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Abstract 

Specialized domain knowledge is often necessary to ac-
curately annotate training sets for in-depth analysis, but 
can be burdensome and time-consuming to acquire from do-
main experts. This issue arises prominently in automated 
behavior analysis, in which agent movements or actions of 
interest are detected from video tracking data. To reduce 
annotation effort, we present TREBA: a method to learn 
annotation-sample efficient trajectory embedding for be-
havior analysis, based on multi-task self-supervised learn-
ing. The tasks in our method can be efficiently engineered 
by domain experts through a process we call “task program-
ming”, which uses programs to explicitly encode structured 
knowledge from domain experts. Total domain expert effort 
can be reduced by exchanging data annotation time for the 
construction of a small number of programmed tasks. We 
evaluate this trade-off using data from behavioral neuro-
science, in which specialized domain knowledge is used to 
identify behaviors. We present experimental results in three 
datasets across two domains: mice and fruit flies. Using 
embeddings from TREBA, we reduce annotation burden by 
up to a factor of 10 without compromising accuracy com-
pared to state-of-the-art features. Our results thus suggest 
that task programming and self-supervision can be an ef-
fective way to reduce annotation effort for domain experts. 

1. Introduction 

Behavioral analysis of one or more agents is a core el-
ement in diverse fields of research, including biology  [36, 
26],  autonomous driving  [6, 39],  sports analytics  [42, 43], 
and video games  [20,  3].  In a typical experimental work-
flow, the location and pose of agents is first extracted 
from each frame of a behavior video, and then labels for 
experimenter-defined behaviors of interest are applied on a 
frame-by-frame basis based on the pose and movements of 
the agents. In addition to reducing human effort, automated 
quantification of behavior can lead to more objective, pre-
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1. Record videos and extract tracking data. 

Figure 1. Overview of our approach. Part 1: A typical behavior 
study starts with extraction of tracking data from videos. We show 
7 keypoints for each mouse, and draw the trajectory of the nose 
keypoint. Part 2: Domain experts can either do data annotation 
(Classifier A) or task programming (Classifier B) to reduce classi-
fier error. The middle panel shows annotated frames at 30Hz. Col-
ors in the bottom plot represent interpolated performance based on 
classifier error at the circular markers (full results in Section  4.3). 
The size of the marker represents the error variance. 

cise, and scalable measurements compared to manual anno-
tation  [1,  10].  However, training behavior detection models 
can be data intensive and manual behavior annotation often 
requires specialized domain knowledge and high-frequency 
temporal labels. As a result, this process of generating train-
ing datasets is time-consuming and effort-intensive for ex-
perts. Therefore, methods to reduce annotation effort by 
domain experts are needed to accelerate behavioral studies. 

We study alternative ways for domain experts to improve 
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classifier accuracy beyond simply increasing the sheer vol-
ume of annotations. In particular, we propose a framework 
that unifies: (1) self-supervised representation learning, and 
(2) encoding explicit structured knowledge on trajectory 
data using expert-defined programs. Domain experts can 
construct these programs efficiently because keypoint tra-
jectories in each frame are typically low dimensional, and 
experts can already hand-design effective features for tra-
jectory data  [36, 28].  To best leverage this structured ex-
pert knowledge, we develop a framework to learn trajectory 
representations based on multi-task self-supervised learn-
ing, which has not been well-explored for trajectory data. 

Our Approach. Our framework, Trajectory Embedding 
for Behavior Analysis (TREBA), learns trajectory represen-
tations through trajectory generation alongside a set of de-
coder tasks based on expert-engineered programs. These 
programs are created by domain experts through a process 
we call task programming, inspired by the data program-
ming paradigm  [33].  Task programming is a process by 
which domain experts identify trajectory attributes relevant 
to the behaviors of interest under study, write programs, 
and apply those programs to inform representation learn-
ing (Section  3.2).  This flexibility in decoder tasks allows 
our framework to be applicable to a variety of agents and 
behaviors studied across diverse fields of research. 

