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Abstract
We study the complexity of the classic Hylland-Zeckhauser scheme [21] for one-sided matching markets.

We show that the problem of finding an ε-approximate equilibrium in the HZ scheme is PPAD-hard, and this
holds even when ε is polynomially small and when each agent has no more than four distinct utility values.
Our hardness result, when combined with the PPAD membership result of [29], resolves the approximation
complexity of the HZ scheme. We also show that the problem of approximating within a certain constant
factor the optimal social welfare (the weight of the matching) achievable by HZ equilibria is NP-hard.

1 Introduction
In a one-sided matching problem, there is a set A of n agents and a set G of n goods, and we are given a
specification of the preferences of the agents for the goods. (In general there can be n1 agents, each with their
own demand di, and n2 goods, each with its own supply, sj , where

∑
i di =

∑
j sj . It is clear that this setting

reduces to the simpler case of equal numbers of agents and goods.) The problem is to find a matching between
the agents and the goods (assigning a distinct good to each agent) that has desirable properties, such as Pareto
optimality, envy-freeness, incentive compatibility. This situation, where only one side has preferences, arises in
many settings, such as assigning students to schools, assigning faculty members to committees, workers to tasks,
program committee members to papers, students to courses with limited capacity, etc.

Since many agents may have the same or similar preferences, it is usually not possible to offer everybody
their favorite good. So a solution mechanism has to strive to be equitable, satisfy the agents as much as possible,
and incentivize them to give their true preferences (i.e., not gain an advantage by lying). Randomization is often
useful to meet fairness requirements. A randomized solution mechanism has probability xi,j ∈ [0, 1] of matching
each agent i to each good j; these probabilities form a doubly stochastic matrix, i.e., a fractional perfect matching
in the bipartite graph between agents and goods. In some applications, the goods may be divisible, or they may
represent tasks or resources that can be shared among agents; in these cases the quantities xi,j represent the
shares of the agents in the goods.

There are two main ways of specifying the preferences of each agent i ∈ [n] for the goods: (1) cardinal
preferences, where we are given the utility ui,j of agent i for each good j ∈ [n], or (2) ordinal preferences, where
we are given the agent’s total ordering of the goods. Cardinal preferences allow for a finer specification of the
agents’ preferences (although they may require more effort to produce them). As a result, they can yield better
assignments. Consider for instance the following example from [21]: There are 3 agents and 3 goods. The utilities
of agents 1 and 2 for the three goods are 100, 10, 0, while agent 3 has utilities 100, 80, 0. The ordinal preferences
of the three agents are the same, so any fair mechanism will not distinguish between them, and will give them
each probability 1/3 for each good. The expected utilities of the three agents in this solution is 36 2

3 , 36 2
3 , 60. This

solution is not Pareto optimal, i.e., there is another solution where all agents are better off. Agent 3 is assigned
good 2, and agents 1, 2 randomly split goods 1 and 3. The expected utilities of the three agents in this solution
are 50, 50, 80.

In 1979 Hylland and Zeckhauser proposed a, by now, classic scheme for the one-sided matching problem under
cardinal preferences [21]. The scheme uses a pricing mechanism to produce an assignment of probability shares
{xi,j |i, j ∈ [n]} of goods to agents, i.e. a fractional perfect matching, and these are then used in a standard way to
generate probabilistically an integral perfect matching. The basic idea is to imagine a market where every agent
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has 1 dollar, and the goal is to find prices for the goods and (fractional) allocations xi,j of goods to the agents,
such that the market clears (all goods are sold), while every agent maximizes her utility subject to receiving a
bundle of goods of size 1 and cost at most 1. Hylland and Zeckhauser showed that such an equilibrium set of prices
and allocations always exists, using Kakutani’s fixed point theorem. Note that money here is fictitious; no money
changes hands. The only goal is to produce the allocation (the shares xi,j) so that it reflects the preferences of the
agents. The HZ scheme has several desirable properties: it is Pareto optimal, envy-free [21], and it is incentive
compatible in the large [19]. The scheme has been extended and generalized in various ways since then.

Although the HZ scheme has several nice properties, one impediment is that, despite much effort, there is
no efficient algorithm known to compute an equilibrium solution. This has remained an open problem till now.
In [2], Alaei, Khalilabadi and Tardos gave polynomial-time algorithms for the case that the number of goods
or the number of agents is a fixed constant (the case of a constant number of goods can be derived also from
[9]). Recently in [29], Vazirani and Yannakakis gave a polynomial-time algorithm for the bi-valued case, where
every agent’s utilities take only two values. They also gave an example showing that the equilibrium prices and
allocations can be inherently irrational. In the general case, they showed that the problem of computing an
equilibrium solution is in the class FIXP. Furthermore, computing an ε-approximate equilibrium is in the class
PPAD, where in an approximate equilibrium an agent may get a slightly suboptimal allocation and may spend
1 + ε dollars. They leave open the problem whether computing an exact or approximate equilibrium is complete
for the classes.

In this paper we resolve the complexity of computing an approximate equilibrium of the HZ scheme. Our
main result is:

Theorem 1.1. (Main) The problem of computing an ε-approximate equilibrium of the HZ scheme is PPAD-
complete when ε = 1/nc for any constant c > 0.

In our construction, every agent has at most 4 different utilities for the goods. Thus, the problem is PPAD-
complete even for 4-valued utilities1. We leave the 3-valued case open. In the full version [5], we give however
a simple example with values in {0, 0.5, 1} showing that there can be multiple disconnected equilibria, thus
suggesting that usual convex programming methods may not work (at least a convex program will not include all
equilibria).

A given instance of the one-sided matching problem may have multiple HZ equilibria. All of them are Pareto
optimal, but some may be preferable to others when other criteria are considered. One such criterion is the
social welfare, i.e., the total weight of the matching (or the sum of utilities of agents). We study the problem
of approximating the optimal social welfare achievable by an HZ equilibrium. We show that this is an NP-hard
problem:

Theorem 1.2. Given an instance of the one-side matching problem and a value w, it is NP-hard to distinguish
the case that the maximum social welfare of an HZ equilibrium is at least w from the case that it is at most
( 175
176 + ε)w for any constant ε > 0.

1.1 Proof Overview We give an overview of the proof of Theorem 1.1. To prove the problem of finding an
approximate HZ equilibrium is PPAD-hard, we give a polynomial-time reduction from threshold games, introduced
recently by Papadimitriou and Peng [27]. A threshold game is defined on a directed graph G = (V,E), with a
variable xv ∈ [0, 1] associated with each node v ∈ V . The equilibrium condition is characterized by a comparison
operator: xv = 1 if

∑
(u,v)∈E xu ≤ 1/2−κ; xv = 0 if

∑
(u,v)∈E xu ≥ 1/2 +κ and xv can take an arbitrary value in

[0, 1], otherwise. The PPAD-hardness of threshold game is proved in [27], and it holds for some positive constant
κ > 0 and for sparse graphs. As we will see later, the use of threshold games significantly simplifies the reduction.

