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Abstract—Intent-Based Networking (IBN) has been increas-
ingly deployed in production enterprise networks. Automated
network configuration in IBN lets operators focus on intents–
i.e., the end to end business objectives–rather than spelling out
details of the configurations that implement these objectives.
Automation brings its own concerns as the administrators cannot
rely on traditional network troubleshooting tools. This situation
is further exacerbated in the case of stateful Network Functions
(NFs) whose packet processing behavior depends on previously
observed traffic patterns. To ensure that the network configu-
ration and state derived from network automation matches the
administrator’s specified intent, we propose, Epinoia, a network
intent checker for stateful networks. Epinoia relies on a unified
model for NFs by leveraging the causal precedence relationships
that exist between NF packet I/Os and states. Scalability of
Epinoia is achieved by decomposing intents into sub-checking
tasks and maintaining a causality graph between checked in-
variants. Epinoia checks for network-wide intent violations in-
crementally to reduce overhead in the event of network changes.
Our evaluation results using real-world network topologies show
that Epinoia can perform comprehensive checking within a few
seconds per network with intent updates.

I. INTRODUCTION

The increasing complexity of business rules and policies

coupled with the increasing size of today’s networks has

made the tasks of network administrators extremely difficult.

In particular, the manual conversion of network-wide busi-

ness objectives to network configurations can be error-prone

and difficult to troubleshoot. The advent of software-defined

principles for network management has led to Intent-Based

Networking (IBN) [1]. IBN aims to make networks more

reliable and efficient by automatically converting network-

wide objectives, called intents (e.g., all critical services in the

data center are available to remote sites) into detailed network

configurations that implement those intents. While IBN eases

the configuration task for network administrators, it faces

several challenges. The first challenge is handling undetected

bugs and inaccuracies in the automation logic itself given that

dealing with the diversity of network devices and services ef-

fectively is hard. The second challenge is the subjective nature

of intents, which cannot be completely fulfilled by automation

and might need human intervention to provide input or make

changes that are not supported by the automation framework.

Furthermore, network configurations need to be continuously

changed to serve the ever evolving business requirements and

to address security and performance issues. According to a

study from Google, 70% of network failures occurred when

1This work was completed while Huazhe Wang was an intern at Hewlett
Packard Labs

2Now at Google

changing network configurations [13]. Thus, a fundamental

requirement of an IBN system is the ability to ensure that

an administrator’s intents and expectations are met through

the inevitable changes and transformations in the network. In

order to address this requirement, recent work has focused

on network verification to guarantee that the configurations

generated by automation or humans are correct (e.g., no users

at remote sites should lose connectivity to the data center after

being inserted to an Access Control List (ACL)).

Stateful networks refer to the networks that contain stateful

Network Functions (NFs). Compared with legacy switches

and routers, NFs implement more diverse functions and their

packet processing behavior may depend on the packet history

previously encountered. Examples of stateful NFs include fire-

walls that allow inbound packets if they belong to established

connections and web proxies that cache popular content etc.

NFs are becoming increasingly prevalent in today’s network,

further aggravating the problems encountered managing intent-

based networks: for instance, 43% of network intent violations

involve NFs, and between 4% and 15% of them are the

result of NF misconfiguration [18]. However, recent work on

network verification either only ensures correct NF traversal

assuming all instances of each type of NFs are equally

and correctly configured [10] [8] [4], or only checks NF

configurations in a restricted scope that may lose end-to-end

expressiveness and accuracy [17]. We have identified three

key requirements of an intent checking system for stateful

networks: 1) Vendor-agnostic model specifications to support

diverse NFs and their configurations from different vendors, 2)

Completeness to support end-to-end intent checking, to handle

packet header modifications by NFs and routing dynamics, and

3) Incremental checking to efficiently check the correctness to

avoid performing full checking for every change.

Existing network verification work mostly consists of two

approaches: The customized approaches, such as HSA [10]

and its real-time version NetPlumber [9], identify the set

of packets affected by the network changes and utilize cus-

tomized path-based algorithms to calculate their new forward-

ing paths. This approach is unable to model extra packet

sequences from other parts of the network and thus cannot

be used for stateful networks. The solver-based approaches,

such as Minesweeper [4] and VMN [17], encode all possible

packet behavior within the network using first-order logic; To

achieve scalability with modern solvers, such as SAT [14]

and SMT (Satisfiability Modulo Theories) [6], they rely on

optimizations to identify logically independent network slices.

However, there is no guarantee that these slices always have

moderate size or even exist, especially when there are NFs that
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TABLE I
EPINOIA VS. OTHER NETWORK VERIFICATION TOOLS�UNSUPPORTED ��PARTIAL SUPPORT �SUPPORT

Vendor-agnostic
NF models

Header
transformation

Incremental
checking

HSA/NetPlumber [10] [9] � � �
Minesweeper [4] �� � �

VMN [17] � �� �
Epinoia � � �

modify packet headers. Further, both Minesweeper and VMN

solve all constraints as a whole, and cannot reuse previous

checking results when the network changes.

