
1. Apply behavior classifier for scalability.

Human Annotation

Classifier A
781k annotations

Classifier B
80k annotations +

10 programs

Base Classifier
80k annotations

+10
programs

Classifier
B

Base
Classifier

+701k
annotations Classifier

A

2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Task Programming: Learning Data Efficient Behavior Representations

20
21

 IE
E

E
/C

V
F

C
on

fe
re

nc
e

on
 C

om
pu

te
r V

is
io

n
an

d
Pa

tte
rn

 R
ec

og
ni

tio
n

(C
V

PR
) |

 9
78

-1
-6

65
4-

45
09

-2
/2

1/
$3

1.
00

 ©
20

21
 IE

E
E

 |
D

O
I:

 1
0.

11
09

/C
V

PR
46

43
7.

20
21

.0
02

90

Jennifer J. Sun
1

 Ann Kennedy
2

 Eric Zhan
1

 David J. Anderson
1

 Yisong Yue
1

 Pietro Perona
1

1

Caltech
2
Northwestern University

Code & Project Website: https://sites.google.com/view/task-programming

Abstract

Specialized domain knowledge is often necessary to ac-
curately annotate training sets for in-depth analysis, but
can be burdensome and time-consuming to acquire from do-
main experts. This issue arises prominently in automated
behavior analysis, in which agent movements or actions of
interest are detected from video tracking data. To reduce
annotation effort, we present TREBA: a method to learn
annotation-sample efficient trajectory embedding for be-
havior analysis, based on multi-task self-supervised learn-
ing. The tasks in our method can be efficiently engineered
by domain experts through a process we call “task program-
ming”, which uses programs to explicitly encode structured
knowledge from domain experts. Total domain expert effort
can be reduced by exchanging data annotation time for the
construction of a small number of programmed tasks. We
evaluate this trade-off using data from behavioral neuro-
science, in which specialized domain knowledge is used to
identify behaviors. We present experimental results in three
datasets across two domains: mice and fruit flies. Using
embeddings from TREBA, we reduce annotation burden by
up to a factor of 10 without compromising accuracy com-
pared to state-of-the-art features. Our results thus suggest
that task programming and self-supervision can be an ef-
fective way to reduce annotation effort for domain experts.

1. Introduction

Behavioral analysis of one or more agents is a core el-
ement in diverse fields of research, including biology [36,
26], autonomous driving [6, 39], sports analytics [42, 43],
and video games [20, 3]. In a typical experimental work-
flow, the location and pose of agents is first extracted
from each frame of a behavior video, and then labels for
experimenter-defined behaviors of interest are applied on a
frame-by-frame basis based on the pose and movements of
the agents. In addition to reducing human effort, automated
quantification of behavior can lead to more objective, pre-

Correspondence to jjsun@caltech.edu.

1. Record videos and extract tracking data.

Figure 1. Overview of our approach. Part 1: A typical behavior
study starts with extraction of tracking data from videos. We show
7 keypoints for each mouse, and draw the trajectory of the nose
keypoint. Part 2: Domain experts can either do data annotation
(Classifier A) or task programming (Classifier B) to reduce classi-
fier error. The middle panel shows annotated frames at 30Hz. Col-
ors in the bottom plot represent interpolated performance based on
classifier error at the circular markers (full results in Section 4.3).
The size of the marker represents the error variance.

cise, and scalable measurements compared to manual anno-
tation [1, 10]. However, training behavior detection models
can be data intensive and manual behavior annotation often
requires specialized domain knowledge and high-frequency
temporal labels. As a result, this process of generating train-
ing datasets is time-consuming and effort-intensive for ex-
perts. Therefore, methods to reduce annotation effort by
domain experts are needed to accelerate behavioral studies.

We study alternative ways for domain experts to improve

978-1-6654-4509-2/21/$31.00 ©2021 IEEE 2875
DOI 10.1109/CVPR46437.2021.00290

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 06,2022 at 18:38:28 UTC from IEEE Xplore. Restrictions apply.

classifier accuracy beyond simply increasing the sheer vol-
ume of annotations. In particular, we propose a framework
that unifies: (1) self-supervised representation learning, and
(2) encoding explicit structured knowledge on trajectory
data using expert-defined programs. Domain experts can
construct these programs efficiently because keypoint tra-
jectories in each frame are typically low dimensional, and
experts can already hand-design effective features for tra-
jectory data [36, 28]. To best leverage this structured ex-
pert knowledge, we develop a framework to learn trajectory
representations based on multi-task self-supervised learn-
ing, which has not been well-explored for trajectory data.

Our Approach. Our framework, Trajectory Embedding
for Behavior Analysis (TREBA), learns trajectory represen-
tations through trajectory generation alongside a set of de-
coder tasks based on expert-engineered programs. These
programs are created by domain experts through a process
we call task programming, inspired by the data program-
ming paradigm [33]. Task programming is a process by
which domain experts identify trajectory attributes relevant
to the behaviors of interest under study, write programs,
and apply those programs to inform representation learn-
ing (Section 3.2). This flexibility in decoder tasks allows
our framework to be applicable to a variety of agents and
behaviors studied across diverse fields of research.

Expert Effort Tradeoffs. Since task programming will
typically require a domain expert’s time, we study the trade-
off between doing task programming and data annotation.
We compare behavior classification performance with dif-
ferent amounts of annotated training data and programmed
tasks. For example, for the domain illustrated in Figure 1,
domain experts can reduce error by 13% relative to the base
classifier by annotating 701k additional frames, or they can
reduce error by 16% by learning a representation using 10
programmed tasks in our framework. Our approach allows
experts to trade a large number of annotations for a small
number of programmed tasks.

