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Figure 1. Self-supervised Behavioral Keypoint Discovery. Intermediate representations in the form of keypoints are frequently used for 
behavior analysis. We propose a method to discover keypoints from behavioral videos without the need for manual keypoint or bounding 
box annotations. Our method works across a range of organisms (including mice, humans, flies, jellyfish and tree), works with multiple 
agents simultaneously (see flies and mice above), does not require bounding boxes (boxes visualized above purely for identifying the 
enlarged regions of interest) and achieves state-of-the-art performance on downstream tasks. 

Abstract 

We propose a method for learning the posture and struc-
ture of agents from unlabelled behavioral videos. Start-
ing from the observation that behaving agents are gener-
ally the main sources of movement in behavioral videos, 
our method, Behavioral Keypoint Discovery (B-KinD), uses 
an encoder-decoder architecture with a geometric bottle-
neck to reconstruct the spatiotemporal difference between 
video frames. By focusing only on regions of movement, 
our approach works directly on input videos without requir-
ing manual annotations. Experiments on a variety of agent 
types (mouse, fly, human, jellyfish, and trees) demonstrate 
the generality of our approach and reveal that our dis-
covered keypoints represent semantically meaningful body 
parts, which achieve state-of-the-art performance on key-
point regression among self-supervised methods. Addition-
ally, B-KinD achieve comparable performance to super-

 

*Equal contribution. Correspondence to  jjsun@caltech.edu. 
†Current affiliation: Samsung Advanced Institute of Technology 

vised keypoints on downstream tasks, such as behavior clas-
sification, suggesting that our method can dramatically re-
duce model training costs vis-a-vis supervised methods. 

1. Introduction 

Automatic recognition of object structure, for example 
in the form of keypoints and skeletons, enables models to 
capture the essence of the geometry and movements of ob-
jects. Such structural representations are more invariant 
to background, lighting, and other nuisance variables and 
are much lower-dimensional than raw pixel values, mak-
ing them good intermediates for downstream tasks, such 
as behavior classification  [4,  11, 15, 40,  44],  video align-
ment  [27, 45],  and physics-based modeling  [7,  12]. 

However, obtaining annotations to train supervised pose 
detectors can be expensive, especially for applications in 
behavior analysis. For example, in behavioral neuro-
science  [35],  datasets are typically small and lab-specific, 
and the training of a custom supervised keypoint detector 
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presents a significant bottleneck in terms of cost and ef-
fort. Additionally, once trained, supervised detectors often 
do not generalize well to new agents with different struc-
tures without new supervision. The goal of our work is to 
enable keypoint discovery on new videos without manual 
supervision, in order to facilitate behavior analysis on novel 
settings and different agents. 

Recent unsupervised/self-supervised methods have 
made great progress in keypoint discovery  [21, 22, 53] 
(see also Section 2), but these methods are generally 
not designed for behavioral videos. In particular, exist-
ing methods do not address the case of multiple and/or 
non-centered agents, and often require inputs as cropped 
bounding boxes around the object of interest, which would 
require an additional detector module to run on real-world 
videos. Furthermore, these methods do not exploit relevant 
structural properties in behavioral videos (e.g., the camera 
and the background are typically stationary, as observed in 
many real-world behavioral datasets  [5,15, 23, 30, 35, 40]). 

To address these challenges, the key to our approach is to 
discover keypoints based on reconstructing the spatiotem-
poral difference between video frames. Inspired by previ-
ous works based on image reconstruction  [21, 38],  we use 
an encoder-decoder setup to encode input frames into a ge-
ometric bottleneck, and train the model for reconstruction. 
We then use spatiotemporal difference as a novel recon-
struction target for keypoint discovery, instead of single im-
age reconstruction. Our method enables the model to focus 
on discovering keypoints on the behaving agents, which are 
generally the only source of motion in behavioral videos. 

Our self-supervised approach, Behavioral Keypoint 
Discovery (B-KinD), works without manual supervision 
across diverse organisms (Figure 1). Results show that our 
discovered keypoints achieve state-of-the-art performance 
on downstream tasks among other self-supervised keypoint 
discovery methods. We demonstrate the performance of 
our keypoints on behavior classification  [43],  keypoint re-
gression  [21],  and physics-based modeling [7]. Thus, our 
method has the potential for transformative impact in be-
havior analysis: first, one may discover keypoints from be-
havioral videos for new settings and organisms; second, un-
like methods that predict behavior directly from video, our 
low-dimensional keypoints are semantically meaningful so 
that users can directly compute behavioral features; finally, 
our method can be applied to videos without the need for 
manual annotations. 

To summarize, our main contributions are: 
1. Self-supervised method for discovering keypoints 
from real-world behavioral videos, based on spatiotempo-
ral difference reconstruction. 
2. Experiments across a range of organisms (mice, flies, 
human, jellyfish, and tree) demonstrating the generality of 
the method and showing that the discovered keypoints are  

semantically meaningful. 
3. Quantitative benchmarking on downstream behavior 
analysis tasks showing performance that is comparable to 
supervised keypoints. 

2. Related work 

Analyzing Behavioral Videos. Video data collected 
for behavioral experiments often consists of moving agents 
recorded from stationary cameras  [1,4, 5, 11, 15,23, 34, 40]. 
These behavioral videos contain different model organisms 
studied by researchers, such as fruit flies  [4, 11, 15, 25] 
and mice  [5, 18, 23,40].  From these recorded video data, 
there has been an increasing effort to automatically estimate 
poses of agents and classify behavior  [13,14,18,25,31,40]. 

Pose estimation models that were developed for behav-
ioral videos  [16, 31, 36,40]  require human annotations of 
anatomically defined keypoints, which are expensive and 
time-consuming to obtain. In addition to the cost, not all 
data can be crowd-sourced due to the sensitive nature of 
some experiments. Furthermore, organisms that are translu-
cent (jellyfish) or with complex shapes (tree) can be difficult 
for non-expert humans to annotate. Our goal is to enable 
keypoint discovery on videos for behavior analysis, without 
the need for manual annotations. 