In this paper, we present Epinoia, an intent checker for

stateful networks. Table I shows a comparison of Epinoia with

other related works in terms of support for the key re-

quirements described above. To the best of our knowledge,

Epinoia is the only system that can fully support all the key

requirements. This paper makes following contributions:

• A novel configuration model for NF function units rep-

resented as vendor-agnostic extensions of OpenConfig

YANG models [15] that can be combined to represent

configurations of commercial advanced NFs [16]. Pro-

poses new techniques leveraging causality precedence

relationships [21] between packet I/Os and NF states to

represent stateful NF operating logic.

• The design and implementation of a scalable yet correct

approach for intent checking based on intent decompo-

sition and incremental checking using a novel causality

graph memoization technique for all checked results.

• A comprehensive evaluation of Epinoia using a real-world

dataset and topologies. Epinoia can perform incremental

checking within a few seconds per network and/or intent

update which reduces the time cost by up to a factor of

100x compared with a full checking for all intents.

II. EPINOIA DESIGN AND ARCHITECTURE

Consider the network pictured in Figure 1 with an end host

subnet S0 and a server subnet S1. FW1 and FW2 are two

stateful firewalls and PY is a forward proxy that works as an

intermediate agent between clients and servers. The operators

intend to block traffic from S0 to S1. The bottom of Figure 1

shows configuration snippets that implement this intent. Line

1 is a security rule at FW1 that denies all packets from S0

to S1. However, as FW1 conducts stateful processing, those

packets may still be allowed if they belong to established

connections initiated from S1. To prevent such connections

to be established, a similar deny rule for packets from S1 to

S0 (line 3) is added at FW2. Even with this simple example,

checking intent using existing tools could give inaccurate

results and be time-consuming.

Static vs. temporal modeling. Recent work on network con-

trol plane configuration (e.g., BGP configuration) synthesis [7]

and verification [4] have shown that route advertisements

between routers can be effectively modeled using boolean

variables. Following this idea, a packet P0 from S0 can reach

S1 through FW1 and FW2 can be represented as a boolean

//                       Configurations

P0

P0

P1
S1P1

P2
P3

P3

Security policy on FW1  
1  service ANY address S0 S1 deny
2  service ANY address S1 S0 allow

Security policy on FW2  
3  service ANY address S1 S0 deny
4  service ANY address S0 S1 allow
5  service ANY address S2 S1 allow

Proxy policy on PY
6  web-proxy explicit enable address S0 S1
7  outgoing-ip S2

S0 P1

PPPPPPPPP

S0 S
Stateful FW1

Stateful FW2
PY

Fig. 1. Example NF configuration snippets.

variable r0. For r0 to be True when P0 is denied by the

security rule at FW1, an earlier reverse packet P1 has to

be allowed at FW1 from S1 to S0. We denote this reverse

reachability as r1, and we have r0 ⇒ r1. However, due to the

deny rule at FW2, the fact that P1 from S1 to S0 can reach

FW1 indicates an earlier reverse packet P0 to be allowed at

FW2 from S0 to S1, denoted as r1 ⇒ r0. Given equations

above, static analysis without temporal representation may

report a violation of the block intent when both r0 and r1
are True. However, this turns out to be a false alarm. FW1

will allow P0 only if it saw P1 before, which requires P1 to

be allowed by FW2 at a first place. Thus, it cannot rely on

the state created by P0. This example shows the necessity to

include temporal representation to model stateful networks as

packets may have different behavior at stateful NFs when they

arrive in different sequences.

Partial vs. complete path set. To scale with modern solvers,

several optimization techniques have been studied in solver-

based approaches [4] [17]. The core idea is to reduce the size

of constraints given to the solver by restricting packet headers

and their forwarding paths based on destination addresses.

That is, the checking is conducted over a slice of the network

(e.g., a single forwarding path). Though such simplifications

could reduce the time cost, they may also lose completeness

and lead to unsound checking results, especially when there

are NFs that modify packet headers. One such example is

shown in Figure 1. Line 6 of the configuration snippets

indicates that PY in the bottom will explicitly intercept

request packets from S0 to S1 and forward them with a new

source S2 (line 7). Those packets are also allowed at FW2

(line 5). Instead of sending packets directly to S1, a host in

S0 could first send packets to PY , which then forwards the

packets to S1. This indicates a potential violation of the block

intent between S0 and S1. In addition, networks are built

with fault tolerance. Critical services are multi-homed, and

communication endpoints have redundant paths. The dynamic

nature of the underlying routing plane may assign different

paths at different time even for the same set of packets. The
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Fig. 2. Epinoia workflow

NF processing taken depends on the path a packet actually

traverses. Configurations of NFs must ensure that no potential
path violates network intents.

Host vs. group level querying. In existing intent-based

systems, all intents are specified with respect to end point

groups (e.g., engineering department, a group of servers) [19]

[2] [3]. Recall the previous intent: S0 should not be able to

reach S1. Consider S0 as a guest network with 100 hosts

and S1 to be a data center with 1000 servers. To check the

block intent, the naive approach of exploding the query into

100 thousand separate queries is too slow. A typical effective

solution would convert the original query and check whether

its negation can be satisfied. However, due to the stateful

processing of NFs, this technique cannot be applied for stateful

networks. More details are discussed in §IV-A. We observe

that NF processing policy commonly partitions end hosts into

policy equivalence groups, i.e., into set of end hosts, to which

the same policy applies. In Epinoia, endpoints relating to the

same set of intents are represented as groups and queries for

the same group are aggregated to achieve better efficiency.