From a high-level view, our reduction follows the general framework of previous hardness results on market
equilibria [6, 8, 28, 7]: we use prices of an HZ market to simulate variables xv in a threshold game and the
construction is based on the design of two gadgets: variable gadgets for each v ∈ V (to simulate variables xv
and enforce the equilibrium condition at each node v) and edge gadgets for each e = (u, v) ∈ E (to simulate the
action of sending xu to the sum at xv in the threshold game). However, a major challenge of working with the

1The case of a small number of values is natural. For example, some program committees ask the members to rate their level of
interest in the submissions by values in a limited range, e.g. 0-4.
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HZ scheme is that it is difficult to characterize the equilibrium behavior of agents in this model, as it is complex,
nonlinear, and does not admit a closed form solution. As a consequence, it is hard both, to analyze even small
instances, and to synthesize instances with desired characteristics. Below we discuss some of the key ideas behind
the construction.

Variable gadgets. To simulate variables xv of a threshold game, our starting point is the following simple
sub-market. There are two agents and two goods. Both agents have utility 1 for good 1 and utility 1

2δ−1−1 for
good 2 (0 < δ < 1 which should be considered as a small constant as discussed below). Moreover, each agent can
also choose to buy another zero-priced good, for which it has zero utility. Observe that the set of equilibrium
prices for the two goods of the submarket are (p, 2− p) for p ∈ [0, δ] (because of the option to buy the zero-priced
good). After scaling by 1/δ, the price p of good 1 in this sub-market can be used to simulate a variable xv ∈ [0, 1]
in the threshold game. So we can create such a sub-market Mv for each node v and denote the price of good 1 in
Mv by pv. To finish the reduction, it suffices to create agents that are interested in goods in Mu and Mv, for each
edge e = (u, v) ∈ E, such that the total allocation of goods from Mv to them is captured by −pu.2 The agents
created for this task are what we referred to earlier as the edge gadget for e. If achieved, the total allocation
of goods of Mv to agents outside would give the desired linear form −

∑
(u,v)∈E pu which is a scaled version of

−
∑

(u,v)∈E xu. The sub-market Mv can help enforce the equilibrium condition of the threshold game. When∑
(u,v)∈E xu is too small (so the allocation to agents outside is high due to the negative sign), there is a shortage

of goods of Mv, which would lead to pv ≈ δ and thus, xv ≈ 1; on the other hand, if the sum is too large, then
there is a surplus of goods in the sub-market Mv, which forces pv ≈ 0 and thus, xv ≈ 0.

Edge gadgets. The key technical challenge lies in the construction of edge gadgets. Our first attempt is to
create an agent who has utility 1/2 for good 1 in Mu and utility 1 for good 2 in Mv (with price 2 − pv). The
optimal bundle for this agent, however, is not easy to work with at first sight: for example, the agent is allocated

1−pu
2−pu−pv unit of good 2 inMv. The first key idea of our reduction is to use first order approximation to
simplify a complex function. That is to say, we set δ to be a sufficiently small constant and apply first-order
approximation on the allocation. Ignoring constant factors and constant or lower-order terms, the agent described
earlier has Du ≈ pu − pv unit of good 1 in Mu and Dv ≈ pv − pu unit of good 2 in Mv in her optimal bundle.
This, however, is far from what we hoped for, as (1) we don’t want pv to appear in Dv, and (2) we want Du = 0.
(Notably if we use this agent as our edge gadget for every e ∈ E, then they together are essentially simulating a
threshold game over an undirected graph, which admits trivial equilibria.) What about agents with a different
set of utilities for goods in Mu and Mv? Perhaps surprisingly, all our attempts fail and there is a fundamental
reason for that: it can be shown that, no matter how the utilities are set, the allocation of goods in Mv is always
monotonically increasing with pv, which is undesirable for our purpose.

We circumvent this obstacle using the following three steps. First, we introduce extra goods with a fixed
price 2 into the picture (where the fixed price can be enforced easily by creating agents who are interested in
these goods only). Second, we replace the current variable gadget with a richer sub-market with three goods,
with the price of the new good set to be (1+pv)

2 . Agents in our edge gadget can now have access to these new
goods which give us a larger design space for their utilities and equilibrium behavior. The last step, which is the
second key idea of our reduction, is to use discrete functions to approximate a continuous function.
This is essential in our proof and we believe it might be of independent interest in reductions of similar settings.
Concretely, we design agents that perform comparison operations: there are two possible optimal bundles for each
of these agents, and which one it is depends on the sign (in a robust sense) of a certain affine linear form of pu
and pv. The agent behaves like a step function, which is not useful on its own. However, when combined, one can
construct a series of agents by enumerating utilities; these lead to careful cancellations that make sure the total
allocation Du of goods from Mu is 0 as desired.

1.2 Related Work We have already mentioned the most relevant work on the complexity of the Hylland-
Zeckhauser scheme. The problem of computing an exact HZ equilibrium is in FIXP, and computing an
approximate equilibrium is in PPAD [29]. Polynomial-time algorithms for a fixed number of agents or goods
were given in [2]. It has been a longstanding open problem about whether there is a polynomial-time algorithm
in the general case.

2The negative allocation may look strange but can be achieved (essentially) by offsetting the supply carefully.
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The input in the one-sided matching problem is the same as in the classical assignment problem (equivalently,
maximum weight perfect matching problem in bipartite graphs). This is one of the most well-studied problems
in Operations Research and Computer Science, and several very efficient algorithms have been developed for it
over the years. The difference in the one-sided matching problem is that the primary consideration is to produce
a solution that has certain desirable fairness and optimality properties for the agents; the goal is not simply the
maximization of the weight of the matching. As we show in this paper, computing an HZ solution for the one-
sided matching problem is probably computationally harder: it is PPAD-hard to compute any approximate HZ
solution, and if we want to maximize the total weight of the matching as a secondary criterion then the problem
becomes NP-hard.

In the case of ordinal preferences for the agents in the one-sided matching problem, there are other schemes
with nice properties: the Random Priority (also called Random Serial Dictatorship) scheme [1, 25] and the
Probabilistic Serial scheme [3]. These have polynomial-time (randomized) algorithms. However, since they are
based only on ordinal preferences, they are suboptimal with respect to the agents’ utilities, as the earlier simple
example shows.

The setting in the HZ scheme is the same as in the linear Fisher market model: the input consists of the
utilities ui,j of the agents for the goods, and the problem is to compute equilibrium prices and allocations. The
only difference is that when an agent picks her optimal bundle of goods, she must get exactly one unit (in
addition to the cost being within the budget of 1 dollar), i.e. the solution must be a (fractional) perfect matching.
Although this may seem like a small difference, it has a substantial effect both in the structure of the problem
and in its computational complexity: exact solutions may be irrational, and as we show in this paper, finding
an approximate solution is PPAD-hard. The linear Fisher model has been studied extensively and there are
polynomial-time algorithms for computing equilibria in this model, as well as in the more general Arrow-Debreu
model with linear utilities [22, 10, 26, 11, 17].