We study our approach across two domains in behavioral
neuroscience, namely mouse and fly behavior. We chose
this setting because it requires specialized domain knowl-
edge for data annotation, and data efficiency is important for
domain experts. Furthermore, decoder tasks in our frame-
work can be efficiently programmed by experts based on
simple functions describing trajectory attributes for identi-
fying behaviors of interest. For example, for mouse social
behaviors such as attack [36], important behavior attributes
include the speed of each mouse and distance between mice.
The corresponding task could then be to decode these at-
tributes from the learned representations.

Our contributions are:

• We introduce task programming as an efficient way for
domain experts to reduce annotation effort and encode
structural knowledge. We develop a novel method to

learn an annotation-sample efficient trajectory repre-
sentation using self-supervision and programmatic su-
pervision.

• We study the effect of task programming, data annota-
tion, and different decoder losses on behavior classifier
performance.

• We demonstrate these representations on three datasets
in two domains, showing that our method can lead to a
10× annotation reduction for mice, and 2× for flies.

2. Related Work

Behavior Modeling. Behavior modeling using trajec-
tory data is studied across a variety of fields [26, 6, 39,
42, 20, 3]. In particular, there is an increasing effort to
automatically detect and classify behavior from trajectory
data [23, 1, 14, 27, 13, 36]. Our experiments are based
on behavior classification datasets from behavioral neuro-
science [15, 4, 36], a field where specialized domain knowl-
edge is important for identifying behaviors of interest.

The behavior analysis pipeline generally consists of the
following steps: (1) tracking the pose of agents, (2) com-
puting pose-based features, and (3) training behavior classi-
fiers [4, 21, 36, 28]. To address step 1, there are many exist-
ing pose estimation models [15,27, 18, 36]. In our work, we
leverage two existing pose models, [36] for mice and [15]
for flies, to produce trajectory data. In steps 2 and 3 of the
typical behavior analysis pipeline, hand-designed trajectory
features are computed from the animals’ pose, and classi-
fiers are trained to predict behaviors of interest in a fully
supervised fashion [4, 21, 15, 36]. Training fully super-
vised behavior classifiers requires time-consuming annota-
tions by domain experts [1]. Instead, our proposed approach
enables domain experts to trade time-consuming annotation
work for task programming with representation learning.

Another group of work uses unsupervised methods to
discover new motifs and behaviors [22, 41, 2, 26, 5]. Our
work focuses on the more common case where domain ex-
perts already know what types of actions they would like
to study in an experiment. We aim to improve the data-
efficiency of learning expert-defined behaviors.

Representation Learning. Visual representation learn-
ing has made great progress in effective representations
for images and videos [17, 16, 7, 29, 25, 19, 38]. Self-
supervised signals are often used to train this visual rep-
resentation, such as learning relative positions of image
patches [11], predicting image rotations [16], predicting fu-
ture patches [29], and constrastive learning on augmented
images [7]. Compared to visual data, trajectory data is sig-
nificantly lower dimensional in each frame, and techniques
from visual representation learning often cannot be applied
directly. For example, while we can create image patches
that represent the same visual class, it is difficult to select

2876

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 06,2022 at 18:38:28 UTC from IEEE Xplore. Restrictions apply.

Feature
Extraction

Model
Training

Classifier
Training

Examine trajectory data

Task Programming

Select behavior attributes

Speed

Distance

dist_nose(x1, y1, x2, y2):
x_diff =x2 - x1
y_diff = y2 - y1
dist = norm(x_diff, y_diff)

Write programs Add decoder task

Data Annotation

Mount Sniff Other

Annotate frame-level
behavior

Domain Expert

Figure 2. Task Programming and Data Annotation for Classifier Training. Domain experts can choose between doing task program-
ming and/or data annotation. Task programming is the process for domain experts to engineer decoder tasks for representation learning.
The programs enable learning of annotation-sample efficient trajectory features to improve performance instead of additional annotations.

a partial set of keypoints that represent the same behavior.
Our framework builds upon these approaches to learn effec-
tive representations for behavioral data.

We investigate different decoder tasks in order to learn
an effective behavior representation. One decoder task that
we investigate is self-decoding: the reconstruction of input
trajectories using generative modeling. Generative model-
ing has previously been applied to learn representations for
visual data [45, 38, 29] and language modeling [31]; for tra-
jectory data, we use imitation learning [40, 44, 43] to train
our trajectory representation. The other tasks in our multi-
task self-supervised learning framework are created by do-
main experts using task programming (Section 3.2). This
idea of using a human-provided function as part of train-
ing has been studied for training set creation [33, 32], and
controllable trajectory generation [43]. Our work explores
these additional decoder tasks to further improve the learned
representation over the generative loss alone.

Multi-Task Self-Supervised Learning. We jointly op-
timize a family of self-supervised tasks in an encoder-
decoder setup, making this work an example of multi-
task self-supervised learning. Multi-task self-supervised
learning has been applied to other domains such as visual
data [12, 25], accelerometer recordings [35], audio [34] and
multi-modal inputs [37, 30]. Generally in each of these do-
mains, tasks are defined ahead of time, as is the case for
tasks such as frame reconstruction, colorization, finding rel-
ative position of image patches, and video-audio alignment.
Most of these tasks are designed for image or video data,
and cannot be applied directly to trajectory data. To con-
struct tasks for trajectory representation learning, we pro-
pose that domain experts can use task programming to en-
gineer decoder tasks and encode structural knowledge.