Epinoia Overview. Figure 2 illustrates an overview of the

Epinoia workflow with its key components. Epinoia allows

users/applications to specify network intents based on ex-

tended policy graph models (§III-A). NFs from different

vendors may support different configurations and features. We

break down the functionalities of advanced NFs into function

units and propose vendor-neutral configuration models for

each function unit (§III-B1). Such function units can be com-

bined and extended to support real-world NFs. To correlate

configurations of NFs and packet behavior in stateful net-

works, we formulate key causal precedence relationships [21]

among NF packet I/Os and states (§III-B3). All constraints

are attached to a network graph, containing all potential paths

needed to be checked for each intent to ensure that NF

configurations match intents under arbitrary routing dynamics.

Along each path, an end to end intent is decomposed into

sub checking tasks (§IV). Each smaller task can be efficiently

checked using a SMT solver. The continuous verification

module maintains a causality graph with all checked results

(§V). The goal is to enable the intent checker to check for

network-wide intent violations incrementally whenever there

are changes to network and/or intent. Finally, checking results

are analyzed and all reported violations are returned to the

network OS or intent creators.

Guest MktgFW LBRemote Web

LBMktg WebNAT Mktg RemoteNAT
{FW}

!{PY}

i ii

iii iv

Fig. 3. Example network intents

III. INTENT AND NETWORK MODELS

A. Network Intent Specification

Network intents specify the desired outcome of the network.

In this paper, we look at two very basic intents: reachabil-

ity and isolation, which can be used as building blocks to

implement other advanced intents. Epinoia extends the intent

specifications in PGA [19]. Our choice is motivated by the

intuitive graph representation of network intents, support of

NF chaining. Figure 3 shows four example network intents

in an enterprise network. Nodes are pre-defined end point

groups and directed edges indicate the communication intents

between endpoints. Boxes along edges specify the required NF

traversal for each communication. In addition to the required

ones, constraints on possible optional NFs are annotated on

each edge segment in the form of {NF1...NFn}. Similarly,

avoidance of NFs are specified using the form !{NF1...NFn}.

For an isolation intent, a double slash is added on the edge

to indicate that the communication must be blocked. The four

intents in Figure 3 are: i) Marketing department should be able

to access web services and the traffic must go through a NAT

and a load balancer. ii) They should also be able to access

remote sites by going through a NAT and possibly one or

more firewalls before the NAT. iii) Packets from remote sites

to web services must be inspected by a firewall and a load

balancer. No proxy is allowed before they are inspected by

any firewall. iv) Packets from guest networks to the marketing

department must be blocked.

B. Network Models

1) NF Configuration Models: Recent work on NF modeling

has shown that NFs of the same type from different vendors

have similar operating logic [27] [24] [17]. For example, the

firewall function of iptables [20], pfSense [22] as well as Palo

Alto Firewall [16] all start with detecting whether a packet

belongs or relates to an established connection. Then the

packet is matched against a list of ACLs. If one is found and it

allows the packet, then the packet is forwarded; otherwise it is

dropped. Contrary to the similarity in the operating logic, we

observe that NFs differ greatly in the format or features they

support in their configurations, which are the main inputs that

operators provide and want to check before they are installed

into NFs. To mitigate the complexity brought by vendor speci-

ficity, open source communities such as OpenConfig [15] as

well as some emerging IBN platforms in industry (e.g., Apstra

AOS [3] and Google Zero Touch Network [13]) have been

working on designing vendor-neutral configuration models.

However, most of those models are for routers or routing

related protocols and none include NFs. Another observation

is that advanced NFs usually consist of a chain of basic

functions. For example, a Palo Alto Firewall can be configured
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to implement a firewall-NAT-Load balancer chain. Inspired by

the observations above, in Epinoia, we have proposed vendor-

agnostic configuration models for common function units (e.g.,

address objects, security rules, NAT rules) which are written

as extensions of the OpenConfig YANG models. Models for

each function unit can be combined to form the configuration

model of more advanced NFs. Moreover, with off-the-shelf

tools, configurations written using the model can be easily

converted into serialization formats (e.g., JSON) for other

services (e.g., network intent verification). Listing 1 shows

an example configuration instance of a real security rule in

JSON. The model is extensible to support additional features

based on the actual functionalities of NFs.

. . . ” s e c u r i t y−r u l e s ” : {
” s e c u r i t y−r u l e ” : {

” 23 ” : {
” i d ” : ” 23 ” ,
” c o n f i g ” : {

” s r c−a d d r e s s ” : ” g u e s t ” ,
” d s t−a d d r e s s ” : ” m a r k e t i n g ” ,
” s e r v i c e ” : ”ANY” ,

. . . ” a c t i o n ” : ”DENY” ,

Listing 1. Snippets of a security rule in JSON

2) Network Graph: To obtain the complete path set that

should be checked for intents, Epinoia models a network as

an undirected graph. Nodes in the graph are either endpoints or

NFs while edges represent possible packet exchanges between

those nodes. Such a graph can be extracted by traversing the

network topology: if the current node is a switch or has been

visited, continue to examine the next node; otherwise, create a

new node in the network graph representing the corresponding

NF or endpoints. Note that Epinoia does not aim to check the

correctness of stateless switching fabrics as there already exist

plenty of solutions [9]–[11], [28]. Meanwhile, by removing the

switching fabric, the network graphs result in much smaller

sizes (degrade the size by at least 50% [23]) but are still able

to capture all potential paths.