After pose estimation, behavior analysis models gener-
ally compute trajectory features and train behavior classi-
fiers in a fully supervised fashion  [5,15, 18,40, 44].  Some 
works have also explored using unsupervised methods to 
discover new motifs and behaviors [3,  19,29, 52].  Here, we 
apply our discovered keypoints to supervised behavior clas-
sification and compare against baseline models using super-
vised keypoints for this task. 

Keypoint Estimation. Keypoint estimation models aim 
to localize a predefined set of keypoints from visual data, 
and many works in this area focus on human pose. With the 
success of fully convolutional neural networks [41], recent 
methods  [8,33,46,51]  employ encoder-decoder networks by 
predicting high-resolution outputs encoded with 2D Gaus-
sian heatmaps representing each part. To improve model 
performance,  [33,46,51]  propose an iterative refinement ap-
proach,  [8,37]  design efficient learning signals, and  [9,49] 
exploit multi-resolution information. Beyond human pose, 
there are also works that focus on animal pose estimation, 
notably  [16,31,36].  Similar to these works, we also use 2D 
Gaussian heatmaps to represent parts as keypoints, but in-
stead of using human-defined keypoints, we aim to discover 
keypoints from video data without manual supervision. 

Unsupervised Part Discovery. Though keypoints pro-
vide a useful tool for behavior analysis, collecting annota-
tions is time-consuming and labor-intensive especially for 
new domains that have not been previously studied. Unsu-
pervised keypoint discovery  [21, 22, 53]  has been proposed 
to reduce keypoint annotation effort and there have been 



Figure 2. B-KinD, an approach for keypoint discovery from spatiotemporal difference reconstruction. It and It+T are video frames 
at time t and t +T . Both frame It and frame It+T are fed to an appearance encoder Φ and a pose decoder Ψ. Given the appearance feature 
from It and geometry features from both It and It+T (Sec  3.1),  our model reconstructs the spatiotemporal difference (Sec  3.2.1)  computed 
from two frames using the reconstruction decoder ψ. 

many promising results on centered and/or aligned objects, 
such as facial images and humans with an upright pose. 
These methods train and evaluate on images where the ob-
ject of interest is centered in an input bounding box. Most 
of the approaches  [21, 28, 53]  use an autoencoder-based ar-
chitecture to disentangle the appearance and geometry rep-
resentation for the image reconstruction task. Our setup is 
similar in that we also use an encoder-decoder architecture, 
but crucially, we reconstruct spatiotemporal difference be-
tween video frames, instead of the full image as in previous 
works. We found that this enables our discovered keypoints 
to track semantically-consistent parts without manual su-
pervision, requiring neither keypoints nor bounding boxes. 

There are also works for parts discovery that employ 
other types of supervision  [22, 38, 39].  For example,  [38] 
proposed a weakly-supervised approach using class label to 
discriminate parts to handle viewpoint changes,  [22]  incor-
porated pose prior obtained from unpaired data from dif-
ferent datasets in the same domain, and  [39]  proposed a 
template-based geometry bottleneck based on a pre-defined 
2D Gaussian-shaped template. Different from these ap-
proaches, our method does not require any supervision be-
yond the behavioral videos. We chose to focus on this set-
ting since other supervisory sources are not readily available 
for emerging domains (ex: jellyfish, trees). 

In previous works, keypoint discovery has been ap-
plied to downstream tasks, such as image and video gen-
eration  [22, 32],  keypoint regression to human-annotated 
poses  [21, 53],  and video-level action recognition  [26, 32]. 
While we also apply keypoint discovery to downstream 
tasks, we note that our work differs in approach (we dis-
cover keypoints directly on behavioral videos using spa-
tiotemporal difference reconstruction), focus (behavioral 
videos of diverse organisms), and application (real-world  

behavior analysis tasks  [7,  43]). 

3. Method 

The goal of B-KinD (Figure  2)  is to discover semanti-
cally meaningful keypoints in behavioral videos of diverse 
organisms without manual supervision. We use an encoder-
decoder setup similar to previous methods  [21, 38],  but in-
stead of image reconstruction, here we study a novel recon-
struction target based on spatiotemporal difference. In be-
havioral videos, the camera is generally fixed with respect to 
the world, such that the background is largely stationary and 
the agents (e.g. mice moving in an enclosure) are the only 
source of motion. Thus spatiotemporal differences provide 
a strong cue to infer location and movements of agents. 

3.1. Self-supervised keypoint discovery 

Given a behavioral video, our work aims to reconstruct 
regions of motion between a reference frame It (the video 
frame at time t) and a future frame It+T (the video frame 
T timesteps later, for some set value of T .) We accom-
plish this by extracting appearance features from frame 
It and keypoint locations (”geometry features”) from both 
frames It and It+T (Figure  2).  In contrast, previous 
works  [21, 22, 28, 38, 39]  use appearance features from It 
and geometry features from It+T to reconstruct the full im-
age It+T (instead of difference between It and It+T ). 

We use an encoder-decoder architecture, with shared ap-
pearance encoder , geometry decoder Ψ, and reconstruc-
tion decoder ψ. During training, the pair of frames It and 
It+T are fed to the appearance encoder to generate ap-
pearance features, and those features are then fed into the 
geometry decoder Ψ to generate geometry features. In our 
approach, the reference frame It is used to generate both 
appearance and geometry representations, and the future 



+ 

frame I t+T is only used to generate a geometry represen-
tation. The appearance feature h

t

a  for frame I t are defined 
simply as the output of Φ : h

t

a  = Φ(I t ). 
The pose decoder Ψ outputs K raw heatmaps Xi  R

2
, 

then applies a spatial softmax operation on each heatmap 
channel. Given the extracted pi = (ui , vi ) locations for 
i = {1,. .. , K} keypoints from the spatial softmax, we de-
fine the geometry features h

t

g  to be a concatenation of 2D 
Gaussians centered at (ui , vi ) with variance σ. 

Finally, the concatenation of the appearance feature h
t

a 

and the geometry features h
t

g  and ht+T 
g is fed to the decoder 

ψ to reconstruct the learning objective Ŝ discussed in the 
next section: S

ˆ
 = ψ ( h

t

a, htg, ht+T 
g ). 