3. Methods

We introduce Trajectory Embedding for Behavior
Analysis (TREBA), a method to learn an annotation-sample

efficient trajectory representation using self-supervision and
auxiliary decoder tasks engineered by domain experts. Fig-
ure 2 provides an overview of the expert’s role. In our
framework, domain experts replace (a significant amount
of) time-consuming manual annotation with the construc-
tion of a small number of programmed tasks, reducing total
expert effort. Each task places an additional constraint on
the learned trajectory embedding.

TREBA uses the expert-programmed tasks based on a
multi-task self-supervised learning approach, outlined in
Figure 3. To learn task-relevant low-dimensional represen-
tations of pose trajectories, we train a network jointly on
(1) reconstruction of the input trajectory (Section 3.1) and
(2) expert-programmed decoder tasks (Section 3.3). The
learned representation can then be used as input to behavior
modeling tasks, such as behavior classification.

3.1. Trajectory Representations

Let D be a set of N unlabelled trajectories. Each tra-
jectory τ is a sequence of states τ = { (st)}Tt=1, where the
state si at timestep i corresponds to the location or pose of
the agents at that timestep. In this study, we divide trajecto-
ries from longer recordings into segments of length T , but
in general trajectory length can vary. For multiple agents,
the keypoints of each agent is stacked at each timestep.

Before we introduce our expert-programmed tasks,
we will use trajectory reconstruction as an initial self-
supervised task. Given a history of agent states, we would
like our model to predict the next state. This task is usually
studied with sequential generative models. We used trajec-
tory variational autoencoders (TVAEs) [9,43] to embed the
input trajectory using an RNN encoder, qφ, and an RNN
decoder, pθ, to predict the next state. The TVAE loss is:

[T ~

Ltvae = Eqφ − log(pθ (s t+1 st , Z))
t=1

+DKL (qφ (Z τ) pθ (Z)).

(1)

2877

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 06,2022 at 18:38:28 UTC from IEEE Xplore. Restrictions apply.

Trajectory
Recon. Loss For each program For each timestamp t Train

Attribute
Consistency

Loss

Trajectory
Data

Inference

Embedding State at time t Trajectory State
Decoder Prediction

Generated
Trajectory

Attribute
Decoding

Loss

Trajectory
Encoder

Attribute Decoder

Contrastive
Loss

Trajectory
Data

Trajectory
Encoder

Embedding Downstream Model
(ex Behavior Classifier)

Representation Decoder

Domain
Mouse

Fly

Facing Angle Mouse 1 and 2, Speed Mouse 1 and 2
Nose-Nose Distance, Nose-Tail Distance,

Head-Body Angle Mouse 1 and 2
Nose Movement Mouse 1 and 2

Speed Fly 1 and 2, Fly-Fly Distance
Angular Speed Fly 1 and 2, Facing Angle Fly 1 and 2

Min and Max Wing Angles Fly 1 and 2
Major/Minor Axis Ratio Fly 1 and 2

Behavior Attributes

Figure 3. TREBA Training and Inference Pipelines. During training, we use trajectory self-decoding and the programmed decoder tasks
to train the trajectory encoder. The learned representation is used for downstream tasks such as behavior classification.

We use a prior distribution p (z) on z to regularize the
learned embeddings; in this study, our prior is the unit Gaus-
sian. By optimizing for the TVAE loss only, we learn an
unsupervised version of TREBA. When performing subse-
quent behavior modeling tasks such as classification, we use
the embedding mean, zµ.

3.2. Task Programming

Task programming is the process by which domain
experts create decoder tasks for trajectory self-supervised
learning. This process consists of selecting attributes from
trajectory data, writing programs, and creating decoder
tasks based on the programs (Figure 2). Here, domain ex-
perts are people with specialized knowledge for studying
behavior, such as neuroscientists or sports analysts.

To start, domain experts identify attributes from trajec-
tory data relevant to the behaviors of interest under study.
Behavior attributes capture information that is likely rele-
vant to agent behavior, but is not explicitly included in the
trajectory states { (st)}t

1. These attributes represent struc-
tured knowledge that domain experts are implicitly or ex-
plicitly considering for behavior analysis, such as the dis-
tance between two agents, agent velocity, or the relative po-
sitioning of agent body parts.

Next, domain experts write a program to compute these
attributes on trajectory data, which can be done with exist-
ing tools such as MARS [36] or SimBA [28]. Algorithm 1
shows a sample program from the mouse social behavior
domain, for measuring the “facing angle” between a pair of
interacting mice. Each program can be used to construct
decoder tasks for self-supervised learning (Section 3.3).

Our framework is inspired by the data programming
paradigm [33], which applies programs to training set cre-
ation. In comparison, our framework uses task program-
ming to unify expert-engineered programs, which encode
structured expert knowledge, with representation learning.

Algorithm 1: Sample Program for Facing Angle
Input: centroid of mouse 1 (x1, y1), centroid of

mouse 2 (x2, y2), heading of mouse 1 (φ1)
xdiff = x2 − x1

ydiff = y2 − y1

9 = arctan(ydiff , xdiff)
Return 9 − φ1

Table 1. Behavior Attributes used in Task Programming. We
base our programmed tasks in our experiments on these behavior
attributes from domain experts in each domain.