Figure 4 shows a network graph of an example network.

Internal endpoints m1 and g1 belong to the marketing and

guest networks, connected to remote sites with two firewalls.

A web service is hosted in a demilitarized zone, guarded by

a destination NAT and a load balancer. Epinoia leverages an
off-line path generation step to obtain all simple paths with
only NFs and endpoints. For most scenarios, the set of paths

is fairly static and can be precomputed.
3) Encoding NF packet processing: The functionality of

a NF can be factored into two generic parts: i) a classifier

that searches for a matching over packet header fields or

payload, and ii) a transfer function that transforms incoming

and outgoing packets. Upon receiving a packet, based on

configurations, a NF processes the packet with the actions

corresponding to the rules or states that the packet matches.

Naturally, the input packet on which an output depends must

be received before the output is produced. In other words, there

exists a causal precedence relationship [21] between the input

and output. We can generically express this relationship as

sendp2 ⇒ recvp1 , where [A] ⇒ [B] denotes event A depends

on B. p1 and p2 correspond to the same packet before and

Web

NAT

LB

m1

g1

FW1 FW2

Rmt

Fig. 4. A network graph

NAT

LB

m1

FW1 FW2

(S0, d1)
(S0, d1)

(S0, d1)

(S0, d0)

(S0, d0)

(S0, d1)

(S0, d2)

(S0, d2)

Web
Fig. 5. Path segmentation from
marketing to Web

after NF processing. Both p1 and p2 are subject to certain

constraints determined by NF configurations. States at NFs

correspond to packet histories. For example, if a content c is

cached at a proxy, the proxy must have received a request

packet for c and a response packet from the server that holds

c before it can be cached at the proxy. Written generically:

states ⇒ recvP , where P represents a sequence of packets

required to establish state s. Such causality also exist between

one NF’s output and another NF’s input. For example, a packet

must be sent out before it is received. Written generically:

recvp ⇒ sendp. A rich set of causalities exists in NFs, e.g., a

timeout must be reached before a state expires; a configuration

must be loaded before it can be applied to packets. However,

most of these causalities are orthogonal to our intents. We

therefore only consider packet processing causalities that affect

how packets are forwarded or modified.

To encode the causal precedence relationship to a format

that can be accepted by a SMT solver, it is intuitive to

model packet behavior at NFs using two Boolean valued

uninterpreted functions with universal/existential quantifiers.

For example, we define send(n,i,p,t) as a sending

event of packet p by NF n through interface i at time t.

Similarly, receiving a packet is denoted as recv(n,i,p,t).

We aggregate all interfaces of a NF into either the internal

(i==0) or external (i==1) interface as some NFs may apply

different processing policies for inbound and outbound pack-

ets. The send and receive functions return True when the

input arguments correspond to a valid event in the network;

or they must return False. We show how to capture causal

precedence relationships using example SMT encodings for

some common stateful NFs.

Stateful firewall. A stateful firewall (Listing 2) utilizes ACLs

to determine whether to allow or deny a packet from a

new connection. ACLs can be modeled using a predicate

acl func(a1, a2), where a1 and a2 correspond to the source

and destination address of a packet. Packets that belong to

established connections are allowed by a stateful firewall even

if they are denied by ACLs. An established state indicates that

the firewall has received and allowed a reverse packet before.

F o r a l l [ i0, p, t0 ] send(fw, i0, p, t0) I m p l i e s
E x i s t s [ i1, t1 ] recv(fw, i1, p, t1) ∧ t1<t0 ∧ i0 �= i1

F o r a l l [ i0, p0, t0 ]
send(fw, i0, p0, t0) ∧ ¬ acl func(p0.src, p0.dst) I m p l i e s
E x i s t s [ i1, p1, t1 ] recv(fw, i1, p1, t1) ∧ t1<t0 ∧ i0 �= i1 ∧
acl func(p1.src, p1.dst) ∧ p1 == p0.reverse

Listing 2. Encoding of a stateful firewall

Load balancer. A load balancer (Listing 3) holds a

shared address (share addr(a)) for a back-end server pool
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(server addr(a)). Requests sent to the load balancer are

randomly distributed to one of the servers and replies from

servers look for a matched request which is sent back by the

load balancer.

