.1/ �
Z bC`

b

F.˛; T / d˛ � .CC C "/ `C o.1/;

where the constants CC and C� are defined in (2.52) and (2.57), respectively.

We establish the bounds

(1.7) 0:9278 < C� � CC < 1:3302

for these universal constants, which immediately leads to the following corollary.

Corollary 2. Assume RH and let b � 1. For large `, as T !1, we have

(1.8) 0:9278 `C o.1/ �

Z bC`

b

F.˛; T / d˛ � 1:3302 `C o.1/:

We use this theorem to give information about the distribution of primes in short inter-
vals. Furthermore, the work of Radziwiłł [22] illustrates a connection between Theorem 1 and
the theoretical limitations of mollifying the Riemann zeta-function on the critical line (see Sec-
tion 2.5). Previously, the best known bounds in (1.8) were due to Goldston [13, Lemma A] and
Goldston and Gonek [15, Lemma], respectively, where an estimate with 1

3
in place of 0:9278 in

the lower bound and 2 in place of 1:3302 in the upper bound can be established for sufficiently
large ` by adding up integrals of length 2.

Theorem 1 and Corollary 2 are proved in Section 2, which actually brings a full discus-
sion on effective bounds for each b � 1 and ` > 0. This section is of utmost importance for us,
as it brings the foundations on the extremal problems in Fourier analysis that are connected to
bounding the integral of F.˛/, and how one can properly explore them. For instance, the proof
of the lower bound in (1.8), which treads strikingly close to the conjectured value of `C o.1/
for large `, relies partly on the insight that Dirichlet kernels cannot be large and negative. In
fact, letting

c0 WD min
x2R

sin x
x
D �0:21723 : : : ;
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we see how the number

(1.9) 1C
c0

3
D 0:92758 : : :

appears naturally in our discussion. We first obtain (1.8) with any constant smaller than (1.9)
multiplying ` in the lower bound, and any constant greater than 4

3
multiplying ` in the upper

bound. A minor, yet conceptually important, improvement leads us to sharpen these multi-
plying factors to 0:9278 in the lower bound and to 1:3302 in the upper bound. Our general
theoretical framework may be amenable to further slight numerical refinements through the
search of more complicated test functions. A posteriori, the reader will notice that the funda-
mental pillar of the Section 2 is Theorem 7, a powerful general result that governs all the others
in the section, including Theorem 1 and Corollary 2. We need a little bit of preparation in order
to present it.

1.3.2. Primes in short intervals. In (3.1) and (3.2) below, we properly define the
precise constants L˙ which can be approximated by

L� D 0:9028 : : : and LC D 1:0736 : : : :

Using the definitions of L˙, a Tauberian argument, and the estimates for the integral of F.˛/
in bounded intervals, we deduce upper and lower bounds for the (weighted) variance of primes
in short intervals.

Theorem 3. Assume RH and let " > 0 be an arbitrary number. For large ˇ, as T !1,
we have�

.L�C� � "/ˇ C o.1/
� log2 T

T
� J.ˇ; T / �

�
.LCCC C "/ˇ C o.1/

� log2 T
T

:

The multiplying factors L˙ arise from what we call sunrise approximations for the Fejér
kernel. Using the bounds for C˙ in (1.7), we deduce the following result.

Corollary 4. Assume RH. For large ˇ, as T !1, we have

(1.10)
�
0:8376 ˇ C o.1/

� log2 T
T

� J.ˇ; T / �
�
1:4283 ˇ C o.1/

� log2 T
T

:

Previously, the best known bounds in (1.10) were implicit in the work of Goldston and
Gonek [15], yielding 0:153 in place of 0:8376 in the lower bound, and 10:824 in place of
1:4283 in the upper bound. In Section 3, we present a full discussion on bounds for J.ˇ; T / for
each ˇ > 1.

1.3.3. The second moment of the logarithmic derivative of �.s/. Our next result
establishes the sharpest known bounds for I.a; T /, for any fixed a > 0, assuming RH. Our
upper bound for I.a; T / uses a formula of Goldston, Gonek and Montgomery [16, Theorem 1]
combined with the solution of the Beurling–Selberg extremal problem for the Poisson kernel
given in [5, 7]. This argument is inspired by the previous calculations in [8] and [4], where
explicit formula methods were combined with the solutions of the Beurling–Selberg extremal
problem to give the sharpest known bounds for the modulus and argument of �.s/ on the
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critical line, assuming RH. Our lower bound for I.a; T / also uses [16, Theorem 1] together
with a method developed in [3, Theorem 7] to prove the existence of small gaps between the
non-trivial zeros of �.s/ using known pair correlation estimates.

Theorem 5. Assume RH. Then, for T �1.logT /
5
2 � a �

.logT /1=4

.log logT /1=2
, we have�

1C o.1/
�
U�.a/ T log2 T � I.a; T / �

�
1C o.1/

�
UC.a/ T log2 T

as T !1, where

U�.a/ D
1 � .1C 2a/ e�2a

4a2
C

�
1

2a
C

1
p
3

�
e
�2a.1C 1p

3
/
;

UC.a/ D
coth a
4a2

�
.csch a/2

4a
C

coth a
2
�
1

2
;

and the terms of o.1/ are O.1=
p

log logT /.

To compare Theorem 5 to the conjectural asymptotic formula in (IV), let

G˙.a/ D
U˙.a/

1�e�2a

4a2

:

Then G�.0C/ D 1, GC.0C/ D 4
3

, mina>0G�.a/ D 0:899 : : : attained at a0 D 0:998 : : :, and
maxa>0GC.a/ D 1:434 : : : attained at a0 D 0:620 : : : . Both G˙.a/! 1 rapidly as a!1,
for exampleG�.a/ � 0:999 if a � 4:55 andGC.a/ � 1:001 if a � 5:83. See Figure 1. Assum-
ing RH, in the range T �1 log3 T � a� 1, Goldston, Gonek and Montgomery [16] had previ-
ously proved that�

1C o.1/
�
V �.a/ T log2 T � I.a; T / �

�
1C o.1/

�
V C.a/ T log2 T;

where

V �.a/ D
1 � .1C 2a/ e�2a

4a2
C

2

3 .e6a � e2a/

and

V C.a/ D
1 � .1C 2a/ e�2a

4a2
C

29

12 .e2a � 1/
:

The bounds in Theorem 5 are sharper for any fixed a > 0 and substantially better for small a.
See Figure 2.

1.3.4. Hilbert spaces and the pair correlation of zeta zeros. In Appendix B, we
revisit the framework of [3] to find the sharp form of an embedding between two Hilbert
spaces of entire functions naturally connected to Montgomery’s pair correlation conjecture.
Using tools from complex analysis, interpolation, and variational methods, we are led to the
intriguing result presented in Theorem 19.

1.4. Notation. Throughout the paper, bxc denotes the largest integer that is less than or
equal to x; dxe denotes the smallest integer that is greater than or equal to x; and ¹xº D x � bxc
denotes the fractional part of x. We also write xC WD max¹x; 0º and �E for the characteristic
function of a set E. The real part of complex number z is denoted by Re.z/ and its imaginary
part by Im.z/.
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Figure 1. Plots of G�.a/ and GC.a/ for 0 � a � 7.
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Figure 2. Plots of U�.a/=V �.a/ for 0 � a � 4 and UC.a/=V C.a/ for 0 � a � 6.

2. The integral of F.˛/ in bounded intervals

2.1. Fourier optimization. We start with a broad principle to generate upper and lower
bounds for the integral of F.˛/ in bounded intervals. This is motivated by some particular con-
structions of Goldston [13] and Goldston and Gonek [15], though we now set up the problem
in a more general framework.

Throughout the paper we let A be the class of continuous, even, and non-negative func-
tions g 2 L1.R/ such that bg.˛/ � 0 for j˛j � 1. One can check, via approximations of the
identity, that if g 2 A, thenbg 2 L1.R/. For each g 2 A, we define the quantity

(2.1) �.g/ WDbg.0/C Z 1

�1

bg.˛/ j˛j d˛;
which is always non-negative since jbg.˛/j �bg.0/ for all ˛ 2 R. In fact, (2.1) is strictly positive
if g ¤ 0. If g 2 A, from (1.5), the fact that F is non-negative, and (1.6), we observe that

2�

T logT

X
0<
;
 0�T

g

�
.
 � 
 0/

logT
2�

�
w.
 � 
 0/(2.2)

D

Z 1
�1

bg.˛/ F.˛; T / d˛ �
Z 1

�1

bg.˛/ F.˛; T / d˛

D �.g/C o.1/

as T !1. We define A0 � A as the subclass of continuous, even, and non-negative functions
g 2 L1.R/ such that supp.bg/ � Œ�1; 1�. If g 2 A0, then we have equality in (2.2), and also the
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alternative representation

(2.3) �.g/ D g.0/C

Z 1
�1

g.x/

²
1 �

�
sin�x
�x

�2³
dx;

which follows by Plancherel’s theorem.

2.1.1. Three extremal problems in Fourier analysis. We now introduce the following
problems.

Extremal Problem 1 (EP1). Let ` > 0 and consider a finite collection of functions
g1; g2; : : : ; gN 2 A and points �1; �2; : : : ; �N 2 R such that

(2.4)
NX
jD1

bgj .˛ � �j / � �Œ0;`�.˛/
for all ˛ 2 R. Over all such possibilities, find the infimum

(2.5) WC.`/ WD inf
NX
jD1

�.gj /:

Extremal Problem 2 (EP2). Let ` > 0 and consider a finite collection of functions
g1; g2; : : : ; gN 2 A and points �1; �2; : : : ; �N 2 R such that

(2.6)
NX
jD1

bgj .˛ � �j / � �Œ0;`�.˛/
for all ˛ 2 R. Over all such possibilities, find the supremum

(2.7) W�.`/ WD sup
NX
jD1

�
2gj .0/ � �.gj /

�
:

Extremal Problem 3 (EP3). Let b; ˇ 2 R with b < ˇ and consider a finite collection
of functions g1; g2; : : : ; gN 2 A, points �1; �2; : : : ; �N 2 R, and values r1; r2; : : : ; rN 2 R
with rj � 0 if gj 2 A nA0 .j D 1; 2; : : : ; N /, such that

(2.8)
NX
jD1

bgj .˛ � �j / � �Œb;ˇ�.˛/
for all ˛ 2 R, and

(2.9) Re

 
NX
jD1

e2�i�jxgj .x/

!
�

NX
jD1

rj gj .x/

for all x 2 R. Over all such possibilities, find the supremum

(2.10) W�� .b; ˇ/ WD sup
NX
jD1

�
gj .0/C rj

�
�.gj / � gj .0/

��
:
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Remark 1. Note that by a uniform translation of all the points �j one can consider any
interval of length ` in (2.4) and (2.6) instead of the interval Œ0; `�. The situation is slightly
different in (EP3) since, for fixed functions gj and values rj , condition (2.9) is not necessarily
invariant under translations of the points �j , and hence the answer may depend on the particular
interval Œb; ˇ� that we choose in (2.8). Throughout this section, we reserve the variable ` for
the length of the interval, hence the change of variables ˇ D b C ` is sometimes used. In (2.9)
note that the choice r1 D r2 D � � � D rN D �1 is always admissible.