There is furthermore extensive work on markets with more complex utility functions than linear, such as
piecewise linear, Leontief, CES utilities and others, and for many of them it is PPAD-hard or FIXP-hard to
compute an approximate or exact equilibrium (e.g. [6, 8, 28, 7, 14, 15]).

Several researchers have proposed Hylland-Zeckhauser-type mechanisms for a number of applications, e.g. see
[4, 19, 23, 24]. There are also recent works that have generalized and extended the basic HZ scheme in several
directions, for example to two-sided matching markets and to an Arrow-Debreu-type setting where the agents own
initial endowments [12, 13, 16]. Note that in the case of initial endowments, an HZ equilibrium may not always
exist, so some approximation or slack is needed to ensure existence (see [12, 16]). Motivated by our hardness
result, [20] propose a Nash Bargaining model for one-side matching market. Their mechanism is efficient, Pareto
optimal and satisfies certain notion of fairness. However, as noted by [20], it does not guarantee envy-freeness
and is not incentive compatible in large.

2 Preliminaries
We write [n] to denote {1, 2, . . . , n}. Given two integers n and m we use [n : m] to denote integers between n and
m, with [n : m] = ∅ when m < n. Given two real number x, y ∈ R, we use x = y ± ε to denote x ∈ [y − ε, y + ε].

2.1 The Hylland-Zeckhauser Scheme We provide a formal description of the Hylland-Zeckhauser scheme
for one-sided matching markets [21, 29]. It will be convenient for us to describe it using the language of linear
Fisher markets. An HZ market M consists of a set A = [n] of n agents and a set G = [n] of n (infinitely) divisible
goods. Each agent i ∈ A has one dollar and there is one unit of each good j ∈ G in the market. We write
ui,j ∈ [0, 1]3 to denote the utility of one unit of good j to agent i, for each i ∈ A and j ∈ G. Hence an HZ market
M is specified by a positive integer n and utilities (ui,j : i, j ∈ [n]).

Given an HZ market M with n agents and goods, an HZ equilibrium [21] consists of an allocation
x = (xi,j : i, j ∈ [n]) and a price vector p = (pj : j ∈ [n]) that are nonnegative and satisfy a list of properties to
be described in Definition 2.1. Given x and p, we will refer to xi = (xi,j : j ∈ [n]) as the bundle of goods allocated
to agent i. The cost of the bundle xi is given by

∑
j∈[n] pjxi,j and the value of xi to agent i is

∑
j∈[n] ui,jxi,j .

We are ready to define HZ equilibria:

3As it will become clear in Definition 2.1, shifting and scaling utilities of agents does not change the set of HZ equilibria. We
assume utilities to lie in [0, 1] because we will consider an additive approximation of HZ equilibria in Definition 2.2.
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Definition 2.1. (HZ Equilibria [21]) A pair (x, p), where x = (xi,j : i, j ∈ [n]) ∈ Rn×n≥0 and p = (pi : i ∈
[n]) ∈ Rn≥0, is an HZ equilibrium of an HZ market M if:

1. The total allocation of each good j ∈ [n] is 1 unit, i.e.,
∑
i∈[n] xi,j = 1.

2. The total allocation of each agent i ∈ [n] is 1 unit, i.e.,
∑
j∈[n] xi,j = 1.

3. The cost of the bundle xi of each agent i ∈ [n] is at most 1, i.e.,
∑
j∈[n] pjxi,j ≤ 1.

4. For each i ∈ [n], xi maximizes its value
∑
j∈[n] ui,jxi,j to agent i subject to 2 and 3 above.4

Equivalently the last condition in the definition above can be captured by the following LP:

maximize
∑
j∈[n]

ui,jxi,j

s.t.
∑
j∈[n]

xi,j = 1,
∑
j∈[n]

pjxi,j ≤ 1, and xi,j ≥ 0 for all j ∈ [n].

Taking µi and αi to be the dual variables, one has the following dual LP that will be useful:

minimize αi + µi

s.t. αi ≥ 0 and αipj + µi ≥ ui,j , for all j ∈ [n].

We will refer to the LP (and its dual LP) above as the LP (or dual LP) for agent i with respect to the price vector
p. Let valuep(i) denote their optimal value. Then it captures the optimal value of any bundle of goods to agent i
subject to conditions 2 and 3 in Definition 2.1.

Hylland and Zeckhauser [21] showed that an HZ equilibrium always exists:

Theorem 2.1. (Existence [21]) Every HZ market admits an HZ equilibrium.

If (x, p) is an equilibrium, then it is easy to see that if we scale the difference of all prices from 1, the
resulting price vector p′ together with the same allocation x forms also an equilibrium; i.e. for any r > 0 with
r ≤ min{1/(1 − pj)|pj < 1}, setting p′j = 1 + r(pj − 1) for all j ∈ [n] yields a vector p′ such that (x, p′) is also
an equilibrium (see [29]). The reason is that this scaling does not affect the set of feasible allocations, as can be
easily seen, and valuep′(i) = valuep(i) for all agents i ∈ [n]. That is, price vectors related to each other by this
scaling are in a sense equivalent. A consequence of this observation is that we may always assume w.l.o.g. that
an equilibrium contains a good with price 0 [21]: If one of the goods has price < 1, then we can always scale the
prices so that the minimum price is 0. On the other hand if all prices in an equilibrium are ≥ 1, then all prices
must be 1 (the sum of the prices must be ≤ n, the sum of the agents’ budgets), and in this case the cost condition
3 is redundant, and the all-0 vector forms also an equilibrium with the same allocation.

We say that a price vector p is normalized if mini pi = 0. We will restrict our attention henceforth to
normalized price vectors, without always mentioning it explicitly.

Our hardness results hold for the following relaxation studied by Vazirani and Yannakakis [29]:

Definition 2.2. (Approximate HZ Equilibria) Given some ε > 0, a pair (x, p), where x = (xi,j : i, j ∈
[n]) ∈ Rn×n≥0 and p = (pi : i ∈ [n]) ∈ Rn≥0 (where mini∈[n] pi = 0)5, is an ε-approximate HZ equilibrium of an HZ
market M if:

1. The total allocation of each good j ∈ [n] is 1 unit, i.e.,
∑
i∈[n] xi,j = 1.

4We note that in [21, 29], xi is required (as a tie-breaking rule) to minimize its cost among all those that maximize the value
subject to items 2 and 3. This is needed to ensure Pareto optimality of the equilibrium allocations. However, we do not need this
condition for our hardness results, and this only makes the results stronger. So for simplicity, we omit the condition from the definition
of exact and approximate equilibria.

5The requirement that p be normalized is important in the definition because otherwise condition 3 on the cost has no effect: if
(x, p) is any pair that satisfies conditions 1,2,4, then we can always scale p as above to a vector p′ where all prices are sufficiently
close to 1 so that condition 3 is also satisfied for (x, p′).
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2. The total allocation of each agent i ∈ [n] is 1 unit, i.e.,
∑
j∈[n] xi,j = 1.

