
Trajectory
Data

Annotator 1

Annotator 2

Annotator 3

Behavior labels per frame
[Attack, Other]

Program
Synthesis

Program
Synthesis

Program
Synthesis

Filter
weight

Filter
weight

Filter
weight

Temporal Program
Filter

Frame #

AccelerationSelect(
MorletFilter())

AccelerationSelect(
MorletFilter())

SpeedSelect(
MorletFilter())

Interpreting Expert Annotation Differences in Animal Behavior

Megan Tjandrasuwita Jennifer J. Sun Ann Kennedy
Caltech Caltech Northwestern University

Swarat Chaudhuri
UT Austin

Abstract

Hand-annotated data can vary due to factors such as
subjective differences, intra-rater variability, and differing
annotator expertise. We study annotations from different ex-
perts who labelled the same behavior classes on a set of an-
imal behavior videos, and observe a variation in annotation
styles. We propose a new method using program synthesis to
help interpret annotation differences for behavior analysis.
Our model selects relevant trajectory features and learns a
temporal filter as part of a program, which corresponds to
estimated importance an annotator places on that feature at
each timestamp. Our experiments on a dataset from behav-
ioral neuroscience demonstrate that compared to baseline
approaches, our method is more accurate at capturing an-
notator labels and learns interpretable temporal filters. We
believe that our method can lead to greater reproducibility
of behavior annotations used in scientific studies. We plan
to release our code.

1. Introduction

Supervised algorithms for animal behavior quantifica-
tion have become a powerful tool for characterizing the
structure of behavior and its regulation by genes and the
brain [9, 22, 19, 7]. However, different individuals perceive
and describe the world in different ways, and this can create
significant inter-annotator and inter-lab differences in the
behavioral annotations used to construct such supervised
classifiers. In image recognition, variability across individ-
uals have been shown to produce different object catego-
rizations [5] or labels for the same image data [13]. Simi-
larly, annotator variability has been observed in animal be-
havior studies, even among experts studying the same be-
haviors [14, 22]. To improve reproducibility and annotator
consensus in behavioral experiments, we propose a novel
method for automatically generating interpretations of hu-
man behavior annotations.

Existing behavior classification models are typically

Yisong Yue
Caltech

Inputs Outputs

Figure 1. Overview. Given trajectory data and behavior labels, we
use program synthesis to learn a programmatic description with
temporal filters. These programs can be used to compare differ-
ences across annotators.

black-box models trained to reproduce human annotations.
While these models can achieve high accuracy in the hands
of individual labs, it is difficult to interpret differences be-
tween models or training sets produced by different indi-
viduals [22, 19]. Previous studies have proposed methods
for post-hoc interpretation of trained models [17, 20], but
the large number of dimensions and parameters in modern
machine learning models can make it difficult to understand
how annotators use specific features to annotate behavior.

To overcome these limitations, we use program synthesis
to generate programmatic descriptions from behavior anno-
tations, which can be interpreted without the need for post-
hoc analysis. Program synthesis learns symbolic models
from domain-specific languages [24, 25, 23, 3]. We in-
troduce a domain-specific language for behavior classifica-
tion, which includes learnable temporal filters and feature
selections to identify behaviorally relevant features of an-
imal movement. We incorporate our setup into an existing
program synthesis method [23] to jointly search through the
combinatorially large space of program architectures and
optimize parameters. Our approach produces a program
with temporal filters for modeling expert annotations, which
domain experts qualitatively found to be interpretable for
behavior analysis. Our contributions are:

ar
X

iv
:2

10
6.

06
11

4v
1

[c
s.

L
G

]
11

 J
un

 2
02

1

1

• We combine program synthesis with temporal filtering
to generate explanations of behavior annotations.

• We demonstrate our approach on an animal behavior
dataset annotated by nine expert annotators.

• We integrate our interpretable programs with an exist-
ing tool from domain experts (Bento [22]).

2. Related Work

Behavior Modeling. Automated behavior quantification
has enabled scalable analysis of behavioral data in neuro-
science and ethology [9, 1]. These methods often begin with
tracking of anatomically defined keypoints from recorded
videos of behaving animals [22, 18]. Domain-specific fea-
tures are then computed from trajectory data and used to
train behavior classifiers in the form of neural networks or
large random forests [22, 19], which are not easily inter-
pretable. Instead, in our approach, we will search through
these domain-specific features using program synthesis to
produce programs.