Remark 2. In the next subsections, we see that collections of functions and points that
satisfy (2.4), (2.6), or (2.8)–(2.9) indeed exist. We do not take the supremum and infimum over
empty sets.

At this point we collect some basic facts about the newly introduced functions WC;W�

and W�� .

Proposition 6. The following statements hold:

(i) The functions ` 7! WC.`/, ` 7! W�.`/ and ` 7! W�� .b; b C `/ are non-decreasing for
b 2 R and ` > 0:

(ii) For each b 2 R and ` > 0 we have

(2.11) W�.`/ � W�� .b; b C `/:

(iii) For each `1; `2 > 0 we have

(2.12) WC.`1C`2/ � WC.`1/CWC.`2/ and W�.`1C`2/ � W�.`1/CW�.`2/:

(iv) For b < c < d we have

(2.13) W�� .b; d/ � W�� .b; c/CW�� .c; d/:

Proof. (i) This should be clear from the definitions of the extremal problems (EP1),
(EP2) and (EP3).

(ii) Assume that (2.6) is verified. Then, letting �j D �j Cb, we verify condition (2.8) with
ˇ D b C `. We may choose r1 D r2 D � � � D rN D �1 in (2.9) to arrive at inequality (2.11).

(iii) Assume that

� .¹g1;j º
N1
jD1; ¹�1;j º

N1
jD1/ verifies (2.4) with ` D `1, and

� .¹g2;j º
N2
jD1; ¹�2;j º

N2
jD1/ verifies (2.4) with ` D `2.

Then the collection .¹g3;j º
N1CN2
jD1 ; ¹�3;j º

N1CN2
jD1 / verifies (2.4) with ` D `1 C `2, where

g3;j D

´
g1;j for 1 � j � N1;

g2;j�N1 for N1 C 1 � j � N1 CN2;

�3;j D

´
�1;j for 1 � j � N1;

�2;j�N1 C `1 for N1 C 1 � j � N1 CN2:

This leads us to (2.12) for WC. A similar concatenation argument yields the inequality for W�.
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(iv) Assume that

� .¹g1;j º
N1
jD1; ¹�1;j º

N1
jD1; ¹r1;j º

N1
jD1/ verifies (2.8)–(2.9) for the interval Œb; c�, and

� .¹g2;j º
N2
jD1; ¹�2;j º

N2
jD1; ¹r2;j º

N2
jD1/ verifies (2.8)–(2.9) for the interval Œc; d �.

Then the collection .¹g3;j º
N1
jD1; ¹�3;j º

N1CN2
jD1 ; ¹r3;j º

N1CN2
jD1 / verifies (2.8)–(2.9) for the inter-

val Œb; d �, where

g3;j D

´
g1;j for 1 � j � N1;

g2;j�N1 for N1 C 1 � j � N1 CN2;

�3;j D

´
�1;j for 1 � j � N1;

�2;j�N1 for N1 C 1 � j � N1 CN2;

and

r3;j D

´
r1;j for 1 � j � N1;

r2;j�N1 for N1 C 1 � j � N1 CN2:

This leads us to (2.13).

2.1.2. A general bound. We now relate the three extremal problems introduced above
to the integral of F.˛/ in the following general result.

Theorem 7. Assume RH, let b 2 R and ` > 0. Then, as T !1, we have

W�.`/C o.1/ � W�� .b; b C `/C o.1/(2.14)

�

Z bC`

b

F.˛; T / d˛

� WC.`/C o.1/:

Proof. The first inequality on the left-hand side of (2.14) was already established in
Proposition 6 (ii).

Assume that (2.4) holds. Then, using (2.4), (1.5) and (2.2) we haveZ bC`

b

F.˛/ d˛ �
NX
jD1

Z
R
F.˛/ bgj .˛ � b � �j / d˛

D
2�

T logT

NX
jD1

X
0<
;
 0�T

T i.bC�j /.
�

0/ gj

�
.
 � 
 0/

logT
2�

�
w.
 � 
 0/

�
2�

T logT

NX
jD1

X
0<
;
 0�T

gj

�
.
 � 
 0/

logT
2�

�
w.
 � 
 0/

�

NX
jD1

�.gj /C o.1/;

which leads us to the upper bound in (2.14).
Now assume that (2.8) and (2.9) hold, with ˇ D b C `. For the lower bound, we are

inspired by a trick of Goldston [13, p. 172]. Lettingm
 denote the multiplicity of a zero 1
2
C i
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of �.s/, we use (2.8), (1.5), (2.9), and (2.2) (recall that rj � 0 if gj 2 A nA0) to getZ bC`

b

F.˛/ d˛ �
NX
jD1

Z
R
F.˛/ bgj .˛ � �j / d˛(2.15)

D
2�

T logT

NX
jD1

X
0<
;
 0�T

T i �j .
�

0/

� gj

�
.
 � 
 0/

logT
2�

�
w.
 � 
 0/

D
2�

T logT

NX
jD1

²
gj .0/

X
0<
�T

m


C

X
0<
;
 0�T

¤
 0

T i �j .
�

0/ gj

�
.
 � 
 0/

logT
2�

�
w.
 � 
 0/

³

�
2�

T logT

NX
jD1

²
gj .0/

X
0<
�T

m


C rj
X

0<
;
 0�T

¤
 0

gj

�
.
 � 
 0/

logT
2�

�
w.
 � 
 0/

³

D
2�

T logT

NX
jD1

²
gj .0/ .1 � rj /

X
0<
�T

m


C rj
X

0<
;
 0�T

gj

�
.
 � 
 0/

logT
2�

�
w.
 � 
 0/

³

�

NX
jD1

�
gj .0/C rj

�
�.gj / � gj .0/

��
C o.1/:

Here we have used the trivial boundX
0<
�T

m
 �
X

0<
�T

1 �
T logT
2�

as T !1

to derive the final inequality. This leads us to the lower bound for the integral of F.˛/ in
inequality (2.14).

Remark. It is an interesting problem to determine when the lower bounds in Theorem 7
start beating the trivial bound of 0. For instance, in Theorem 9 below we show that W�.`/ > 0

for ` > 6 � 2
p
6 D 1:10102 : : : .

In the case b D 1 we may take advantage of the symmetry around the origin and (1.6) to
provide alternative upper and lower bounds as follows.

Corollary 8. Assume RH and let ˇ > 1. Then, as T !1, we have

(2.16)
W�� .�ˇ; ˇ/

2
� 1C o.1/ �

Z ˇ

1

F.˛; T / d˛ �
WC.2ˇ/

2
� 1C o.1/:
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Proof. The estimate in (1.6) implies that

(2.17)
Z 1

�1

F.˛/ d˛ D 2C o.1/:

Using (2.17) and the fact that F.˛/ is even we haveZ ˇ

�ˇ

F.˛/ d˛ D 2
Z ˇ

1

F.˛/ d˛ C 2C o.1/:(2.18)

The desired bounds in (2.16) now follow from (2.18) and Theorem 7.

2.1.3. Strengths and limitations. Finding the exact answer in the general case of
extremal problems (EP1), (EP2) and (EP3) above is, in principle, something non-trivial. There
are too many parameters in play. On the other hand, an advantage of this method and Theorem
7 is that, for a fixed interval Œb; b C `�, it is possible to bring in sophisticated computational
tools to approximate the solutions of these extremal problems.

As noted in Proposition 6 (ii) and Theorem 7, the extremal problem (EP2) provides a
weaker lower bound than (EP3), but has the advantage of being a simpler problem. In fact, if
one wants to obtain effective estimates for all intervals in a more systematic way, it is simpler to
narrow down the search to certain families of functions within the subclass A0 and work with
(EP1) and (EP2) to start. We proceed along these lines in the next subsection. We note that the
larger class A has proved useful to sharpen some bounds in the theory of the Riemann zeta-
function via sophisticated numerical experimentation [9] and, though numerics is not our main
focus here, we have already laid the foundational theoretical framework for such endeavors.

Montgomery and Taylor [21] showed that for each function 0 ¤ g 2 A0 one has

(2.19)
�.g/

g.0/
� CMT WD

1

2
C 2�

1
2 cot

�
2�

1
2

�
D 1:32749 : : : ;

with equality if and only if

g.x/ D
c

.1 � 2�2x2/2

�
cos.�x/ � 2

1
2�x cot

�
2�

1
2

�
sin.�x/

�2
.c > 0/:

For an alternative proof using reproducing kernel Hilbert spaces, see [3, Corollary 14]. See also
[18, Appendix A]. Assuming that (2.4) holds, we integrate to get

NX
jD1

gj .0/ D

Z
R

 
NX
jD1

bgj .˛ � �j /! d˛ �
Z

R
�Œ0;`�.˛/ d˛ D `:(2.20)

If all functions gj are in the subclass A0, from (2.19) and (2.20), we see that

(2.21)
NX
jD1

�.gj / � CMT

NX
jD1

gj .0/ � CMT ` D .1:32749 : : : / `:

Analogously, if in extremal problem (EP2) we restrict our attention to functions gj in the
subclass A0, by integrating (2.6) and using (2.19), we get

(2.22)
NX
jD1

�
2gj .0/ � �.gj /

�
�
�
2 � CMT

�
` D .0:67250 : : : / `:
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These are universal limitations of this method when using the extremal problems (EP1) and
(EP2) restricted to the subclass A0. For the lower bound, in the regime when ` is large, we see
in Section 2.2 that we can in fact get very close to the threshold (2.22) but, at the end, with the
refined framework of Section 2.3 we see that the extremal problem (EP3) yields a substantially
better lower bound. For the upper bound, we show in Section 2.2 and Section 2.4 that we can
get very close to the threshold (2.21).

2.2. Stacking triangles. A simple and effective way to use Theorem 7, with the lower
bound given by (EP2), is by considering the functions bgj being triangles. The linearity allows
for a reasonable control over restrictions (2.4) and (2.6). In fact, the key observation here is that
the superposition (addition) of equally spaced triangular graphs morally results in a constant
function. This idea is already hinted in the work of Goldston and Gonek [15, Lemma], and we
further explore it here. For 0 < � � 1, consider the Fourier pair

(2.23) K�.x/ D �

�
sin��x
��x

�2
and bK�.�/ D

�
1 �
j�j

�

�
C

:

Note that the graph of bK� is a triangle with base 2� (centered at the origin) and height 1. In
this case, (2.1) yields

(2.24) �.K�/ D 1C
�2

3
:

We establish the following effective bounds.

