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Abstract 

Hand-annotated data can vary due to factors such as 
subjective differences, intra-rater variability, and differing 
annotator expertise. We study annotations from different ex-
perts who labelled the same behavior classes on a set of an-
imal behavior videos, and observe a variation in annotation 
styles. We propose a new method using program synthesis to 
help interpret annotation differences for behavior analysis. 
Our model selects relevant trajectory features and learns a 
temporal filter as part of a program, which corresponds to 
estimated importance an annotator places on that feature at 
each timestamp. Our experiments on a dataset from behav-
ioral neuroscience demonstrate that compared to baseline 
approaches, our method is more accurate at capturing an-
notator labels and learns interpretable temporal filters. We 
believe that our method can lead to greater reproducibility 
of behavior annotations used in scientific studies. We plan 
to release our code. 

1. Introduction 

Supervised algorithms for animal behavior quantifica-
tion have become a powerful tool for characterizing the 
structure of behavior and its regulation by genes and the 
brain  [9, 22, 19, 7].  However, different individuals perceive 
and describe the world in different ways, and this can create 
significant inter-annotator and inter-lab differences in the 
behavioral annotations used to construct such supervised 
classifiers. In image recognition, variability across individ-
uals have been shown to produce different object catego-
rizations  [5]  or labels for the same image data  [13].  Simi-
larly, annotator variability has been observed in animal be-
havior studies, even among experts studying the same be-
haviors  [14, 22].  To improve reproducibility and annotator 
consensus in behavioral experiments, we propose a novel 
method for automatically generating interpretations of hu-
man behavior annotations. 

Existing behavior classification models are typically 
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Figure 1. Overview. Given trajectory data and behavior labels, we 
use program synthesis to learn a programmatic description with 
temporal filters. These programs can be used to compare differ-
ences across annotators. 

black-box models trained to reproduce human annotations. 
While these models can achieve high accuracy in the hands 
of individual labs, it is difficult to interpret differences be-
tween models or training sets produced by different indi-
viduals  [22, 19].  Previous studies have proposed methods 
for post-hoc interpretation of trained models  [17, 20],  but 
the large number of dimensions and parameters in modern 
machine learning models can make it difficult to understand 
how annotators use specific features to annotate behavior. 

To overcome these limitations, we use program synthesis 
to generate programmatic descriptions from behavior anno-
tations, which can be interpreted without the need for post-
hoc analysis. Program synthesis learns symbolic models 
from domain-specific languages  [24, 25, 23, 3].  We in-
troduce a domain-specific language for behavior classifica-
tion, which includes learnable temporal filters and feature 
selections to identify behaviorally relevant features of an-
imal movement. We incorporate our setup into an existing 
program synthesis method  [23]  to jointly search through the 
combinatorially large space of program architectures and 
optimize parameters. Our approach produces a program 
with temporal filters for modeling expert annotations, which 
domain experts qualitatively found to be interpretable for 
behavior analysis. Our contributions are: 
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• We combine program synthesis with temporal filtering 
to generate explanations of behavior annotations. 

• We demonstrate our approach on an animal behavior 
dataset annotated by nine expert annotators. 

• We integrate our interpretable programs with an exist-
ing tool from domain experts (Bento  [22]). 

2. Related Work 

Behavior Modeling. Automated behavior quantification 
has enabled scalable analysis of behavioral data in neuro-
science and ethology  [9, 1].  These methods often begin with 
tracking of anatomically defined keypoints from recorded 
videos of behaving animals  [22, 18].  Domain-specific fea-
tures are then computed from trajectory data and used to 
train behavior classifiers in the form of neural networks or 
large random forests  [22, 19],  which are not easily inter-
pretable. Instead, in our approach, we will search through 
these domain-specific features using program synthesis to 
produce programs. 

Interpretable Models. Existing interpretability tech-
niques in machine learning generally follow one of two ap-
proaches: creating post-hoc explanations of black-box mod-
els  [17, 20, 11]  or learning inherently interpretable mod-
els  [16, 23, 8].  We focus on the second approach, and ap-
ply techniques in program synthesis  [23]  to learn a program 
to model behavior annotations. We compare our method 
against models with different levels of interpretability, from 
shallow decision trees to 1-D Convolutional Networks. 

We note that there exists a discussion on when machine 
learning models are interpretable  [21, 10, 15, 12].  In our 
work, we focus on our target users, who are domain experts 
in neuroscience. We work with domain experts to design a 
DSL which is qualitatively interpretable for them. 

3. Approach 

We consider program learning in the context of sequence 
classification. We train a program that predicts behavior 
annotations at each frame from trajectory data, and use this 
program as a description of an annotator’s annotation style. 

3.1. Problem Formulation 

We adopt a problem formulation similar to NEAR  [23]. 
A program is written in a domain-specific language (DSL) 
and is defined as (α, θ), where α is a discrete program ar-
chitecture and θ is a vector of real-valued parameters. We 
denote the semantics of an architecture by (x, θ), which 
is a function parameterized by θ and applied to input x. 