Working with domain experts in behavioral neuro-
science, we created a set of programs to use in studying
our approach. The selected programs are a subset of be-
havior attributes in [36] (for mouse datasets) and a subset
of behavior attributes in [15] (for fly datasets). We list the
programs used in Table 1, and provide more details about
the programs in the Supplementary Material.

3.3. Learning Algorithm

We develop a method to incorporate the programs from
domain experts as additional learning signals for TREBA.
We consider the following three approaches: (1) enforc-
ing attribute consistency in generated trajectories (Sec-
tion 3.3.1), (2) performing attribute decoding directly (Sec-
tion 3.3.2), (3) applying contrastive loss based on program
supervision (Section 3.3.3). Each of these methods applies

2878

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 06,2022 at 18:38:28 UTC from IEEE Xplore. Restrictions apply.

M B

i=1

Lcntr. =

j=1

a different loss on the low-dimensional representation z of
trajectory τ. Any combinations of these decoding tasks can
be combined with self-decoding from Section 3.1 to inform
the trajectory embedding z.

3.3.1 Attribute Consistency

Let λ be a set of M domain-expert-designed functions mea-
suring agent behavior attributes, such as agent velocity or
facing angle. Recall that each λj, j = 1...M takes as input
a trajectory τ, and returns some expert-designed attribute
λj(τ) computed from that trajectory. For λj designed for a
single frame, we apply the function to the center frame of
τ. Attribute consistency aims to maintain the same behav-
ior attribute labels for the generated trajectory as the orig-
inal. Let τ˜ be the trajectory generated by the TVAE given
the same initial condition as τ and encoding z.The attribute
consistency loss is:

 M

Lattr = Eτ D 1(λj(τ˜) = λj (τ)) . (2)
j=1

Here, we show the loss for categorical λj, but in general,
λj can be continuous and any loss measuring differences
between λj(τ˜) and λj (τ) applies, such as mean squared er-
ror. We do not require λ to always be differentiable, and we
use the differentiable approximation introduced in [43] to
handle non-differentiable λ.

3.3.2 Attribute Decoding

Another option is to decode each attribute λj(τ) directly
from the learned representation z. Here we apply a shallow
decoder f to the learned representation, with decoding loss:

 M

Ldecode = Eτ D 1(f (qφ (zμ |τ)) = λj (τ)) . (3)
j=1

Similar to Eq. (2), we show the loss for categorical λj,
however any type of λ may be used.

3.3.3 Contrastive Loss

Lastly, the programmed tasks can be used to supervise con-
trastive learning of our representation. For a trajectory τi ,
and for each λj, positive examples are those trajectories
with the same attribute class under λj. For λj with contin-
uous outputs, we create a discretized λ

ˆ
j in which we apply

fixed thresholds to divide the output space into classes. For
our work, we apply two thresholds for each program such
that our classes are approximately equal in size.

We apply a shallow decoder g to the learned representa-
tion, and let g = g(qφ (zμ|τ)) represent the decoded repre-

sentation. We then apply the contrastive loss:

B
 1

i=k ·
1

λj (τi)=λj (τk)
pos(i,j) k=1

exp(gi · gk/t)

· log
N

,
l=1 1i=l · exp(gi · gl /t)

where B is the batch size, Npos(i,j) is the number of posi-
tive matches for τi with λj, and t > 0 is a scalar temperature
parameter. Our form of contrastive loss supervised by task
programming is similar to the contrastive loss in [24] su-
pervised by human annotations. A benefit of task program-
ming is that the supervision from programs can be quickly
and scalably applied to unlabelled datasets, as compared to
expert supervision which can be time-consuming. We note
that the unsupervised version of this contrastive loss is stud-
ied in [7], based on previous works such as [29].

3.3.4 Data Augmentation

We can perform data augmentation on trajectory data
based on our expert-provided programs. Given the set of
all possible augmentations, we define Λ to be the subset of
augmentations that are attribute-preserving: that is, for all
λj in the set of programs, λj(τ) = λj (Λm(τ)) for some
augmentation Λm Λ. An example of a valid augmenta-
tion in the mouse domain is reflection of the trajectory data.

All losses presented above can be extended with data
augmentation, by replacing τ with Λm(τ) in losses. For
contrastive loss, adding data augmentation corresponds to
extending the batch size to 2B, with B samples from the
original and augmented trajectories.

The augmentations we use in our experiments are reflec-
tions, rotations, translations, and a small Gaussian noise on
the keypoints (mouse data only). In practice, we add the
loss for each decoder with and without data augmentation.

4. Experiments

4.1. Datasets

We work with datasets from behavioral neuroscience,
where there are large-scale, expert-annotated datasets from
scientific experiments. We study behavior for the labora-
tory mouse and the fruit fly, two of the most common model
organisms in behavioral neuroscience. For each organism,
we first train TREBA using large unannotated datasets: for
the mouse domain we use an in-house dataset comprised of
approximately 100 hours of recorded diadic social interac-
tions (Mouse100), while for the fly domain we use the Fly
vs. Fly dataset [15] without annotations.

After pre-training TREBA, we evaluate the suitability of
our trajectory representation for supervised behavior clas-

(4)

−1

N

2879

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 06,2022 at 18:38:28 UTC from IEEE Xplore. Restrictions apply.

sification (classifying frame-level behaviors on continuous
trajectory data), on three additional datasets:

MARS. The MARS dataset [36] is a recently released
mouse social behavior dataset collected in the same condi-
tions as Mouse100. The dataset is annotated by neurobiol-
ogists on a frame-by-frame basis for three behaviors: sniff,
attack, and mount. We use the provided train, validation,
and test split (781k, 352k, and 184k frames respectively).
Trajectories are extracted by the MARS tracker [36].