F o r a l l [p0, t0 ] send(lb, 1, p0, t0) I m p l i e s
E x i s t s [p1, t1 ] recv(lb, 0, p1, t1) ∧ t1<t0 ∧ share addr(p1.dst)
∧ p1.src == p0.src

F o r a l l [p0, t0 ] send(lb, 0, p0, t0) I m p l i e s
E x i s t s [p1, p2, t1, t2 ] recv(lb, 1, p1, t1) ∧ recv(lb, 0, p2, t2) ∧
t2<t1<t0 ∧ p2 == p0.reverse ∧
share addr(p2.dst) ∧ server addr(p1.src) ∧
p0.dst == p1.dst == p2.src

Listing 3. Encoding of a load balancer

Reverse proxy. A reverse proxy (Listing 4) is configured

with ACLs specifying which clients have access to content

originating at certain servers. Upon receiving a request that is

allowed by ACLs, it initiate a new request to the corresponding

server if the contents have not been cached. When receiving

responses from the server, it forwards the response to the client

who originally requested the content.

F o r a l l [p0, t0 ] send(py, 1, p0, t0) I m p l i e s
E x i s t s [p1, t1 ] recv(py, 0, p1, t1) ∧ t1<t0 ∧ p0.src == py ∧
acl func(p1.src, p1.dst) ∧ p0.payload == p1.payload

F o r a l l [p0, t0 ] send(py, 0, p0, t0) I m p l i e s
E x i s t s [p1, p2t1, t2 ] recv(py, 1, p1, t1) ∧ recv(py, 0, p2, t2) ∧
t2<t1<t0 ∧ acl func(p2.src, p2.dst) ∧ acl func(p0.dst, p0.src)
p1.dst == py ∧ p0.src == p1.src == p2.dst ∧
p0.payload == p1.payload == p2.payload

Listing 4. Encoding of a reverse proxy

IV. INTENT DECOMPOSER

Given a network intent, we can use SMT solver to check

whether the intent is satisfied. However, even with the smallest

network (18 nodes) we use in our evaluation, the solver cannot

return an answer in a reasonable time. To improve scalability,

one key observation is that though a network intent specifies

a high level end to end objective, it is possible to decompose

it into several sub-tasks, where each task can be checked

separately. Next we present how the intent decomposer of

Epinoia decomposes network intents in two dimensions.

A. Atomic Address Object

The concept of address objects (mostly referred as zones or

aliases) are widely used in network management ecosystems.

Assume we are about to configure a set of security rules

guarding the servers in a data center to allow traffic from

hosts in the marketing department while blocking mobile

devices connected to the guest network. Instead of spelling out

each address explicitly when a rule is added, we can define

address objects as placeholders (e.g., data center, marketing

department, guest network); each rule can be applied directly

to such address objects. We define the set of atomic address

objects which specifies the largest common refinement over

the address space given the set of address objects.

To illustrate the idea of atomic address object, we represent

three address objects p1, p2 and p3 as ranges and place them

into the address space in Figure 6. p3 has two ranges as

it specifies two non-continuous subnets. There are six non-

overlapping intervals I0 ∼ I6 formed by each consecutive pair

p1
p2

p3

0...0 255…255I1 I2 I3 I4 I5I0 I6

p3

Fig. 6. Calculating the set of atomic address object for three address objects
p1, p2 and p3

of endpoints. The set of atomic address objects can be easily

calculated by combining intervals that belong to the same set

of address objects. For example, I1 and I4 are two separate

atomic address objects. I0∪I2∪I6 and I3∪I5 are the other two

atomic address objects. In addition, an address object can be

represented as a union of a subset of atomic address objects.

For example, p2 = I3∪ I4∪ I5. We call packets sent from one

atomic address object to another atomic address object as a

traffic class. With the same network state, packets within the

same traffic class are treated equally at all NFs in the entire

network as they match the same set of processing rules. An

endpoint group in an intent can be represented as a union of

atomic address objects whose intersection with the endpoint

group is not empty. To check an intent between two endpoint

groups, instead of querying each pair of end hosts, we can

instead simply check the more compact traffic classes between

the two endpoint groups. For example, an intent from endpoint

group e0 to e1 can be checked using two traffic classes (s0, d0)
and (s1, d0) if e0 ∩ s0,1 �= �, e0 ⊂ s0 ∪ s1, e1 ∩ d0 �= � and

e1 ⊂ d0. The benefit is two-fold:

Header matching elimination. Most NFs decide process-

ing actions for incoming packets by matching packet headers

against processing rules. The natural way to represent a packet

and a processing rule for this check is to use bit vectors and

check for equality using a bit mask. However, bit vectors

are expensive and solvers typically convert them to SAT. In

Epinoia, the matching fields of processing rules are represented

as a set of integer identifiers for atomic address objects.

Header matching at NFs are converted to integer membership

check which is more efficient for solvers. For processing rules

that modify packet headers (e.g., NAT rule), the modified

addresses are also represented as one or more atomic address

objects. Depending on a deterministic or nondeterministic

modification, an incoming atomic address object is mapped

to another atomic address object.

Adapting to temporal modeling. A solver usually returns

a single solution when the set of constraints are satisfiable.

Sometimes, we need all solutions for a query, i.e., all hosts

in the marketing department should be able to reach the web

service. In static modeling, this problem can be solved by

testing the satisfiability of the negation of the query, However,

with the temporal modeling required by stateful NFs, the

negation of the query can be satisfied either with a packet

that would be blocked in the network, or a packet sequence

that could not have existed because it violates the casual

precedence constraints. We need to differentiate between these,

and find only true packet loss. To do this, we can only check an

intent directly, which could boil down to a large of number of

sub-queries corresponding to each pair of end hosts specified
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Fig. 7. The causality graph for the reachability between m1 and Web.

in the intent. With atomic address objects, the number of

necessary queries as well as the total time cost is significantly

reduced as the checking results can be applied to all end hosts

that belong to the same atomic address object.