3. The cost of xi is at most 1 + ε for each i ∈ [n], i.e.,
∑
j∈[n] pjxi,j ≤ 1 + ε.

4. The value
∑
j∈[n] ui,jxi,j of xi to agent i is at least valuep(i)− ε for each i ∈ [n].

An alternative, more relaxed notion of an ε-approximate equilibrium, where condition 1 is also relaxed to
|
∑
i∈[n] xi,j − 1| ≤ ε for all goods j ∈ [n], is polynomially equivalent to the above notion [29]. Thus, it follows

that computing an ε-approximate equilibrium under the more relaxed notion is also PPAD-complete.

2.2 Threshold Games Our PPAD hardness results use threshold games, introduced recently by Papadimitriou
and Peng [27]. They showed that finding an approximate equilibrium in a threshold game is PPAD-complete.

Definition 2.3. (Threshold game [27]) A threshold game is defined over a directed graph H = (V,E). Each
node v ∈ V represents a player with strategy space xv ∈ [0, 1]. Let Nv be the set of nodes u ∈ V with (u, v) ∈ E.
Then x = (xv : v ∈ V ) ∈ [0, 1]V is a κ-approximate equilibrium if every xv satisfies

xv ∈


[0, κ]

∑
u∈Nv

xu > 0.5 + κ

[1− κ, 1]
∑
u∈Nv

xu < 0.5− κ
[0, 1]

∑
u∈Nv

xu ∈ [0.5− κ, 0.5 + κ]

Theorem 2.2. (Theorem 4.7 of [27]) There is a positive constant κ such that the problem of finding a κ-
approximate equilibrium in a threshold game is PPAD-hard. This holds even when the in-degree and out-degree
of each node is at most 3 in the threshold game.

3 PPAD-hardness
Our goal in this section is to prove the following theorem:

Theorem 3.1. The problem of finding a (1/n5)-approximate HZ equilibrium in an HZ market with n agents and
goods is PPAD-hard.

In the full version [5] (via a padding argument), we give a polynomial-time reduction from the problem of
finding a (1/n5)-approximate HZ equilibrium to that of finding a (1/nc)-approximate HZ equilibrium in an HZ
market, for any positive constant c. Theorem 1.1 follows by combining the PPAD membership result of [29].

Our plan is as follows. Let ε = 1/n5 throughout this section wherever an HZ market with n agents and goods
is concerned. We start with some basic facts about approximate HZ equilibria in Section 3.1 (mainly about how
to work with approximately optimal bundles for agents). Then we describe the polynomial-time reduction from
threshold games to HZ markets in Section 3.2. Our reduction constructs two types of gadgets, variable gadgets
and edge gadgets, which simulate variables xv and edges (u, v) in a threshold game, respectively. Using these
gadgets, we finish the reduction’s correctness proof in Section 3.3; the analysis of these two gadgets is presented
afterwards in Section 3.4 and the full version of the paper [5], respectively.

3.1 Basic Facts. Let M be an HZ market with n agents and goods. As it will become clear later, the HZ
market we construct in the reduction satisfies maxj∈[n] ui,j = 1 for every agent i ∈ [n]. Hence we assume this is
the case in every HZ market discussed in the rest of this section. In all lemmas of this subsection we assume (x, p)
to be an ε-approximate HZ equilibrium of M (and skip it in their statements). Recall that prices are normalized:
mini pi = 0.

We give first an upper bound on the sum of prices:

Lemma 3.1.
∑
j∈[n] pj ≤ 2n.

Proof. Since (x, p) is an ε-approximate HZ equilibrium, every good must be sold out and no agent can spend more
than 1 + ε. Thus,

∑
j∈[n] pj ≤ n(1 + ε) < 2n using ε = 1/n5.

Next, we consider an optimal solution (α∗i , µ
∗
i ) to the dual LP for agent i and prove the following:
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Lemma 3.2. µ∗i ≥ 0 and α∗i ≤ 1 for every i ∈ [n].

Proof. Let ` be a good with p` = 0. From the dual LP constraints, we have 0 ≤ ui,` ≤ α∗i p` +µ∗i = µ∗i . Moreover,
since all utilities are in [0, 1] we have trivially that α∗i + µ∗i = valuep(i) ≤ 1. Therefore, we have α∗i ≤ 1.

Lemma 3.3. If valuep(i) ≤ 0.9 then α∗i ≥ 1/(20n) and
∑
j∈[n] pjxi,j ≥ 1− 20nε.

Proof. Let ui,` = 1. It follows from Lemma 3.1 that p` ≤ 2n and thus,

1 = ui,` ≤ α∗i p` + µ∗i ≤ 2nα∗i + µ∗i .

On the other hand, valuep(i) = α∗i + µ∗i ≤ 0.9. The first part of the lemma follows from adding these two
inequalities.

Next, multiplying both sides of the inequalities α∗i pj + µ∗i ≥ ui,j by xi,j , summing over all j ∈ [n], and using∑
j xi,j = 1, we have ∑

j∈[n]

α∗i pjxi,j + µ∗i ≥
∑
j∈[n]

ui,jxi,j ≥ α∗i + µ∗i − ε.

The second part of the lemma then follows from α∗i ≥ 1/(20n).

Recall that all goods j satisfy ui,j ≤ α∗i pj+µ∗i . We say a good j is δ-suboptimal for agent i if ui,j+δ ≤ α∗i pj+µ∗i .
We show that agent i’s good-bundle, xi, cannot contain significant quantities of suboptimal goods.

Lemma 3.4. For every i ∈ [n], the total allocation in xi to δ-suboptimal goods is at most 2ε/δ.

Proof. Fix an agent i ∈ [n]. We have ui,j ≤ α∗i pj + µ∗i for all j ∈ [n], and ui,j + δ ≤ α∗i pj + µ∗i for δ-suboptimal
goods. Let W be the total allocation in xi to δ-suboptimal goods. Then∑

j∈[n]

ui,jxi,j +Wδ ≤ α∗i
∑
j∈[n]

pjxi,j + µ∗i
∑
j∈[n]

xi,j .

Using the definition of ε-approximate HZ equilibria, the LHS is at least

valuep(i)− ε+Wδ = α∗i + µ∗i +Wδ − ε

and the RHS is at most α∗i (1 + ε) + µ∗i . The lemma follows from α∗i ≤ 1 by Lemma 3.2.

We use some of the lemmas above to obtain following corollaries:

Corollary 3.1. Let J be the set of j ∈ [n] that are not δ-suboptimal for i. If valuep(i) ≤ 0.9, then

1− 2ε/δ ≤
∑
j∈J

xi,j ≤ 1 and 1− 20nε− 4nε

δ
≤
∑
j∈J

pjxi,j ≤ 1 + ε.

Proof. The first part follows directly from Lemma 3.4.
The second part follows from Lemma 3.1, Lemma 3.3, and Lemma 3.4.

Corollary 3.2. Let J be the set of goods j ∈ [n] with ui,j > 0. If valuep(i) ≤ 0.9, then

1− 20nε− 1

n2
≤
∑
j∈J

pjxi,j ≤ 1 + ε.