CRIM13. CRIM13 [4] is a second mouse social behav-
ior dataset manually annotated on a frame-by-frame basis
by experts. To extract trajectories, we use a version of the
the MARS tracker [36] fine-tuned on pose annotations on
CRIM13. We select a subset of videos from which trajecto-
ries can be reliably detected for a train, validation and test
split of 407k, 96k, and 142k frames respectively. We eval-
uated classifier performance on the same three behaviors
studied in MARS (sniff, attack, mount).

CRIM13 is a useful test of the robustness of TREBA
trained on Mouse100, as the recording conditions in
CRIM13 (image resolution 640 × 480, frame rate 25Hz,
and non-centered cage location) are different from those of
Mouse100 (image resolution 1024 × 570, frame rate 30Hz,
and centered cage location).

Fly vs. Fly (Fly). We use the Aggression and Courtship
videos from the Fly dataset [15]. These videos record in-
teractions between a pair of flies annotated on a frame-by-
frame basis for social behaviors by domain experts. Our
train, validation and test split has 1067k, 162k, 322k frames
respectively. We use the trajectories tracked by [15] and
evaluate on all behaviors with more than 1000 frames of an-
notations in the full training set (lunge, wing threat, tussle,
wing extension, circle, copulation).

4.2. Training and Evaluation Procedure

We use the attribute consistency loss (Section 3.3.1) and
contrastive loss (Section 3.3.3) to train TREBA using pro-
grams. With the same programs, we find that different loss
combinations result in similar performance, and that the
combination of consistency and contrastive losses performs
the best overall. The results for all loss combinations are
provided in the Supplementary Material.

For the datasets in the mouse domain (MARS and
CRIM13) we train TREBA on Mouse100, with 10 programs
provided by mouse behavior domain experts. For the Fly
dataset, we train TREBA on the training split of Fly with-
out annotations, with 13 programs provided by fly behavior
domain experts. The full list is in Table 1. We then use
the trained encoder, with pre-trained frozen weights, as a
trajectory feature extractor over T = 21 frames, where the
representation for each frame is computed using ten frames
before and after the current frame.

We evaluate our classifiers, with and without TREBA

features, using Mean Average Precision (MAP). We com-
pute the mean over behaviors of interest with equal weight-
ing. Our classifiers are shallow fully-connected neural net-
works on the input features. To determine the relation-
ship between classifier performance and training set size,
we sub-sample the training data by randomly sampling tra-
jectories (with lengths of 100 frames) to achieve a desired
fraction of the training set size. Sampling was performed to
achieve a similar class distribution as the full training set.
We train each classifier nine times over three different ran-
dom selections of the training data for each training fraction
(1%, 2%, 5%, 10%, 25%, 50%, 75%, 100%). Additional
implementation details are in the Supplementary Material.

4.3. Main Results

We evaluate the data efficiency of our representation
for supervised behavior classification, by training a clas-
sifier to predict behavior labels given both our learned
representation and one of either (1) raw keypoints or
(2) domain-specific features designed by experts. The
TREBA+keypoints evaluation allows us to test the effec-
tiveness of our representation without other hand-designed
features, while the TREBA+features evaluation is closer to
most potential use cases. The domain-specific features for
mice are the trajectory features from [36] and features for
flies are the trajectory features from [4]. The input features
are a superset of the programs we use in Table 1.

Our representation is able to improve the data efficiency
for both keypoints and domain-specific features, over all
evaluated amounts of training data availability (Figure 4).
We discuss each dataset below:

MARS. Our representation significantly improves clas-
sification performance over keypoints alone (Figure 4 A1).
We achieve the same performance as the full baseline train-
ing using only between 1% and 2% of the data. While
this result is partially because our representation contains
temporal information, we can also observe a significant in-
crease in data efficiency in A2 compared to domain-specific
features, which also contains temporal features. Classi-
fiers using TREBA has the same performance as the full
baseline training set with around 5% 10% of data (i.e.,
10× 20× improved annotation efficiency).

CRIM13. We test the transfer learning ability of our
representation on CRIM13, a dataset with different image
properties than Mouse100, the training set of TREBA. Our
representation achieves the same performance as the base-
line training with keypoints using around 5% to 10% of the
training data (Figure 4 B1). With domain-specific features,
TREBA uses 50% of the data annotation to have the same
performance as the full training baseline (i.e., 2× improved
annotation efficiency). Our representation is able to gener-
alize to a different dataset of the same organism.

Fly. When using keypoints only, our representation re-

2880

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 06,2022 at 18:38:28 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Data Efficiency for Supervised Classification. Training data fraction vs. classifier error on MARS (left), CRIM13 (middle)
and fly (right). The blue lines represent performance with baseline keypoints and features, and the orange lines are with TREBA. The
shaded regions correspond to the classifier standard deviation over nine repeats. The gray dotted line marks the best observed classifier
performance when trained on the baseline features (using the full training set). Note the log scale on both the x and y axes.

quires 10% of the data (Figure 4 C1) and for features, our
representation requires 50% of the data (Figure 4 C2) to
achieve the same performance as full baseline training. This
corresponds to 2× improved annotation efficiency.

