2021 International Conference on Computer Communications and Networks (ICCCN) | 978-1-6654-1278-0/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICCCN52240.2021.9522299

Epinoia: Intent Checker for Stateful Networks

Huazhe Wang*! Puneet Sharma’ Faraz Ahmed’ Joon-Myung Kang/?> Chen Qian* Mihalis Yannakakis®

* Microsoft T Hewlett Packard Labs

Abstract—Intent-Based Networking (IBN) has been increas-
ingly deployed in production enterprise networks. Automated
network configuration in IBN lets operators focus on intents—
i.e., the end to end business objectives—rather than spelling out
details of the configurations that implement these objectives.
Automation brings its own concerns as the administrators cannot
rely on traditional network troubleshooting tools. This situation
is further exacerbated in the case of stateful Network Functions
(NFs) whose packet processing behavior depends on previously
observed traffic patterns. To ensure that the network configu-
ration and state derived from network automation matches the
administrator’s specified intent, we propose, Epinoia, a network
intent checker for stateful networks. Epinoia relies on a unified
model for NFs by leveraging the causal precedence relationships
that exist between NF packet I/Os and states. Scalability of
Epinoia is achieved by decomposing intents into sub-checking
tasks and maintaining a causality graph between checked in-
variants. Epinoia checks for network-wide intent violations in-
crementally to reduce overhead in the event of network changes.
Our evaluation results using real-world network topologies show
that Epinoia can perform comprehensive checking within a few
seconds per network with intent updates.

I. INTRODUCTION

The increasing complexity of business rules and policies
coupled with the increasing size of today’s networks has
made the tasks of network administrators extremely difficult.
In particular, the manual conversion of network-wide busi-
ness objectives to network configurations can be error-prone
and difficult to troubleshoot. The advent of software-defined
principles for network management has led to Intent-Based
Networking (IBN) [1]. IBN aims to make networks more
reliable and efficient by automatically converting network-
wide objectives, called intents (e.g., all critical services in the
data center are available to remote sites) into detailed network
configurations that implement those intents. While IBN eases
the configuration task for network administrators, it faces
several challenges. The first challenge is handling undetected
bugs and inaccuracies in the automation logic itself given that
dealing with the diversity of network devices and services ef-
fectively is hard. The second challenge is the subjective nature
of intents, which cannot be completely fulfilled by automation
and might need human intervention to provide input or make
changes that are not supported by the automation framework.
Furthermore, network configurations need to be continuously
changed to serve the ever evolving business requirements and
to address security and performance issues. According to a
study from Google, 70% of network failures occurred when

'This work was completed while Huazhe Wang was an intern at Hewlett
Packard Labs

2Now at Google

978-1-6654-1278-0/21/$31.00 ©2021 IEEE

Y UC Santa Cruz 8 Columbia University

changing network configurations [13]. Thus, a fundamental
requirement of an IBN system is the ability to ensure that
an administrator’s intents and expectations are met through
the inevitable changes and transformations in the network. In
order to address this requirement, recent work has focused
on network verification to guarantee that the configurations
generated by automation or humans are correct (e.g., no users
at remote sites should lose connectivity to the data center after
being inserted to an Access Control List (ACL)).

Stateful networks refer to the networks that contain stateful
Network Functions (NFs). Compared with legacy switches
and routers, NFs implement more diverse functions and their
packet processing behavior may depend on the packet history
previously encountered. Examples of stateful NFs include fire-
walls that allow inbound packets if they belong to established
connections and web proxies that cache popular content etc.
NFs are becoming increasingly prevalent in today’s network,
further aggravating the problems encountered managing intent-
based networks: for instance, 43% of network intent violations
involve NFs, and between 4% and 15% of them are the
result of NF misconfiguration [18]. However, recent work on
network verification either only ensures correct NF traversal
assuming all instances of each type of NFs are equally
and correctly configured [10] [8] [4], or only checks NF
configurations in a restricted scope that may lose end-to-end
expressiveness and accuracy [17]. We have identified three
key requirements of an intent checking system for stateful
networks: 1) Vendor-agnostic model specifications to support
diverse NFs and their configurations from different vendors, 2)
Completeness to support end-to-end intent checking, to handle
packet header modifications by NFs and routing dynamics, and
3) Incremental checking to efficiently check the correctness to
avoid performing full checking for every change.

Existing network verification work mostly consists of two
approaches: The customized approaches, such as HSA [10]
and its real-time version NetPlumber [9], identify the set
of packets affected by the network changes and utilize cus-
tomized path-based algorithms to calculate their new forward-
ing paths. This approach is unable to model extra packet
sequences from other parts of the network and thus cannot
be used for stateful networks. The solver-based approaches,
such as Minesweeper [4] and VMN [17], encode all possible
packet behavior within the network using first-order logic; To
achieve scalability with modern solvers, such as SAT [14]
and SMT (Satisfiability Modulo Theories) [6], they rely on
optimizations to identify logically independent network slices.
However, there is no guarantee that these slices always have
moderate size or even exist, especially when there are NFs that

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 09,2021 at 22:58:41 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EPINOIA VS. OTHER NETWORK VERIFICATION TOOLS
OUNSUPPORTED @©PARTIAL SUPPORT @SUPPORT

Vendor-agnostic Header Incremental
NF models transformation checking
HSA/NetPlumber [10] [9] O [) [)
Minesweeper [4] © O O
VMN [17] [O (@)
Epinoia o [J [

modify packet headers. Further, both Minesweeper and VMN
solve all constraints as a whole, and cannot reuse previous
checking results when the network changes.