3.2. Learning formulation 

3.2.1 Spatiotemporal difference 

Our method works with different types of spatiotemporal 
differences as reconstruction targets. For example: 

Structural Similarity Index Measure (SSIM)  [50]. 
This is a method for measuring the perceived quality of 
the two images based on luminance, contrast, and struc-
ture features. To compute our reconstruction target based on 
SSIM, we apply the SSIM measure locally on correspond-
ing patches between I t and I t+T to build a similarity map 
between frames. Then we compute dissimilarity by taking 
the negation of the similarity map. 

Frame differences. When the video background is static 
with little noise, simple frame differences, such as absolute 
difference (S|d| = |I t+T − I t|) or raw difference (Sd = 
I t+T − I t), can also be directly applied as a reconstruction 
target. 

3.2.2 Reconstruction loss 

We apply perceptual loss  [24]  for reconstructing the spa-
tiotemporal difference S. Perceptual loss compares the L2 
distance between the features computed from VGG network 
ϕ  [42].  The reconstruction S

ˆ
 and the target S are fed to 

VGG network, and mean squared error is applied to the fea-
tures from the intermediate convolutional blocks: 

Lrecon = ϕ( S(I t, It+T )) − ϕ( S
ˆ

(I t, It+T )) 
2
. (1) 

3.2.3 Rotation equivariance loss 

In cases where agents can move in many directions (e.g. 
mice filmed from above can translate and rotate freely), 
we would like our keypoints to remain semantically con-
sistent. We enforce rotation-equivariance in the discovered 
keypoints by rotating the image with different angles and 
imposing that the predicted keypoints should move corre-
spondingly. We apply the rotation equivariance loss (simi-

 

Figure 3. Behavior Classification Features. Extracting informa-
tion from the raw heatmap (Section  3.3):  the confidence scores and 
the covariance matrices are computed from normalized heatmaps. 
Note that the features are computed for all x, y coordinates. We 
visualize the zoomed area around the target instance for illustrative 
purposes. 

lar to the deformation equivariance in  [48])  on the generated 
heatmap. 

Given reference image I and the corresponding geome-
try bottleneck hg, we rotate the geometry bottleneck to gen-
erate pseudo labels h

R◦

g  for rotated input images I
R◦

 with 
degree R = {90

°
, 180

°
, 270

°
}. We apply mean squared er-

ror between the predicted geometry bottlenecks 
ˆ
hg  from the 

rotated images and the generated pseudo labels hg: 

Lr  = hR
◦ g − h

ˆ

g  (I 
R◦

 ) 
2  .

(2) 

3.2.4 Separation loss 

Empirical results show that rotation equivariance encour-
ages the discovered keypoints to converge at the center of 
the image. We apply separation loss to encourage the key-
points to encode unique coordinates, and prevent the dis-
covered keypoints from being centered at the image coordi-
nates  [53].  The separation loss is defined as follows: 

C −
(pi − pj )

2~ 

. (3) 
2σs

2
 

3.2.5 Final objective 

Our final loss function is composed of three parts: recon-
struction loss Lrecon, rotation equivariance loss Lr, and 
separation loss Ls: 

L = Lrecon + epoch>n(wrL r  + wsLs ). (4) 

We adopt curriculum learning  [2]  and apply Lr  and Ls  once 
the keypoints are consistently discovered from the semantic 
parts of the target instance. 

~Ls = exp 
i≠j 



3.3. Feature extraction for behavior analysis 

Following standard approaches  [5, 18, 40],  we use the 
discovered keypoints from B-KinD as input to a behavior 
quantification module: either supervised behavior classi-
fiers or a physics-based model. Note that this is a sepa-
rate process from keypoint discovery; we feed discovered 
geometry information into a downstream model. 

In addition to discovered keypoints, we extracted addi-
tional features from the raw heatmap (Figure  3)  to be used 
as input to our downstream modules. For instance, we 
found that the confidence and the shape information from 
the of the network prediction of keypoint location was infor-
mative. When a target part is well localized, our keypoint 
discovery network produces a heatmap with a single high 
peak with low variance; conversely, when a target part is oc-
cluded, the raw heatmap contains a blurred shape with lower 
peak value. This “confidence” score (heatmap peak value) 
is also a good indicator for whether keypoints are discov-
ered on the background (blurred over the background with 
low confidence) or tracking anatomical body parts (peaked 
with high confidence), visualized in Supplementary materi-
als. The shape of a computed heatmap can also reflect shape 
information of the target (e.g. stretching). 

Given a raw heatmap Xk for part k, the confidence 
score is obtained by choosing the maximum value from the 
heatmap, and the shape information is obtained by comput-
ing the covariance matrix from the heatmap. Figure  3  visu-
alizes the features we extract from the raw heatmaps. Using 
the normalized heatmap as the probability distribution, ad-
ditional geometric features are computed: 

Xσx
2 (Xk ) = (xi − uk )2Xk (i, j), 

ij 

Xσ
2

 
y
(Xk ) = (y j − vk )2Xk (i, j), (5) 

ij 

Xσ2
xy (Xk ) = (xi − uk )(y j − vk )Xk (i, j). 

ij 

4. Experiments 

We demonstrate that B-KinD is able to discover con-
sistent keypoints in real-world behavioral videos across a 
range of organisms (Section  4.1.1).  We evaluate our key-
points on downstream tasks for behavior classification (Sec-
tion  4.2)  and pose regression (Section  4.3),  then illustrate 
additional applications of our keypoints (Section  4.4). 

4.1. Experimental setting 

4.1.1 Datasets 

CalMS21. CalMS21  [43]  is a large-scale dataset for behav-
ior analysis consisting of videos and trajectory data from a 
pair of interacting mice. Every frame is annotated by an  

expert for three behaviors: sniff, attack, mount. There are 
507k frames in the train split, and 262k frames in the test 
split (video frame: 1024 × 570, mouse: approx 150 × 50). 
We use only the train split on videos without miniscope ca-
ble to train B-KinD. Following  [43],  the downstream be-
havior classifier is trained on the entire training split, and 
performance is evaluated on the test split. 

MARS-Pose. This dataset consists of a set of videos 
with similar recording conditions to the CalMS21 dataset. 
We use a subset of the MARS pose dataset  [40]  with 
keypoints from manual annotations to evaluate the ability 
of our model to predict human-annotated keypoints, with 
{10, 50, 100, 500} images for train and 1.5k images for test. 