4.4. Model Ablations

We perform the following model ablations to better char-
acterize our approach. In this section, percentage error re-
duction relative to baseline is averaged over all training frac-
tions. Additional results are in the Supplementary Material.

Varying Programmed Tasks. We test the performance
of TREBA trained with each single program provided by
the domain experts in Table 1, and the average, best, and
worst performance is visualized in Figure 5. On average,
representations learned from a single program is better than
using features alone, but using all provided programs fur-
ther improves performance.

For a single program, there could be a large variation in
performance depending on the selected program (Figure 5).
While the best performing single program is close in classi-
fier MAP to using all programs, the worst performing pro-
gram may increase error, as in MARS and CRIM13. We
further tested the performance using more programs.

In the mouse domain, we found that with three ran-
domly selected programs, the variation between runs is
much smaller compared to single programs (Supplementary
Material). With three programs, we achieve comparable av-
erage error reduction from baseline features to using all pro-

grams (MARS: 14.6% error reduction for 3 programs vs.
15.3% for all, CRIM13: 9.2% for 3 programs vs. 9.5% for
all). For the fly domain, we found that we needed seven
programs to achieve comparable performance (20.7% for 7
programs vs. 21.2% for all).

Varying Decoder Losses. When the programmed tasks
are fixed, decoder losses with different combinations of
consistency (Section 3.3.1), decoding (Section 3.3.2), and
contrastive (Section 3.3.3) loss are similar in performance
(Supplementary Material). Additionally, we evaluate the
TREBA framework without programmed tasks, with de-
coder tasks using trajectory generation and unsupervised
contrastive loss. While self-supervised representations are
also effective at reducing baseline error, we achieve the
best classifier performance using TREBA with programmed
tasks (Table 2). Furthermore, we found that training trajec-
tory representations without self-decoding, using the con-
trastive loss from [7, 8], resulted in less effective represen-
tations for classification (Supplementary Material).

Data Augmentation. We removed the losses using the
data augmentation described in Section 3.3.4, and found
that performance was slightly lower for all datasets than
with augmentation. In particular, adding data augmentation
decreases error by 1.2% on MARS, 2.5% on CRIM13, and
5.3% on Fly compared to without data augmentation.

Pre-Training Variations The results shown for MARS
was obtained with pre-training TREBA on Mouse100, a
large in-house mouse dataset with the same image prop-

2881

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 06,2022 at 18:38:28 UTC from IEEE Xplore. Restrictions apply.

4 x 10-1
717

:(.2 3 x 10
-1

0

2 x 10-1

w

2.4 x10-1

2.2x10- 1-

22 x 10-1

u
-

O ,1.8 x 10-1
0

r 1.6 x 10'
2

1.'1:1 1.4x10-1

- Keypoints + TVAE (MARS)
- Keypoints + TVAE (Mouse100)
- Keypoints + Programs (MARS)
- Keypoints + Programs (Mouse100)

MARS Features with Pre-Training Variations

- Features + TVAE (MARS)
- Features + TVAE (Mouse100)

Features + Programs (MARS)
Lib- Features + Programs (Mouse100)

1.2x10-1 -

5)O.0-1 MARS Features with Program Variations

— 4, Features
4x10

-1

—A— Features + TREBA (1 program)
— fie— Features + TREBA (10 programs)

3x10-1 -
Y)
Ol
O

.7.-1 2 x 10-1

0

CRIM13 Features with Program Variations Fly Features with Program Variations

10-1
10-2 10° 10-2 10-1 10° 10-2 10

-1

10°
Training Data Fraction (Log Scale) Training Data Fraction (Log Scale) Training Data Fraction (Log Scale)

Figure 5. Varying Programmed Tasks. Effect of varying number of programmed tasks on classifier data efficiency. The shaded region
corresponds to the best and worst classifiers trained using a single programmed task from Table 1. The grey dotted line corresponds to the
value where the baseline features achieve the best performance (using the full training set).

Decoder Loss
Keypoint

MARS
Error Reduction
CRIM13

(%)
Fly

TVAE 52.2 ± 4.0 34.7 ± 1.5 15.4 ± 2.1
TVAE+

Unsup. Contrast
52.6 ± 3.9 37.4 ± 2.4 20.9 ± 1.7

TVAE+
Contrast+Consist

55.1 ± 3.0 41.1 ± 2.1 33.7 ± 1.2

Decoder Loss
Features

MARS
Error Reduction

CRIM13
(%)

Fly
TVAE 13.7 ± 1.8 8.2 ± 4.6 11.7 ± 4.7

TVAE+
Unsup. Contrast

14.3 ± 2.2 8.9 ± 4.1 16.1 ± 1.7

TVAE+
Contrast+Consist

15.3 ± 2.1 9.5 ± 3.8 21.2 ± 4.5

Table 2. Decoder Error Reductions. Percentage error reduc-
tion relative to baseline keypoints and domain-specific features for
training with different decoder losses for TREBA. The average is
taken over all evaluated training fractions.

erties as MARS. Figure 6 demonstrates the effect of vary-
ing TREBA training data amount with TVAE only and with
programs. For both keypoints and features, we observe that
TVAE (MARS) has the largest error. We see that error can
be decreased by either adding more data (features + TVAE
(Mouse100) with 3.9% decrease) or adding task program-
ming (features + Programs (MARS) with 4.4% decrease).
Adding both more data and task programming results in an
average decrease of 5.7% error relative to TVAE (MARS)
and the lowest average error.