Proof. The second inequality clearly holds since (x, p) is an ε-approximate equilibrium. Suppose that the first
inequality does not hold. Then by Lemma 3.3, agent i spends more than 1/n2 on zero-utility goods, hence she
buys at least an amount 1/2n3 of these, since all prices are at most 2n. Consider a new bundle for i obtained by
replacing 1/2n3 of the zero-utility goods by a good with utility 1. The cost of the new bundle is still less than 1,
i.e. it is a feasible bundle, and the value exceeds that of the original bundle xi by 1/2n3 > ε, contradicting the
fact that (x, p) is an ε-approximate equilibrium.

Finally we include a simple lemma about the optimal value of an agent:

Lemma 3.5. Let i ∈ [n] and ` ∈ [n] with ui,` = 1. Then valuep(i) ≥ min(1, 1/p`).

Proof. If p` = 0, then agent i can get value 1 by buying one unit of good ` for free.
If p` > 0 then there is another good with zero price and thus, agent i can get value min(1, 1/p`) by buying

min(1, 1/p`) unit of good ` and 1−min(1, 1/p`) unit of a zero price good.
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3.2 The Construction. Let κ ∈ (0, 1) be the positive constant in Theorem 2.2. Recall that our goal is to give
a polynomial-time reduction from the problem of finding a κ-approximate equilibrium in a threshold game (with
both in-degree and out-degree at most 3) to that of finding an ε-approximate HZ equilibrium in an HZ market
with ε = 1/n5.

Let C be a sufficiently large universal constant, and m = dC/κe. Let H = (V,E) be a threshold game with
|V | = N . (Note that N is asymptotically large and should be considered as larger than any function of m.) We
write in-deg(v) and out-deg(v) ≤ 3 to denote the in-degree and out-degree of v ∈ V , respectively. We construct
an HZ market MH from H in three steps as described below. This is done by creating groups of goods and groups
of agents, with the guarantee that agents in the same group have the same utility for any good as each other,
and that goods in the same group yield the same utility to any agent. We say a group Ai of agents have utility
u for a group Gj of goods if all agents in Ai share the same utility u for all goods in Gj . (Intuitively we create a
group Ai of agents to simulate an agent with demand and budget |Ai| instead of 1, and a group Gj of goods to
simulate a good with a supply of |Gj | units in the market. A technical subtlety though is that in an approximate
HZ equilibrium, goods in the same group may not share exactly the same price and agents in the same group
may not have exactly the same allocation.)

Step 1: Creating Variable Gadgets. We start with an empty market and create a variable gadget for each
node v ∈ V to simulate the variable xv in the threshold game H. For each node v ∈ V , the variable gadget of v
consists of the following three groups of goods and one group of agents:

1. Create three groups of goods Gv,1, Gv,2 and Gv,3: Gv,1 has m10 + Su goods, where

Su := (24m3 + 12m) · out-deg(u) + (24m3 + 15m) · in-deg(u)− 3m,

and Gv,2 and Gv,3 both have 2m10 goods. Let Gv denote the union of Gv,1, Gv,2 and Gv,3.

2. Create a group Av of 5m10 agents. Each agent in Av has the following utilities for Gv:

(3.1)
1

2m2 − 1
for Gv,1,

m2 + 1

4m2 − 2
for Gv,2, 1 for Gv,3,

and utility 0 for every other good in the market (including those created later).

Looking ahead, we will prove (in Lemma 3.6) that in any ε-approximate HZ equilibrium (x, p) of the final HZ
market MH , p(Gv,1), p(Gv,2) and p(Gv,3) must satisfy

0 ≤ p(Gv,1) .
1

m2
, p(Gv,2) ≈ 1 + p(Gv,1)

2
and p(Gv,3) ≈ 2− p(Gv,1),

where p(Gv,`) denotes the minimum price of goods in Gv,`. Indeed, p(Gv,1) will be used to simulate the variable
xv in the threshold game H and at the end, we set xv ≈ m2p(Gv,1) for each v ∈ V to obtain a κ-approximate
equilibrium of H.

Step 2: Creating Edge Gadgets. Next we create an edge gadget for each edge e = (u, v) ∈ E to simulate the
action of vertex u sending a contribution xu to the summation at vertex v in the threshold game H (see definition
2.3). For each (directed) edge e = (u, v) ∈ E, the edge gadget of e consists of the following multiple groups of
goods and agents (for convenience, we only list goods with positive utilities for each group of agents; every other
good has utility 0):

1. Create a group Ge of 32m5 goods.

2. Create a group Ae,∗ of 64m5 agents. They have utility 1 for Ge.

3. Create a group of 48m3 agents Ae,1. They have utility 1 for Gu,3 and 1/2 for Gv,1.

4. Create m groups Ae,2,`, ` ∈ [m], each of 6 agents. They have 1 for Ge and `/(2m3) for Gv,1.
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5. Create m groups Ae,3,`, ` ∈ [m], each of 8 agents. They have 1 for Ge and `/(2m3) for Gu,1.

6. Create m groups Ae,4,`, ` ∈ [2m], each of 18 agents. They have 1 for Ge, `/(2m3) for Gv,1,

1

4
+

1

4m2
+

1

m3

for goods in Gu,2.

For convenience we write Ae to denote the union of groups Ae,1, Ae,2,`, Ae,3,` and Ae,4,`, for all `.

Step 3: Adding Dummy Goods. So far we have created

(3.2) 5m10 · |V |+ (64m5 + 48m3 + 50m) · |E|

many agents and∑
u∈V

(5m10 + Su) + 32m5 · |E| = (5m10 − 3m) · |V |+ (32m5 + 48m3 + 27m) · |E|

many goods. To finish the construction (since the number of goods needs to match that of agents), we create a
group of 3m|V |+(32m5 +23m)|E| dummy goods, which have utility 0 to every agent in the market. This finishes
the construction of MH with n agents and goods, where n is given in (3.2). It is clear that MH can be built in
polynomial time.

Before moving forward, we record a list of simple properties about MH :

Fact 3.1. The HZ market MH satisfies the following properties:

1. Every agent in the market has maximum utility 1;

2. For each node v ∈ V , the number of agents outside of Av that have a positive utility on at least one group
of goods in Gv is at most 288m3 + 258m = O(m3);

3. For each edge e ∈ E, the number of agents outside of Ae,∗ that have a positive utility on Ge is
50m = O(m).

3.3 Proof of Correctness. Let ε = 1/n5. We prove two lemmas about variable gadgets in Section 3.4.
We use p(Gi) to denote the minimum price of goods in a group Gi. The first lemma shows that p(Gv,1) is

between (roughly) 0 and 1/m2 and it determines p(Gv,2) and p(Gv,3) (approximately).

Lemma 3.6. Let (x, p) be an ε-approximate HZ equilibrium of MH . Then p(Gv,1) satisfies

0 ≤ p(Gv,1) ≤ 1

m2
+O

(
1

m6

)
for every v ∈ V . Moreover, p(Gv,2) and p(Gv,3) satisfy

(3.3) p(Gv,2) =
1 + p(Gv,1)

2
±O

(
1

m7

)
and p(Gv,3) = 2− p(Gv,1)±O

(
1

m7

)
.