Expert Effort Tradeoffs. Since task programming will 
typically require a domain expert’s time, we study the trade-
off between doing task programming and data annotation. 
We compare behavior classification performance with dif-
ferent amounts of annotated training data and programmed 
tasks. For example, for the domain illustrated in Figure  1, 
domain experts can reduce error by 13% relative to the base 
classifier by annotating 701k additional frames, or they can 
reduce error by 16% by learning a representation using 10 
programmed tasks in our framework. Our approach allows 
experts to trade a large number of annotations for a small 
number of programmed tasks. 

We study our approach across two domains in behavioral 
neuroscience, namely mouse and fly behavior. We chose 
this setting because it requires specialized domain knowl-
edge for data annotation, and data efficiency is important for 
domain experts. Furthermore, decoder tasks in our frame-
work can be efficiently programmed by experts based on 
simple functions describing trajectory attributes for identi-
fying behaviors of interest. For example, for mouse social 
behaviors such as attack  [36],  important behavior attributes 
include the speed of each mouse and distance between mice. 
The corresponding task could then be to decode these at-
tributes from the learned representations. 

Our contributions are: 

• We introduce task programming as an efficient way for 
domain experts to reduce annotation effort and encode 
structural knowledge. We develop a novel method to  

learn an annotation-sample efficient trajectory repre-
sentation using self-supervision and programmatic su-
pervision. 

• We study the effect of task programming, data annota-
tion, and different decoder losses on behavior classifier 
performance. 

• We demonstrate these representations on three datasets 
in two domains, showing that our method can lead to a 
10× annotation reduction for mice, and 2× for flies. 

2. Related Work 

Behavior Modeling. Behavior modeling using trajec-
tory data is studied across a variety of fields  [26, 6, 39, 
42, 20, 3].  In particular, there is an increasing effort to 
automatically detect and classify behavior from trajectory 
data  [23, 1, 14, 27, 13, 36].  Our experiments are based 
on behavior classification datasets from behavioral neuro-
science  [15, 4, 36],  a field where specialized domain knowl-
edge is important for identifying behaviors of interest. 

The behavior analysis pipeline generally consists of the 
following steps: (1) tracking the pose of agents, (2) com-
puting pose-based features, and (3) training behavior classi-
fiers  [4, 21, 36, 28].  To address step 1, there are many exist-
ing pose estimation models  [15,27, 18, 36].  In our work, we 
leverage two existing pose models,  [36]  for mice and  [15] 
for flies, to produce trajectory data. In steps 2 and 3 of the 
typical behavior analysis pipeline, hand-designed trajectory 
features are computed from the animals’ pose, and classi-
fiers are trained to predict behaviors of interest in a fully 
supervised fashion  [4, 21, 15, 36].  Training fully super-
vised behavior classifiers requires time-consuming annota-
tions by domain experts [1]. Instead, our proposed approach 
enables domain experts to trade time-consuming annotation 
work for task programming with representation learning. 

Another group of work uses unsupervised methods to 
discover new motifs and behaviors  [22, 41, 2, 26, 5].  Our 
work focuses on the more common case where domain ex-
perts already know what types of actions they would like 
to study in an experiment. We aim to improve the data-
efficiency of learning expert-defined behaviors. 

Representation Learning. Visual representation learn-
ing has made great progress in effective representations 
for images and videos  [17, 16, 7, 29, 25, 19, 38].  Self-
supervised signals are often used to train this visual rep-
resentation, such as learning relative positions of image 
patches  [11],  predicting image rotations  [16],  predicting fu-
ture patches  [29],  and constrastive learning on augmented 
images [7]. Compared to visual data, trajectory data is sig-
nificantly lower dimensional in each frame, and techniques 
from visual representation learning often cannot be applied 
directly. For example, while we can create image patches 
that represent the same visual class, it is difficult to select 
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Figure 2. Task Programming and Data Annotation for Classifier Training. Domain experts can choose between doing task program-
ming and/or data annotation. Task programming is the process for domain experts to engineer decoder tasks for representation learning. 
The programs enable learning of annotation-sample efficient trajectory features to improve performance instead of additional annotations. 

a partial set of keypoints that represent the same behavior. 
Our framework builds upon these approaches to learn effec-
tive representations for behavioral data. 