Interpretable Models. Existing interpretability tech-
niques in machine learning generally follow one of two ap-
proaches: creating post-hoc explanations of black-box mod-
els [17, 20, 11] or learning inherently interpretable mod-
els [16, 23, 8]. We focus on the second approach, and ap-
ply techniques in program synthesis [23] to learn a program
to model behavior annotations. We compare our method
against models with different levels of interpretability, from
shallow decision trees to 1-D Convolutional Networks.

We note that there exists a discussion on when machine
learning models are interpretable [21, 10, 15, 12]. In our
work, we focus on our target users, who are domain experts
in neuroscience. We work with domain experts to design a
DSL which is qualitatively interpretable for them.

3. Approach

We consider program learning in the context of sequence
classification. We train a program that predicts behavior
annotations at each frame from trajectory data, and use this
program as a description of an annotator’s annotation style.

3.1. Problem Formulation

We adopt a problem formulation similar to NEAR [23].
A program is written in a domain-specific language (DSL)
and is defined as (α, θ), where α is a discrete program ar-
chitecture and θ is a vector of real-valued parameters. We
denote the semantics of an architecture by (x, θ), which
is a function parameterized by θ and applied to input x.

Our goal is to find a program that is both accurate (low
prediction error) and interpretable (low structural cost),
which we formulate as solving the following optimization
problem:

(α
*
, θ

*
) = arg min (s(α) + ζ(α, θ)). (1)

(α,θ)

Here, ζ(α, θ) = E(x,y) D [1(Qα~ (x, θ) =6 y)] is the stan-
dard notion of prediction error. Since interpretability is a
motivating factor, we incentivize short programs by penal-
izing structural complexity s(α) , defined as follows. We
let each rule r in our DSL carry a non-negative real cost
s(r). The structural cost of an architecture α is s(α) = ~

r R(α) s(r), where 7Z is a multiset of rules used in α.
Program Synthesis. We search over program architec-

tures in a top-down manner. The search is analogous to
building a graph , where the nodes consists of both par-
tial and complete architectures that are type-consistent with
the DSL. The complete architectures are required to be goal
nodes. The edges each represent a single-step application
of the DSL rules, and are formed between either two partial
architectures or a partial and a complete architecture.

In our approach, we use the program synthesis algorithm
NEAR [23], which learns differentiable programs using an
admissible neural heuristic. We note that any program syn-
thesis approach could work within our framework.

3.2. Learnable Temporal Filters

We develop a DSL from which program synthesis meth-
ods can find interpretable programs, based on the Morlet
wavelet [4, 6]. To learn temporal information, our DSL in-
cludes a Morlet Filter operation that maps a sequence of
vectors to a single vector by taking a weighted sum of the
input sequence. The Morlet Filter, denoted by ψ, first does
a one-to-one mapping between frames 1, ... , n in the slid-
ing window to values x1, ... , xn, where xi E [−π, π] di =
1, ... , n. ψ is then evaluated at each xi and is defined as:

ψ(x; s, w) = e−0.5(
x

(s/w))2 cos(wx), (2)

where x E [−π, π].

The Morlet Filter is parameterized by s, w, where w de-
termines the width of the filter and s controls the wavelet
frequency. In our experiments, we use a generalization of
the symmetric Morlet Filter by allowing the form of the
Morlet Filter to differ between the frames preceding and
following the predicted frame. Specifically, the left (pre-
ceding) Morlet Filter is parameterized by s1, w1 whereas
the right (following) is parameterized by s2, w2, resulting
in the asymmetric Morlet Filter that we include in our DSL.

Our DSL also includes affine transformations of the fol-
lowing form, where W is a matrix of weights, x is a feature
vector, and b is a learned bias:

T(x) = W
T

 x[i1,..., in] + b. (3)

Given a full feature vector x, the transformation selects a
subset of features at indices i 1, ... , in and applies a simple

2

linear layer to the feature subset. For the purpose of inter-
pretability, we limit n to be 1 or 2, i.e. the transformations
either select a single feature, or the two same features for
the resident and intruder mice.