B. Path Segmentation

Epinoia pre-calculates all paths for each intent and an intent

is satisfied if there is no violation along all potential paths.

Along a path, checking an end to end intent can be divided into

several sub-tasks, each task includes a single NF. The intuition

is based on two observations: i) Many NFs have concrete

constraints on headers of incoming or outgoing packets. For

example, a source NAT translates private addresses to its

public addresses; A load balancer uniformly distributes packets

heading to its virtual address to a set of dynamic addresses.

Such concrete constraints are specified in NF configurations

and can be propagated along the path, which helps remove

redundant information that the SMT solver might otherwise

have to discover by itself. ii) State constraints refer to the local

packet processing history at a NF. To check if a state could

be valid, only constraints within the NF need to be included.

We review the intent (i) in Figure 3 within the network

graph shown in Figure 4. Two potential paths from m1 to

Web are shown in Figure 5. Address pairs annotated on each

path segment specify the concrete constraints on source and

destination addresses of packets that can reach this segment. s0
denotes the atomic address object corresponds to m1 while d0
represents Web. For packets going through FW1, FW2 and

LB, the source address of packets are always s0 since no NF

along the path modifies the source address. For the last hop,

the destination address must be d0. As a load balancer requires

an incoming packet to use its shared address as the destination

address, denoted as d1, the first three segments all have d1 as

destination address. For packets going through FW1, NAT
and LB, the source address is always s0 while the destination

address is modified from d2 to d1 and d1 to d0 at NAT and

LB respectively. To check the reachability intent between m1

and Web, Epinoia starts with checking whether those concrete

and state constraints within a segment can be satisfied using a

solver. A path can be valid only if all segments are satisfiable;

otherwise the path is not valid.

V. CONTINUOUS VERIFICATION

After checking each segment, Epinoia still needs to com-

bine the results returned by the solver to make sure they

are consistent with each other. Meanwhile, upon a network

change, Epinoia should be able to identify the affected

parts that may need to be rechecked. To achieve these

goals, Epinoia maintains a customized causality graph that

stores all checked results. Intent checking can be conducted

incrementally by traversing the causality graph.

A. Causality Graph

A node in a causality graph represents either a packet

sending or receiving event. Each node is tagged with a pair

of atomic address objects specifying the set of source and

destination addresses of the packets. An arrow in the graph

indicates a causal precedence relationship among two events.

The event on the front end depends on and must happen after

the event on the rear end. For a single NF, it is straightforward

to construct a causality graph of packet sending or receiving

events required by the satisfiability assignment from the solver.

When there is more than one NF, receiving a packet must be

traced back along the selected path to a packet sending node.

If the corresponding sending node already exists, an arrow is

added between the sending and the receiving node. If not, the

packet sending is checked within the upward NF and other

nodes or edges are added as needed. This procedure continues

until the packet receiving node is traced back to an endpoint.

Figure 7 shows an example causality graph for the two

potential paths in Figure 5. Atomic address objects are rep-

resented as integers. 1 and 3 correspond to m1 and Web
respectively; 5 is the virtual address configured at the load

balancer; the NAT maintains two deterministic atomic address

object mapping: from 4 to 5 and 6 to 7. Consider the FW1 −
NAT −LB path, possible packets received and forwarded by

FW1 are (1, 4) and (1, 6) since NAT only accepts packets

heading to 4 and 6. We assume both packets are allowed by

FW1. Later, only packet (1, 4) goes through NAT as the

transformed packet must be (1, 5) to be processed by LB. At

LB, packet (1, 5) is changed to (1, 3) and finally sent to Web.
Similarly, we add nodes and edges for path FW1−FW2−LB.

We add tag ti along each edge to identify path i. Based

on the causal relationship, it’s obvious that a path i is valid

if the subgraph tagged by ti has no loop, which indicates

that there exists a valid time sequence for all packet sending

and receiving events to achieve the end to end intent. In this

example, both paths 1 and 2 are valid. To reuse the checked

results, both satisfied and unsatisfied checking (not shown for

simplicity) results are stored in the graph. In Epinoia, only

one causality graph is maintained as the checked results can

be shared among paths and intents. When the graph is storing

more results, the size of a sub-graph tagged by a path identifier

is independent of the complexity of the causality graph. As

events occur to the network, Epinoia identifies affected intents

and incrementally updates the causality graph. We handle the

following six events.

Adding an address object. When a new address object is

added, an existing atomic address object may be divided into

two new ones. Nodes and edges related to the atomic address

object should be duplicated to reflect the changes. However,

an intent needs rechecking only if a new rule using the new

address object is inserted.
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Fig. 8. The causality graph under a rule insertion and a link up.

Deleting an existing address object. Similarly, when an

address object is deleted, two existing atomic address objects

may specify the same atomic address object. Duplicated nodes

and edges in the causality graph are removed. No intent needs

to be rechecked.