Fly vs. Fly. These videos consists of interactions be-
tween a pair of flies, annotated per frame by domain ex-
perts. We use the Aggression videos from the Fly vs. Fly 
dataset  [15],  with the train and test split having 1229k and 
322k frames respectively (video frame: 144 × 144, fly: ap-
prox 30 × 10). Similar to  [44],  we evaluate on behaviors 
of interest with more than 1000 frames in the training set 
(lunge, wing threat, tussle). 

Human 3.6M. Human 3.6M  [20]  is a large-scale motion 
capture dataset, which consists of 3.6 million human poses 
and images from 4 viewpoints. To quantitatively measure 
the pose regression performance against baselines, we use 
the Simplified Human 3.6M dataset, which consists of 800k 
training and 90k testing images with 6 activities in which 
the human body is mostly upright. We follow the same eval-
uation protocol from  [53]  to use subjects 1, 5, 6, 7, and 8 for 
training and 9 and 11 for testing. We note that each subject 
has different appearance and clothing. 

Jellyfish. The jellyfish data is an in-house video dataset 
containing 30k frames of recorded swimming jellyfish 
(video frame: 928×1158, jellyfish: approx 50 pix in diame-
ter). We use this dataset to qualitatively test the performance 
of B-KinD on a new organism, and apply our keypoints to 
detect the pulsing motion of the jellyfish. 

Vegetation. This is an in-house dataset acquired over 
several weeks using a drone to record the motion of sway-
ing trees. The dataset consists of videos of an oak tree and 
corresponding wind speeds recorded using an anemometer, 
with a total of 2.41M video frames (video frame: 512×512, 
oak tree: varies, approx 

1
4  of the frame). We evaluate this 

dataset using a physics-based model [7] that relates the vi-
sually observed oscillations to the average wind speeds. 

4.1.2 Training and evaluation procedure 

We train B-KinD using the full objective in Section  3.2.5. 
During training, we rescale images to 256 × 256 and use T 
of around 0.2 seconds, except Human3.6M, where we use 
128 × 128. Unless otherwise specified, all experiments are 
ran with all keypoints discovered from B-KinD with SSIM 
reconstruction and with 10 keypoints for mouse, fly, and jel-

 



Figure 4. Comparison with existing methods  [21],  full image, 
bounding box, and SSIM reconstruction (ours). “Jakab et al. ” 
and “full image” results are based on full image reconstruction. 
“White mouse bounding box” and “black mouse bounding box” 
show the results when the cropped bounding boxes were fed to the 
network for image reconstruction. 

lyfish, 16 keypoints for Human3.6M, 15 keypoints for Veg-
etation. We train on the train split of each dataset as spec-
ified, except for jellyfish and vegetation, where we use the 
entire dataset. Additional details are in the Supplementary 
materials. 

After training the keypoint discovery model, we extract 
the keypoints and use it for different evaluations based on 
the labels available in the dataset: behavior classification 
(CalMS21, Fly), keypoint regression (MARS-Pose, Hu-
man), and physics-based modeling (Vegetation). 

For keypoint regression, similar to previous works  [21, 
22],  we compare our regression with a fully supervised 1-
stack hourglass network  [33].  We evaluate keypoint regres-
sion on Simplified Human 3.6M by using a linear regressor 
without a bias term, following the same evaluation setup 
from previous works  [28,53].  On MARS-Pose, we train our 
model in a semi-supervised fashion with 10,50, 100, 500 
supervised keypoints to test data efficiency. For behav-
ior classification, we evaluate on CalMS21 and Fly, using 
available frame-level behavior annotations. To train be-
havior classifiers, we use the specified train split of each 
dataset. For CalMS21 and Fly, we train the 1D Convolu-
tional Network benchmark model provided by  [43]  using 
B-KinD keypoints. We evaluate using mean average preci-
sion (MAP) weighted equally over all behaviors of interest. 

4.2. Behavior classification results 

CalMS21 Behavior Classification. We evaluate the ef-
fectiveness of B-KinD for behavior classification (Table  1). 
Compared to supervised keypoints trained for this task, 
our keypoints (without manual supervision) is comparable 
when using both pose and confidence as input. Compared to 
other self-supervised methods, even those that use bounding 
boxes, our discovered keypoints on the full image generally 
achieve better performance. 

Keypoints discovered with image reconstruction, similar 
to baselines  [21,38]  cannot track the agents well without us-
ing bounding box information (Figure  4)  and does not per-

 

CalMS21 Pose Conf Cov MAP 

MARS †  [40] 

Fully supervised 
 

  

 

.856 ± .010 

.874 ± .003 

.880 ±.005 

 

Self-supervised 

  

Jakab et al.  [21]  

  

.186 ±.008 

 

 

  

.182 ±.007 
Image Recon.   

 

.184 ±.006 

 

   .165 ±.012 

 

 

  

.819 ±.008 
Image Recon. bbox†

 

  

 

.812 ± .006 

 

   .812 ±.010 

 

 

  

.814 ±.007 
Ours   

 

.857 ±.005 

 

   .852 ±.013 

Table 1. Behavior Classification Results on CalMS21. “Ours” 
represents classifiers using input keypoints from our discovered 
keypoints. “conf” represents using the confidence score, and “cov” 
represents values from the covariance matrix of the heatmap. † 
refers to models that require bounding box inputs before keypoint 
estimation. Mean and std dev from 5 classifier runs are shown. 

Fly MAP 

Hand-crafted features 
FlyTracker  [15] .809 ± .013 

Self-supervised + generic features 
Image Recon. .500 ± .024 
Image Recon. bbox† .750 ± .020 
Ours .727 ± .022 

Table 2. Behavior Classification Results on Fly. “FlyTracker” 
represents classifiers using hand-crafted inputs from  [15].  The 
self-supervised keypoints all use the same “generic features” com-
puted on all keypoints: speed, acceleration, distance, and angle. † 
refers to models that require bounding box inputs before keypoint 
estimation. Mean and std dev from 5 classifier runs are shown. 

form well for behavior classification (Table  1).  When we 
provide bounding box information to the model based on 
image reconstruction, the performance is significantly im-
proved, but this model does not perform as well as B-KinD 
keypoints from spatiotemporal difference reconstruction. 