We investigate different decoder tasks in order to learn 
an effective behavior representation. One decoder task that 
we investigate is self-decoding: the reconstruction of input 
trajectories using generative modeling. Generative model-
ing has previously been applied to learn representations for 
visual data  [45,  38,  29]  and language modeling  [31];  for tra-
jectory data, we use imitation learning  [40,  44,  43]  to train 
our trajectory representation. The other tasks in our multi-
task self-supervised learning framework are created by do-
main experts using task programming (Section  3.2).  This 
idea of using a human-provided function as part of train-
ing has been studied for training set creation  [33, 32],  and 
controllable trajectory generation  [43].  Our work explores 
these additional decoder tasks to further improve the learned 
representation over the generative loss alone. 

Multi-Task Self-Supervised Learning. We jointly op-
timize a family of self-supervised tasks in an encoder-
decoder setup, making this work an example of multi-
task self-supervised learning. Multi-task self-supervised 
learning has been applied to other domains such as visual 
data  [12, 25],  accelerometer recordings  [35],  audio  [34]  and 
multi-modal inputs  [37, 30].  Generally in each of these do-
mains, tasks are defined ahead of time, as is the case for 
tasks such as frame reconstruction, colorization, finding rel-
ative position of image patches, and video-audio alignment. 
Most of these tasks are designed for image or video data, 
and cannot be applied directly to trajectory data. To con-
struct tasks for trajectory representation learning, we pro-
pose that domain experts can use task programming to en-
gineer decoder tasks and encode structural knowledge. 

3. Methods 

We introduce Trajectory Embedding for Behavior 
Analysis (TREBA), a method to learn an annotation-sample  

efficient trajectory representation using self-supervision and 
auxiliary decoder tasks engineered by domain experts. Fig-
ure  2  provides an overview of the expert’s role. In our 
framework, domain experts replace (a significant amount 
of) time-consuming manual annotation with the construc-
tion of a small number of programmed tasks, reducing total 
expert effort. Each task places an additional constraint on 
the learned trajectory embedding. 

TREBA uses the expert-programmed tasks based on a 
multi-task self-supervised learning approach, outlined in 
Figure  3.  To learn task-relevant low-dimensional represen-
tations of pose trajectories, we train a network jointly on 
(1) reconstruction of the input trajectory (Section  3.1)  and 
(2) expert-programmed decoder tasks (Section  3.3).  The 
learned representation can then be used as input to behavior 
modeling tasks, such as behavior classification. 

3.1. Trajectory Representations 

Let D be a set of N unlabelled trajectories. Each tra-
jectory τ is a sequence of states τ = { (st)}Tt=1, where the 
state si at timestep i corresponds to the location or pose of 
the agents at that timestep. In this study, we divide trajecto-
ries from longer recordings into segments of length T , but 
in general trajectory length can vary. For multiple agents, 
the keypoints of each agent is stacked at each timestep. 

Before we introduce our expert-programmed tasks, 
we will use trajectory reconstruction as an initial self-
supervised task. Given a history of agent states, we would 
like our model to predict the next state. This task is usually 
studied with sequential generative models. We used trajec-
tory variational autoencoders (TVAEs)  [9,43]  to embed the 
input trajectory using an RNN encoder, qφ, and an RNN 
decoder, pθ, to predict the next state. The TVAE loss is: 

[ T ~ 

Ltvae = Eqφ − log(pθ (s t+1  st , Z)) 
t=1 

+DKL (qφ (Z τ) pθ (Z)). 