We prove Lemma 3.6 in Section 3.4.
We next show that the variable gadget created for each node v ∈ V is sensitive to demand from agents outside

of Av. To state the lemma (and the next one), we introduce the following notation: Let G∗ be a subset of goods
(which could be a group or the union of multiple groups of goods) and A∗ be a subset of agents in MH (which
could be a group or the union of multiple groups). We let

x+(G∗, A∗) =
∑
i∈A∗
j∈G∗:
ui,j>0

xi,j ,
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i.e., the total allocation of G∗ to A∗ but limited to those goods in G∗ with positive utilities to each agent in A∗
only. We also write Av to denote all agents in MH outside of Av.

The second lemma (which we also prove in Section 3.4) states that if the total allocation of Gv to agents
outside of Av with positive utilities is either more than Sv + 1 or less than Sv − 1, then p(Gv,1) must be at one
of the two extreme cases accordingly, i.e., either close to 0 or close to 1/m2.

Lemma 3.7. Let (x, p) be an ε-approximate HZ equilibrium of MH . Then for every v ∈ V :

1. If x+(Gv, Av) ≥ Sv + 1, then we have

p(Gv,1) =
1

m2
±O

(
1

m9

)
;

2. If x+(Gv, Av) ≤ Sv − 1, then we have p(Gv,1) ≤ O(1/n2).

Finally we prove the following lemma about MH , which follows from a detailed analysis of the edge gadgets;
the proof can be found in the full version [5]:

Lemma 3.8. Let (x, p) be an ε-approximate HZ equilibrium of MH . For each e = (u, v) ∈ E,

x+(Gu, Ae) = 24m3 + 12m±O(1) and x+(Gv, Ae) = −6m3p(Gu,1) + 24m3 + 15m±O(1).

We now use these lemmas to prove Theorem 3.1:

Proof. [Proof of Theorem 3.1 assuming Lemmas 3.6, 3.7 and 3.8] Let H = (V,E) be a threshold game, and let
(x, p) be an ε-approximate HZ equilibrium of MH . Let (xv : v ∈ V ) be a profile for H with

xv = min
(
1,m2p(Gv,1)

)
for each v ∈ V . We prove below that (xv : v ∈ V ) is a κ-approximate equilibrium of H.

Fix a node v ∈ V . We consider two cases.

1. Case 1:
∑
u∈Nv

xu > 0.5 + κ. In this case, x+(Gv, Av) is at most

out-deg(v) ·
(
24m3 + 12m+O(1)

)
+
∑
u∈Nv

(
24m3 + 15m− 6m3p(Gu,1) +O(1)

)
= Sv + 3m− 6m3

∑
v∈Nv

p(Gu,1) +O(1) < Sv − 1.

It follows from Lemma 3.7 that p(Gv,1) ≤ O(1/n2) and thus, xv ≤ O(m2/n2) < κ.

2. Case 2:
∑
u∈Nv

xu < 0.5− κ. Using p(Gu,1) ≤ 1/m2 +O(1/m9), we have∑
u∈Nv

m2p(Gu,1) < 0.5− κ+O(1/m7).

Similarly, x+(Gv, Av) is at least

out-deg(v) ·
(
24m3 + 12m−O(1)

)
+
∑
u∈Nv

(
24m3 + 15m− 6m3p(Gu,1)−O(1)

)
= Sv + 3m− 6m3

∑
u∈Nv

p(Gu,1)−O(1) > Sv + 1.

It follows from Lemma 3.7 that p(Gv,1) ≥ (1/m2)−O(1/m9) and thus, xv ≥ 1− κ.

This finishes the proof of the theorem.
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3.4 Analysis of Variable Gadgets We prove Lemma 3.6 and Lemma 3.7 in this section. We start with some
simple bounds on prices of goods in Ge and Gv,3, e ∈ E and v ∈ V :

Lemma 3.9. Let (x, p) be an ε-approximate HZ equilibrium of MH . We have p(Ge) ≥ 2(1− 2ε) for every e ∈ E
and p(Gv,3) ≥ 5/3 for every v ∈ V .

Proof. Fix an e ∈ E. The optimal value of each agent in Ae,∗ is at most 0.5 + ε; otherwise each of them must
receive a bundle with value more than 0.5, which implies that each of them gets more than 0.5 unit of goods
in Ge, contradicting with the fact that there are 64m5 many agents in Ae,∗ but only 32m5 many goods in Ge.
On the other hand, the optimal value of each agent in Ae,∗ is at least min(1, 1/p(Ge)) by Lemma 3.5 and thus,
p(Ge) ≥ 1/(0.5 + ε) > 2(1− 2ε).

Next fix a v ∈ V . With a similar argument, the optimal value of each agent in Av is at most

1

5m10
·
(
m10 + Sv
2m2 − 1

+ 2m10 · m
2 + 1

4m2 − 2
+ 2m10

)
+ ε < 3/5

when m is sufficiently large. On the other hand, by Lemma 3.5 the optimal value of each agent in Av is at least
min(1, 1/p(Gv,3)) and thus, p(Gv,3) ≥ 5/3.

From this we can show that every agent in MH has optimal value at most 0.9:

Lemma 3.10. Let (x, p) be an ε-approximate HZ equilibrium of MH . Then every agent in MH has optimal value
(with respect to p) at most 0.9.

Proof. As shown in the previous lemma, the optimal value of each agent in a group Av of a variable gadget is at
most 3/5, and the optimal value of each agent in a group Ae,∗ of an edge gadget is at most 0.5 + ε. The claim for
the agents in the groups Ae follows from the prices of the goods in Gu,3 and Ge, which are the goods that have
utility 1 for these agents (the other goods have utility 1/2 or less).

This allows us to apply lemmas in Section 3.1. It immediately leads to the following corollary:

Corollary 3.3. For every group Gj of goods, the maximum price in Gj is at most p(Gj) + 1/n2.

Proof. Assume for a contradiction that there is a good in Gj with price at least p(Gi)+1/n2. Then for each agent
i in the market, we have α∗i ≥ 1/(20n) by Lemma 3.3 and thus this good is Ω(1/n3)-suboptimal (by comparing
with the good in Gj with price p(Gj)). Hence its allocation to agent i is O(1/n2), and the total allocation of this
good in x is O(1/n), a contradiction.

Before proving Lemma 3.6 we show that p(Ge) is very close to 2:

Lemma 3.11. For every edge e ∈ E we have p(Ge) = 2±O(1/m4).

Proof. We have by Lemma 3.9 that p(Ge) ≥ 2−O(ε). For the upper bound note that by Lemma 3.9 and Lemma
3.3, goods in Ge are Ω(1/n)-suboptimal to agents with zero utility so their total allocation to such agents is
O(n2ε) by Lemma 3.4. By Fact 3.1 the total allocation of Ge to agents outside Ae,∗ with a positive utility is
O(m) and thus, the rest of 32m5 −O(m) units of Ge are allocated to agents in Ae,∗. So(

32m5 −O(m)
)
p(Ge) ≤ 64m5(1 + ε),

which implies that p(Ge) ≤ 2 +O(1/m4). This finishes the proof of the lemma.