In this paper, we present Epinoia, an intent checker for
stateful networks. Table I shows a comparison of Epinoia with
other related works in terms of support for the key re-
quirements described above. To the best of our knowledge,
Epinoia is the only system that can fully support all the key
requirements. This paper makes following contributions:

« A novel configuration model for NF function units rep-
resented as vendor-agnostic extensions of OpenConfig
YANG models [15] that can be combined to represent
configurations of commercial advanced NFs [16]. Pro-
poses new techniques leveraging causality precedence
relationships [21] between packet I/Os and NF states to
represent stateful NF operating logic.

o The design and implementation of a scalable yet correct
approach for intent checking based on intent decompo-
sition and incremental checking using a novel causality
graph memoization technique for all checked results.

o A comprehensive evaluation of Epinoia using a real-world
dataset and topologies. Epinoia can perform incremental
checking within a few seconds per network and/or intent
update which reduces the time cost by up to a factor of
100x compared with a full checking for all intents.

II. EPINOIA DESIGN AND ARCHITECTURE

Consider the network pictured in Figure 1 with an end host
subnet Sy and a server subnet S;. FW; and FW5 are two
stateful firewalls and PY is a forward proxy that works as an
intermediate agent between clients and servers. The operators
intend to block traffic from Sy to .S;. The bottom of Figure 1
shows configuration snippets that implement this intent. Line
1 is a security rule at F'WW; that denies all packets from Sy
to S1. However, as F'W; conducts stateful processing, those
packets may still be allowed if they belong to established
connections initiated from S;. To prevent such connections
to be established, a similar deny rule for packets from Sy to
So (line 3) is added at F'W5. Even with this simple example,
checking intent using existing tools could give inaccurate
results and be time-consuming.

Static vs. temporal modeling. Recent work on network con-
trol plane configuration (e.g., BGP configuration) synthesis [7]
and verification [4] have shown that route advertisements
between routers can be effectively modeled using boolean
variables. Following this idea, a packet P, from Sy can reach
S1 through FW; and F'W5 can be represented as a boolean

Stateful FW,

Configurations

Security policy on FW,
1 service ANY address S, S, deny
2 service ANY address S, S; allow

Security policy on FW,

3 service ANY address S, S, deny
4 service ANY address S, S, allow
5 service ANY address S, S, allow

Proxy policy on PY
6 web-proxy explicit enable address S, S;
7 outgoing-ip S,

Fig. 1. Example NF configuration snippets.

variable rg. For 7o to be True when P, is denied by the
security rule at F'WW;, an earlier reverse packet P, has to
be allowed at F'WW; from S; to Sp. We denote this reverse
reachability as r1, and we have ro = ri. However, due to the
deny rule at F'Ws, the fact that P, from S; to Sy can reach
FW; indicates an earlier reverse packet P to be allowed at
FW, from Sy to Si, denoted as r; = 79. Given equations
above, static analysis without temporal representation may
report a violation of the block intent when both r¢ and 7,
are I'rue. However, this turns out to be a false alarm. F'W/;
will allow Py only if it saw P; before, which requires P; to
be allowed by F'W, at a first place. Thus, it cannot rely on
the state created by Fy. This example shows the necessity to
include temporal representation to model stateful networks as
packets may have different behavior at stateful NFs when they
arrive in different sequences.

Partial vs. complete path set. To scale with modern solvers,
several optimization techniques have been studied in solver-
based approaches [4] [17]. The core idea is to reduce the size
of constraints given to the solver by restricting packet headers
and their forwarding paths based on destination addresses.
That is, the checking is conducted over a slice of the network
(e.g., a single forwarding path). Though such simplifications
could reduce the time cost, they may also lose completeness
and lead to unsound checking results, especially when there
are NFs that modify packet headers. One such example is
shown in Figure 1. Line 6 of the configuration snippets
indicates that PY in the bottom will explicitly intercept
request packets from Sy to S7 and forward them with a new
source S (line 7). Those packets are also allowed at F'WWs
(line 5). Instead of sending packets directly to Sp, a host in
Sy could first send packets to PY, which then forwards the
packets to S;. This indicates a potential violation of the block
intent between Sy and Si. In addition, networks are built
with fault tolerance. Critical services are multi-homed, and
communication endpoints have redundant paths. The dynamic
nature of the underlying routing plane may assign different
paths at different time even for the same set of packets. The

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 09,2021 at 22:58:41 UTC from IEEE Xplore. Restrictions apply.

Network OS

Network info, NF :
configuration updates :

Intent
Vendor-neutral specification
configuration models Intent
i Decomposer
Network Graph !
- Continuous
W Verification
Results
Analysis

Fig. 2. Epinoia workflow

Users/Apps

Check Intent-based
results policies

Epinoia

NF processing taken depends on the path a packet actually
traverses. Configurations of NFs must ensure that no potential
path violates network intents.

Host vs. group level querying. In existing intent-based
systems, all intents are specified with respect to end point
groups (e.g., engineering department, a group of servers) [19]
[2] [3]. Recall the previous intent: Sy should not be able to
reach S;. Consider Sy as a guest network with 100 hosts
and S; to be a data center with 1000 servers. To check the
block intent, the naive approach of exploding the query into
100 thousand separate queries is too slow. A typical effective
solution would convert the original query and check whether
its negation can be satisfied. However, due to the stateful
processing of NFs, this technique cannot be applied for stateful
networks. More details are discussed in §IV-A. We observe
that NF processing policy commonly partitions end hosts into
policy equivalence groups, i.e., into set of end hosts, to which
the same policy applies. In Epinoia, endpoints relating to the
same set of intents are represented as groups and queries for
the same group are aggregated to achieve better efficiency.