Within our DSL, the Morlet Filter operation is differen-
tiable with respect to parameters s, w, allowing the shape
of the filter to be discovered through gradient optimization.
Similarly, the weights and bias W, b of each affine transfor-
mation T are amenable to gradient descent.

Disjunctions. Our DSL allows disjunctions of two or
more Morlet Filter operations. The output of a complete
Morlet Filter program (the Morlet Filter applied to a se-
quence of feature vectors, followed by an affine transfor-
mation) is a logit. A disjunction combines the predictions
of each filter by summing up the outputted logits. In order
to reduce variability in the programs found by the disjunc-
tion, we perform separate runs of NEAR to find each filter
in the disjunction. Once a filter in the disjunction is found,
its weights are frozen when discovering the structure and
optimizing the parameters of the subsequent filters. This
encourages each subsequent filter to explain variance in the
dataset that has not been captured by the previous filters.

4. Experiments

4.1. Dataset

We use a subset of the MARS [22] dataset for study-
ing annotator variability, which consists of ten 10-minute
videos at 30Hz of socially interacting mice from a standard
resident-intruder assay. These videos are independently an-
notated for three behaviors of interest by each of nine do-
main experts. As input, we use a subset of domain-specific
features from the MARS dataset: 1) for both mice, we com-
pute head-body angle, body axis ratio, speed, acceleration,
tangential velocity, social angle, 2) across mice, we com-
pute area ellipse ratio, whether resident is facing intruder,
and minimum distance of resident nose to intruder body.
Here, we consider two binary classification tasks: interact
vs. no-interact, and aggression vs. no-aggression. Interac-
tion is defined as frames on which one mouse is sniffing,
attacking, or mounting the other; aggression is defined as
periods of high-intensity biting, chasing, or grappling.

4.2. Evaluation Procedure

We compare the performance of our discovered pro-
grams with the following baselines: 1) Decision Trees, a
popular choice for both performance and interpretability; 2)
1D Convolutional Neural Networks, a black-box model that
is well-suited for processing temporal signals.

Decision Trees (DT). Decision trees are constructed by
finding yes/no questions that split the data into the most
homogeneous groups. We implement DTs using XGBoost
[2], a popular framework for training tree ensembles, and

Figure 2. Performance of Models Trained on 100% Training
Data. Bars reflect mean F1 score of each model when trained
and tested separately on each of the nine annotators in the MARS
dataset.

test tree classifiers of varying complexity. As input to the
decision trees, we pass handcrafted temporal features, pro-
duced by convolving our 15 behavior features or their first
or second derivatives with a Gaussian filter with standard
deviations of 8, 30, or 120 frames This produced 135 total
features: 15 original features * 3 derivative orders (0, 1, and
2) * 3 filter widths.

1D Convolutional Networks (1D Conv). In a simi-
lar manner to a Morlet Filter, a 1D convolutional neural
network produces a weighted sum of a given sequence of
vectors- however unlike the Morlet Filter, weights are not
constrained to have any specific temporal structure. The 1D
Conv Net learns a set of weights to convolve with each in-
put feature over time, and the logits from all features are
summed for the output predictions.

Evaluation Details. We defined a window of +/- 5 sec-
onds centered about the frame for which behavior was to
be predicted, and extracted features of animal poses within
this window. We then downsampled data from 30Hz to 6Hz,
producing vectors of length 61 for each of the 15 features.

We evaluated all models using the F1-score, defined as
the harmonic mean of Precision and Recall. We selected
6 videos for training (106k frames), 2 for validation (40k
frames), and 2 for test (39k frames). To compare data effi-
ciency, we sub-sampled the training data by randomly sam-
pling trajectories of 1000 frames to achieve desired frac-
tions of the training set size. The sampling also retained
a similar class distribution as the full training set. For ev-
ery data fraction (1%, 10%, 50%), we create three different
random samples and train all models three times for each
sample. The results are reported on the average across these
nine repeats, and across the nine annotators.

4.3. Results

Accuracy. Synthesized programs with a disjunction of
two filters achieve the highest F1 score for detection of in-

3

Program Filters Decision Trees 1D Conv Net

Figure 5. Visualization of our learned filters in Bento [22]

Program Filters Decision Trees 1D Conv Net

Figure 3. Comparing models for two annotators. Each row represents the visualized model trained on aggression vs. nonaggression
annotations for one annotator. Left: The program filters are from the learned disjunctions, and shows the weight applied at each timestamp
for normalized trajectory features from program synthesis. Center: Depth 1 decision tree with branches. Right: Neural network weights
on a subset of input features, matching each annotator’s disjunction features.