5. Conclusion

We introduce a method to learn an annotation-sample
efficient Trajectory Embedding for Behavior Analysis
(TREBA). To train this representation, we study self-
supervised decoder tasks as well as decoder tasks with pro-
grammatic supervision, the latter created using task pro-
gramming. Our results show that TREBA can reduce anno-
tation requirements by a factor of 10 for mice and 2 for flies.
Our experiments on three datasets (two in mice and one in
fruit flies) suggest that our approach is effective across dif-
ferent domains. TREBA is not restricted to animal behavior

MARS Keypoints with Pre-Training Variations

10- 2 1O-1 10°
Training Data Fraction (Log Scale)

Figure 6. Pre-Training Data Variations. Effect of varying pre-
training data on classifier data efficiency for the MARS dataset.
“TVAE” corresponds to training TREBA with TVAE losses only,
and “Programs” corresponds to training with all programs.

and may be applied to other domains where tracking data is
expensive to annotate, such as in sports analytics.

Our experiments highlight, and quantify, the tradeoff be-
tween task programming and data annotation. The choice
of which is more effective will depend on the cost of anno-
tation and the level of expert understanding in identifying
behavior attributes. Directions in creating tools to facilitate
program creation and data annotation will help further ac-
celerate behavioral studies.

6. Acknowledgements

We would like to thank Tomomi Karigo at Caltech
for providing the mouse dataset. The Simons Foundation
(Global Brain grant 543025 to PP) generously supported
this work, and this work is partially supported by NIH
Award #K99MH117264 (to AK), NSF Award #1918839 (to
YY), and NSERC Award #PGSD3-532647-2019 (to JJS).

2882

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 06,2022 at 18:38:28 UTC from IEEE Xplore. Restrictions apply.

References

[1] David J Anderson and Pietro Perona. Toward a science of
computational ethology. Neuron, 84(1):18–31, 2014.

[2] Gordon J Berman, Daniel M Choi, William Bialek, and
Joshua W Shaevitz. Mapping the stereotyped behaviour of
freely moving fruit flies. Journal of The Royal Society Inter-
face, 11(99):20140672, 2014.

[3] Brian Broll, Matthew Hausknecht, Dave Bignell, and Adith
Swaminathan. Customizing scripted bots: Sample efficient
imitation learning for human-like behavior in minecraft.

[4] Xavier P Burgos-Artizzu, Piotr Dolla´r, Dayu Lin, David J
Anderson, and Pietro Perona. Social behavior recognition in
continuous video. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1322–1329. IEEE,
2012.

[5] Adam J Calhoun, Jonathan W Pillow, and Mala Murthy.
Unsupervised identification of the internal states that shape
natural behavior. Nature neuroscience, 22(12):2040–2049,
2019.

[6] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jag-
jeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Pe-
ter Carr, Simon Lucey, Deva Ramanan, et al. Argoverse:
3d tracking and forecasting with rich maps. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8748–8757, 2019.

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. ICML, 2020.

[8] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey Hinton. Big self-supervised mod-
els are strong semi-supervised learners. arXiv preprint
arXiv:2006.10029, 2020.

[9] John D Co-Reyes, YuXuan Liu, Abhishek Gupta, Ben-
jamin Eysenbach, Pieter Abbeel, and Sergey Levine. Self-
consistent trajectory autoencoder: Hierarchical reinforce-
ment learning with trajectory embeddings. arXiv preprint
arXiv:1806.02813, 2018.

[10] Anthony I Dell, John A Bender, Kristin Branson, Iain D
Couzin, Gonzalo G de Polavieja, Lucas PJJ Noldus, Al-
fonso Pe´rez-Escudero, Pietro Perona, Andrew D Straw, Mar-
tin Wikelski, et al. Automated image-based tracking and
its application in ecology. Trends in ecology & evolution,
29(7):417–428, 2014.

[11] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-
vised visual representation learning by context prediction. In
Proceedings of the IEEE international conference on com-
puter vision, pages 1422–1430, 2015.

[12] Carl Doersch and Andrew Zisserman. Multi-task self-
supervised visual learning. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2051–2060,
2017.

[13] SE Roian Egnor and Kristin Branson. Computational analy-
sis of behavior. Annual review of neuroscience, 39:217–236,
2016.

[14] Eyrun Eyjolfsdottir, Kristin Branson, Yisong Yue, and Pietro
Perona. Learning recurrent representations for hierarchical
behavior modeling. ICLR, 2017.

[15] Eyrun Eyjolfsdottir, Steve Branson, Xavier P Burgos-
Artizzu, Eric D Hoopfer, Jonathan Schor, David J Anderson,
and Pietro Perona. Detecting social actions of fruit flies. In
European Conference on Computer Vision, pages 772–787.
Springer, 2014.

[16] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. ICLR, 2018.

[17] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan
Misra. Scaling and benchmarking self-supervised visual rep-
resentation learning. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 6391–6400,
2019.

[18] Jacob M Graving, Daniel Chae, Hemal Naik, Liang Li, Ben-
jamin Koger, Blair R Costelloe, and Iain D Couzin. Deep-
posekit, a software toolkit for fast and robust animal pose
estimation using deep learning. Elife, 8:e47994, 2019.

[19] Tengda Han, Weidi Xie, and Andrew Zisserman. Video rep-
resentation learning by dense predictive coding. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion Workshops, pages 0–0, 2019.