Epinoia Overview. Figure 2 illustrates an overview of the
Epinoia workflow with its key components. Epinoia allows
users/applications to specify network intents based on ex-
tended policy graph models (§III-A). NFs from different
vendors may support different configurations and features. We
break down the functionalities of advanced NFs into function
units and propose vendor-neutral configuration models for
each function unit (§III-B1). Such function units can be com-
bined and extended to support real-world NFs. To correlate
configurations of NFs and packet behavior in stateful net-
works, we formulate key causal precedence relationships [21]
among NF packet I/Os and states (§III-B3). All constraints
are attached to a network graph, containing all potential paths
needed to be checked for each intent to ensure that NF
configurations match intents under arbitrary routing dynamics.
Along each path, an end to end intent is decomposed into
sub checking tasks (§IV). Each smaller task can be efficiently
checked using a SMT solver. The continuous verification
module maintains a causality graph with all checked results
(§V). The goal is to enable the intent checker to check for
network-wide intent violations incrementally whenever there
are changes to network and/or intent. Finally, checking results
are analyzed and all reported violations are returned to the
network OS or intent creators.

G G G LR Gona)
(TR ORE

Fig. 3. Example network intents

ol

III. INTENT AND NETWORK MODELS
A. Network Intent Specification

Network intents specify the desired outcome of the network.
In this paper, we look at two very basic intents: reachabil-
ity and isolation, which can be used as building blocks to
implement other advanced intents. Epinoia extends the intent
specifications in PGA [19]. Our choice is motivated by the
intuitive graph representation of network intents, support of
NF chaining. Figure 3 shows four example network intents
in an enterprise network. Nodes are pre-defined end point
groups and directed edges indicate the communication intents
between endpoints. Boxes along edges specify the required NF
traversal for each communication. In addition to the required
ones, constraints on possible optional NFs are annotated on
each edge segment in the form of {NF;...NF,}. Similarly,
avoidance of NFs are specified using the form {NF}...NF,,}.
For an isolation intent, a double slash is added on the edge
to indicate that the communication must be blocked. The four
intents in Figure 3 are: i) Marketing department should be able
to access web services and the traffic must go through a NAT
and a load balancer. ii) They should also be able to access
remote sites by going through a NAT and possibly one or
more firewalls before the NAT. iii) Packets from remote sites
to web services must be inspected by a firewall and a load
balancer. No proxy is allowed before they are inspected by
any firewall. iv) Packets from guest networks to the marketing
department must be blocked.

B. Network Models

1) NF Configuration Models: Recent work on NF modeling
has shown that NFs of the same type from different vendors
have similar operating logic [27] [24] [17]. For example, the
firewall function of iptables [20], pfSense [22] as well as Palo
Alto Firewall [16] all start with detecting whether a packet
belongs or relates to an established connection. Then the
packet is matched against a list of ACLs. If one is found and it
allows the packet, then the packet is forwarded; otherwise it is
dropped. Contrary to the similarity in the operating logic, we
observe that NFs differ greatly in the format or features they
support in their configurations, which are the main inputs that
operators provide and want to check before they are installed
into NFs. To mitigate the complexity brought by vendor speci-
ficity, open source communities such as OpenConfig [15] as
well as some emerging IBN platforms in industry (e.g., Apstra
AOS [3] and Google Zero Touch Network [13]) have been
working on designing vendor-neutral configuration models.
However, most of those models are for routers or routing
related protocols and none include NFs. Another observation
is that advanced NFs usually consist of a chain of basic
functions. For example, a Palo Alto Firewall can be configured

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 09,2021 at 22:58:41 UTC from IEEE Xplore. Restrictions apply.

to implement a firewall-NAT-Load balancer chain. Inspired by
the observations above, in Epinoia, we have proposed vendor-
agnostic configuration models for common function units (e.g.,
address objects, security rules, NAT rules) which are written
as extensions of the OpenConfig YANG models. Models for
each function unit can be combined to form the configuration
model of more advanced NFs. Moreover, with off-the-shelf
tools, configurations written using the model can be easily
converted into serialization formats (e.g., JSON) for other
services (e.g., network intent verification). Listing 1 shows
an example configuration instance of a real security rule in
JSON. The model is extensible to support additional features
based on the actual functionalities of NFs.

“security —rules”: {
“security —rule”: {
7237 {
”id”: 7237,
“config”: {
"src—address”: “guest”,
“dst—address”: “marketing”,
“service”: “"ANY”,
“action”: "DENY”,

Listing 1. Snippets of a security rule in JSON

2) Network Graph: To obtain the complete path set that
should be checked for intents, Epinoia models a network as
an undirected graph. Nodes in the graph are either endpoints or
NFs while edges represent possible packet exchanges between
those nodes. Such a graph can be extracted by traversing the
network topology: if the current node is a switch or has been
visited, continue to examine the next node; otherwise, create a
new node in the network graph representing the corresponding
NF or endpoints. Note that Epinoia does not aim to check the
correctness of stateless switching fabrics as there already exist
plenty of solutions [9]-[11], [28]. Meanwhile, by removing the
switching fabric, the network graphs result in much smaller
sizes (degrade the size by at least 50% [23]) but are still able
to capture all potential paths.

Figure 4 shows a network graph of an example network.
Internal endpoints m; and g; belong to the marketing and
guest networks, connected to remote sites with two firewalls.
A web service is hosted in a demilitarized zone, guarded by
a destination NAT and a load balancer. Epinoia leverages an
off-line path generation step to obtain all simple paths with
only NFs and endpoints. For most scenarios, the set of paths
is fairly static and can be precomputed.