Figure 4. Data Efficiency on Behavior Sequence Classification.
F1-score averaged across annotators vs. training data fraction on
the aggression vs. non-aggression task (left) and interact vs. other
task (right).

teraction, and are comparable to the Decision Tree (DT) for
detection of aggression (Figure 2). Programs with a single
filter had slightly lower F1 scores compared to the disjunc-
tion. For the DTs, the single depth 1 DT is much simpler
than 10 depth 5 DTs. Single DT performs better on aggres-
sion, which implies that thresholding on one feature is able
to classify aggression accurately and the deeper DT is more
prone to overfitting. On the other hand, a more complex DT
is needed to perform better on interaction.

In terms of data efficiency, disjunctions also remain the
highest performing model on interact vs. other (Figure 4).
On aggression, disjunctions are comparable to the single
depth 1 DT. Because of increased model complexity, the
1D Conv Net is generally less data efficient compared to
our model. We verified that the variance in performance of
both disjunctions and Morlet Filters are either less than or

comparable to variance found in the baseline models.
Interpretability. We next visualized our models and

baselines (Figure 3). All three models include some aspect
of temporal filtering of the data, however we argue that visu-
alization and interpretation of this filtering is clearest for the
disjunctions. The Conv Net filters appear as noisy versions
of the disjunction filters, but without the disjunction filters
as reference it is difficult for a domain expert to discern their
structure. Filtering in the decision tree is implicit (in the
names of the features used), and interpreting the numeri-
cal thresholds and leaf values is challenging. In contrast,
the smoothness of the disjunction filters makes them easy
to read, and their asymmetry around the predicted frame al-
lows them to produce a variety of temporal structures. For
domain experts to visualize our model more easily, we also
added support for visualization of our trained models and
their output within Bento [22] (Figure 5).

5. Conclusion

We propose a method, based on program synthesis,
for learning programmatic descriptions of behavior anno-

4

tations. We show that our method is accurate compared to
baseline methods and that the programs we learn are qual-
itatively interpretable to domain experts. Automated be-
havior quantification systems for animal studies are often
trained and evaluated on human-provided labels. As a re-
sult, human variability will affect their performance. Pro-
grammatic explanations for annotated behavior can help us
interpret annotation differences towards improving repro-
ducibility of behavioral studies.

References

[1] David J Anderson and Pietro Perona. Toward a science of
computational ethology. Neuron, 84(1):18–31, 2014. 2

[2] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich,
Yuan Tang, Hyunsu Cho, et al. Xgboost: extreme gradient
boosting. R package version 0.4-2, 1(4), 2015. 3

[3] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and
Joshua B Tenenbaum. Learning to infer graphics programs
from hand-drawn images. arXiv preprint arXiv:1707.09627,
2017. 1

[4] Dennis Gabor. Theory of communication. Journal of the
Institution of Electrical Engineers-Part III: Radio and Com-
munication Engineering, 93(26):429–441, 1946. 2

[5] Ryan Gomes, Peter Welinder, Andreas Krause, and Pietro
Perona. Crowdclustering. Neural Information Processing
Systems, 2012. 1

[6] A Grossmann, Richard Kronland-Martinet, and J Morlet.
Reading and understanding continuous wavelet transforms.
In Wavelets, pages 2–20. Springer, 1990. 2

[7] Robert Evan Johnson, Scott Linderman, Thomas Panier, Car-
oline Lei Wee, Erin Song, Kristian Joseph Herrera, Andrew
Miller, and Florian Engert. Probabilistic models of larval
zebrafish behavior reveal structure on many scales. Current
Biology, 30(1):70–82, 2020. 1

[8] Jongbin Jung, Connor Concannon, Ravi Shroff, Sharad Goel,
and Daniel G. Goldstein. Simple rules for complex decisions,
2017. 2

[9] Mayank Kabra, Alice A Robie, Marta Rivera-Alba, Steven
Branson, and Kristin Branson. Jaaba: interactive machine
learning for automatic annotation of animal behavior. Nature
methods, 10(1):64, 2013. 1, 2