For the per-class performance (see the Supplementary 
materials), the biggest gap exists between B-KinD and 
MARS on the “attack” behavior. This is likely because dur-
ing attack, the mice are moving quickly, and there exists a 
lot of motion blur and occlusion which is difficult to track 
without supervision. However, once we extract more in-
formation from the heatmap, through computing keypoint 
confidence, our keypoints perform comparably to MARS. 

Fly Behavior Classification. The FlyTracker  [15]  uses 
hand-crafted features computed from the image, such as 
contrast, as well as features from tracked fly body parts, 



E
rr

or
 (1

 - 
P

C
K

) 

6×10 1 

4×10 1 

3×10 1 

2×10 1 

10 1 

Supervised (b) 
Supervised (w) 
Semi-supervised (b) 
Semi-supervised (w) 

Keypoint Data Efficiency (PCK at 0.5cm) 

10
1

10
2 

Number Training Samples 

Figure 5. Keypoint data efficiency on MARS-Pose. The su-
pervised model is based on  [40]  using stacked hourglass  [33], 
while the semi-supervised model uses both our self-supervised 
loss and supervision. PCK is computed at 0.5cm threshold, av-
eraged across nose, ears, and tail keypoints, over 3 runs. “b” and 
“w” indicates the black and white mouse respectively. 

such as wing angle or distance between flies. Using discov-
ered keypoints, we compute comparable features without 
assuming keypoint identity, by computing speed and accel-
eration of every keypoint, distance between every pair, and 
angle between every triplet. For all self-supervised meth-
ods, we use keypoints, confidence, and covariance for be-
havior classification. Results demonstrate that while there 
is a small gap in performance to the supervised estimator, 
our discovered keypoints perform much better than image 
reconstruction, and is comparable to models that require 
bounding box inputs (Table  2). 

4.3. Pose regression results 

MARS Pose Regression. We evaluate the pose estima-
tion performance of our method in the setting where some 
human annotated keypoints exist (Figure  5).  For this ex-
periment, we train B-KinD in a semi-supervised fashion, 
where the loss is a sum of both our keypoint discovery ob-
jective (Section  3.2.5)  as well as standard keypoint estima-
tion objectives based on MSE  [40].  For both black and 
white mouse, when using our keypoint discovery objective 
in a semi-supervised way during training, we are able to 
track keypoints more accurately compared to the supervised 
method  [40]  alone. We note that the performance of both 
methods converge at around 500 annotated examples. 

Simplified Human 3.6M Pose Regression. To com-
pare with existing keypoint discovery methods, we evalu-
ate our discovered keypoints on Simplified Human3.6M (a 
standard benchmarking dataset) by regressing to annotated 
keypoints (Table  3).  Though our method is directly appli-
cable to full images, we train the discovery model using 
cropped bounding box for a fair comparison with baselines, 
which all use cropped bounding boxes centered on the sub-
ject. Compared to both self-supervised + prior information 
and self-supervised + regression, our method shows state-

 

Simplified H36M all wait pose greet direct discuss walk 

 

Fully supervised: 

   

Newell  [33] 2.16 1.88 1.92 2.15 1.62 1.88 2.21 

 

Self-supervised + unpaired labels 

  

Jakab  [22]$ 2.73 2.66 2.27 2.73 2.35 2.35 4.00 

 

Self-supervised + template 

   

Schmidtke  [39] 3.31 3.51 3.28 3.50 3.03 2.97 3.55 

 

Self-supervised + regression 

   

Thewlis  [48] 7.51 7.54 8.56 7.26 6.47 7.93 5.40 
Zhang  [53] 4.14 5.01 4.61 4.76 4.45 4.91 4.61 
Lorenz  [28] 2.79 – – – – – – 

Ours (best) 2.44 2.50 2.22 2.47 2.22 2.77 2.50 
Ours (mean) 2.53 2.58 2.31 2.56 2.34 2.83 2.58 
Ours (std) .056 .047 .062 .048 .066 .048 .063 

Table 3. Comparison with state-of-the-art methods for land-
mark prediction on Simplified Human 3.6M. The error is in 
%-MSE normalized by image size. All methods predict 16 key-
points except for  [22]‡,  which uses 32 keypoints for training a 
prior model from the Human 3.6M dataset. B-Kind results are 
computed from 5 runs. 

Learning Objective %-MSE 

Image Recon. 2.918 f 0.139 
Abs. Difference 2.642 f 0.174 
Difference 2.770 f 0.158 
SSIM 2.534 f 0.056 
Self-supervised + extracted features 
SSIM 2.494 f 0.047 

Table 4. Learning objective ablation on Simplified Hu-
man3.6M. %-MSE error is reported by changing the reconstruc-
tion target. Extracted features correspond to keypoint locations, 
confidence, and covariance. Results are from 5 B-KinD runs. 

of-the-art performance on the keypoint regression task, sug-
gesting spatiotemporal difference is an effective reconstruc-
tion target for keypoint discovery. 

Learning Objective Ablation Study We report the pose 
regression performance on Simplified Human3.6M (Ta-
ble  4)  by varying the spatiotemporal difference reconstruc-
tion target for training B-KinD. Here, image reconstruction 
also performs well since cropped bounding box is used as 
an input to the network. Overall, spatiotemporal difference 
reconstruction yield better performance over image recon-
struction, and performance can be further improved by ex-
tracting additional confidence and covariance information 
from the discovered heatmaps. 

4.4. Additional applications 

We show qualitative performance and demonstrate addi-
tional downstream tasks using our discovered keypoints, on 
pulse detection for Jellyfish and on wind speed regression 
for Vegetation. 

Qualitative Results. Qualitative results (Figure  6) 
demonstrates that B-KinD is able to track some body parts 
consistently, such as the nose of both mice and keypoints 



Figure 6. Qualitative Results of B-KinD. Qualitative results for B-KinD trained on CalMS21 (mouse), Fly vs. Fly (fly), Human3.6M 
(human), jellyfish and Vegetation (tree). Additional visualizations are in the Supplementary materials. 

along the spine; the body and wings of the flies; the mouth 
and gonads of the jellyfish; and points on the arms and legs 
of the human. For visualization only, we show only key-
points discovered with high confidence values (Section  3.3); 
for all other experiments, we use all discovered keypoints. 