Theorem 9 (Triangle bounds). Assume RH, let b � 1, and let ` > 0. Then, as T !1,
we have

C�
N
.`/C o.1/ �

Z bC`

b

F.˛; T / d˛ � CC
N
.`/C o.1/;

where

(2.25) CC
N
.`/ D

8̂̂<̂
:̂
4
3
.`C 1/C ¹`º

3

12
�
¹`º
3
�
1
4
.1 � ¹`º � ¹`º2/C for ` � 1;

min
®
4
3
.`C 1/C `3

12
�
`
3
�
1
4
.1 � ` � `2/C;

.1C c/
�
1C `2.1Cc/2

12c2

�¯
for 0 < ` � 1;

with c D max¹6�
1
3 `

2
3 ; `
2�`
º and

(2.26) C�
N
.`/ D

´
2
3
.` � 1/ � 2¹`º

3
C
�1C¹`º

2

��
¹`º � .1C¹`º/2

12

�
C

for ` � 2;�
` � 1 � `2

12

�
C

for 0 < ` � 2:

Before moving on to the proof of Theorem 9, let us make a few comments. The main
point of this theorem is to bring in some relatively simple bounds, that can be explicitly stated
for all `. Nevertheless, we pay attention to some important details that could be useful in other
contexts. For instance, note that the functions ` 7! C˙

N
.`/ are continuous and non-decreasing.

Note also that our bound CC
N
.`/ (which comes from a particular choice of functions in (EP1))

establishes that

(2.27) lim
`!0C

WC.`/ D lim
`!0C

CC
N
.`/ D 1:
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In fact, from (1.6) we get
R "
�" F.˛/ d˛ � 1C o.1/ for any fixed " > 0. Then, from Theorem 7

we get
1 � WC.`/ � CC

N
.`/

for all ` > 0, and we may pass the limit as `! 0C to obtain (2.27). Recall that we cannot rule
out the existence of delta spikes in F.˛/ for j˛j � 1. The connection between this phenomenon
and the so-called alternative hypothesis to Montgomery’s strong pair correlation conjecture is
investigated by Baluyot in [2].

In the regime 0< `� 1, our upper bound CC
N
.`/ is realized by the first function for

1
6
� `� �1D 0:3576 : : : and 0:7222 : : :D �2 � `� 1, and by the second function for 0< `� 1

6

and �1 � ` � �2 (and in this range the transition of c occurs at �3 D 0:5297 : : :). We note that
the lower bound C�

N
.`/ in (2.26) starts to be non-trivial at ` D 6 � 2

p
6 D 1:10102 : : :. Finally,

we note that Theorem 9 recovers a result of Goldston and Gonek [15, Lemma, equations (3), (4)
and (5)] in the cases 0 � ` � 2 (lower bound) and ` D 1 (upper bound), and refines it in all the
other cases. Figure 3 brings the plot of our triangle bounds for small values of `.

Proof of Theorem 9. The idea here is simply to establish that

(2.28) C�
N
.`/ � W�.`/ � WC.`/ � CC

N
.`/ ;

and the result will follow from Theorem 7. Let us split the proof into its different regimes.

Step 1: Upper bound. The strategy here is to consider n big triangles and two small
triangles, one at each end, to adjust for the fractional part of `. Specifically, in the setup of
extremal problem (EP1), we consider a configuration with N D nC 2 functions given bybg2 D bg3 D � � � D1gnC1 D cK1 (the triangle of height 1 and base 2; if n D 0 this block is dis-
regarded) and bg1 D1gnC2 D �bK� (the triangle of height � and base 2�), where 0 < � � 1.
Assume further that

(2.29) .n � 1/C 2� D `

and observe that condition (2.4) is verified for the translates given by �1 D 0, �j D .j � 2/C�
for j D 2; 3; : : : ; nC 1 and �nC2 D .n � 1/C 2�. For this particular configuration, we have

(2.30)
nC2X
jD1

�.gj / D
4n

3
C 2�

�
1C

�2

3

�
:

When ` 2 N, since 0 < � � 1, the identity in (2.29) can only be verified if .n;�/ D .`; 1
2
/ or

.` � 1; 1/. Among these two possibilities, the former optimizes equation (2.30), yielding the
upper bound 4

3
`C 13

12
. When ` … N, from (2.29) we may have .n;�/ D .b`c C 1; 1

2
¹`º/ or

.b`c; 1
2
.1C ¹`º//. The minimum of these two in (2.30) yields the quantity

4

3
.`C 1/C

¹`º3

12
�
¹`º

3
�
1

4

�
1 � ¹`º � ¹`º2

�
C
:

Note that the transition between the two possibilities occurs when ¹`º D
p
5�1
2

.

Step 2: Alternative upper bound when 0 < ` < 1. When ` is small, it is slightly
better if we consider just one triangle. Let bg1 D .1C c/bK� (the triangle of height 1C c and
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� � � � �
�

�

�

�

�

�

�

�

Figure 3. On the left, the birth of the idea. This is the construction of the upper bound CC
N
.`/ when

` D 2:5, with n D 2 and � D 3
4 , where the triangular graphs add up to the function on

the top (in purple), that majorizes the characteristic function of the interval Œ0; 2:5�. On
the right, the plots of ` 7! CC

N
.`/ (in green), ` 7! C�

N
.`/ (in blue) and the conjectured

asymptotic ` (in orange), for 0 � ` � 4:5.

base 2�). For `
2
< � � 1 and c � `

2�`
such that

(2.31)
c

1C c
D
`=2

�
;

this triangle contains a segment of length ` at height 1. In other words, under (2.31), we have
the validity of (2.4) for �1 D `

2
. In this case, we have

(2.32) �.g1/ D .1C c/

�
1C

�2

3

�
D .1C c/

�
1C

`2.1C c/2

12c2

�
;

and we may minimize it over c. From calculus, we see that this amounts to solving a cubic
polynomial, �

1C
12

`2

�
c3 � 3c � 2 D 0:

This can be computed explicitly and yields a solution of the form

c D 6�
1
3 `

2
3 C o.`

2
3 / .as `! 0/:

For simplicity, we take

c D max
²
6�

1
3 `

2
3 ;

`

2 � `

³
:

Plugging this choice of c in (2.32) leads to the remaining upper bound stated in (2.25).

Step 3: Lower bound The quantity appearing in (2.7) for K� is

(2.33) 2K�.0/ � �.K�/ D 2� � 1 �
�2

3
:

Hence, it is only profitable to include a triangle bK� in our configuration if the quantity in (2.33)
is non-negative, that is, if � � 3 �

p
6 D 0:5505 : : : . If 0 < ` < 2, we just choose bg1 D bK`=2

and �1 D `
2

in (2.6), provided that `
2
� 3 �

p
6, otherwise we go with the trivial lower bound 0.

If ` � 2, the idea here is to consider n big triangles and (possibly) one small triangle
at the end to adjust for the fractional part of `. We let n D b`c � 1 and � D 1

2
.1C ¹`º/.

Observe then that nC 2� D `. In the setup of extremal problem (EP2), we consider a configu-
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ration withN D n or nC 1 functions given by bg1 D bg2 D � � � D bgn D cK1 and 1gnC1 D �bK�,
with �j D j for j D 1; 2; : : : ; n and �nC1 D nC�, where the last pair .1gnC1; �nC1/ is only
included if� � 3 �

p
6. Observe that (2.6) is verified, and this configuration yields our desired

lower bound
NX
jD1

�
2gj .0/ � �.gj /

�
D
2

3
nC�

�
2� � 1 �

�2

3

�
C

:

Observe that, when ` is large, the effective upper bound in Theorem 9 with the multiply-
ing factor 4

3
is very close to the conceptual threshold (2.21) for the extremal problem (EP1)

restricted to A0, and almost yields what we claim in Corollary 2, but not quite there yet. We
return to this point in Section 2.4. As for the lower bound in Theorem 9, when ` is large,
the multiplying factor 2

3
is very close to the threshold (2.22) for the extremal problem (EP2)

restricted to A0.

2.3. Dirichlet kernels. We now discuss the reach of the extremal problem (EP3) in the
setup of Corollary 8. The case when the lower endpoint b is equal to 1 is precisely the situation
that is most useful when bounding the integral J.ˇ; T / in the next section.

2.3.1. Minima of Dirichlet kernels. For n 2 Z�0 we consider the Dirichlet kernelDn
given by

(2.34) Dn.x/ D

nX
kD�n

eikx D 1C 2

nX
kD1

cos.kx/ D
sin
�
.nC 1

2
/x
�

sin.x
2
/

:

Let us define the minimum

(2.35) m.n/ WD min
�2Œ0;2��

sin
�
.2nC 1/�

�
sin �

D min
x2R

Dn.x/;

and the universal constant

(2.36) c0 WD min
x2R

sin x
x
D �0:21723 : : : :

In Appendix A, we briefly verify the bounds

(2.37) 2c0 �
2� � 1

n
�

m.n/

n
� 2c0 C

5:4935

n

for n � 1, which in particular implies that

lim
n!1

m.n/

n
D 2c0:

Hence, the moral is that Dirichlet kernels cannot be too negative when compared to their
maximal value (attained at the origin). One of the main insights here is how to properly take
advantage of that information in our context.

2.3.2. A max-min optimization. We establish the following effective upper and lower
bounds for the integral of F.˛/ in the interval Œ1; ˇ�. Our lower bound is stated in terms of the
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minima m.n/ and, although our main focus is the behavior for large ˇ, we try also to be careful
for small values of ˇ. In the argument below, we choose the degree of the Dirichlet kernel in
order to optimize the effect that the minimum m.n/ is not too negative.