3) Encoding NF packet processing: The functionality of
a NF can be factored into two generic parts: i) a classifier
that searches for a matching over packet header fields or
payload, and ii) a transfer function that transforms incoming
and outgoing packets. Upon receiving a packet, based on
configurations, a NF processes the packet with the actions
corresponding to the rules or states that the packet matches.
Naturally, the input packet on which an output depends must
be received before the output is produced. In other words, there
exists a causal precedence relationship [21] between the input
and output. We can generically express this relationship as
send,, = recv,,, where [A] = [B] denotes event A depends
on B. p; and p, correspond to the same packet before and

(S, dp)i

. Soudo) .
Fig. Pith’ segmentation from
marketing to Web

Sg, dy) -]

@)

1g. 4. A network graph

after NF processing. Both p; and py are subject to certain
constraints determined by NF configurations. States at NFs
correspond to packet histories. For example, if a content c is
cached at a proxy, the proxy must have received a request
packet for ¢ and a response packet from the server that holds
c before it can be cached at the proxy. Written generically:
states; = recvp, where P represents a sequence of packets
required to establish state s. Such causality also exist between
one NF’s output and another NF’s input. For example, a packet
must be sent out before it is received. Written generically:
recv, = send,. A rich set of causalities exists in NFs, e.g., a
timeout must be reached before a state expires; a configuration
must be loaded before it can be applied to packets. However,
most of these causalities are orthogonal to our intents. We
therefore only consider packet processing causalities that affect
how packets are forwarded or modified.

To encode the causal precedence relationship to a format
that can be accepted by a SMT solver, it is intuitive to
model packet behavior at NFs using two Boolean valued
uninterpreted functions with universal/existential quantifiers.
For example, we define send(n,i,p,t) as a sending
event of packet p by NF n through interface i at time t.
Similarly, receiving a packet is denoted as recv (n, i, p, t).
We aggregate all interfaces of a NF into either the internal
(1==0) or external (i==1) interface as some NFs may apply
different processing policies for inbound and outbound pack-
ets. The send and receive functions return 7rue when the
input arguments correspond to a valid event in the network;
or they must return False. We show how to capture causal
precedence relationships using example SMT encodings for
some common stateful NFs.

Stateful firewall. A stateful firewall (Listing 2) utilizes ACLs
to determine whether to allow or deny a packet from a
new connection. ACLs can be modeled using a predicate
acl_func(ay,as), where a; and as correspond to the source
and destination address of a packet. Packets that belong to
established connections are allowed by a stateful firewall even
if they are denied by ACLs. An established state indicates that
the firewall has received and allowed a reverse packet before.

Forall [ig,p,to] send(fw,io,p,to) Implies
Exists [i1,t1] recv(fw,i1,p,t1) A t1<to A io # i1

Forall [0, po,tol

send(fw,io, po,to) A = acl_func(po.sre, po.dst) Implies
Exists [41,p1,t1] recv(fw,i1,p1,t1) A t1<to A ig # i1 A
acl_func(pi.sre,pi.dst) A p1 == pg.reverse

Listing 2. Encoding of a stateful firewall
Load balancer. A load balancer (Listing 3) holds a
shared address (share_addr(a)) for a back-end server pool

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 09,2021 at 22:58:41 UTC from IEEE Xplore. Restrictions apply.

(server_addr(a)). Requests sent to the load balancer are
randomly distributed to one of the servers and replies from
servers look for a matched request which is sent back by the
load balancer.

Forall [po,to] send(lb,1,po,to) Implies
Exists [p1,t1] recv(lb,0,p1,t1) A t1<to A share_addr(p;i.dst)
AN p1.8rC == po.STC

Forall [po,to] send(lb,0,po,to) Implies

Exists [p1,p2,ti,ta] recv(lb,1,p1,t1) A recv(lb,0,pa,ta) A
to<t1<tg N p2 == pg.reverse N

share_addr(pz.dst) A server_addr(pi.src) A

Ppo.dst == py.dst == py.src

Listing 3. Encoding of a load balancer

Reverse proxy. A reverse proxy (Listing 4) is configured
with ACLs specifying which clients have access to content
originating at certain servers. Upon receiving a request that is
allowed by ACLs, it initiate a new request to the corresponding
server if the contents have not been cached. When receiving
responses from the server, it forwards the response to the client
who originally requested the content.

Forall [po,to] send(py,1,po,to) Implies
Exists [p1,t1] recv(py,0,p1,t1) A t1<to A po.src == py A
acl_func(pi.sre,pi.dst) A po.payload == p;.payload

Forall [po,to] send(py,0,po,to) Implies

Exists [p1,pat1,t2] recv(py,1,p1,t1) A recu(py,0,p2,t2) A
to<ti1<to A acl_func(pz.src,pa.dst) A acl_func(po.dst,po.src)
p1.dst == py A po.src == pi.src == py.dst N

po.payload == p1.payload == pa.payload

Listing 4. Encoding of a reverse proxy
IV. INTENT DECOMPOSER

Given a network intent, we can use SMT solver to check
whether the intent is satisfied. However, even with the smallest
network (18 nodes) we use in our evaluation, the solver cannot
return an answer in a reasonable time. To improve scalability,
one key observation is that though a network intent specifies
a high level end to end objective, it is possible to decompose
it into several sub-tasks, where each task can be checked
separately. Next we present how the intent decomposer of
Epinoia decomposes network intents in two dimensions.

A. Atomic Address Object

The concept of address objects (mostly referred as zones or
aliases) are widely used in network management ecosystems.
Assume we are about to configure a set of security rules
guarding the servers in a data center to allow traffic from
hosts in the marketing department while blocking mobile
devices connected to the guest network. Instead of spelling out
each address explicitly when a rule is added, we can define
address objects as placeholders (e.g., data center, marketing
department, guest network); each rule can be applied directly
to such address objects. We define the set of atomic address
objects which specifies the largest common refinement over
the address space given the set of address objects.