We are now ready to prove Lemma 3.6:

Proof. [Proof of Lemma 3.6] Fixing any node v ∈ V , we let q` denote p(Gv,`) and y` to denote the total allocation
of Gv,` to agents in Av in x, for each ` ∈ {1, 2, 3}. We also write u` to denote the utility of Gv,` to agents in Av
given in (3.1). We start by showing that most goods in Gv go to Av.
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Figure 1: The variable gadget.

Lemma 3.12. We have y1 ≥ m10 −O(m3) and y2, y3 ≥ 2m10 −O(m3).

Proof. Let α∗ and µ∗ be an optimal solution to the dual LP of agents in Av. Then α∗q` +µ∗ ≥ u` for each `. We
consider the following two cases.

First we consider the case when µ∗ ≥ u1/2 = Ω(1/m2). This implies that goods outside of Gv are Ω(1/m2)-
suboptimal for Av and thus, by Lemma 3.4, the total allocation of them to agents in Av is O(m10) ·O(m2ε) < 1
. As a result, y1 + y2 + y3 ≥ 5m10 − 1 from which the claim follows.

Next consider the case when µ∗ < u1/2. By Lemma 3.2 (α∗ ≤ 1) we have q` ≥ Ω(1/m2) for every `. This
implies that agents with zero utilities to Gv can be allocated only n ·O(nm2ε) < 1 units of Gv given that they are
Ω(1/nm2)-suboptimal by Lemma 3.3. On the other hand, by Fact 3.1 the allocation to agents outside Av with
positive utilities for Gv is at most O(m3). So the rest of Gv must be allocated to Av and the claim follows.

Now that we have y` ≥ m10 − O(m3) for all ` ∈ {1, 2, 3}, we proceed to prove (3.3). Let (α∗, µ∗) denote an
optimal solution to the dual LP for Av. By Lemma 3.4 and taking δ = 20ε, we have

(3.4) u` ≤ α∗q` + µ∗ ≤ u` + δ, for all ` ∈ {1, 2, 3}.

If this were not the case (i.e. the second inequality is violated for some `), then goods in Gv,` are δ-suboptimal
to Av and their total allocation to agents in Av can be no more than 5m10 · 2ε/δ = m10/2, a contradiction.

Combining (3.4) and u2 = (3u1 + u3)/4, we have

α∗
(

3q1 + q3
4

)
+ µ∗ − δ ≤ α∗q2 + µ∗ ≤ α∗

(
3q1 + q3

4

)
+ µ∗ + δ.

Using α∗ ≥ 1/(20n) from Lemma 3.3, we have

q2 =
3q1 + q3

4
±O(nε).(3.5)

Next, using Corollary 3.2 and Corollary 3.3 we have

5m10(1−O(1/n2)) ≤ q1y1 + q2y2 + q3y3 ≤ 5m10(1 + ε+ 1/n2).

Plugging in y1 = m10 ± O(m3) and y2, y3 = 2m10 ± O(m3) and (3.5), we have q1 + q3 = 2± O(1/m7). Together
with (3.5) again we obtain

q3 = 2− q1 ±O(1/m7) and q2 = (1 + q1)/2±O(1/m7).
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Finally we give an upper bound on q1. We first note that q1 < q3; otherwise goods in Gv,1 are Ω(1)-suboptimal
to agents in Av, contradicting with y1 = m10 ±O(m3). Using (3.4) we have

µ∗ ≤ u1q3 − u3q1 +O(δ)

q3 − q1
.

But when q1 ≥ 1/m2 + 1/m6 (and thus, q3 ≤ 2− 1/m2), the nominator of the RHS is

u1q3 − u3q1 ≤
1

2m2 − 1
·
(

2− 1

m2

)
− 1 ·

(
1

m2
+

1

m6

)
≤ − 1

m6
.

So we have µ∗ < 0, in contradiction with µ∗ ≥ 0 by Lemma 3.2.

Next we prove Lemma 3.7:

Proof. [Proof of Lemma 3.7] We use the same notation from the proof of the last lemma.
First given that q2 and q3 are Ω(1), the total allocation of Gv,2 to agents with zero utility on Gv,2 is at most

n ·O(nε) using Lemma 3.4; the same applies to Gv,3.
Suppose that x+(Gv, Av) ≤ Sv−1. Because Gv contains 5m10+Sv goods while Av contains only 5m10 agents,

for Gv to be fully sold out, the total allocation of Gv,1 to agents with zero utility on Gv,1 must be 1− on(1). This
implies that q1 ≤ 1/n2 since otherwise, the total allocation for Gv,1 is at most n ·O(n3ε) = on(1), using ε = 1/n5.

Next, suppose x+(Gv, Av) ≥ Sv + 1. Given that there are 5m10 + Sv goods in Gv and 5m10 agents in Av,
there must be an agent in Av who is allocated at least 1/(5m10)-unit of goods outside of Gv (for which it has zero
utility). Since such goods are µ∗-suboptimal, we have µ∗ ≤ 5m10ε. On the other hand, recall (3.4) with δ = 20ε.
We have α∗(q1 + q3) + 2µ∗ = u1 + u3 ± 2δ and thus,

α∗ =
u1 + u3

2

(
1±O

(
1

m7

))
using Lemma 3.6. Then q1 = (u1 − µ∗ ± δ)/α∗ = 1/m2 ±O(1/m9).

4 Hardness of Approximating Optimal Social Welfare
In this section we study the problem of approximating the optimal social welfare (defined as the total utility of
all agents) achievable by an HZ equilibrium. For this purpose we study the following gap problem for a constant
ρ < 1: the input is an HZ market M together with a parameter SW, and it is promised that the optimal social
welfare achievable by an exact HZ equilibrium of M is either at least SW or at most ρ · SW. The goal is to tell
which case it is. We show that there is no polynomial-time algorithm for the gap problem when ρ > 175/176,
assuming NP 6= P.

Theorem 4.1. Assuming NP 6= P, for any constant ε > 0, there is no polynomial-time algorithm for the gap
problem when ρ = (175/176) + ε.

4.1 Construction. We reduce from MAX 3SAT, which is hard to approximate better than 7/8 [18]: Given a
3SAT instance, it is NP-hard to distinguish the case that the formula is satisfiable from the case that every truth
assignment satisfies at most a fraction 7

8 + ε of the clauses, for any ε > 0. Given a 3SAT instance with m clauses
and n variables, we construct the following HZ market. Throughout the proof, we fix K = m3.

Creating Variable Gadget. We first introduce the variable gadget. For convenience, we only list non zero
utilities. For each i ∈ [n]

1. Create three groups of goods Gi,1, Gi,2, Gi,3, and |Gi,1| = K, |Gi,2| = 2K and |Gi,3| = K.

2. Create two groups of agents Ai,1, Ai,2, and |Ai,1| = |Ai,2| = 2K.

3. Agents in Ai,1 have utility 1
2K2 for Gi,1, 1

K2 for Gi,2. Agents in Ai,2 have utility 1
2K2 for Gi,3, 1

K2 for Gi,2.