Pulse Detection. Jellyfish swimming is among the most 
energetically efficient forms of transport, and its control and 
mechanics are studied in hydrodynamics research  [10].  Of 
key interest is the relationship between body plan and swim 
pulse frequency across diverse jellyfish species. By com-
puting distance between B-KinD keypoints, we are able to 
extract a frequency spectrogram to study jellyfish pulsing, 
with a visible band at the swimming frequency (Supplemen-
tary materials). This provides a way to automatically anno-
tate swimming behavior, which could be quickly applied to 
video from multiple species to characterize the relationship 
between swimming dynamics and body plan. 

Wind Speed Modeling. Measuring local wind speed is 
useful for tasks such as tracking air pollution and weather 
forecasting  [6].  Oscillations of trees encode information on 
wind conditions, and as such, videos of moving trees could 
function as wind speed sensors  [6, 7].  Using the Vegetation 
dataset, we evaluate the ability of our keypoints to predict 
wind speed using a physics-based model  [7].  This model 
defines the relationship between the mean wind speed and 
the structural oscillations of the tree, and requires tracking 
these oscillations from video, which was previously done 
manually. We show that B-KinD can accomplish this task 
automatically. Using our keypoints, we are able to regress 
the measured ground truth wind speed with an R

2
 = 0.79, 

suggesting there is a good agreement between the propor-
tionality assumption from  [7]  and the experimental results 
using the keypoint discovery model. 

Limitations. One issue we did not explore in detail, 
and which will require further work, is keypoint discov-
ery for agents that may be partially or completely oc-
cluded at some point during observation, including self-  

occlusion. Additionally, similar to other keypoint discov-
ery models  [28,  39,  53],  we observe left/right swapping of 
some body parts, such as the legs in a walking human. One 
approach that might overcome these issues would be to ex-
tend our model to discover the 3D structure of the organism, 
for instance by using data from multiple cameras. Despite 
these challenges, our model performs comparably to super-
vised keypoints for behavior classification. 

5. Discussion and conclusion 

We propose B-KinD, a self-supervised method to dis-
cover meaningful keypoints from unlabelled videos for be-
havior analysis. We observe that in many settings, be-
havioral videos have fixed cameras recording agents mov-
ing against a (quasi) stationary background. Our proposed 
method is based on reconstructing spatiotemporal differ-
ence between video frames, which enables B-KinD to focus 
on keypoints on the moving agents. Our approach is gen-
eral, and is applicable to behavior analysis across a range of 
organisms without requiring manual annotations. 

Results show that our discovered keypoints are seman-
tically meaningful, informative, and enable performance 
comparable to supervised keypoints on the downstream task 
of behavior classification. Our method will reduce the time 
and cost dramatically for video-based behavior analysis, 
thus accelerating scientific progress in fields such as ethol-
ogy and neuroscience. 
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Supplementary Material 

We present additional experimental results (Section  A),  additional implementation details (Section  B),  and visualizations 
(Section  C).  Additional video visualizations and code are available in the project website:  https:// sites . google. 
com/view/b-kind. 

Benefits and risks of this technology. Automating the analysis of behavior is useful across many fields: in neuroscience, 
to study the neural control of behavior; in ethology and conservation, to study animal behavior and their response to human 
encroachment; in rehabilitation, to track patients’ recovery of motor function; and in helping improve safety in the workplace. 
Risks are inherent in any application where humans behavior is analyzed, and care must be taken to respect privacy and human 
rights. Responsible use in research requires following all applicable rules and policies, including filing for permission with 
the relevant internal review board (IRB), and obtaining written informed consent from human subjects being filmed. 

A. Additional Experimental Results 

A.1. CalMS21 Ablation Study 

Similar to the main paper, we evaluate CalMS21 on the behavior classification train/test split described in task 1  [43],  and 
show results using Mean Average Precision (MAP) across the annotated behavior classes. We use B-KinD keypoints as input 
to behavior classification to compare against supervised and other self-supervised baselines. 

Effect of Hyperparameters. For all experiments on CalMS21, we use a frame gap of 6 with 10 discovered keypoints. 
Here, we vary the number of discovered keypoints and frame gap for our model, and apply the learned keypoints to behavior 
classification (Table  5).  There are small variations in performance, in particular, the downstream performance generally 
improves with increasing the number of keypoints, and a frame gap of 6 or 12 works better than larger frame gaps. We note 
that the number of low confidence background keypoints also increases with the number of discovered keypoints (Figure  7), 
and due to the large proportion of background keypoints, we do not use background keypoints in the 20 keypoints case for 
the classification task. In all cases, we note that we do better than other self-supervised baselines even with bounding box 
information (MAP = .819) for this task. 

Varying Amount of Unlabeled Video Data. We vary the amount of input data (unlabelled image pairs) used to train 
B-KinD, and observe comparable performance at different amounts of data availability (Table  6).  In particular, we are 
able to achieve comparable performance on behavior classification to supervised keypoints (Table  8)  by using only 7.8k 
input training pairs in our model (approximately 4 minutes of video recorded at 30Hz; approximately 30 minutes of video 
considering no overlaps on selected image pairs). We note that this experiment is varying the amount of unlabelled data for 
training the keypoint discovery model, while the train/test split for evaluating the behavior classifier stays the same. 