Our goal is to find a program that is both accurate (low 
prediction error) and interpretable (low structural cost), 
which we formulate as solving the following optimization 
problem: 

(α
*
, θ

*
) = arg min (s(α) + ζ(α, θ)). (1) 

(α,θ) 

Here, ζ(α, θ) = E(x,y) D [1(Qα~ (x, θ) =6 y)] is the stan-
dard notion of prediction error. Since interpretability is a 
motivating factor, we incentivize short programs by penal-
izing structural complexity s(α) , defined as follows. We 
let each rule r in our DSL carry a non-negative real cost 
s(r). The structural cost of an architecture α is s(α) = ~ 

r R(α) s(r), where 7Z is a multiset of rules used in α. 
Program Synthesis. We search over program architec-

tures in a top-down manner. The search is analogous to 
building a graph , where the nodes consists of both par-
tial and complete architectures that are type-consistent with 
the DSL. The complete architectures are required to be goal 
nodes. The edges each represent a single-step application 
of the DSL rules, and are formed between either two partial 
architectures or a partial and a complete architecture. 

In our approach, we use the program synthesis algorithm 
NEAR  [23],  which learns differentiable programs using an 
admissible neural heuristic. We note that any program syn-
thesis approach could work within our framework. 

3.2. Learnable Temporal Filters 

We develop a DSL from which program synthesis meth-
ods can find interpretable programs, based on the Morlet 
wavelet  [4, 6].  To learn temporal information, our DSL in-
cludes a Morlet Filter operation that maps a sequence of 
vectors to a single vector by taking a weighted sum of the 
input sequence. The Morlet Filter, denoted by ψ, first does 
a one-to-one mapping between frames 1, ... , n in the slid-
ing window to values x1, ... , xn, where xi E [−π, π] di = 
1, ... , n. ψ is then evaluated at each xi and is defined as: 

ψ(x; s, w) = e−0.5( 
x 

 
(s/w) )2 cos(wx), (2) 

where x E [−π, π]. 

The Morlet Filter is parameterized by s, w, where w de-
termines the width of the filter and s controls the wavelet 
frequency. In our experiments, we use a generalization of 
the symmetric Morlet Filter by allowing the form of the 
Morlet Filter to differ between the frames preceding and 
following the predicted frame. Specifically, the left (pre-
ceding) Morlet Filter is parameterized by s1, w1 whereas 
the right (following) is parameterized by s2, w2, resulting 
in the asymmetric Morlet Filter that we include in our DSL. 

Our DSL also includes affine transformations of the fol-
lowing form, where W is a matrix of weights, x is a feature 
vector, and b is a learned bias: 

T(x) = W
T

 x[i1,..., in] + b. (3) 

Given a full feature vector x, the transformation selects a 
subset of features at indices i 1, ... , in and applies a simple 
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linear layer to the feature subset. For the purpose of inter-
pretability, we limit n to be 1 or 2, i.e. the transformations 
either select a single feature, or the two same features for 
the resident and intruder mice. 

Within our DSL, the Morlet Filter operation is differen-
tiable with respect to parameters s, w, allowing the shape 
of the filter to be discovered through gradient optimization. 
Similarly, the weights and bias W, b of each affine transfor-
mation T are amenable to gradient descent. 

Disjunctions. Our DSL allows disjunctions of two or 
more Morlet Filter operations. The output of a complete 
Morlet Filter program (the Morlet Filter applied to a se-
quence of feature vectors, followed by an affine transfor-
mation) is a logit. A disjunction combines the predictions 
of each filter by summing up the outputted logits. In order 
to reduce variability in the programs found by the disjunc-
tion, we perform separate runs of NEAR to find each filter 
in the disjunction. Once a filter in the disjunction is found, 
its weights are frozen when discovering the structure and 
optimizing the parameters of the subsequent filters. This 
encourages each subsequent filter to explain variance in the 
dataset that has not been captured by the previous filters. 

4. Experiments 

4.1. Dataset 

We use a subset of the MARS  [22]  dataset for study-
ing annotator variability, which consists of ten 10-minute 
videos at 30Hz of socially interacting mice from a standard 
resident-intruder assay. These videos are independently an-
notated for three behaviors of interest by each of nine do-
main experts. As input, we use a subset of domain-specific 
features from the MARS dataset: 1) for both mice, we com-
pute head-body angle, body axis ratio, speed, acceleration, 
tangential velocity, social angle, 2) across mice, we com-
pute area ellipse ratio, whether resident is facing intruder, 
and minimum distance of resident nose to intruder body. 
Here, we consider two binary classification tasks: interact 
vs. no-interact, and aggression vs. no-aggression. Interac-
tion is defined as frames on which one mouse is sniffing, 
attacking, or mounting the other; aggression is defined as 
periods of high-intensity biting, chasing, or grappling. 

4.2. Evaluation Procedure 

We compare the performance of our discovered pro-
grams with the following baselines: 1) Decision Trees, a 
popular choice for both performance and interpretability; 2) 
1D Convolutional Neural Networks, a black-box model that 
is well-suited for processing temporal signals. 