In an (exact) HZ equilibrium, all goods within a group have the same price. We use p(Gi,`) to denote the
price, ` ∈ [3].
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Creating Clause Gadget. We next construct clause gadgets. For each j ∈ [m],

1. Create a group Gj of K goods

2. Create a group Aj,∗ of 2K agents, who have utility 1/K2 for Gj .

3. Create an agent Aj with utility 1 for Gj . It has utility 5/6 for Gi,1 if the j-th clause contains xi and utility
5/6 for Gi,3 if the j-th clause contains xi.

Adding Dummy Goods Thus far, we have described 4Kn + Km goods and 4Kn + (2K + 1)m agents. We
add (K + 1)m extra dummy goods that have zero utilities for all agents. In a normalized (exact) HZ equilibrium,
these goods have zero price.

4.2 Proof of Correctness. We provide the proof of completeness and soundness separately.
Completeness Given a 3SAT instance that has a satisfying assignment, we construct a HZ equilibrium with

social welfare at least 11m/12−O(1/m2). Fix a satisfying assignment.
We assign the j-th clause to the φ(j)-th variable, if the latter satisfies the clause. If there are multiple such

variables, we choose an arbitrary one. We set `(j) = 1 if the j-th clause contains xφ(j), otherwise `(j) = 3. Let
si be the total number of clauses assigned to the i-th variable. The equilibrium prices are as follows.

1. The price of dummy goods is 0.

2. The price of Gj is p(Gj) = 2K+1
K , j ∈ [m].

3. For variable gadget i ∈ [n], if xi = 1, then (p(Gi,1), p(Gi,3), p(Gi,2)) = (0, 85 ,
4
5 ), otherwise, we have

(p(Gi,1), p(Gi,2), p(Gi,3)) = (4
5 ,

8
5 , 0).

Next, we specify the equilibrium allocation.

1. Agents of Aj,∗ take 2K2

2K+1 of Gj and 2K2+2K
2K+1 of dummy goods, j ∈ [m].

2. Agent Aj takes K
2K+1 of Gj and K+1

2K+1 of Gφ(j),`(j), j ∈ [m].

3. If xi = 1, then agents in Ai,1 obtain 5K
4 of Gi,2, 3K

4 of Gi,1; agents in Ai,2 obtain 3K
4 of Gi,2, K of Gi,3,

K
4 − sj ·

K+1
2K+1 of Gi,1 and sj · K+1

2K+1 of the dummy good, i ∈ [n]. If xi = 0, then we define the allocation
symmetrically, switching the groups of agents Ai,1 and Ai,2, and the groups of goods Gi,1 and Gi,3.

One can verify that this is indeed a HZ equilibrium. Agent Aj has utility K
2K+1 + K+1

2K+1 ·
5
6 = 11K+5

12K+6 , and
hence, the social welfare is at least m · 11K+5

12K+6 ≥
11
12m−O(1/m2).

Soundness Consider any normalized HZ equilibrium (x, p). We first characterize the equilibrium behaviour
of variable gadgets. In an (exact) HZ equilibrium, we say a variable gadget is vacant if no agents outside of the
gadget purchase goods inside the gadget, and we call other gadgets non-vacant. Loosely speaking, only non-vacant
gadgets are of interest, as vacant gadgets do not interact with the rest of market and their utility is negligible.

We give a detailed analysis of variable gadgets to prove the following lemma in the full version [5]:

Lemma 4.1. For any i ∈ [n], suppose the i-th variable gadget is non-vacant. Then the equilibrium price is one of
the following three cases.

p(Gi,1) =
4

5
±O

(
1

m2

)
, p(Gi,2) =

8

5
±O

(
1

m2

)
, p(Gi,3) = 0±O

(
1

m2

)
(4.6)

or p(Gi,1) = 0±O
(

1

m2

)
, p(Gi,2) =

8

5
±O

(
1

m2

)
, p(Gi,3) =

4

5
±O

(
1

m2

)
(4.7)

or p(Gi,1) =
2

3
±O

(
1

m2

)
, p(Gi,2) =

4

3
±O

(
1

m2

)
, p(Gi,3) =

2

3
±O

(
1

m2

)
(4.8)

The following lemma follows a similar argument of Lemma 3.11, we omit the proof:
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Lemma 4.2. The price of goods Gj satisfies p(Gj) = 2 +O(1/m2), j ∈ [m].

We are now ready to wrap up the proof of soundness. Given an equilibrium (x, p) that (approximately)
maximizes the social welfare, we look at each non-vacant variable gadget. Based on the three cases stated in
Lemma 4.1, we extract the i-th variable to be 1 if Eq. (4.7) holds and 0 if Eq. (4.6) holds. We do nothing for the
case of Eq. (4.8) and those vacant variables (gadgets).

The total utility of all agents in Ai,` , i ∈ [n], ` ∈ [2], and all agents in Aj,∗, j ∈ [m] is at most O(1/m2). We
focus on the utility of agents Aj , j ∈ [m]. If the j-th clause is satisfied, then one of the 5/6 utility goods has zero
price, and one can see that the utility is (at most)(

1

2
±O

(
1

m2

))
· 1 +

(
1

2
±O

(
1

m2

))
· 5

6
=

11

12
±O

(
1

m2

)
.

On the other hand, if the j-th clause is not satisfied, we still don’t need to consider the vacant gadgets (as there
is no interactions), and the 5/6 utility goods have price at least (2/3)±O(1/m2). Hence the utility is at most(

1

4
±O

(
1

m2

))
· 1 +

(
3

4
±O

(
1

m2

))
· 5

6
=

7

8
±O

(
1

m2

)
.

Thus, if the truth assignment satisfies at most ( 7
8 + ε)m clauses then the social welfare is at most(

7

8
+ ε

)
m ·

(
11

12
+O

(
1

m2

))
+

(
1

8
− ε
)
m ·

(
7

8
+O

(
1

m2

))
+O

(
1

m

)
=

175

192
m+

1

24
εm+O

(
1

m

)
.

From [18], it is NP-hard to distinguish the case that all clauses can be satisfied (in which case there is an
equilibrium with social welfare 11

12m−O(1/m2)) from the case that at most ( 7
8 + ε)m clauses can be satisfied (in

which case the maximum social welfare is at most 175
192m+ 1

24εm+O(1/m)). The theorem follows.
The construction can be easily modified, if desired, so that all utilities are in [0, 1], and every agent has

minimum utility 0 and maximum utility 1.

5 Discussion
In this paper we resolved the complexity of computing an approximate equilibrium in the Hylland-Zeckhauser
scheme for one-sided matching markets: we showed that the problem is PPAD-complete, and this holds even for
inverse polynomial approximation and four-valued utilities. We leave open the complexity of exact equilibria, in
particular whether the problem is FIXP-complete. Another open question is whether the PPAD-hardness of the
approximation problem holds also for 3-valued utilities.
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