[10] Harmanpreet Kaur, Harsha Nori, Samuel Jenkins, Rich Caru-
ana, Hanna Wallach, and Jennifer Wortman Vaughan. Inter-
preting interpretability: Understanding data scientists’ use of
interpretability tools for machine learning. In Proceedings of
the 2020 CHI Conference on Human Factors in Computing
Systems, pages 1–14, 2020. 2

[11] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai,
James Wexler, Fernanda Viegas, et al. Interpretability be-
yond feature attribution: Quantitative testing with concept
activation vectors (tcav). In International conference on ma-
chine learning, 2018. 2

[12] Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan,
Been Kim, Samuel J Gershman, and Finale Doshi-Velez.
Human evaluation of models built for interpretability. In

AAAI Conference on Human Computation and Crowdsourc-
ing, 2019. 2

[13] Thomas A Lampert, Andre´ Stumpf, and Pierre Gançarski.
An empirical study into annotator agreement, ground truth
estimation, and algorithm evaluation. IEEE Transactions on
Image Processing, 25(6):2557–2572, 2016. 1

[14] Xubo Leng, Margot Wohl, Kenichi Ishii, Pavan Nayak, and
Kenta Asahina. Quantitative comparison of drosophila be-
havior annotations by human observers and a machine learn-
ing algorithm. bioRxiv, 2020. 1

[15] Zachary C Lipton. The mythos of model interpretability:
In machine learning, the concept of interpretability is both
important and slippery. Queue, 16(3):31–57, 2018. 2

[16] Yin Lou, Rich Caruana, and Johannes Gehrke. Intelligible
models for classification and regression. In ACM SIGKDD
international conference on Knowledge discovery and data
mining (KDD), 2012. 2

[17] Scott M Lundberg and Su-In Lee. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 30, pages 4765–4774. Curran
Associates, Inc., 2017. 1, 2

[18] Alexander Mathis, Pranav Mamidanna, Kevin M Cury, Taiga
Abe, Venkatesh N Murthy, Mackenzie Weygandt Mathis,
and Matthias Bethge. Deeplabcut: markerless pose estima-
tion of user-defined body parts with deep learning. Nature
neuroscience, 21(9):1281–1289, 2018. 2

[19] Simon RO Nilsson, Nastacia L Goodwin, Jia J Choong,
Sophia Hwang, Hayden R Wright, Zane Norville, Xiaoyu
Tong, Dayu Lin, Brandon S Bentzley, Neir Eshel, et al. Sim-
ple behavioral analysis (simba): an open source toolkit for
computer classification of complex social behaviors in ex-
perimental animals. BioRxiv, 2020. 1, 2

[20] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”
why should i trust you?” explaining the predictions of any
classifier. In ACM SIGKDD international conference on
knowledge discovery and data mining (KDD), pages 1135–
1144, 2016. 1,2

[21] Cynthia Rudin. Stop explaining black box machine learn-
ing models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence, 1(5):206–215,
2019. 2

[22] Cristina Segalin, Jalani Williams, Tomomi Karigo, May
Hui, Moriel Zelikowsky, Jennifer J. Sun, Pietro Perona,
David J. Anderson, and Ann Kennedy. The mouse ac-
tion recognition system (mars): a software pipeline for
automated analysis of social behaviors in mice. bioRxiv
https://doi.org/10.1101/2020.07.26.222299, 2020. 1, 2, 3,
4

[23] Ameesh Shah, Eric Zhan, Jennifer J. Sun, Abhinav Verma,
Yisong Yue, and Swarat Chaudhuri. Learning differentiable
programs with admissible neural heuristics. In NeurIPS,
2020. 1,2

[24] Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles
Sutton, and Swarat Chaudhuri. Houdini: Lifelong learning as
program synthesis. arXiv preprint arXiv:1804.00218, 2018.
1

5

https://doi.org/10.1101/2020.07.26.222299,
https://doi.org/10.1101/2020.07.26.222299,

[25] Halley Young, Osbert Bastani, and Mayur Naik. Learn-
ing neurosymbolic generative models via program synthe-
sis. In International Conference on Machine Learning, pages
7144–7153. PMLR, 2019. 1

6

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