Loss Ablation Study. We compare B-KinD trained with the full objective (reconstruction, rotation equivariance, separa-
tion) to one trained only on spatiotemporal difference reconstruction (Table  7).  The rotation equivariance loss is qualitatively 
important for tracking semantically consistent parts of the mouse (Figure  8)  and the separation loss prevents the model from 
predicting keypoints at the center of the image, which are rotationally consistent but do not track semantic body parts. The 
full objective is important to achieving comparable performance to supervised baselines. We would like to note that the im-
age reconstruction baselines in our main results are also trained with the full objective, except the reconstruction is based on 
image reconstruction. Additionally, since keypoint locations are not consistent for spatiotemporal difference reconstruction 

Hyperparam. Value MAP Hyperparam. Value MAP 

 

6 .852 f .013 

 

6 .850 f .017 
Frame Gap 12 .862 f .012 # keypoints 10 .852 f .013 

 

30 .839 f .003 

 

20* .868 f .008 

Table 5. Effect of Hyperparameters on CalMS21. For frame gap experiments, the number of keypoints is set to 10. For experiments 
with varying number of keypoints, frame gap is set to 6. All keypoints, confidence, and covariance are used as inputs, except (*) for the 
experiments with 20 keypoints, where only high-confidence keypoints are used (11 keypoints) since a high proportion of keypoints are 
discovered on the background. Mean and standard dev from 5 classifier runs are shown. 

https://sites.google.com/view/b-kind
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Figure 7. Qualitative Results on CalMS21 by varying the number of keypoints. We train the keypoint discovery model with different 
numbers of discovered keypoints. Each row shows qualitative results with all the keypoints including the background keypoints. We note 
that there are 2 background (low-confidence) keypoints for 6 and 10 discovered keypoints, and 9 background keypoints for 20 discovered 
keypoints. 

# Training Pairs Corresponding Video Length (30Hz) MAP 

7.8k 4.3 min .867 ± .003 
18k 10 min .840 ±.016 
26k 14 min .852 ±.013 

Table 6. Effect of Varying Training Data Amount for Keypoint Discovery. We train the keypoint discovery model with different 
amounts of input training frame pairs from video. Different training amounts are selected by choosing random video subsets from the full 
set of CalMS21 training videos. Image pairs are sampled from videos with a gap of 6 frames, and between pairs to ensure no overlaps, 
there is a gap of 7 frames. All keypoints, confidence, and covariance values on 10 discovered keypoints are used. Mean and standard dev 
from 5 classifier runs are shown. 

CalMS21 Pose Conf Cov Ours (MAP) Reconstruction (MAP) 

.814 ± .007 .695 ± .022 
Loss Variation .857 ± .005 .776 ± .012 

  .852±.013 .794±.008 

Table 7. Loss Variations on CalMS21. “Ours” represents training B-KinD keypoints with the full objective (reconstruction, rotation 
equivariance, separation) and “Reconstruction” indicates training with spatiotemporal difference reconstruction only. Mean and standard 
dev from 5 classifier runs are shown. 

only, we note that adding confidence and covariance significantly improves the performance of the reconstruction loss only 
model (Table  7). 

Single Geometry Branch. Our proposed model extracts appearance features from the frame at time t, and two geometry 
features (the keypoints), where one is for frame at time t and the other is for frame at time t + k. It is also possible to train 
the model using only one geometry branch only for the frame at time t + k, without the geometry branch for time t. On 
CalMS21, training B-KinD with one geometry branch reduced the classification performance from MAP of 0.852 ± 0.013 
(full model) to 0.835 ± 0.013 (single branch). 



No 
rotation 

With 
rotation 

Figure 8. Qualitative Results on CalMS21 for loss ablation study. With the full training objective for our discovered keypoints, we are 
able to track 8/10 keypoints consistently, while without rotation loss, there are only 5/10 tracked keypoints on both mice. Additionally, some 
of the discovered keypoints without rotation are not semantically consistent (for example, the pink and orange keypoints, two keypoints on 
the body of the white mouse, shift in order as the white mouse moves around). See quantitative results in Table  7. 

CalMS21 Pose Conf Cov MAP Attack AP Investigation AP Mount AP 

    

Fully supervised 

   

 

  

.856 ± .010 .724 ± .023 .893 ± .005 .950 ± .004 
MARS †  [40]   

 

.874 ± .003 .790 ± .004 .890 ± .006 .943 ± .004 

 

   .880 ± .005 .804 ± .012 .902 ± .004 .934 ± .006 

    

Self-supervised 

  

Jakab et al.  [21]  

  

.186±.008 .135±.019 .254±.019 .170±.029 

 

 

  

.182±.007 .111±.016 .217±.011 .219±.021 
Image Recon.   

 

.184±.006 .114±.006 .209±.012 .229±.021 

 

   .165±.012 .110±.016 .218±.013 .167±.038 

 

 

  

.819 ± .008 .680 ± .028 .861 ± .007 .918 ± .007 
Image Recon. bbox†

 

  

 

.812±.006 .694±.011 .818±.016 .923±.013 

 

   .812 ± .010 .709 ± .008 .806 ± .019 .922 ± .013 

 

 

  

.814 ± .007 .654 ± .025 .861 ± .003 .925 ± .014 
Ours   

 

.857 ± .005 .763 ± .015 .879 ± .009 .928 ± .006 

 

   .852 ± .013 .751 ± .025 .870 ± .009 .935 ± .010 

Table 8. Per-Class Behavior Classification Results on CalMS21. “Ours” represents classifiers using input keypoints from B-KinD. 
“conf” represents using the confidence score, and “cov” represents values from the covariance matrix of the heatmap. † refers to models 
that require bounding box inputs before keypoint estimation. Mean and standard dev from 5 classifier runs are shown. 

A.2. CalMS21 Per-Class Performance 

B-KinD keypoints achieve comparable performance to supervised keypoints when using pose and confidence features from 
the heatmap (Table  8).  For both supervised keypoints and our keypoints, the behavior classes with the biggest improvement 
when adding confidence features is on the “Attack” class, which contains frames with occlusion and motion blur since the 
mice are moving quickly and chasing/tussling. Heatmap confidence and covariance values provides more information about 
the detected part (Figure  16).  For example, when a part is well localized (ex: visible nose of mouse), our keypoint discovery 
network produces a heatmap with a single high peak with low variance; conversely, when a target part is occluded, the 
heatmap contains a blurred shape with lower peak value. We note that performance is similar for the supervised keypoints 
and our keypoints on the “Investigation” and “Mount” classes. 

A.3. Human3.6M Ablation Study 

We evaluate the effect of number of keypoints and frame gaps on simplified Human 3.6M (Table  9).  Note that we use 
frame difference, instead of SSIM, as a reconstruction target for studying the effect of hyperparameters. When the frame gap 
is too small, the region of motion becomes too narrow, which results in slightly lower performance. Also, discovering more 
keypoints does not always guarantee better performance. Empirical results show that informative keypoints are discoverable 
with 16 keypoints. 