(1) 
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Figure 3. TREBA Training and Inference Pipelines. During training, we use trajectory self-decoding and the programmed decoder tasks 
to train the trajectory encoder. The learned representation is used for downstream tasks such as behavior classification. 

We use a prior distribution p (z) on z to regularize the 
learned embeddings; in this study, our prior is the unit Gaus-
sian. By optimizing for the TVAE loss only, we learn an 
unsupervised version of TREBA. When performing subse-
quent behavior modeling tasks such as classification, we use 
the embedding mean, zµ. 

3.2. Task Programming 

Task programming is the process by which domain 
experts create decoder tasks for trajectory self-supervised 
learning. This process consists of selecting attributes from 
trajectory data, writing programs, and creating decoder 
tasks based on the programs (Figure  2).  Here, domain ex-
perts are people with specialized knowledge for studying 
behavior, such as neuroscientists or sports analysts. 

To start, domain experts identify attributes from trajec-
tory data relevant to the behaviors of interest under study. 
Behavior attributes capture information that is likely rele-
vant to agent behavior, but is not explicitly included in the 
trajectory states { (st )}t

1. These attributes represent struc-
tured knowledge that domain experts are implicitly or ex-
plicitly considering for behavior analysis, such as the dis-
tance between two agents, agent velocity, or the relative po-
sitioning of agent body parts. 

Next, domain experts write a program to compute these 
attributes on trajectory data, which can be done with exist-
ing tools such as MARS  [36]  or SimBA  [28].  Algorithm  1 
shows a sample program from the mouse social behavior 
domain, for measuring the “facing angle” between a pair of 
interacting mice. Each program can be used to construct 
decoder tasks for self-supervised learning (Section  3.3). 

Our framework is inspired by the data programming 
paradigm  [33],  which applies programs to training set cre-
ation. In comparison, our framework uses task program-
ming to unify expert-engineered programs, which encode 
structured expert knowledge, with representation learning. 

Algorithm 1: Sample Program for Facing Angle 
Input: centroid of mouse 1 (x1, y1), centroid of 

mouse 2 (x2, y2), heading of mouse 1 (φ1) 
xdiff = x2 − x1 

ydiff = y2 − y1 

9 = arctan(ydiff , xdiff) 
Return 9 − φ1 

Table 1. Behavior Attributes used in Task Programming. We 
base our programmed tasks in our experiments on these behavior 
attributes from domain experts in each domain. 

Working with domain experts in behavioral neuro-
science, we created a set of programs to use in studying 
our approach. The selected programs are a subset of be-
havior attributes in  [36]  (for mouse datasets) and a subset 
of behavior attributes in  [15]  (for fly datasets). We list the 
programs used in Table  1,  and provide more details about 
the programs in the Supplementary Material. 

3.3. Learning Algorithm 

We develop a method to incorporate the programs from 
domain experts as additional learning signals for TREBA. 
We consider the following three approaches: (1) enforc-
ing attribute consistency in generated trajectories (Sec-
tion  3.3.1),  (2) performing attribute decoding directly (Sec-
tion  3.3.2),  (3) applying contrastive loss based on program 
supervision (Section  3.3.3).  Each of these methods applies 
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M B 

i=1 

Lcntr. = 
 

j=1 

a different loss on the low-dimensional representation z of 
trajectory τ. Any combinations of these decoding tasks can 
be combined with self-decoding from Section  3.1  to inform 
the trajectory embedding z. 