Decision Trees (DT). Decision trees are constructed by 
finding yes/no questions that split the data into the most 
homogeneous groups. We implement DTs using XGBoost 
[2],  a popular framework for training tree ensembles, and 

Figure 2. Performance of Models Trained on 100% Training 
Data. Bars reflect mean F1 score of each model when trained 
and tested separately on each of the nine annotators in the MARS 
dataset. 

test tree classifiers of varying complexity. As input to the 
decision trees, we pass handcrafted temporal features, pro-
duced by convolving our 15 behavior features or their first 
or second derivatives with a Gaussian filter with standard 
deviations of 8, 30, or 120 frames This produced 135 total 
features: 15 original features * 3 derivative orders (0, 1, and 
2) * 3 filter widths. 

1D Convolutional Networks (1D Conv). In a simi-
lar manner to a Morlet Filter, a 1D convolutional neural 
network produces a weighted sum of a given sequence of 
vectors- however unlike the Morlet Filter, weights are not 
constrained to have any specific temporal structure. The 1D 
Conv Net learns a set of weights to convolve with each in-
put feature over time, and the logits from all features are 
summed for the output predictions. 

Evaluation Details. We defined a window of +/- 5 sec-
onds centered about the frame for which behavior was to 
be predicted, and extracted features of animal poses within 
this window. We then downsampled data from 30Hz to 6Hz, 
producing vectors of length 61 for each of the 15 features. 

We evaluated all models using the F1-score, defined as 
the harmonic mean of Precision and Recall. We selected 
6 videos for training (106k frames), 2 for validation (40k 
frames), and 2 for test (39k frames). To compare data effi-
ciency, we sub-sampled the training data by randomly sam-
pling trajectories of 1000 frames to achieve desired frac-
tions of the training set size. The sampling also retained 
a similar class distribution as the full training set. For ev-
ery data fraction (1%, 10%, 50%), we create three different 
random samples and train all models three times for each 
sample. The results are reported on the average across these 
nine repeats, and across the nine annotators. 

4.3. Results 

Accuracy. Synthesized programs with a disjunction of 
two filters achieve the highest F1 score for detection of in-

 

3 



Program Filters Decision Trees 1D Conv Net 

Figure 5. Visualization of our learned filters in Bento  [22] 

Program Filters Decision Trees 1D Conv Net 

Figure 3. Comparing models for two annotators. Each row represents the visualized model trained on aggression vs. nonaggression 
annotations for one annotator. Left: The program filters are from the learned disjunctions, and shows the weight applied at each timestamp 
for normalized trajectory features from program synthesis. Center: Depth 1 decision tree with branches. Right: Neural network weights 
on a subset of input features, matching each annotator’s disjunction features. 

Figure 4. Data Efficiency on Behavior Sequence Classification. 
F1-score averaged across annotators vs. training data fraction on 
the aggression vs. non-aggression task (left) and interact vs. other 
task (right). 

teraction, and are comparable to the Decision Tree (DT) for 
detection of aggression (Figure  2).  Programs with a single 
filter had slightly lower F1 scores compared to the disjunc-
tion. For the DTs, the single depth 1 DT is much simpler 
than 10 depth 5 DTs. Single DT performs better on aggres-
sion, which implies that thresholding on one feature is able 
to classify aggression accurately and the deeper DT is more 
prone to overfitting. On the other hand, a more complex DT 
is needed to perform better on interaction. 

In terms of data efficiency, disjunctions also remain the 
highest performing model on interact vs. other (Figure  4). 
On aggression, disjunctions are comparable to the single 
depth 1 DT. Because of increased model complexity, the 
1D Conv Net is generally less data efficient compared to 
our model. We verified that the variance in performance of 
both disjunctions and Morlet Filters are either less than or  

comparable to variance found in the baseline models. 
Interpretability. We next visualized our models and 

baselines (Figure  3).  All three models include some aspect 
of temporal filtering of the data, however we argue that visu-
alization and interpretation of this filtering is clearest for the 
disjunctions. The Conv Net filters appear as noisy versions 
of the disjunction filters, but without the disjunction filters 
as reference it is difficult for a domain expert to discern their 
structure. Filtering in the decision tree is implicit (in the 
names of the features used), and interpreting the numeri-
cal thresholds and leaf values is challenging. In contrast, 
the smoothness of the disjunction filters makes them easy 
to read, and their asymmetry around the predicted frame al-
lows them to produce a variety of temporal structures. For 
domain experts to visualize our model more easily, we also 
added support for visualization of our trained models and 
their output within Bento  [22]  (Figure  5). 

5. Conclusion 

We propose a method, based on program synthesis, 
for learning programmatic descriptions of behavior anno-
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tations. We show that our method is accurate compared to 
baseline methods and that the programs we learn are qual-
itatively interpretable to domain experts. Automated be-
havior quantification systems for animal studies are often 
trained and evaluated on human-provided labels. As a re-
sult, human variability will affect their performance. Pro-
grammatic explanations for annotated behavior can help us 
interpret annotation differences towards improving repro-
ducibility of behavioral studies. 
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