To illustrate the idea of atomic address object, we represent
three address objects p1, p2 and p3 as ranges and place them
into the address space in Figure 6. ps has two ranges as
it specifies two non-continuous subnets. There are six non-
overlapping intervals Iy ~ I formed by each consecutive pair

P

)2
D3 D3 :
L 1 1 1 1 1 1]
0.0 10 11 [2]3 14]5 16 255..255

Fig. 6. Calculating the set of atomic address object for three address objects
p1. p2 and p3

of endpoints. The set of atomic address objects can be easily
calculated by combining intervals that belong to the same set
of address objects. For example, I; and I, are two separate
atomic address objects. IoUI,Ulg and IsUI5 are the other two
atomic address objects. In addition, an address object can be
represented as a union of a subset of atomic address objects.
For example, ps = IsU I, UI5. We call packets sent from one
atomic address object to another atomic address object as a
traffic class. With the same network state, packets within the
same traffic class are treated equally at all NFs in the entire
network as they match the same set of processing rules. An
endpoint group in an intent can be represented as a union of
atomic address objects whose intersection with the endpoint
group is not empty. To check an intent between two endpoint
groups, instead of querying each pair of end hosts, we can
instead simply check the more compact traffic classes between
the two endpoint groups. For example, an intent from endpoint
group ¢ to e can be checked using two traffic classes (sq, do)
and (s1,dp) if egNsg1 # @, eg C so U s1, €3 Ndy # @ and
e1 C dy. The benefit is two-fold:

Header matching elimination. Most NFs decide process-
ing actions for incoming packets by matching packet headers
against processing rules. The natural way to represent a packet
and a processing rule for this check is to use bit vectors and
check for equality using a bit mask. However, bit vectors
are expensive and solvers typically convert them to SAT. In
Epinoia, the matching fields of processing rules are represented
as a set of integer identifiers for atomic address objects.
Header matching at NFs are converted to integer membership
check which is more efficient for solvers. For processing rules
that modify packet headers (e.g., NAT rule), the modified
addresses are also represented as one or more atomic address
objects. Depending on a deterministic or nondeterministic
modification, an incoming atomic address object is mapped
to another atomic address object.

Adapting to temporal modeling. A solver usually returns
a single solution when the set of constraints are satisfiable.
Sometimes, we need all solutions for a query, i.e., all hosts
in the marketing department should be able to reach the web
service. In static modeling, this problem can be solved by
testing the satisfiability of the negation of the query, However,
with the temporal modeling required by stateful NFs, the
negation of the query can be satisfied either with a packet
that would be blocked in the network, or a packet sequence
that could not have existed because it violates the casual
precedence constraints. We need to differentiate between these,
and find only true packet loss. To do this, we can only check an
intent directly, which could boil down to a large of number of
sub-queries corresponding to each pair of end hosts specified

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 09,2021 at 22:58:41 UTC from IEEE Xplore. Restrictions apply.

tlZ tl,’
Fig. 7. The causality graph for the reachability between ml and Web.

in the intent. With atomic address objects, the number of
necessary queries as well as the total time cost is significantly
reduced as the checking results can be applied to all end hosts
that belong to the same atomic address object.

B. Path Segmentation

Epinoia pre-calculates all paths for each intent and an intent
is satisfied if there is no violation along all potential paths.
Along a path, checking an end to end intent can be divided into
several sub-tasks, each task includes a single NF. The intuition
is based on two observations: i) Many NFs have concrete
constraints on headers of incoming or outgoing packets. For
example, a source NAT translates private addresses to its
public addresses; A load balancer uniformly distributes packets
heading to its virtual address to a set of dynamic addresses.
Such concrete constraints are specified in NF configurations
and can be propagated along the path, which helps remove
redundant information that the SMT solver might otherwise
have to discover by itself. ii) State constraints refer to the local
packet processing history at a NF. To check if a state could
be valid, only constraints within the NF need to be included.

We review the intent (i) in Figure 3 within the network
graph shown in Figure 4. Two potential paths from m; to
Web are shown in Figure 5. Address pairs annotated on each
path segment specify the concrete constraints on source and
destination addresses of packets that can reach this segment. s
denotes the atomic address object corresponds to m; while dj
represents Web. For packets going through F'W;, FW, and
LB, the source address of packets are always sy since no NF
along the path modifies the source address. For the last hop,
the destination address must be dj. As a load balancer requires
an incoming packet to use its shared address as the destination
address, denoted as dj, the first three segments all have d; as
destination address. For packets going through FW;, NAT
and LB, the source address is always sy while the destination
address is modified from ds to d; and d; to dg at NAT and
LB respectively. To check the reachability intent between m;y
and Web, Epinoia starts with checking whether those concrete
and state constraints within a segment can be satisfied using a
solver. A path can be valid only if all segments are satisfiable;
otherwise the path is not valid.

V. CONTINUOUS VERIFICATION

After checking each segment, Epinoia still needs to com-
bine the results returned by the solver to make sure they
are consistent with each other. Meanwhile, upon a network
change, Epinoia should be able to identify the affected
parts that may need to be rechecked. To achieve these

goals, Epinoia maintains a customized causality graph that
stores all checked results. Intent checking can be conducted
incrementally by traversing the causality graph.

A. Causality Graph

A node in a causality graph represents either a packet
sending or receiving event. Each node is tagged with a pair
of atomic address objects specifying the set of source and
destination addresses of the packets. An arrow in the graph
indicates a causal precedence relationship among two events.
The event on the front end depends on and must happen after
the event on the rear end. For a single NF, it is straightforward
to construct a causality graph of packet sending or receiving
events required by the satisfiability assignment from the solver.
When there is more than one NF, receiving a packet must be
traced back along the selected path to a packet sending node.
If the corresponding sending node already exists, an arrow is
added between the sending and the receiving node. If not, the
packet sending is checked within the upward NF and other
nodes or edges are added as needed. This procedure continues
until the packet receiving node is traced back to an endpoint.