3.3.1 Attribute Consistency 

Let λ be a set of M domain-expert-designed functions mea-
suring agent behavior attributes, such as agent velocity or 
facing angle. Recall that each λj, j = 1...M takes as input 
a trajectory τ, and returns some expert-designed attribute 
λj(τ) computed from that trajectory. For λj designed for a 
single frame, we apply the function to the center frame of 
τ. Attribute consistency aims to maintain the same behav-
ior attribute labels for the generated trajectory as the orig-
inal. Let τ˜  be the trajectory generated by the TVAE given 
the same initial condition as τ and encoding z.The attribute 
consistency loss is: 

  M  

Lattr = Eτ D 1(λj(τ˜) =  λj (τ)) . (2) 
j=1 

Here, we show the loss for categorical λj, but in general, 
λj can be continuous and any loss measuring differences 
between λj(τ˜) and λj (τ) applies, such as mean squared er-
ror. We do not require λ to always be differentiable, and we 
use the differentiable approximation introduced in  [43]  to 
handle non-differentiable λ. 

3.3.2 Attribute Decoding 

Another option is to decode each attribute λj(τ) directly 
from the learned representation z. Here we apply a shallow 
decoder f to the learned representation, with decoding loss: 

 M  

Ldecode = Eτ D 1(f (qφ (zμ |τ)) =  λj (τ)) . (3) 
j=1 

Similar to Eq. (2), we show the loss for categorical λj, 
however any type of λ may be used. 

3.3.3 Contrastive Loss 

Lastly, the programmed tasks can be used to supervise con-
trastive learning of our representation. For a trajectory τi , 
and for each λj, positive examples are those trajectories 
with the same attribute class under λj. For λj with contin-
uous outputs, we create a discretized λ

ˆ
j in which we apply 

fixed thresholds to divide the output space into classes. For 
our work, we apply two thresholds for each program such 
that our classes are approximately equal in size. 

We apply a shallow decoder g to the learned representa-
tion, and let g = g(qφ (zμ|τ)) represent the decoded repre-  

sentation. We then apply the contrastive loss: 

B 
 1

i=k · 
1

λj (τi)=λj (τk) 
pos(i,j) k=1 

 
exp(gi · gk/t) 

· log 
N

, 
l=1 1i=l · exp(gi · gl /t) 

where B is the batch size, Npos(i,j) is the number of posi-
tive matches for τi with λj, and t > 0 is a scalar temperature 
parameter. Our form of contrastive loss supervised by task 
programming is similar to the contrastive loss in  [24]  su-
pervised by human annotations. A benefit of task program-
ming is that the supervision from programs can be quickly 
and scalably applied to unlabelled datasets, as compared to 
expert supervision which can be time-consuming. We note 
that the unsupervised version of this contrastive loss is stud-
ied in [7], based on previous works such as  [29]. 

3.3.4 Data Augmentation 

We can perform data augmentation on trajectory data 
based on our expert-provided programs. Given the set of 
all possible augmentations, we define Λ to be the subset of 
augmentations that are attribute-preserving: that is, for all 
λj in the set of programs, λj(τ) = λj (Λm(τ)) for some 
augmentation Λm  Λ. An example of a valid augmenta-
tion in the mouse domain is reflection of the trajectory data. 

All losses presented above can be extended with data 
augmentation, by replacing τ with Λm(τ) in losses. For 
contrastive loss, adding data augmentation corresponds to 
extending the batch size to 2B, with B samples from the 
original and augmented trajectories. 

The augmentations we use in our experiments are reflec-
tions, rotations, translations, and a small Gaussian noise on 
the keypoints (mouse data only). In practice, we add the 
loss for each decoder with and without data augmentation. 

4. Experiments 

4.1. Datasets 

We work with datasets from behavioral neuroscience, 
where there are large-scale, expert-annotated datasets from 
scientific experiments. We study behavior for the labora-
tory mouse and the fruit fly, two of the most common model 
organisms in behavioral neuroscience. For each organism, 
we first train TREBA using large unannotated datasets: for 
the mouse domain we use an in-house dataset comprised of 
approximately 100 hours of recorded diadic social interac-
tions (Mouse100), while for the fly domain we use the Fly 
vs. Fly dataset  [15]  without annotations. 