Theorem 10 (Symmetric bounds). Assume RH and let ˇ > 1. Let c0 be given by (2.36)
and CC

N
given by (2.25). Then, as T !1, we have

(2.38) C�.1; ˇ/C o.1/ �

Z ˇ

1

F.˛; T / d˛ � CC.1; ˇ/C o.1/;

where

(2.39) CC.1; ˇ/ D
CC

N
.2ˇ/

2
� 1

and

(2.40) C�.1; ˇ/ D max
n2N

Gn.ˇ/ �

�
1C

c0

3

�
.bˇc � 1/ �

.� C 1/

3
:

Here the functions ¹Gnºn2N are given by

(2.41) G1.ˇ/ D min
²�
ˇ C

2

3ˇ
� 2

�
C

; 1
3

³
and, for n � 2,

(2.42) Gn.ˇ/ D
�
n�

1

2

�
min

²
1;
ˇ

n

³
Cm.n�1/

�
min

®
1; ˇ
n

¯2
6

�
min

®
1; ˇ
n

¯
2

C
1

2

�
�1:

Before moving to the proof of this result, let us make a few comments. Observe that when
2ˇ is integer, the constant in (2.39) is reduced to

CC.1; ˇ/ D
4

3
.ˇ � 1/C

7

8
:

We have also already observed that the function ˇ 7! CC.1; ˇ/ is continuous and non-decreas-
ing. Note that (2.37) guarantees that the maximum in (2.40) is attained for some n � 13 ˇ
(from that value on we actually have Gn.ˇ/ � 0). In particular, the function ˇ 7! C�.1; ˇ/ is,
locally, a maximum of a finite number of continuous functions, hence it is also continuous. It is
also clear that ˇ 7! C�.1; ˇ/ is non-decreasing. The particular choice n D bˇc � 3 in (2.40)
(which is generally near-optimal) gives us the effective lower bound

C�.1; ˇ/ � bˇc �
3

2
C

m.bˇc � 1/

6

�

�
1C

c0

3

�
.bˇc � 1/ �

.� C 1/

3
;

stated in (2.40). Note the use of (2.37) in the last inequality above. Observe that, for large ˇ,
the multiplying factor

1C
c0

3
D 0:92758 : : :
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on the right-hand side of (2.40) is only slightly short of the conjectured value of 1 in (II), and
is one of the highlights of this theorem. The first few values of m.n/ are

m.0/ D 1; m.1/ D �1; m.2/ D �
5

4
;

m.3/ D �
14
p
7C 7

27
D �1:63113 : : : ; m.4/ D �2:03911 : : : :

Our lower bound C�.1; ˇ/ starts to be non-trivial at ˇ1 D 1:57735 : : : and from that value up
to ˇ2 D 1:77243 : : : the maximum in equation (2.40) is attained when n D 1. From ˇ2 up to
ˇ3 D 3:02404 : : : the maximum is attained when n D 3. From ˇ3 up to ˇ4 D 4:04983 : : : the
maximum is attained when n D 4 and so on. In particular, we have

C�.1; 2/ D
79

216
D 0:36574 : : : ;

C�.1; 3/ D
31

24
D 1:29166 : : : ;

C�.1; 4/ D 2:22814 : : : :

See Figure 4 for the graphs of ˇ 7! CC.1; ˇ/ and ˇ 7! C�.1; ˇ/ for small values of ˇ.

��� ��� ��� ��� ��� ��� ��� ���
�

�

�

�

�

�

�

��� ��� ��� ��� ��� ��� ��� ���
�

�

�

�

�

�

�

Figure 4. On the left, the competition between the lower bounds Gn for n D 1; 2; 3; 4; 5. On
the right, the plots of ˇ 7! CC.1; ˇ/ (in red), ˇ 7! C�.1; ˇ/ (in purple) and the con-
jectured asymptotic ˇ 7! ˇ � 1 (in orange), for small values of ˇ. In this symmetric
setup, these always do better than the triangle bounds ˇ 7! CC

N
.ˇ � 1/ (in green) and

ˇ 7! C�
N
.ˇ � 1/ (in blue) coming from Theorem 9.

We remark that, in this symmetric setup, the bounds coming from Theorem 10 are better
than the triangle bounds coming from Theorem 9, that is, for all ˇ > 1, one has

(2.43) CC.1; ˇ/ D
CC

N
.2ˇ/

2
� 1 � CC

N
.ˇ � 1/

and

(2.44) C�.1; ˇ/ � C�
N
.ˇ � 1/:

Inequality (2.43) is a routine explicit computation. Inequality (2.44) follows from (2.40) for
large ˇ (say, for ˇ � 12) and for small ˇ we verify it numerically. Figure 4 also illustrates this
dominance.
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Remark. In the small range 3
2
< ˇ < 11

7
, we note that Radziwiłł [22] obtains, with

different methods, the lower boundZ ˇ

1

eF .˛; T / d˛ � ˇ �
3

2
C o.1/ as T !1

for the integral of the variant eF .˛; T / defined in (2.60).

Proof of Theorem 10. The upper bound in estimate (2.38) plainly follows from Corol-
lary 8 and (2.28).

For the lower bound, first let n 2 N, n � 2 and let � D min¹1; ˇ
n
º. In the setup of

extremal problem (EP3), we consider a configuration with N D 2n � 1 functions given by

bg1 D bg2 D � � � Dbg2n�1 DbK�; �j D .n � j /� for j D 1; 2; : : : ; 2n � 1;

and r1 D r2 D � � � D r2n�1 D r given by

r D inf
x2R

K�.x/¤0

K�.x/Re
�P2n�1

jD1 e2�i.n�j /�x
�

.2n � 1/K�.x/
(2.45)

D min
x2R

Dn�1.2��x/

.2n � 1/
D

m.n � 1/

2n � 1
:

Definition (2.45) assures the validity of (2.9). Observe also that (2.8) is verified (with b D �ˇ),
that is,

2n�1X
jD1

bK�.˛ � .n � j /�/ D
n�1X

kD�.n�1/

bK�.˛ C k�/ � �Œ�ˇ;ˇ�.˛/(2.46)

for all ˛ 2 R. Therefore, recalling (2.24), the outcome appearing in (2.10) for this particular
configuration is

2n�1X
jD1

�
gj .0/C r.�.gj / � gj .0//

�
D .2n � 1/�Cm.n � 1/

�
1C

�2

3
��

�
� W�� .�ˇ; ˇ/:

Dividing by 2 and subtracting 1, we have

Gn.ˇ/ WD

�
n �

1

2

�
�Cm.n � 1/

�
1

2
C
�2

6
�
�

2

�
� 1 �

W�� .�ˇ; ˇ/

2
� 1;(2.47)

and the lower bounds with each of these functions Gn.ˇ/, for n � 2, follow from Corollary 8.
We can now optimize the choice of the parameter n here. Note that n D 1 would have given
a negative value for the term on the left-hand side of (2.47), and that is the reason we are not
considering it for the moment. Therefore, we define the function G1 differently.

When 1 < ˇ � 2 and we consider n D 2 in the configuration above, note that � D ˇ
2

and we may replace (2.46) by the slightly stronger inequality 
1X

kD�1

bK�.˛ C k�/
!
C

�
j˛j ��

�
�

�¹��j˛j�1º.˛/ � �Œ�ˇ;ˇ�.˛/:
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Following the same computation as in (2.15) for the integral of F.˛/ from �ˇ to ˇ, using (1.6)
and the fact that r D m.1/

3
D �

1
3

, we would then obtainZ ˇ

1

F.˛/ d˛ � 2�C
1

3�
� 2C o.1/ D ˇ C

2

3ˇ
� 2C o.1/:

This is the function we called G1.ˇ/ in (2.41) (technically speaking, its non-negative part).
This concludes the proof of Theorem 10.

For completeness, we record here the most refined explicit versions of upper and lower
bounds for the integral of F.˛/ over a generic interval, by combining Theorems 9 and 10.

Corollary 11. Assume RH, let ˇ > b > 1 and set ` D ˇ � b. Then, as T !1, we
have

C�.b; ˇ/C o.1/ �

Z ˇ

b

F.˛; T / d˛ � CC.b; ˇ/C o.1/;

where

(2.48) C�.b; ˇ/ D max¹C�
N
.`/;C�.1; ˇ/ � CC.1; b/º

and

(2.49) CC.b; ˇ/ D min¹CC
N
.`/;CC.1; ˇ/ � C�.1; b/º:

Proof. The triangle bounds come directly from Theorem 9, while the identityZ ˇ

b

F.˛/ d˛ D
Z ˇ

1

F.˛/ d˛ �
Z b

1

F.˛/ d˛(2.50)

allows us to use the symmetric bounds from Theorem 10.

Note that the bounds C˙.b; ˇ/ in (2.48) and (2.49) are continuous functions of two vari-
ables. For a fixed b > 1, the lower bound in (2.48) is going to be C�.1; ˇ/ �O.1/ for large ˇ.
As observed in (2.40), this comes with a multiplying factor of

1C
c0

3
D 0:92758 : : :

which is almost what we claim in Corollary 2 but, technically speaking, not quite there yet. We
return to this point in the next subsection.

2.4. Proof of Theorem 1 and Corollary 2.

2.4.1. Upper bound. A natural idea to deal with the asymptotic upper bound is to
morally consider, in the formulation of (EP1), copies of a single function g. Let A1 � A be
the subclass of bandlimited functions in A, i.e. the functions g 2 A such that bg has compact
support. Note that A0 � A1 � A. For each g 2 A1, we define its periodization on the Fourier
side

P�g.˛/ WDX
n2Z

bg.˛ C n/:
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This is a continuous and 1-periodic function, and

(2.51)
Z 1

0

P�g.˛/ d˛ D
Z

R
bg.˛/ d˛ D g.0/ � 0:

For our next extremal problem, it is convenient to restrict matters to the subclass A1.