Figure 7 shows an example causality graph for the two
potential paths in Figure 5. Atomic address objects are rep-
resented as integers. 1 and 3 correspond to m; and Web
respectively; 5 is the virtual address configured at the load
balancer; the NAT maintains two deterministic atomic address
object mapping: from 4 to 5 and 6 to 7. Consider the F'W; —
N AT — LB path, possible packets received and forwarded by
FW; are (1,4) and (1,6) since NAT only accepts packets
heading to 4 and 6. We assume both packets are allowed by
FW;. Later, only packet (1,4) goes through NAT as the
transformed packet must be (1,5) to be processed by LB. At
LB, packet (1, 5) is changed to (1, 3) and finally sent to Web.
Similarly, we add nodes and edges for path F'WW; —FW,—LB.
We add tag ¢; along each edge to identify path i. Based
on the causal relationship, it’s obvious that a path ¢ is valid
if the subgraph tagged by t; has no loop, which indicates
that there exists a valid time sequence for all packet sending
and receiving events to achieve the end to end intent. In this
example, both paths 1 and 2 are valid. To reuse the checked
results, both satisfied and unsatisfied checking (not shown for
simplicity) results are stored in the graph. In Epinoia, only
one causality graph is maintained as the checked results can
be shared among paths and intents. When the graph is storing
more results, the size of a sub-graph tagged by a path identifier
is independent of the complexity of the causality graph. As
events occur to the network, Epinoia identifies affected intents
and incrementally updates the causality graph. We handle the
following six events.

Adding an address object. When a new address object is
added, an existing atomic address object may be divided into
two new ones. Nodes and edges related to the atomic address
object should be duplicated to reflect the changes. However,
an intent needs rechecking only if a new rule using the new
address object is inserted.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 09,2021 at 22:58:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. The causality graph under a rule insertion and a link up.

Deleting an existing address object. Similarly, when an
address object is deleted, two existing atomic address objects
may specify the same atomic address object. Duplicated nodes
and edges in the causality graph are removed. No intent needs
to be rechecked.

Inserting a rule. To identify the set of intents that may
be affected by the new rule, each node in causality graph
maintains a set of intents and corresponding paths relying
on the node. For example, the packet receiving node (1,5)
in FW; is created by intent (i) in Figure 3 along path
FW, — FW5 — LB. When a new rule is inserted at a NF,
Epinoia first identifies existing packet receiving nodes which
will be processed by the new rule. Its set of intents must be
rechecked. For other intents going through the NF, while all
previous satisfied intents should not be affected as their nodes
do not match the new rule, all unsatisfied intents should be
rechecked. We show how the causality graph is updated when
a deny rule for packet (1, 5) is added at F'W5 in Figure 8. Now
packet sending (1,5) requires a previous sending of (5,1),
which then is traced back to a sending (5,1) at LB. At LB,
the packet sending (5, 1) relies on a previous sending of (1, 3),
which is traced back to a receiving and sending of (1,5) at
LB and F'W, respectively. After adding all necessary nodes
and edges, the subgraph tagged by t» introduces a loop, so
path 2 becomes invalid. Edges only tagged by o are removed
from the causality graph (dotted lines).

Deleting a rule. When a rule is deleted, intents relying on
the packet receiving matching the deleted rule need to be
rechecked as they will be handled by lower priority rules, and
may result in different checking results.

Link up. A link up may lead to two cases where the graph
needs to be updated. For each intent, Epinoia first extracts
new paths from the pre-calculated path set that traverses
the new link and checks if the paths are valid. Meanwhile,
Epinoia checks whether packet receiving previously cannot be
traced back to endpoints at the two NFs connected by the
new link become valid. If so, the set of paths relying on
those packet receiving events may become valid. As shown
in Figure 8, if a link is up between F'W; and LB, a new path
3 is added by going through FW; and LB.

Link down. When a link goes down, all the edges using that
link are deleted, which in turn removes all the paths going
through those edges.
B. Running Intent Checking Queries

Given an intent, Epinoia divides the intent into sub checking
tasks using the intent decomposer. With the checking results

5000

3000} : /
1000+ i |
0 5000 10000 15000
Number of rules
Fig. 9. Number of atomic address object as number of rules increases.
8 - .
10° mem Atomic address objects IPs
10
10
10°
10°

Name groups
Fig. 10. Number of atomic address objects and IP addresses for name groups.

maintained by the causality graph, Epinoia calls a SMT solver
only when a sub-task has not been checked before. For a
reachability intent, valid paths are collected for each traffic
class. Each valid path corresponds to a sequence of NFs in
the network. Epinoia finds all valid paths that satisfy the
NF chaining requirement in an intent. The remaining valid
paths correspond to the ones that are reachable but violate the
NF traversal requirements. For a block intent, any valid path
indicates a potential intent violation.

Once an intent is added, it is evaluated against all future
snapshots of the network graph. For all reported violations,
Epinoia reports corresponding network elements or paths the
violating traffic is taking. Each piece of configuration is tagged
with its intent. Given a reported violation, the tag helps trace
back to the intent that generates the configuration.

VI. EVALUATION

We have developed a prototype of Epinoia mostly using
Python. To evaluate Epinoia, we first examine how it deals
with a real-world enterprise ACL dataset and then investigate
the effectiveness of the intent decomposer. Finally we evaluate
the runtime performance of Epinoia. All our experiments
were done on a machine with 4 cores, 2.93 GHz Intel Xeon
Processor and 6 GB RAM. We report times taken when
the checking is performed using a single core. We use a
SMT solver Z3 [5] for our evaluations. SMT solvers rely on
randomized search algorithms, and their performance can vary
widely across runs. The results reported are generated from
100 runs of each experiment.

A. Real-world evaluation

We obtain an ACL dataset from a policy management
system of a large enterprise network. These policies are
specified using 801 pre-defined address objects located at 137
compartments (groups of subsets). Each ACL rule permits or
denies the communication between two address objects, each
address object corresponds to one or more IP subnets (address
objects may overlap with each other). Given a set of ACLs, we
calculate the number of atomic address objects based on the
address objects used by those ACLs. As shown in Figure 9,
the number of atomic address objects increases with a slope
less than 1/3 with increased rule set size. This indicates the
similarity between rules with respect to their target address

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 09,2021 at 22:58:41 UTC from IEEE Xplore. Restrictions apply.

space. In total, there are over 19K ACL rules and 4508 atomic
address objects. While some atomic address objects contain
large address blocks, about half (2510) of them specify only
a single IP. The size of the address objects also varies widely,
ranging from a single IP to over 600 non-contiguous subnets
(representing ~ 100 million IPs). In contrast, the variation in
the number of atomic address objects within an address object
is much smaller. As shown in Figure 10, address objects are
sorted by the number of IPs within the object. Over 90% of
address objects have less than 6 atomic address objects. With
fewer atomic address objects, it’s more likely for Epinoia to
achieve better performance when checking group level intents.