After pre-training TREBA, we evaluate the suitability of 
our trajectory representation for supervised behavior clas-

 

(4) 

 
−1 

N 
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sification (classifying frame-level behaviors on continuous 
trajectory data), on three additional datasets: 

MARS. The MARS dataset  [36]  is a recently released 
mouse social behavior dataset collected in the same condi-
tions as Mouse100. The dataset is annotated by neurobiol-
ogists on a frame-by-frame basis for three behaviors: sniff, 
attack, and mount. We use the provided train, validation, 
and test split (781k, 352k, and 184k frames respectively). 
Trajectories are extracted by the MARS tracker  [36]. 

CRIM13. CRIM13 [4] is a second mouse social behav-
ior dataset manually annotated on a frame-by-frame basis 
by experts. To extract trajectories, we use a version of the 
the MARS tracker  [36]  fine-tuned on pose annotations on 
CRIM13. We select a subset of videos from which trajecto-
ries can be reliably detected for a train, validation and test 
split of 407k, 96k, and 142k frames respectively. We eval-
uated classifier performance on the same three behaviors 
studied in MARS (sniff, attack, mount). 

CRIM13 is a useful test of the robustness of TREBA 
trained on Mouse100, as the recording conditions in 
CRIM13 (image resolution 640 × 480, frame rate 25Hz, 
and non-centered cage location) are different from those of 
Mouse100 (image resolution 1024 × 570, frame rate 30Hz, 
and centered cage location). 

Fly vs. Fly (Fly). We use the Aggression and Courtship 
videos from the Fly dataset  [15].  These videos record in-
teractions between a pair of flies annotated on a frame-by-
frame basis for social behaviors by domain experts. Our 
train, validation and test split has 1067k, 162k, 322k frames 
respectively. We use the trajectories tracked by  [15]  and 
evaluate on all behaviors with more than 1000 frames of an-
notations in the full training set (lunge, wing threat, tussle, 
wing extension, circle, copulation). 

4.2. Training and Evaluation Procedure 

We use the attribute consistency loss (Section  3.3.1)  and 
contrastive loss (Section  3.3.3)  to train TREBA using pro-
grams. With the same programs, we find that different loss 
combinations result in similar performance, and that the 
combination of consistency and contrastive losses performs 
the best overall. The results for all loss combinations are 
provided in the Supplementary Material. 

For the datasets in the mouse domain (MARS and 
CRIM13) we train TREBA on Mouse100, with 10 programs 
provided by mouse behavior domain experts. For the Fly 
dataset, we train TREBA on the training split of Fly with-
out annotations, with 13 programs provided by fly behavior 
domain experts. The full list is in Table  1.  We then use 
the trained encoder, with pre-trained frozen weights, as a 
trajectory feature extractor over T = 21 frames, where the 
representation for each frame is computed using ten frames 
before and after the current frame. 

We evaluate our classifiers, with and without TREBA  

features, using Mean Average Precision (MAP). We com-
pute the mean over behaviors of interest with equal weight-
ing. Our classifiers are shallow fully-connected neural net-
works on the input features. To determine the relation-
ship between classifier performance and training set size, 
we sub-sample the training data by randomly sampling tra-
jectories (with lengths of 100 frames) to achieve a desired 
fraction of the training set size. Sampling was performed to 
achieve a similar class distribution as the full training set. 
We train each classifier nine times over three different ran-
dom selections of the training data for each training fraction 
(1%, 2%, 5%, 10%, 25%, 50%, 75%, 100%). Additional 
implementation details are in the Supplementary Material. 

4.3. Main Results 

We evaluate the data efficiency of our representation 
for supervised behavior classification, by training a clas-
sifier to predict behavior labels given both our learned 
representation and one of either (1) raw keypoints or 
(2) domain-specific features designed by experts. The 
TREBA+keypoints evaluation allows us to test the effec-
tiveness of our representation without other hand-designed 
features, while the TREBA+features evaluation is closer to 
most potential use cases. The domain-specific features for 
mice are the trajectory features from  [36]  and features for 
flies are the trajectory features from [4]. The input features 
are a superset of the programs we use in Table  1. 