Extremal Problem 4 (EP4). Find the infimum

(2.52) CC WD inf
0¤g2A1

�.g/

min0�˛�1 jP�g.˛/j :
Let us see how this fits into our framework of problem (EP1). Let 0 ¤ g 2 A1, and

assume that

(2.53) min
0�˛�1

jP�g.˛/j ¤ 0:
Since P�g is 1-periodic and continuous, from (2.51) and (2.53) we must have P�g.˛/ > 0 for
all 0 � ˛ � 1. By multiplying g by an appropriate constant (note that the ratio in (2.52) is
invariant under such operation), we may hence assume that

(2.54) min
0�˛�1

jP�g.˛/j D min
0�˛�1

P�g.˛/ D 1:
Assume that supp.bg/ � Œ�M;M�, where M 2 N. Given ` > 0 large, in the setup of (EP1) let
N D d`e C 2M � 1 and consider the configuration given by bg1 D bg2 D � � � D cgN Dbg and
�j D .j �M/ for j D 1; 2; : : : ; N . From the fact thatbg is continuous and supp.bg/� Œ�M;M�,
together with (2.54), we have

(2.55)
NX
jD1

bgj .˛ � �j / D P�g.˛/ � 1
for 0 � ˛ � d`e (and in particular for 0 � ˛ � `). Every term in the sum on the left-hand side
of (2.55) is zero if ˛ � �2M C 1 or ˛ � d`e C 2M � 1, hence the sum itself is zero in this
range. If the sum is non-negative in the remaining set Œ�2M C 1; 0� [ Œd`e; d`e C 2M � 1�, we
will have achieved (2.4). There is, however, the possibility that the sum on the left-hand side of
(2.55) is negative in some parts of the set Œ�2M C 1; 0� [ Œd`e; d`e C 2M � 1�, but this is not
going to be a big issue here, for in this case we can fix the situation in order to achieve (2.4) by
further including in our configuration a finite number of triangles of the form ccK1, where the
number of triangles and their height c may depend on g, but not on `. We have then showed
that

WC.`/ � ` �.g/CO.1/;

where the constant in O.1/ may depend on g, but not on `. This implies that, for any fixed
" > 0, we have

WC.`/ � ` .CC C "/

for large `. Hence, for any fixed " > 0, from Theorem 7 we haveZ bC`

b

F.˛; T / d˛ � ` .CC C "/C o.1/

for large `, as T !1. This establishes the upper bound proposed in Theorem 1.
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Finding the exact value of the constant CC seems to be a hard problem. At the moment we
can provide a reasonable approximation by working within the subclass A0 � A1. If g 2 A0,
a classical result of Krein [1, p. 154] guarantees that g.x/ D jh.x/j2, where h 2 L2.R/ and
supp.bh/ � Œ�1

2
; 1
2
�. As we have seen in Theorem 9, a natural choice is

g.x/ D K1.x/ D

�
sin�x
�x

�2
;

for whichbg.˛/ D .1 � j˛j/C has the triangular graph. This corresponds to the choicebh.˛/ D �Œ� 1
2
; 1
2
�.˛/

in Krein’s decomposition, and yields the outcome of 4
3

. We experimented with polynomial
perturbations of low degree (up to 8) of this function and the search routine provided some
better options, for instancebh.˛/ D �10C 2˛2 � 35˛4��Œ� 1

2
; 1
2
�.˛/;

which yields the outcome

�.g/

min0�˛�1
ˇ̌
P�g.˛/ˇ̌ D 1:33017 : : : :

This establishes the rightmost inequality in (1.7) and hence the upper bound proposed in
Corollary 2.

2.4.2. Lower bound. The idea here is similar, now considering copies of a suitable
function g 2 A in the centered formulation of (EP3). Let g 2 A and assume that g.0/ > 0 (this
assumption is harmless here since g.0/ D 0 would yield an undesirable negative numerator in
the formulation (2.57) below). For m 2 N we define

(2.56) Km.g/ WD max
˛2R

mX
nD0

bg.˛ C n/:
Note that Z 0

�1

 
mX
nD0

bg.˛ C n/! d˛ D
Z m

�1

bg.˛/ d˛ �
Z 1
�1

bg.˛/ d˛ D g.0/:

HenceKm.g/ � g.0/ > 0. The fact that the maximum is indeed attained in (2.56) follows from
the fact that the sum is continuous and goes to zero as j˛j ! 1 (Riemann–Lebesgue lemma).
We observe that ¹Km.g/ºm2N is a non-increasing sequence and set

K.g/ WD lim
m!1

Km.g/ � g.0/ > 0:

Let c0 be the constant given by (2.36). We consider the following extremal problem.

Extremal Problem 5 (EP5). Find the supremum

(2.57) C� WD sup
0¤g2A
g.0/>0

g.0/C c0
�
�.g/ � g.0/

�
K.g/

:
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Let us see how this fits into the framework of (EP3). Let 0 ¤ g 2 A with g.0/ > 0 and
assume without loss of generality that K.g/ D 1. Given ı > 0 small, let m0 D m0.ı/ be such
that

(2.58) 1 � Km.g/ � 1C ı

for m � m0. Let ˇ be large, in particular with 2bˇc � m0 C 2, and set n D bˇc. In the frame-
work of (EP3) we let N D 2n � 1 and consider the configuration given by

bg1 D bg2 D � � � Dbg2n�1 D bg
1C ı

; �j D .n � j / for j D 1; 2; : : : ; 2n � 1;

and r1 D r2 D � � � D r2n�1 D r given by

r D inf
x2R
g.x/¤0

g.x/
1Cı

Re
�P2n�1

jD1 e2�i.n�j /x
�

.2n � 1/ g.x/
1Cı

D min
x2R

Dn�1.2�x/

.2n � 1/
D

m.n � 1/

2n � 1
:

This assures the validity of (2.9). From the fact that g 2 A (in particular, the conditionbg.˛/ � 0
for j˛j � 1), together with (2.56) and (2.58), one can verify (2.8) (with b D �ˇ). For this
configuration, the outcome appearing in (2.10) yields

.2n � 1/

1C ı

�
g.0/C

m.n � 1/

2n � 1

�
�.g/ � g.0/

��
� W�� .�ˇ; ˇ/:

By using (2.37), we arrive at the inequality

ˇ

1C ı

�
g.0/C c0

�
�.g/ � g.0/

��
�O.1/ �

W�� .�ˇ; ˇ/

2
;

where the constant in O.1/ may depend on g, but not on ˇ. Therefore, for any fixed " > 0, we
have

ˇ.C� � "/ �
W�� .�ˇ; ˇ/

2

for large ˇ. Hence, for any fixed " > 0 and b � 1, from Corollary 8 and a decomposition as
in (2.50) we have

` .C� � "/C o.1/ �
Z bC`

b

F.˛; T / d˛

for large `, as T !1. This establishes the lower bound proposed in Theorem 1.
As in the extremal problem (EP4), the precise value of the constant C� is unknown to us

but we can provide a reasonable approximation by working within the subclass A0 � A. In this
case, note that Km.g/ D K1.g/ for all m 2 N. As argued before, if g 2 A0, Krein’s decom-
position [1, p. 154] guarantees that g.x/ D jh.x/j2, where h 2 L2.R/ and supp.bh/ � Œ�1

2
; 1
2
�.

We have seen in Theorem 10 that the choice

g.x/ D

�
sin�x
�x

�2
;

corresponding tobh.˛/ D �Œ� 1
2
; 1
2
�.˛/, yields the outcome

1C
c0

3
D 0:92758 : : : :
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Experimenting with polynomials perturbations of low degree (up to 8) of this function, the
search routine provided some slightly better options, for instancebh.˛/ D �5 � ˛2��Œ� 1

2
; 1
2
�.˛/;

which yields the outcome

g.0/C c0
�
�.g/ � g.0/

�
K.g/

D 0:92781 : : : :

This establishes the leftmost inequality in (1.7) and hence the lower bound proposed in Corol-
lary 2.

2.5. Limitations to mollifying �.s/ on the critical line. We now comment on an
application of our explicit bounds for F.˛/. Following Radziwiłł [22], let

I.M� / WD
1

T

Z 2T

T

ˇ̌
1 � �.1

2
C i t/M� .

1
2
C i t/

ˇ̌2 dt;

where

M� .s/ D
X
n�T �

a.n/

ns

is a Dirichlet polynomial with a.1/ D 1 and a.n/�" n
" for all " > 0. For a fixed � > 0, an

important problem in the theory of the zeta function is to choose M� .s/ so that I.M� / is as
small as possible, e.g. [10,19]. In [22, Theorem 1], it is shown that there is an absolute constant
c > 0 such that

(2.59) I.M� / �
c

�

when T is sufficiently large. When � < 1
2

, an unpublished argument of Soundararajan is pre-
sented which shows that I.M� / �

1
�
C o.1/, as T !1. Assuming RH, Radziwiłł further

connects the problem to the pair correlation of the zeros of �.s/, by using a slight variant of our
F.˛/ function, namely,

eF .˛/ WD eF .˛; T / D 2�

T logT

X
T�
;
 0�2T

T i˛.
�

0/w.
 � 
 0/:(2.60)

Under the additional assumption1) that a.p/� 1 for primes p, for fixed � > 0 and sufficiently
large T , [22, Theorem 3] gives

(2.61) I.M� / �

�
1

2
C

Z 1C�C"

1

eF .˛; T / d˛
��1

assuming RH, where " > 0 is arbitrary. Note that when � is large, under Montgomery’s strong
pair correlation conjecture, c in inequality (2.59) can be taken to be 1�. Based upon these
results, Radziwiłł suggests that inequality (2.59) holds with c D 1 for all � > 0.

With the alternative definition (2.60) we still have the validity of (1.5), (1.6) and there-
fore (2.2), and our framework yields the exact same bounds of Sections 2.1–2.4 for the integral
of eF .˛/ in bounded intervals. Relation (2.61) immediately leads us to the following corollary
of Theorem 10.

1) In [22], the assumption is a.pk/� 1 for primes p and k 2 N, but it is sufficient to assume only the case
k D 1 in Radziwiłł’s proof.
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Corollary 12. Assume RH. For fixed � > 0 and M� .s/ as above, assume also that
a.p/� 1 for primes p. Then, as T !1, we have

I.M� / �

�
1

2
C CC

�
1; 1C �

���1
C o.1/:

When � is large, from (2.61) and the discussion in Section 2.4.1 we see that, under RH
and a.p/� 1, the value of c in (2.59) can be taken to be constant less than 1=CC. We have
seen that

1

CC
>

1

1:3302
> 0:7517;

which is close to the conjectured bound of 1.

3. Primes in short intervals

3.1. Sunrise approximations to the Fejér kernel. In this subsection we develop some
preliminaries for the upcoming discussion on the integral J.ˇ; T /. The following extremal
problem in analysis is going to be relevant for our purposes.

Extremal Problem 6 (EP6). Construct continuous functions g˙ W Œ0;1/! R verify-
ing:

(i) g˙ are non-increasing,

(ii) 0 � g�.x/ � . sinx
x
/2 � gC.x/ for all x � 0,

(iii)
R1
0 g�.x/ dx is as large as possible and

R1
0 gC.x/ dx is as small as possible.

This problem admits unique solutions with the functions g˙ constructed as follows. We
have

g�.x/ D

´� sinx
x

�2 if 0 � x � � ,

0 if x � � ,

with

L� WD
R1
0 g�.x/ dxR1
0

� sinx
x

�2dx
D
2

�

Z �

0

�
sin x
x

�2
dx D 0:9028 : : : :(3.1)

The construction of gC is as follows. Let 0 D m0 < m1 < m2 < m3 < : : : be the sequence
of local maxima of .sin x=x/2 in Œ0;1/. For each k � 1, let ak 2 .mk�1; mk/ be such that
. sinak
ak

/2 D . sinmk
mk

/2 (note that such ak indeed exists). Then gC is defined by

gC.x/ D

8<:
� sinx
x

�2 if x 2 Œmk�1; ak/; k � 1,� sinmk
mk

�2 if x 2 Œak; mk/; k � 1

(see Figure 5) and a numerical verification yields

LC WD
R1
0 gC.x/ dxR1
0

� sinx
x

�2dx
D
2

�

Z 1
0

gC.x/ dx D 1:0736 : : : :(3.2)
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Figure 5. Plots of . sinx
x /2 and gC.x/ for 2 � x � 11.