Next we use Epinoia to detect potential security breaches
that may occur using the ACL dataset. We assume all com-
partments are connected with a full mesh topology and the
ACL policies conduct stateful processing. We measure the time
cost to check the reachability for each traffic class between
two compartments. The average cost is 0.78 seconds with a
maximum of 3.32 seconds. In total, we found 351 potential
breaches due to inconsistent deny rules. For example, a packet
matches a deny rule either at the local or the remote compart-
ment, which indicates a block intent from the administrator.
However, the block intent may be violated if its reverse traffic
is able to pass the compartment.

B. Scalability

To evaluate the scalability of Epinoia, we quantify the
effectiveness of the intent decomposer by measuring the time
cost of an end to end reachability query. We connect two
end hosts with a single firewall. Then we keep inserting ACL
rules into the firewall and measure the time cost to check the
reachability between the two hosts.

First, we represent addresses as bit vectors (BV) in the SMT
encoding and use it as a baseline to show the effectiveness
when atomic address objects (AA) are used. Figure 11 shows
that the query time cost increases exponentially for BV based
encoding while all queries cost less than one second when
atomic address objects are used. This speeds up intent check-
ing by 100x when there are 30 rules. The reason is that BV are
expensive for SMT solvers and each rule inserted introduces
at least 32 extra variables. However, by aggregating addresses
to atomic address objects, symbolic variables representing IP
prefixes are replaced with integers. A satisfied query requires
more time as it needs to calculate valid assignments for all
variables in the constraint set, while an unsatisfied query
returns immediately when a conflict is found.

To evaluate the benefit of path segmentation, we add addi-
tional firewalls between the two hosts to create a firewall chain.
We measure the time cost to check the reachability between
the two hosts when all the constraints along the path are
solved as a whole. This corresponds to a key optimization in
VMN [17], where the checking is restricted to the forwarding
path between end hosts. When the path segmentation (PS)
is applied, we check each firewall one by one and sum up
the time cost. As shown in Figure 12, when the path is
checked as a whole, the time cost increases significantly with

increased number of firewalls. The SMT solver Z3 we used
in our experiments cannot return before timeout when the
number of firewalls is larger than 9 for satisfied queries and
10 for unsatisfied query. With path segmentation, the time
cost increases linearly and the maximum cost for satisfied
query is 7.73 seconds. For unsatisfied queries, the cost does
not necessarily go up with increased number of NFs as the
checking process terminates whenever one of the segments
cannot be satisfied. The maximum time cost is 0.26 seconds,
which highlights the effectiveness of the intent decomposer
in Epinoia for large networks.

C. Runtime performance

In this set of experiments, we evaluate the runtime per-
formance of Epinoia using four topologies from Topology
Zoo [12] with number of nodes ranging from 18 to 93. In our
experiments, we create 200 network intents, each of which
contains 0 to 10 NFs of different types and we randomly
attach end hosts belonging to pre-defined address objects to
different nodes in the topology. We also randomly assign a
NF instance to each node in the topology. Epinoia executes a
pre-computation procedure to enumerate the paths for all the
intents, which could be costly for large topologies. However,
we emphasize that this procedure only needs to be done once
and this can be performed off-line.

In the first experiment, we check each intent one after
another, and all checked results are stored in the causality
graph. Figure 13 shows the cumulative time cost to check
all intents for the four networks. All time costs grow slightly
as the number of polices increases. The reason is that many
intents share the same set of sub checking tasks for different
traffic classes. The checked results can be reused among
intents when there are no network changes.

With all the checked results, we next evaluate
how Epinoia reacts to network dynamics. We randomly
choose to insert/delete a rule or add/remove a link and
measure the time cost for Epinoia to identify and recheck
the set of affected intents for each scenario. As each network
change may affect a different amount of intents, we report
both the average and maximum time cost to recheck the
affected intents in each network. As shown in Figure 14, the
average cost of rechecking after a change is less than 10
seconds, with the maximum for inserting a rule in Internode
being close to 20 seconds. Without the incremental checking,
a full check is required for all intents whenever there is any
change. The average speedup of Epinoia incremental checking
is 34x, 79x, 94x and 101x for each network respectively.

VII. RELATED WORK

To model stateful NFs, existing approaches either work on
extracting models by analyzing NF source code [27] [24]
[26] or hand crafted models [17] based on expert knowledge.
We take a different approach, in which we have designed
vendor-agnostic NF configuration models and construct NF
forwarding models using key causality relationships. There is
a rich body of work for verifying forwarding behaviors in

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 09,2021 at 22:58:41 UTC from IEEE Xplore. Restrictions apply.

1000

100 50
OBV-sat O Path-sat ° — 4OTEGIobe(93)
80 [|* BV-unsat 40[|* Path-unsat & 800 *Internode(66)
. AA-sat) . PS-sat € Cwix(36)
60 (|0 AA-unsat ° £.30[| 0 PS-unsat 5 600 [FAns(18)
9] oo 9] 2
£ 40 ° 20 o 8 4008
500 © 2
20 ©f 10 S 200
o° et A ° * © Fr——v—r—v—v—v—v—%
L S
0 anageReReses L o000 s udaus X 0
5 10 15 20 25 5 15 50 100 150 200

. Number of rules .-
Fig. 11. Time taken to check a reachability

query as # of rules increases.