Inserting a rule. To identify the set of intents that may

be affected by the new rule, each node in causality graph

maintains a set of intents and corresponding paths relying

on the node. For example, the packet receiving node (1, 5)
in FW2 is created by intent (i) in Figure 3 along path

FW1 − FW2 − LB. When a new rule is inserted at a NF,

Epinoia first identifies existing packet receiving nodes which

will be processed by the new rule. Its set of intents must be

rechecked. For other intents going through the NF, while all

previous satisfied intents should not be affected as their nodes

do not match the new rule, all unsatisfied intents should be

rechecked. We show how the causality graph is updated when

a deny rule for packet (1, 5) is added at FW2 in Figure 8. Now

packet sending (1, 5) requires a previous sending of (5, 1),
which then is traced back to a sending (5, 1) at LB. At LB,

the packet sending (5, 1) relies on a previous sending of (1, 3),
which is traced back to a receiving and sending of (1, 5) at

LB and FW2 respectively. After adding all necessary nodes

and edges, the subgraph tagged by t2 introduces a loop, so

path 2 becomes invalid. Edges only tagged by t2 are removed

from the causality graph (dotted lines).

Deleting a rule. When a rule is deleted, intents relying on

the packet receiving matching the deleted rule need to be

rechecked as they will be handled by lower priority rules, and

may result in different checking results.

Link up. A link up may lead to two cases where the graph

needs to be updated. For each intent, Epinoia first extracts

new paths from the pre-calculated path set that traverses

the new link and checks if the paths are valid. Meanwhile,

Epinoia checks whether packet receiving previously cannot be

traced back to endpoints at the two NFs connected by the

new link become valid. If so, the set of paths relying on

those packet receiving events may become valid. As shown

in Figure 8, if a link is up between FW1 and LB, a new path

3 is added by going through FW1 and LB.

Link down. When a link goes down, all the edges using that

link are deleted, which in turn removes all the paths going

through those edges.

B. Running Intent Checking Queries

Given an intent, Epinoia divides the intent into sub checking

tasks using the intent decomposer. With the checking results

Fig. 9. Number of atomic address object as number of rules increases.

Fig. 10. Number of atomic address objects and IP addresses for name groups.

maintained by the causality graph, Epinoia calls a SMT solver

only when a sub-task has not been checked before. For a

reachability intent, valid paths are collected for each traffic

class. Each valid path corresponds to a sequence of NFs in

the network. Epinoia finds all valid paths that satisfy the

NF chaining requirement in an intent. The remaining valid

paths correspond to the ones that are reachable but violate the

NF traversal requirements. For a block intent, any valid path

indicates a potential intent violation.

Once an intent is added, it is evaluated against all future

snapshots of the network graph. For all reported violations,

Epinoia reports corresponding network elements or paths the

violating traffic is taking. Each piece of configuration is tagged

with its intent. Given a reported violation, the tag helps trace

back to the intent that generates the configuration.

VI. EVALUATION

We have developed a prototype of Epinoia mostly using

Python. To evaluate Epinoia, we first examine how it deals

with a real-world enterprise ACL dataset and then investigate

the effectiveness of the intent decomposer. Finally we evaluate

the runtime performance of Epinoia. All our experiments

were done on a machine with 4 cores, 2.93 GHz Intel Xeon

Processor and 6 GB RAM. We report times taken when

the checking is performed using a single core. We use a

SMT solver Z3 [5] for our evaluations. SMT solvers rely on

randomized search algorithms, and their performance can vary

widely across runs. The results reported are generated from

100 runs of each experiment.

A. Real-world evaluation

We obtain an ACL dataset from a policy management

system of a large enterprise network. These policies are

specified using 801 pre-defined address objects located at 137

compartments (groups of subsets). Each ACL rule permits or

denies the communication between two address objects, each

address object corresponds to one or more IP subnets (address

objects may overlap with each other). Given a set of ACLs, we

calculate the number of atomic address objects based on the

address objects used by those ACLs. As shown in Figure 9,

the number of atomic address objects increases with a slope

less than 1/3 with increased rule set size. This indicates the

similarity between rules with respect to their target address
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space. In total, there are over 19K ACL rules and 4508 atomic

address objects. While some atomic address objects contain

large address blocks, about half (2510) of them specify only

a single IP. The size of the address objects also varies widely,

ranging from a single IP to over 600 non-contiguous subnets

(representing ∼ 100 million IPs). In contrast, the variation in

the number of atomic address objects within an address object

is much smaller. As shown in Figure 10, address objects are

sorted by the number of IPs within the object. Over 90% of

address objects have less than 6 atomic address objects. With

fewer atomic address objects, it’s more likely for Epinoia to

achieve better performance when checking group level intents.

Next we use Epinoia to detect potential security breaches

that may occur using the ACL dataset. We assume all com-

partments are connected with a full mesh topology and the

ACL policies conduct stateful processing. We measure the time

cost to check the reachability for each traffic class between

two compartments. The average cost is 0.78 seconds with a

maximum of 3.32 seconds. In total, we found 351 potential

breaches due to inconsistent deny rules. For example, a packet

matches a deny rule either at the local or the remote compart-

ment, which indicates a block intent from the administrator.

However, the block intent may be violated if its reverse traffic

is able to pass the compartment.