Our representation is able to improve the data efficiency 
for both keypoints and domain-specific features, over all 
evaluated amounts of training data availability (Figure  4). 
We discuss each dataset below: 

MARS. Our representation significantly improves clas-
sification performance over keypoints alone (Figure  4  A1). 
We achieve the same performance as the full baseline train-
ing using only between 1% and 2% of the data. While 
this result is partially because our representation contains 
temporal information, we can also observe a significant in-
crease in data efficiency in A2 compared to domain-specific 
features, which also contains temporal features. Classi-
fiers using TREBA has the same performance as the full 
baseline training set with around 5%  10% of data (i.e., 
10×  20× improved annotation efficiency). 

CRIM13. We test the transfer learning ability of our 
representation on CRIM13, a dataset with different image 
properties than Mouse100, the training set of TREBA. Our 
representation achieves the same performance as the base-
line training with keypoints using around 5% to 10% of the 
training data (Figure  4  B1). With domain-specific features, 
TREBA uses 50% of the data annotation to have the same 
performance as the full training baseline (i.e., 2× improved 
annotation efficiency). Our representation is able to gener-
alize to a different dataset of the same organism. 

Fly. When using keypoints only, our representation re-
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Figure 4. Data Efficiency for Supervised Classification. Training data fraction vs. classifier error on MARS (left), CRIM13 (middle) 
and fly (right). The blue lines represent performance with baseline keypoints and features, and the orange lines are with TREBA. The 
shaded regions correspond to the classifier standard deviation over nine repeats. The gray dotted line marks the best observed classifier 
performance when trained on the baseline features (using the full training set). Note the log scale on both the x and y axes. 

quires 10% of the data (Figure  4  C1) and for features, our 
representation requires 50% of the data (Figure  4  C2) to 
achieve the same performance as full baseline training. This 
corresponds to 2× improved annotation efficiency. 

4.4. Model Ablations 

We perform the following model ablations to better char-
acterize our approach. In this section, percentage error re-
duction relative to baseline is averaged over all training frac-
tions. Additional results are in the Supplementary Material. 

Varying Programmed Tasks. We test the performance 
of TREBA trained with each single program provided by 
the domain experts in Table  1,  and the average, best, and 
worst performance is visualized in Figure  5.  On average, 
representations learned from a single program is better than 
using features alone, but using all provided programs fur-
ther improves performance. 

For a single program, there could be a large variation in 
performance depending on the selected program (Figure  5). 
While the best performing single program is close in classi-
fier MAP to using all programs, the worst performing pro-
gram may increase error, as in MARS and CRIM13. We 
further tested the performance using more programs. 

In the mouse domain, we found that with three ran-
domly selected programs, the variation between runs is 
much smaller compared to single programs (Supplementary 
Material). With three programs, we achieve comparable av-
erage error reduction from baseline features to using all pro-  

grams (MARS: 14.6% error reduction for 3 programs vs. 
15.3% for all, CRIM13: 9.2% for 3 programs vs. 9.5% for 
all). For the fly domain, we found that we needed seven 
programs to achieve comparable performance (20.7% for 7 
programs vs. 21.2% for all). 

Varying Decoder Losses. When the programmed tasks 
are fixed, decoder losses with different combinations of 
consistency (Section  3.3.1),  decoding (Section  3.3.2),  and 
contrastive (Section  3.3.3)  loss are similar in performance 
(Supplementary Material). Additionally, we evaluate the 
TREBA framework without programmed tasks, with de-
coder tasks using trajectory generation and unsupervised 
contrastive loss. While self-supervised representations are 
also effective at reducing baseline error, we achieve the 
best classifier performance using TREBA with programmed 
tasks (Table  2).  Furthermore, we found that training trajec-
tory representations without self-decoding, using the con-
trastive loss from  [7, 8],  resulted in less effective represen-
tations for classification (Supplementary Material). 