10?

I Insert a rule
I Delete a rule

[Link up
10'}|HEE Link down
10° ‘
10" i

ns(18) Cwix(36) Internode(66)OTE! (93)

Time (s)

Fig. 14. Time taken to recheck affected intents per network change.

stateless networks [10] [11] [9] [28]. While these work can
efficiently check a number of policies such as reachability
and loop freedom, it is nontrivial to extend these work to
support stateful data planes. There are several proposals on
verifying network control planes [4] [8], where the processing
is stateful; however, all of those work rely on a converged
routing state and cannot be used for stateful NFs. To check
stateful networks, Symnet [24] runs symbolic execution over
an abstracted NF implementation and SFC-Checker [25] ex-
tends the network graph in HSA [10] by adding nodes for each
NF state. Both of these approaches are path-based and cannot
check state consistency between different NFs. VMN [17] also
uses a SMT solver and identifies an end to end slice for
each checking. However, VMN only supports block intents
and cannot scale to large networks with dynamic updates.

VIII. CONCLUSIONS

Our intent checking solution, Epinoia, efficiently sup-
ports stateful networks with a variety of network functions.
Epinoia includes vendor-agnostic network function modeling
combined with capturing causality precedence relationships
for incremental intent checking. A comprehensive evaluation
shows that Epinoia can check network intents in under 10
seconds per network update and reduce checking time by a
factor of up to 100x compared with a full checking for all

intents.
REFERENCES

[1] Intent based networking.
intent-based-networking.html.

[2] A. Abhashkumar, J.-M. Kang, S. Banerjee, A. Akella, Y. Zhang, and
‘W. Wu. Supporting diverse dynamic intent-based policies using janus.
In Proc. of ACM CoNEXT, 2017.

[3] Apstra. AOS: How it works. http://www.apstra.com/products/
how-it-works/. Online; accessed 2 July 2018.

[4] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach to
network configuration verification. In Proc. of ACM SIGCOMM, 2017.

[5] L. De Moura and N. Bjgrner. Z3: An efficient SMT solver. Tools and
Algorithms for the Construction and Analysis of Systems, 2008.

https://www.cisco.com/c/en/us/solutions/

. Number of NFs o
Fig. 12. Time taken to check a reachability

query as # of NFs increases.

ber of polici .
Fig. 13. Time taken {6 check all intents

[6] L. De Moura and N. Bjgrner. Satisfiability modulo theories: introduction
and applications. Communications of the ACM, 54(9):69-77, 2011.

[71 A. Gember-Jacobson, A. Akella, R. Mahajan, and H. H. Liu. Automat-
ically repairing network control planes using an abstract representation.
In Proc. of ACM SOSP, 2017.

[8] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast
control plane analysis using an abstract representation. In Proc. of ACM
SIGCOMM, 2016.

[9] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and

S. Whyte. Real time network policy checking using header space

analysis. In Proc. of USENIX NSDI, 2013.

P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:

Static checking for networks. In Proc. of USENIX NSDI, 2012.

A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey. Veriflow: Verifying

network-wide invariants in real time. ACM SIGCOMM Computer

Communication Review, 2012.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan.

The internet topology zoo. IEEE Journal on Selected Areas in Commu-

nications, 29(9):1765-1775, 2011.

B. Koley. The zero touch network. https://research.google.com/pubs/

pub45687.html, 2016.

S. Malik and L. Zhang. Boolean satisfiability from theoretical hardness

to practical success. Communications of the ACM, 52(8):76-82, 2009.

OpenConfig. Vendor-neutral, model-driven network management de-

signed by users. http:/openconfig.net. Online; accessed 22 January

2018.

Palo Alto Networks. Palo Alto Networks next-generation firewalls. https:

/Iwww.paloaltonetworks.com/. Online; accessed 22 January 2018.

A. Panda, O. Lahav, K. J. Argyraki, M. Sagiv, and S. Shenker. Verifying

reachability in networks with mutable datapaths. In Proc. of USENIX

NSDI, 2017.

R. Potharaju and N. Jain. Demystifying the dark side of the middle: a

field study of middlebox failures in datacenters. In Proc. of ACM IMC,

2013.

C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,

C. Clark, Y. Ma, P. Sharma, and Y. Zhang. Pga: Using graphs to

express and automatically reconcile network policies. ACM SIGCOMM

Computer Communication Review, 2015.

G. N. Purdy. Linux iptables-pocket reference: firewalls.

accounting, 2004.

M. Raynal and M. Singhal. Logical time: Capturing causality in

distributed systems. Computer, 29(2):49-56, 1996.

A. Ribeiro and H. Pereira. L7 classification and policing in the pfsense

platform. In 2Ist International Teletraffic Congress (ITC 21), Paris,

France, 2009.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and

V. Sekar. Making middleboxes someone else’s problem: network

processing as a cloud service. In Proc. of ACM SIGCOMM, 2012.

R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. Symnet:

Scalable symbolic execution for modern networks. In Proc. of ACM

SIGCOMM, 2016.

B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee, and J.-M.

Kang. Sfc-checker: Checking the correct forwarding behavior of service

function chaining. In Proc. of IEEE NFV-SDN, 2016.

W. Wu and Y. Zhang. Network function modeling and its applications.

IEEE Internet Computing, (4):82-86, 2017.

W. Wu, Y. Zhang, and S. Banerjee. Automatic synthesis of nf models

by program analysis. In Proc. of ACM HotNets, 2016.

H. Yang and S. S. Lam. Real-time verification of network properties

using atomic predicates. IEEE/ACM Transactions on Networking, 2016.

[10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20] NAT and

[21]

[22]

(23]

[24]

[25]

[26]
[27]

(28]

Authorized licensed use limited to: Columbia University Libraries. Downloaded on December 09,2021 at 22:58:41 UTC from IEEE Xplore. Restrictions apply.