The idea to consider this pair of functions is inspired in the classical sunrise lemma in harmonic
analysis. When the sun rises over the graph of the Fejér kernel from the right (resp. from the
left) the visible portion is gC (resp. g�). Throughout this section we reserve the notation g˙

for these sunrise approximations, and L˙ for the constants in (3.1) and (3.2).

3.2. Asymptotic inequalities. The following lemma is a modification of Goldston
[14, Lemma 2], replacing the assumption of asymptotic relations in that paper by inequalities in
the present setting. The sunrise approximations g˙.x/, from Section 3.1, play important roles
in the proof below.

Lemma 13. Let f W Œ0;1/ � Œ2;1/! R be a non-negative continuous function such
that f .t; �/� log2.t C 2/. Let K.T; �/ WD

R T
0 f .t; �/ dt and c � 0.

(i) Suppose K.T; �/ � .c C o.1//T , as T !1, uniformly for � log�3 � � T � � log3 �.
Then Z 1

0

�
sin.�t/
t

�2
f .t; �/ dt �

�
c C o.1/

� �
2

LC �

as � ! 0, for � � 1
�

.

(ii) Suppose .cCo.1//T �K.T; �/� T , as T !1, uniformly for � log�3 �� T � � log3 �.
Then Z 1

0

�
sin.�t/
t

�2
f .t; �/ dt �

�
c C o.1/

� �
2

L� �

as � ! 0, for � � 1
�

.

Proof. We only prove part (i), as the proof of part (ii) follows the same outline. We
suppose that � � 1

�
and divide the integral to be bounded into four ranges:Z 1

0

�
sin.�t/
t

�2
f .t; �/ dt D

Z � log�3 �

0

C

Z � log�

� log�3 �
C

Z � log3 �

� log�
C

Z 1
� log3 �

DW A1 C A2 C A3 C A4:
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The main contribution will come from A2, while the integrals A1; A3 and A4 will contribute
an error term. Using the fact that f .t; �/� log2.t C 2/, we have

A1 D �
2

Z � log�3 �

0

�
sin.�t/
�t

�2
f .t; �/ dt

� �2
Z � log�3 �

0

log2.t C 2/ dt � �2
�

log �
�

�

log �

and

A4 D

Z 1
� log3 �

�
sin.�t/
t

�2
f .t; �/ dt �

Z 1
� log3 �

log2 t
t2

dt �
1

� log �
�

�

log �
:

Since f is non-negative, we use integration by parts to get

A3 D

Z � log3 �

� log�

�
sin.�t/
t

�2
f .t; �/ dt �

Z � log3 �

� log�

1

t2
.K.t; �//0 dt

D
K.� log3 �; �/
.� log3 �/2

�
K.� log �; �/
.� log �/2

C 2

Z � log3 �

� log�

1

t3
K.t; �/ dt

�
1

� log �
�

�

log �
:

We now analyze the contribution from the integral A2. Using integration by parts, we have

A2 D �
2

Z � log�

� log�3 �

�
sin.�t/
�t

�2
f .t; �/ dt � �2

Z � log�

� log�3 �
gC.�t/ f .t; �/ dt

D �2
Z � log�

� log�3 �

�
�gC.�t/

�0
K.t; �/ dt CO

�
�

log �

�
;

where we have used the fact that gC.x/ � min¹1; 1
x2
º to estimate the error term above. Since

gC is non-increasing and absolutely continuous, we get

�2
Z � log�

� log�3 �

�
�gC.�t/

�0
K.t; �/ dt � �2

Z � log�

� log�3 �

�
�gC.�t/

�0
t .c C o.1// dt:

Again using that gC.x/ � min
®
1; 1
x2

¯
, an integration by parts yields

�2
Z � log�

� log�3 �

�
�gC.�t/

�0
t dt D �2

Z � log�

� log�3 �
gC.�t/ dt CO

�
�

log �

�
D �2

Z 1
0

gC.�t/ dt � �2
Z � log�3 �

0

gC.�t/ dt

� �2
Z 1
� log�

gC.�t/ dt CO
�

�

log �

�
D �

Z 1
0

gC.t/ dt CO
�

�

log �

�
:

Combining estimates, the lemma follows.
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3.3. Relating primes in short intervals to pair correlation. Our next theorem gives
an explicit relationship between the integral J.ˇ; T / and the integral of F.˛/ in bounded
intervals.

Theorem 14. Assume RH and let ˇ > b > 0. Let L� and LC be the constants defined
in (3.1) and (3.2). Then, as T !1, we have

L�
�

lim
"!0C

lim inf
�!1

Z ˇ�"

bC"

F.˛; �/ d˛ C o.1/
�

log2 T
T

(3.3)

� J.ˇ; T / � J.b; T /

� LC
�

lim
"!0C

lim sup
�!1

Z ˇC"

b�"

F.˛; �/ d˛ C o.1/
�

log2 T
T

:

Remark. From (1.2) and (1.6) it should be clear that, when 0 < b � 1, the lower end-
points in the integrals appearing in (3.3) can be taken to be b (instead of b C " and b � ",
respectively). For the lower bound when 0 < b < 1 and the upper bound when 0 < b � 1
this follows directly by equation (1.6). For the lower bound when b D 1, we estimate instead
J.ˇ; T / � J.1 � ı; T / and then send ı ! 0 using (1.2).

From (1.2), Theorem 10, Corollary 11 and Theorem 14 (including the remark thereafter)
we immediately get the following corollary.

Corollary 15. Assume RH and let ˇ > 1. Then, as T !1, we have�
L�C�.1; ˇ/C

1

2
C o.1/

�
log2 T
T

� J.ˇ; T /(3.4)

�

�
LC CC.1; ˇ/C

1

2
C o.1/

�
log2 T
T

:

In general, if ˇ > b > 1, as T !1, we have

�
L�C�.b; ˇ/C o.1/

� log2 T
T

� J.ˇ; T / � J.b; T /(3.5)

�
�
LC CC.b; ˇ/C o.1/

� log2 T
T

:

Previously, assuming RH, Goldston and Gonek in [15] had proved that for any b > 0 one
has

.0:307C o.1//
log2 T
T

� J.b C 2; T / � J.b; T / � .21:647C o.1//
log2 T
T

as T !1. As we already observed in the introduction, from this estimate one can deduce
that, for large ˇ,

.0:153ˇ C o.1//
log2 T
T

� J.ˇ; T / � .10:824ˇ C o.1//
log2 T
T

(the lower bound actually holds for all ˇ > 1). In direct comparison, (2.48), (2.49) and (3.5)
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imply that �
2

3
L� C o.1/

�
log2 T
T

� J.b C 2; T / � J.b; T / �

�
15

4
LC C o.1/

�
log2 T
T

(3.6)

as T !1. The constants in (3.6) are 2
3

L� D 0:6018 : : : and 15
4

LC D 4:026 : : : . For large ˇ,
inequality (3.4) in Corollary 15 implies that, in (1.4), D� can be taken to be any constant
less than L�.1C c0

3
/ D 0:8374 : : : while DC can be taken to be any constant greater than

4
3

LC D 1:431 : : : . These values are substantially closer to the conjectured value 1. We now
establish the further small improvement proposed in Theorem 3 and Corollary 4.

Proof of Theorem 3 and Corollary 4. From Theorem 14 and Theorem 1, we see that, for
large ˇ, the value DC in (1.4) can be taken to be any constant greater than LCCC. We have
shown that LCCC < LC.1:3302/ < 1:4283. Similarly, Theorem 14 and Theorem 1 show that
the value D� in (1.4) can be taken to be any constant less than L�C�. We have showed that
L�C� > L�.0:9278/ > 0:8376. This completes the proof.

Proof of Theorem 14. We partially follow the idea developed by Goldston and Gonek
in [15]. Throughout the proof let

0 � a1 < a2 < a3 < a4

be fixed real numbers (that will be conveniently specialized later). We let

g WD ga1;a2;a3;a4 W R! C

be a Schwartz function verifying

jbgj � 1 on R; supp.bg/ � Œa1; a4�; bg � 1 on Œa2; a3�:

Then, from definition (1.1), we plainly see that

J.a3; T / � J.a2; T / �

Z 1
1

�
 

�
x C

x

T

�
�  .x/ �

x

T

�2 ˇ̌̌̌bg� log x
logT

�ˇ̌̌̌2 dx
x2

(3.7)

� J.a4; T / � J.a1; T /:

From [15, equation (8)], with e2� D 1C 1
T

, we haveZ 1
1

�
 

�
x C

x

T

�
�  .x/ �

x

T

�2 ˇ̌̌̌bg� log x
logT

�ˇ̌̌̌2 dx
x2

(3.8)

D
2

�
log2 T

Z 1
0

�
sin.�t/
t

�2�ˇ̌̌̌X



g

�
.t � 
/

logT
2�

�ˇ̌̌̌2
C

ˇ̌̌̌X



g

�
.
 � t /

logT
2�

�ˇ̌̌̌2�
dt CO

�
1

T

�
:

The implicit constant in the error term above may, in principle, depend on the function g. From
now on let us write

f .t; �/ WD

ˇ̌̌̌X



g

�
.t � 
/

log �
2�

�ˇ̌̌̌2
C

ˇ̌̌̌X



g

�
.
 � t /

log �
2�

�ˇ̌̌̌2
:
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Using [14, equations (5.1), (5.2) and (5.3)],2) we getZ T

0

f .t; �/ dt D 2T
Z 1
0

F.˛; T / jbg.˛/j2 d˛ C o.T /;

uniformly for � log�3 � � T � � log3 �. In this range of T and �, using our assumptions onbg
and the fact that F � 0, we arrive at�

2 lim inf
�!1

Z a3

a2

F.˛; �/ d˛ C o.1/
�
T �

�
2

Z a3

a2

F.˛; T / d˛ C o.1/
�
T(3.9)

�

Z T

0

f .t; �/ dt

�

�
2

Z a4

a1

F.˛; T / d˛ C o.1/
�
T

�

�
2 lim sup
�!1

Z a4

a1

F.˛; �/ d˛ C o.1/
�
T:

Upper bound. From the fast decay of g and the classical estimate for the number of
zeros in an interval, one can show that f .t; �/� log2.t C 2/ (see, for instance, [15, p. 618]).
Then, by (3.9) and Lemma 13 (i), we obtainZ 1

0

�
sin.�t/
t

�2
f .t; �/ dt �

�
2 lim sup
�!1

Z a4

a1

F.˛; �/ d˛ C o.1/
�
�

2
LC �(3.10)

as � ! 0, for � � 1
�

. Choosing � D T in (3.10), and combining with (3.7) and (3.8) (recall
that � D 1

2T
.1C o.1//), we get

J.a3; T / � J.a2; T / �

�
lim sup
�!1

Z a4

a1

F.˛; �/ d˛ C o.1/
�

LC
log2 T
T

as T !1. At this point we can take a3 D ˇ, a2 D b, a1 ! a�2 and a4 ! aC3 to conclude.