Data Augmentation. We removed the losses using the 
data augmentation described in Section  3.3.4,  and found 
that performance was slightly lower for all datasets than 
with augmentation. In particular, adding data augmentation 
decreases error by 1.2% on MARS, 2.5% on CRIM13, and 
5.3% on Fly compared to without data augmentation. 

Pre-Training Variations The results shown for MARS 
was obtained with pre-training TREBA on Mouse100, a 
large in-house mouse dataset with the same image prop-
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Figure 5. Varying Programmed Tasks. Effect of varying number of programmed tasks on classifier data efficiency. The shaded region 
corresponds to the best and worst classifiers trained using a single programmed task from Table  1.  The grey dotted line corresponds to the 
value where the baseline features achieve the best performance (using the full training set). 

Decoder Loss 
Keypoint 

MARS 
Error Reduction 
CRIM13 

(%) 
Fly 

TVAE 52.2 ± 4.0 34.7 ± 1.5 15.4 ± 2.1 
TVAE+ 

Unsup. Contrast 
52.6 ± 3.9 37.4 ± 2.4 20.9 ± 1.7 

TVAE+ 
Contrast+Consist 

55.1 ± 3.0 41.1 ± 2.1 33.7 ± 1.2 

Decoder Loss 
Features 

MARS 
Error Reduction 

CRIM13 
(%) 

Fly 
TVAE 13.7 ± 1.8 8.2 ± 4.6 11.7 ± 4.7 

TVAE+ 
Unsup. Contrast 

14.3 ± 2.2 8.9 ± 4.1 16.1 ± 1.7 

TVAE+ 
Contrast+Consist 

15.3 ± 2.1 9.5 ± 3.8 21.2 ± 4.5 

Table 2. Decoder Error Reductions. Percentage error reduc-
tion relative to baseline keypoints and domain-specific features for 
training with different decoder losses for TREBA. The average is 
taken over all evaluated training fractions. 

erties as MARS. Figure  6  demonstrates the effect of vary-
ing TREBA training data amount with TVAE only and with 
programs. For both keypoints and features, we observe that 
TVAE (MARS) has the largest error. We see that error can 
be decreased by either adding more data (features + TVAE 
(Mouse100) with 3.9% decrease) or adding task program-
ming (features + Programs (MARS) with 4.4% decrease). 
Adding both more data and task programming results in an 
average decrease of 5.7% error relative to TVAE (MARS) 
and the lowest average error. 

5. Conclusion 

We introduce a method to learn an annotation-sample 
efficient Trajectory Embedding for Behavior Analysis 
(TREBA). To train this representation, we study self-
supervised decoder tasks as well as decoder tasks with pro-
grammatic supervision, the latter created using task pro-
gramming. Our results show that TREBA can reduce anno-
tation requirements by a factor of 10 for mice and 2 for flies. 
Our experiments on three datasets (two in mice and one in 
fruit flies) suggest that our approach is effective across dif-
ferent domains. TREBA is not restricted to animal behavior 

MARS Keypoints with Pre-Training Variations 

10- 2 1O-1 10° 
Training Data Fraction (Log Scale) 

Figure 6. Pre-Training Data Variations. Effect of varying pre-
training data on classifier data efficiency for the MARS dataset. 
“TVAE” corresponds to training TREBA with TVAE losses only, 
and “Programs” corresponds to training with all programs. 

and may be applied to other domains where tracking data is 
expensive to annotate, such as in sports analytics. 

Our experiments highlight, and quantify, the tradeoff be-
tween task programming and data annotation. The choice 
of which is more effective will depend on the cost of anno-
tation and the level of expert understanding in identifying 
behavior attributes. Directions in creating tools to facilitate 
program creation and data annotation will help further ac-
celerate behavioral studies. 
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