B. Scalability

To evaluate the scalability of Epinoia, we quantify the

effectiveness of the intent decomposer by measuring the time

cost of an end to end reachability query. We connect two

end hosts with a single firewall. Then we keep inserting ACL

rules into the firewall and measure the time cost to check the

reachability between the two hosts.

First, we represent addresses as bit vectors (BV) in the SMT

encoding and use it as a baseline to show the effectiveness

when atomic address objects (AA) are used. Figure 11 shows

that the query time cost increases exponentially for BV based

encoding while all queries cost less than one second when

atomic address objects are used. This speeds up intent check-

ing by 100x when there are 30 rules. The reason is that BV are

expensive for SMT solvers and each rule inserted introduces

at least 32 extra variables. However, by aggregating addresses

to atomic address objects, symbolic variables representing IP

prefixes are replaced with integers. A satisfied query requires

more time as it needs to calculate valid assignments for all

variables in the constraint set, while an unsatisfied query

returns immediately when a conflict is found.

To evaluate the benefit of path segmentation, we add addi-

tional firewalls between the two hosts to create a firewall chain.

We measure the time cost to check the reachability between

the two hosts when all the constraints along the path are

solved as a whole. This corresponds to a key optimization in

VMN [17], where the checking is restricted to the forwarding

path between end hosts. When the path segmentation (PS)

is applied, we check each firewall one by one and sum up

the time cost. As shown in Figure 12, when the path is

checked as a whole, the time cost increases significantly with

increased number of firewalls. The SMT solver Z3 we used

in our experiments cannot return before timeout when the

number of firewalls is larger than 9 for satisfied queries and

10 for unsatisfied query. With path segmentation, the time

cost increases linearly and the maximum cost for satisfied

query is 7.73 seconds. For unsatisfied queries, the cost does

not necessarily go up with increased number of NFs as the

checking process terminates whenever one of the segments

cannot be satisfied. The maximum time cost is 0.26 seconds,

which highlights the effectiveness of the intent decomposer

in Epinoia for large networks.

C. Runtime performance

In this set of experiments, we evaluate the runtime per-

formance of Epinoia using four topologies from Topology

Zoo [12] with number of nodes ranging from 18 to 93. In our

experiments, we create 200 network intents, each of which

contains 0 to 10 NFs of different types and we randomly

attach end hosts belonging to pre-defined address objects to

different nodes in the topology. We also randomly assign a

NF instance to each node in the topology. Epinoia executes a

pre-computation procedure to enumerate the paths for all the

intents, which could be costly for large topologies. However,

we emphasize that this procedure only needs to be done once

and this can be performed off-line.

In the first experiment, we check each intent one after

another, and all checked results are stored in the causality

graph. Figure 13 shows the cumulative time cost to check

all intents for the four networks. All time costs grow slightly

as the number of polices increases. The reason is that many

intents share the same set of sub checking tasks for different

traffic classes. The checked results can be reused among

intents when there are no network changes.

With all the checked results, we next evaluate

how Epinoia reacts to network dynamics. We randomly

choose to insert/delete a rule or add/remove a link and

measure the time cost for Epinoia to identify and recheck

the set of affected intents for each scenario. As each network

change may affect a different amount of intents, we report

both the average and maximum time cost to recheck the

affected intents in each network. As shown in Figure 14, the

average cost of rechecking after a change is less than 10

seconds, with the maximum for inserting a rule in Internode

being close to 20 seconds. Without the incremental checking,

a full check is required for all intents whenever there is any

change. The average speedup of Epinoia incremental checking

is 34x, 79x, 94x and 101x for each network respectively.

VII. RELATED WORK

To model stateful NFs, existing approaches either work on

extracting models by analyzing NF source code [27] [24]

[26] or hand crafted models [17] based on expert knowledge.

We take a different approach, in which we have designed

vendor-agnostic NF configuration models and construct NF

forwarding models using key causality relationships. There is

a rich body of work for verifying forwarding behaviors in
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Fig. 14. Time taken to recheck affected intents per network change.

stateless networks [10] [11] [9] [28]. While these work can

efficiently check a number of policies such as reachability

and loop freedom, it is nontrivial to extend these work to

support stateful data planes. There are several proposals on

verifying network control planes [4] [8], where the processing

is stateful; however, all of those work rely on a converged

routing state and cannot be used for stateful NFs. To check

stateful networks, Symnet [24] runs symbolic execution over

an abstracted NF implementation and SFC-Checker [25] ex-

tends the network graph in HSA [10] by adding nodes for each

NF state. Both of these approaches are path-based and cannot

check state consistency between different NFs. VMN [17] also

uses a SMT solver and identifies an end to end slice for

each checking. However, VMN only supports block intents

and cannot scale to large networks with dynamic updates.

VIII. CONCLUSIONS

Our intent checking solution, Epinoia, efficiently sup-

ports stateful networks with a variety of network functions.

Epinoia includes vendor-agnostic network function modeling

combined with capturing causality precedence relationships

for incremental intent checking. A comprehensive evaluation

shows that Epinoia can check network intents in under 10

seconds per network update and reduce checking time by a

factor of up to 100x compared with a full checking for all

intents.
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