Lower bound. By (3.9) and Lemma 13 (ii) we haveZ 1
0

�
sin.�t/
t

�2
f .t; �/ dt �

�
2 lim inf
�!1

Z a3

a2

F.˛; �/ d˛ C o.1/
�
�

2
L� �(3.11)

as � ! 0, for � � 1
�

. As before, choosing � D T in (3.11) and combining with (3.7) and (3.8),
we get

J.a4; T / � J.a1; T / �

�
lim inf
�!1

Z a3

a2

F.˛; �/ d˛ C o.1/
�

L�
log2 T
T

as T !1. We now take a4 D ˇ, a1 D b, a2 ! aC1 and a3 ! a�4 to conclude.

4. The second moment of the logarithmic derivative of �.s/

4.1. Preliminaries. We start by presenting some auxiliary tools for the upcoming proof
of Theorem 5.

2) See also [15, equation (7)], where there seems to be a typo and the lower endpoint of the integral should
be zero.
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4.1.1. Relating I.a; T / to the Poisson kernel. Our starting point for the proof of
Theorem 5 is a result of Goldston, Gonek and Montgomery which, assuming RH, relates the
integral I.a; T / to the Poisson kernel

(4.1) hb.x/ WD
b

b2 C x2
:

Lemma 16. Assume RH and let 0 < a �
p

logT . Then

I.a; T / D logT
X

0<
;
 0�T

ha=�

�
.
 � 
 0/

logT
2�

�
w.
 � 
 0/ �

1

2

Z T

1

log2
�
t

2�

�
dt

CO

�
log4 T
a2

�
CO.aT logT /;

where w.u/ D 4
4Cu2

.3)

Proof. This formula is stated in [16, Theorem 1] without the weight function w.
 � 
 0/
in the double sum over zeros and with the constraint 0 < a� 1. The proof in [16] goes through
unchanged with the condition 0 < a �

p
logT and a calculation in [16, Section 2, p. 115]

shows that the factor w.
 � 
 0/ can be added at the expense of a term that isO.aT logT /.

4.1.2. Extremal bandlimited approximations. Our argument for the upper bound for
the second moment of the logarithmic derivative of �.s/ is related to the following extremal
problem in Fourier analysis.

Extremal Problem 7 (EP7). Fix b > 0 and let hb.x/ be the Poisson kernel defined
in (4.1). Find a continuous and integrable function mb W R! R such that

(i) hb.x/ � mb.x/ for all x 2 R,

(ii) supp.cmb/ � Œ�1; 1�,
(iii)

R
R

�
mb.x/ � hb.x/

�
dx is as small as possible.

This is called the Beurling–Selberg majorant problem (for the function hb). As discussed
in [5, Lemma 9], the solution of this particular problem comes from the general Gaussian
subordination framework of Carneiro, Littmann and Vaaler [7]. Such an extremal function
exists and is unique, being given by

mb.x/ D

�
b

b2 C x2

��
e2�b C e�2�b � 2 cos.2�x/

.e�b � e��b/2

�
:

Its Fourier transform is given by

bmb.˛/ D �

2

sinh.2�b.1 � j˛j//
.sinh.�b//2

�Œ�1;1�.˛/:

3) The weight function w.u/ D 2h2.u/ is also a Poisson kernel, but we keep Montgomery’s notation w.u/
to illustrate the connection to the Fourier inversion formula (1.5).
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4.1.3. A weighted integral of F.˛/. For the lower bound in Theorem 5 we shall use
a different approach rather than bandlimited approximations. Following Goldston [13, Sec-
tion 7], we define the function

I .�/ D

Z �

1

.� � ˛/F.˛/ d˛

and we observe that I 00.�/ D F.�/ for � � 1. The following lemma gives a non-trivial lower
bound for I .�/ when � � 1C 1p

3
.

Lemma 17. Assume RH. Then, as T !1, we have

I .�/ >
�2

2
� � C

1

3
CO

�
�2

s
log logT

logT

�
uniformly for � � 1.

Proof. This is a slight refinement of [3, Lemma 17], using (1.6) in the proof that appears
there.

4.2. Proof of Theorem 5.

4.2.1. Upper bound. We use the special function mb.x/ and Lemma 16. Since bmb.˛/
and F.˛/ are even and supp.bmb/ � Œ�1; 1�, by (1.5) and (1.6) we haveX

0<
;
 0�T

ha=�

�
.
 � 
 0/

logT
2�

�
w.
 � 
 0/

�

X
0<
;
 0�T

ma=�

�
.
 � 
 0/

logT
2�

�
w.
 � 
 0/

D
T logT
2�

Z 1

�1

bma=�.˛/ F.˛/ d˛

D T logT
²Z 1

0

sinh.2a.1 � ˛//
2 .sinh a/2

�
˛ C T �2˛ logT

��
1CO

�s
log logT

logT

��
d˛
³

D T logT
²

coth a
4a2

�
.csch a/2

4a
C

coth a
2
CO

��
1

a
C 1

�s
log logT

logT

�³
;

where the big-O term is obtained by using the fact that 0 < a �
p

logT . SinceZ T

1

log2
�
t

2�

�
dt D T log2 T CO

�
T logT

�
;

the upper bound in Theorem 5 now follows from Lemma 16 by using the additional constraints

(4.2)
.logT /5=2

T
� a �

.logT /1=4

.log logT /1=2

and the fact that UC.a/ D 2
3a
�
1
2
CO.a/ as a! 0C and UC.a/ � 1

4a2
as a!1, in order

to group the error terms.
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4.2.2. Lower bound. We now use Lemmas 16 and 17. Sincebhb.˛/ D �e�2�bj˛j, by
(1.5), (1.6), and the fact that F.˛/ is even, we haveX

0<
;
 0�T

ha=�

�
.
 � 
 0/

logT
2�

�
w.
 � 
 0/

D
T logT
2�

Z 1
�1

bha=�.˛/ F.˛/ d˛

D T logT
²Z 1

0

e�2a˛
�
˛ C T �2˛ logT

��
1CO

�s
log logT

logT

��
d˛

C

Z 1
1

e�2a˛ F.˛/ d˛
³

D T logT
²
1 � .1C 2a/ e�2a

4a2
C
1

2
CO

�s
log logT

logT

�
C

Z 1
1

e�2a˛ F.˛/ d˛
³
;

where the big-O term is obtained by using the fact that 0 < a �
p

logT . To estimate the
integral from 1 to1, we integrate by parts twice (from the work of Goldston [13, Section 7]
we have I 0.�/ D O.�/ and I .�/ D O.�2/ for � � 1). Since I .1/ D I 0.1/ D 0 and I .˛/ � 0

for ˛ � 1, we apply Lemma 17 to deduce thatZ 1
1

e�2a˛ F.˛/ d˛ D 4a2
Z 1
1

I .˛/ e�2a˛ d˛

� 4a2
Z 1
1C 1p

3

�
˛2

2
� ˛ C

1

3

�
e�2a˛ d˛

CO

�
a2

s
log logT

logT

Z 1
1C 1p

3

˛2 e�2a˛ d˛
�

D

�
1

2a
C

1
p
3

�
e
�2a.1C 1p

3
/
CO

�
1

a

s
log logT

logT

�
:

Again since Z T

1

log2
�
t

2�

�
dt D T log2 T CO

�
T logT

�
;

the lower bound in Theorem 5 now follows from Lemma 16 by using the additional constraints
in (4.2) and the fact that U�.a/ D 1

2a
�
1
2
CO.a2/ as a! 0C and U�.a/ � 1

4a2
as a!1,

in order to group the error terms. This concludes the proof.

A. Minima of Dirichlet kernels

Complementing the discussion in Section 2.3.1, we present a brief proof of inequal-
ity (2.37). Let m.n/ as in (2.35) and c0 as in (2.36).

Proposition 18. For each n 2 N, the following bounds hold:

2c0 �
2� � 1

n
�

m.n/

n
� 2c0 C

5:4935

n
:
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Proof. We rewrite (2.34) as

Dn.x/ D 1C 2n

nX
kD1

cos
�
xn
k

n

�
1

n
:

Using the mean value theorem, we get, for x � 0,ˇ̌̌̌
ˇ
nX
kD1

cos
�
xn
k

n

�
1

n
�

Z 1

0

cos.xnt/ dt

ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇ
nX
kD1

cos
�
xn
k

n

�
1

n
�

nX
kD1

Z k
n

k�1
n

cos.xnt/ dt
ˇ̌̌̌

�

nX
kD1

ˇ̌̌̌Z k
n

k�1
n

�
cos
�
xn
k

n

�
� cos.xnt/

�
dt
ˇ̌̌̌

�

nX
kD1

Z k
n

k�1
n

xn

�
k

n
� t

�
dt D

x

2
:

Therefore,

1

n
C
2 sin.nx/
nx

� x �
Dn.x/

n
�
1

n
C
2 sin.nx/
nx

C x:(A.1)

Let x1 D 4:49340 : : : be the unique real positive number such that

c0 D min
x2R

sin x
x
D

sin x1
x1
D �0:21723 : : : :

Plugging xn D x1
n

in (A.1), we obtain

m.n/

n
�
Dn.xn/

n
�
1

n
C
2 sin.nxn/
nxn

C xn D
1

n
C
2 sin.x1/
x1

C
x1

n
� 2c0 C

5:4935

n
:

On the other hand, using the fact that Dn.x/ is an even periodic function with period 2� , it
follows that m.n/ D minx2Œ0;��Dn.x/. Let � 2 Œ0; �� be a real number where such minimum
is attained. If 2�

2nC1
� � � 4�

2nC1
, using (A.1) we get

m.n/

n
D
Dn.�/

n
�
1

n
C 2c0 �

4�

2nC 1
> 2c0 �

.2� � 1/

n
:

If 6�
2nC1

� � � � , using the fact that sin t � 2t
�

for t 2 Œ0; �
2
� we have

m.n/

n
D
Dn.�/

n
D

sin
�
.nC 1

2
/�
�

n sin
� �
2

� �
�1

n sin
� �
2

� � � �
n�
� �

2nC 1

6n
> 2c0 �

2� � 1

n
:

Finally, in the cases 0 � � < 2�
2nC1

or 4�
2nC1

< � < 6�
2nC1

, it is clear that Dn.�/ � 0, and such
points will not be points where the global minimum is attained. This concludes the proof.