[20] Katja Hofmann. Minecraft as ai playground and labora-
tory. In Proceedings of the Annual Symposium on Computer-
Human Interaction in Play, pages 1–1, 2019.

[21] Weizhe Hong, Ann Kennedy, Xavier P Burgos-Artizzu,
Moriel Zelikowsky, Santiago G Navonne, Pietro Perona, and
David J Anderson. Automated measurement of mouse social
behaviors using depth sensing, video tracking, and machine
learning. Proceedings of the National Academy of Sciences,
112(38):E5351–E5360, 2015.

[22] Alexander I Hsu and Eric A Yttri. B-soid: An open source
unsupervised algorithm for discovery of spontaneous behav-
iors. bioRxiv, page 770271, 2020.

[23] Mayank Kabra, Alice A Robie, Marta Rivera-Alba, Steven
Branson, and Kristin Branson. Jaaba: interactive machine
learning for automatic annotation of animal behavior. Nature
methods, 10(1):64, 2013.

[24] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. arXiv
preprint arXiv:2004.11362, 2020.

[25] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-
visiting self-supervised visual representation learning. In
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 1920–1929, 2019.

[26] Kevin Luxem, Falko Fuhrmann, Johannes Kürsch, Ste-
fan Remy, and Pavol Bauer. Identifying behavioral struc-
ture from deep variational embeddings of animal motion.
bioRxiv, 2020.

[27] Alexander Mathis, Pranav Mamidanna, Kevin M Cury, Taiga
Abe, Venkatesh N Murthy, Mackenzie Weygandt Mathis,
and Matthias Bethge. Deeplabcut: markerless pose estima-
tion of user-defined body parts with deep learning. Nature
neuroscience, 21(9):1281–1289, 2018.

[28] Simon RO Nilsson, Nastacia L Goodwin, Jia J Choong,
Sophia Hwang, Hayden R Wright, Zane Norville, Xiaoyu
Tong, Dayu Lin, Brandon S Bentzley, Neir Eshel, et al. Sim-
ple behavioral analysis (simba): an open source toolkit for

2883

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 06,2022 at 18:38:28 UTC from IEEE Xplore. Restrictions apply.

computer classification of complex social behaviors in ex-
perimental animals. BioRxiv, 2020.

[29] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018.

[30] AJ Piergiovanni, Anelia Angelova, and Michael S Ryoo.
Evolving losses for unsupervised video representation learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 133–142, 2020.

[31] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training, 2018.

[32] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason
Fries, Sen Wu, and Christopher Re´. Snorkel: Rapid training
data creation with weak supervision. In Proceedings of the
VLDB Endowment. International Conference on Very Large
Data Bases, volume 11, page 269. NIH Public Access, 2017.

[33] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel
Selsam, and Christopher Re´. Data programming: Creating
large training sets, quickly. In Advances in neural informa-
tion processing systems, pages 3567–3575, 2016.

[34] Mirco Ravanelli, Jianyuan Zhong, Santiago Pascual, Pawel
Swietojanski, Joao Monteiro, Jan Trmal, and Yoshua Bengio.
Multi-task self-supervised learning for robust speech recog-
nition. In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
pages 6989–6993. IEEE, 2020.

[35] Aaqib Saeed, Tanir Ozcelebi, and Johan Lukkien. Multi-task
self-supervised learning for human activity detection. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 3(2):1–30, 2019.

[36] Cristina Segalin, Jalani Williams, Tomomi Karigo, May
Hui, Moriel Zelikowsky, Jennifer J. Sun, Pietro Perona,
David J. Anderson, and Ann Kennedy. The mouse ac-
tion recognition system (mars): a software pipeline for
automated analysis of social behaviors in mice. bioRxiv
https://doi.org/10.1101/2020.07.26.222299, 2020.

[37] Abhinav Shukla, Stavros Petridis, and Maja Pantic. Does
visual self-supervision improve learning of speech represen-
tations? arXiv preprint arXiv:2005.01400, 2020.

[38] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and
Cordelia Schmid. Videobert: A joint model for video and
language representation learning. In Proceedings of the IEEE
International Conference on Computer Vision, pages 7464–
7473, 2019.

[39] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2446–2454, 2020.

[40] Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas,
Gregory Wayne, and Nicolas Heess. Robust imitation of di-
verse behaviors. In Advances in Neural Information Process-
ing Systems, pages 5320–5329, 2017.

[41] Alexander B Wiltschko, Matthew J Johnson, Giuliano Iurilli,
Ralph E Peterson, Jesse M Katon, Stan L Pashkovski, Vic-
toria E Abraira, Ryan P Adams, and Sandeep Robert Datta.

Mapping sub-second structure in mouse behavior. Neuron,
88(6):1121–1135, 2015.

[42] Raymond A Yeh, Alexander G Schwing, Jonathan Huang,
and Kevin Murphy. Diverse generation for multi-agent sports
games. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4610–4619, 2019.

[43] Eric Zhan, Albert Tseng, Yisong Yue, Adith Swaminathan,
and Matthew Hausknecht. Learning calibratable policies us-
ing programmatic style-consistency. ICML, 2020.

[44] Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, and
Patrick Lucey. Generating multi-agent trajectories using pro-
grammatic weak supervision. ICLR, 2019.

[45] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networkss. In Computer Vision
(ICCV), 2017 IEEE International Conference on, 2017.

2884

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 06,2022 at 18:38:28 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1101/2020.07.26.222299,
https://doi.org/10.1101/2020.07.26.222299,

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