B. Hilbert spaces and pair correlation

B.1. Sharp equivalence of norms. We conclude by revisiting a result of [3], a paper
that provides a study of the pair correlation of zeros of zeta via the framework of Hilbert
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spaces of entire functions. Let us first recall some basic terminology. For � > 0 we say that
an entire function f W C ! C has exponential type at most 2�� if, for all " > 0, there exists
a positive constant C" such that jf .z/j � C" e.2��C"/jzj for all z 2 C. Let B2.��/ be the
classical Paley–Wiener space, i.e. the Hilbert space of entire functions of exponential type at
most �� with norm

kf k2 D

�Z 1
�1

jf .x/j2 dx
� 1
2

<1:

Functions in B2.��/ have Fourier transforms supported in the interval Œ��
2
; �
2
� (by the Paley–

Wiener theorem). For a survey on such spaces, their interpolation formulas and some classical
applications to analytic number theory we refer the reader to the work of J. D. Vaaler [24].

Write

d�.x/ D
²
1 �

�
sin�x
�x

�2³
dx

for the pair correlation measure and denote by B2.�; �/ the normed vector space of entire
functions f of exponential type at most � with norm

kf kL2.d�/ D

�Z 1
�1

jf .x/j2 d�.x/
� 1
2

<1:

Using the uncertainty principle for the Fourier transform, it was shown in [3, Lemma 12] that
the vector spaces B2.�/ and B2.�; �/ are the same (as sets), with the norms being equivalent.
That is, there is a universal constant D > 0 such that

(B.1) D kf k2 � kf kL2.d�/ � kf k2

whenever f 2 B2.�/. In particular, B2.�; �/ is also a Hilbert space. It should be clear that
the inequality on the right-hand side of (B.1) is sharp and that there are no extremizers. In
fact, given any f0 2 B2.�/, the sequence fn.z/ WD f0.z � n/ is an extremizing sequence as
n!1. In this appendix we discuss the problem of finding the value of the sharp constant D.

Extremal Problem 8 (EP8). Find

D2 WD inf
f 2B2.�/
f¤0

kf k2
L2.d�/

kf k22
D inf
g2A0
g¤0

�.g/ � g.0/bg.0/ :(B.2)

Remark. We comment briefly on the equality between the infima above, as it relates to
the class A0 defined in Section 2.1, the quantity �.g/ defined in (2.1) (which is equal to (2.3)
in this case), and some of the other extremal problems that have been considered in this paper.
This is essentially a consequence of the Paley–Wiener theorem and Krein’s decomposition
[1, p. 154]: a continuous and non-negative function g 2 L1.R/ has supp.bg/ � Œ�1; 1� if and
only if it is the restriction to R of an entire function of exponential type 2� (that we keep calling
g.z/) and g.z/ D f .z/f .z/ for some f 2 B2.�/. The fact that we can restrict the search on
the right-hand side of (B.2) to even functions comes from a standard symmetrization procedure:
if g is not even, we can consider h.x/ D 1

2
.g.x/C g.�x// without affecting the ratio.

Finding the sharp forms of embeddings between function spaces is usually a rich and
non-trivial problem in analysis. As we shall see, extremal problem (EP8) has a particularly
intriguing answer.



36 Carneiro, Chandee, Chirre and Milinovich, A tale of three integrals

Theorem 19. We have

D2 D 1 �
1

2�2�2
D 0:3244 : : : ;

where 0 < � < 1
2

is the unique solution of

.��/ tan.��/ D 1 .� D 0:27385 : : : /:

Moreover, there is a unique (up to multiplication by a non-zero complex constant) extremal
function f 2 B2.�/ such that kf kL2.d�/=kf k2 D D, namely

(B.3) f .z/ D
sin�.z C �/
�.z C �/

C
sin�.z � �/
�.z � �/

:

The proof we present here is based of functional analysis and variational calculus con-
siderations. We first establish the existence of an extremizer and then study the corresponding
Euler-Lagrange equation that arises on the Fourier side.4) These methods are also applicable in
determining the sharp embeddings between Hilbert spaces naturally associated to families of
L-functions; see [6, Appendix].

B.2. Proof of Theorem 19.

B.2.1. Existence of extremizers. The first step is to show that there exists f 2 B2.�/

that extremizes (B.2) (i.e. such that kf kL2.d�/=kf k2 D D). As we have argued in (B.2) and
the remark thereafter, it is enough to find an extremizer in the class A0 defined in Section 2.1
for

(B.4) 1 � D2 WD sup
g2A0
g¤0

R1
�1

g.x/
� sin�x
�x

�2 dxR1
�1

g.x/ dx
:

Let ¹gnºn�1 � A0 be an extremizing sequence for (B.4), normalized so that kgnk1 D 1 for
all n. Hence, Z 1

�1

gn.x/

�
sin�x
�x

�2
dx ! 1 � D2

as n!1. Recall that supp.bgn/ � Œ�1; 1� and that kbgnk1 D bgn.0/ D kgnk1 D 1. Therefore
kbgnk22 � 2kbgnk21 � 2, and we see that ¹gnºn�1 is a bounded sequence in B2.2�/. By reflexiv-
ity, passing to a subsequence if necessary, we may assume that gn converges weakly to a certain
g] 2 B2.2�/. In particular,

1 � D2 D lim
n!1

Z 1
�1

gn.x/

�
sin�x
�x

�2
dx D

Z 1
�1

g].x/

�
sin�x
�x

�2
dx;(B.5)

and hence g] ¤ 0. Since B2.2�/ is a reproducing kernel Hilbert space, we also have the
pointwise convergence

lim
n!1

gn.y/ D lim
n!1

Z 1
�1

gn.x/
sin 2�.y � x/
�.y � x/

dx D
Z 1
�1

g].x/
sin 2�.y � x/
�.y � x/

dx D g].y/

4) In the arxiv version of this paper https://arxiv.org/abs/2108.09258 we present an alternative
proof of this result using interpolation formulas and working mainly on the entire function side.

https://arxiv.org/abs/2108.09258


Carneiro, Chandee, Chirre and Milinovich, A tale of three integrals 37

for all y 2 R. Hence g] is even and non-negative on R. Moreover, by Fatou’s lemma, it follows
that

(B.6) kg]k1 � lim inf
n!1

kgnk1 D 1;

which implies that g] 2 A0. From (B.5) and (B.6), we see that this particular g] is an extrem-
izer for (B.4).

B.2.2. Solving the Euler–Lagrange equation. For a generic 0 ¤ h 2 B2.�/ let us
write

(B.7) ˆ.h/ D

R1
�1
jh.x/j2

� sin�x
�x

�2 dxR1
�1
jh.x/j2 dx

:

For instance, for h.x/ D sin�x
�x

, we have ˆ.h/ D 2
3

. Let 0 ¤ f 2 B2.�/ be a maximizer
for (B.7), normalized so that kf k2 D 1. That is,

ˆ.f / D 1 � D2:

In what follows let us write K1.x/ D . sin�x
�x

/2, recalling our notation (2.23). For any func-
tion h 2 B2.�/ with khk2 D 1 and h ? f , we have ˆ.f C "h/ � ˆ.f / for any " 2 R, with
equality if " D 0. Therefore

0 D
à
à"
ˆ.f C "h/

ˇ̌̌
"D0
D 2Re

�Z 1
�1

f .x/h.x/K1.x/ dx
�
:

Similarly, for " 2 R,

0 D
à
à"
ˆ.f C i"h/

ˇ̌̌
"D0
D 2 Im

�Z 1
�1

f .x/h.x/K1.x/ dx
�
:

We then conclude that

0 D

Z 1
�1

f .x/K1.x/h.x/ dx D
Z 1
�1

�bf � cK1�.˛/bh.˛/ d˛:

Since this holds for any function h with h ? f in B2.�/, the function bf must verify the
following Euler–Lagrange equation:

(B.8)
�bf � cK1��Œ� 1

2
; 1
2
� D �

bf ;
as functions in L2Œ�1

2
; 1
2
�, for some � 2 C. At this point observe that (B.8) yields

1 � D2 D ˆ.f / D
Z 1
�1

�bf � cK1�.˛/bf .˛/ d˛ D �:

Hence � 2 R and we have seen that 1 > � � 2
3

.
Since the left-hand side of (B.8) is continuous in Œ�1

2
; 1
2
�, we may assume that bf is

continuous in Œ�1
2
; 1
2
� and hence�bf � cK1�.˛/ D Z 1

�1

bf .�/cK1.˛ � �/ d� D �bf .˛/(B.9)

for all ˛ 2 Œ�1
2
; 1
2
�. Since cK1 is a Lipschitz function, the integral in (B.9) (as a function of ˛) is

differentiable for all ˛ 2 .�1
2
; 1
2
/. Recalling that .cK1/0.˛/ D �.�1;0/.˛/ � �.0;1/.˛/, and that
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supp.bf / � Œ�1
2
; 1
2
�, we have

�

Z ˛

� 1
2

bf .�/ d� C
Z 1

2

˛

bf .�/ d� D � .bf /0.˛/ �
˛ 2

�
�
1
2
; 1
2

��
:(B.10)

The left-hand side of (B.10) is again differentiable in ˛, and an application of the fundamental
theorem of calculus now yields

�2bf .˛/ D � .bf /00.˛/ �
˛ 2

�
�
1
2
; 1
2

��
:

The general solution of this linear differential equation is

bf .˛/ D �Aei˛q 2
� C B e

�i˛
q
2
�

�
�.� 1

2
; 1
2
/.˛/;

where A;B 2 C. Plugging this back into (B.10), we find the relation

cos
�

1
p
2�

�
.A � B/ D 0:

Since � � 2
3
> 2
�2

, we have cos. 1p
2�
/ > 0 and therefore A D B ¤ 0. Evaluating (B.9) at

˛ D 0, we arrive at the condition �
1
p
2�

�
tan
�

1
p
2�

�
D 1;(B.11)

that determines our � uniquely (� D 0:67551 : : :). Finally, the normalization kbf kL2Œ� 1
2
; 1
2
� D 1

together with (B.11) yields the value jAj D ..2�C 1/=.8�C 2//
1
2 .

In sum, our extremal function is unique (up to multiplication by a complex number) and
its Fourier transform, with the substitution � D .2�2�/�

1
2 , is given bybf .˛/ D 2A cos.2�� ˛/ �.� 1
2
; 1
2
/.˛/;

which, by Fourier inversion, leads us to (B.3).
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