Hyperparam. Value %-MSE Hyperparam. Value %-MSE 

 

10 2.81 

 

10 2.96 
Frame Gap 20 2.57 # keypoints 16 2.57 

 

30 2.64 

 

30 2.63 

Table 9. Hyperparameters Study on Simplified Human 3.6M. %-MSE error from a single run is shown. For frame gap experiments, the 
number of keypoints is set to 16. Frame gap is set to 20 for experiments with a varying number of keypoints. We use frame difference here 
as a reconstruction target for studying the effect of hyperparameters. 

swim 
pulse 
frequency 

swimming pause swimming 

Figure 9. Spectrogram from Distance of Discovered Keypoints. From a recorded video of jellyfish swimming at 48Hz, we discover 
keypoints at each frame using our model and compute a spectrogram based on the average distance between discovered keypoints on the 
jellyfish. 

We also perform an ablation study using a single geometry branch at time t + k for two different reconstruction targets 
(image and SSIM), using the same %-MSE error metric as the main paper. Training with one geometry branch reduced the 
pose regression performance from 2.534 ± 0.056 to 2.596 ± 0.1089 (image) and 2.556 ± 0.0320 (SSIM) where the standard 
deviation is computed over 5 runs. As a loss ablation study, we train our model without the rotation equivariance loss on 
simplified Human 3.6M, and the pose regression performance is reduced to 2.61. 

A.4. Jellyfish Pulse Detection 

The energy efficiency of swimming jellyfish combined with their structural simplicity makes them a good organism for 
understanding the hydrodynamics of animal propulsion  [10].  In particular, researchers would like to study the relationship 
between body plan and swim pulse frequency across jellyfish species. This has applications in ethology, hydrodynamics, as 
well as bio-inspired vehicles. Here, we use Clytia hemisphaerica as our jellyfish species to study jellyfish pulsing during 
swimming using our discovered keypoints. After videos are recorded from a swimming jellyfish from in a tank, we apply our 
keypoint discovery model to track keypoints automatically on the jellyfish (visualization provided in project website). We 
also compute the swim pulse frequency by computing the distance between all pairs of our discovered keypoints with high 
confidence (5 keypoints) and extracting a frequency spectrogram based on average keypoint distance (Figure  9).  We observe 
a visible band at the swimming frequency around 7Hz, and we note that between 110 to 200 seconds, the jellyfish is not 
swimming (floating), and thus the swimming frequency band is not visible in that duration. Since our discovered keypoints 
are able to detect pulsing, this provides a way to automatically annotate swimming behavior. This method can be applied to 
videos from other jellyfish species to study the relationship between swimming dynamics and body plan. 

A.5. Vegetations Wind Speed Regression 

Videos of oscillation of tree branches and leaves encode information on local wind conditions, and could function as 
wind speed sensors. Local wind speed measurements are useful for a variety of tasks, including air pollution monitoring, 
weather forecasting, and predicting movement of forest fires  [6, 7].  We use the Vegetation dataset to study the effectiveness 
of our discovered keypoints for capturing oscillating movement of trees. This dataset consists of videos of swaying trees 



Figure 10. Wind Speed Regression from Discovered Keypoints. Mean wind speed, U
¯

, vs. the fourth root of the sway amplitude 
equivalent measured from the standard deviation of the convex hull area of the 15 discovered keypoints in each clip, based on model 
from  [7].  The scatter represents 10-mintute averages of the same data used for training the keypoint model. The black lines represent the 
best linear regression fit for the proportionality assumption. The proportionality coefficient and the R

2
 values are presented in the legend. 

recorded from an overhead camera from a drone, while the wind speed is measured using an anemometer. We observe that 
the discovered keypoints from our approach are of different parts of the tree in separate views but are consistent within a 
single clip, as to capture oscillations of branches/leaves (visualization provided in project website). 

We use a physics-based model  [7]  to study the relationship between oscillations of trees and wind speed. This model 
defines the relationship between structural oscillation and wind speed as: 

σ  I u Ū 

where σ is the standard deviation of the amplitude of the structural oscillations, U is the mean wind speed, and I u  is the 
measure of the turbulence intensity of the streamwise component, defined as the standard deviation of the streamwise ve-
locity fluctuations normalized to the mean wind speed. The model requires tracing of the structural oscillations of the 
branches/leaves, which was previously done manually and we show that the keypoint discovery model can do this automat-
ically. The 15 detected keypoints track these oscillations in a 2D space and a representative measure of these oscillations in 
both coordinates is calculated using the convex hull area, or the sway amplitude equivalent, ϕ. The average sway amplitude 
equivalent of the keypoints, ϕ

¯
, provides the following proportionality relationship: 

~C0 
ϕ¯  Ū 

where C0 is the coefficient of proportionality. The best regression fit of the experimental data calculated using the least 
squares method has R

2
 = 0.79 suggesting there is a good agreement between the proportionality assumption and the experi-

mental results using the keypoint detection model (Figure  10). 

B. Additional Implementation Details 

Architecture Details Our method uses ResNet-50  [17]  as an encoder Φ , GlobalNet  [8]  as a pose decoder Ψ, and a 
series of convolution blocks as a reconstruction decoder ψ, following the unsupervised keypoint discovery model from  [38]. 
Architecture details about reconstruction decoder is shown in Table  10.  For more implementation details, the code is available 
on our project website:  https://sites.google.com/view/b-kind. 

The hyperparameters for the keypoint discovery model is included in Table  11.  All models use SSIM image as the 
reconstruction target, unless stated otherwise. All keypoint discovery models are trained until convergence of the training 
loss on a NVIDIA V100 Tensor Core GPU. Below, we include a additional details on the keypoint discovery model and 
downstream task used to evaluate each dataset. 



Table 10. Architecture details of the reconstruction decoder. “Conv block” refers to a basic convolution block which is composed of 
3×3 convolution, batch normalization, and ReLU activation. Note that output size for Human3.6M experiments is downsampled by a 
factor of 2 for all the layers. 

Type Input dimension Output dimension Output size 

Upsampling - - 16x16 
Conv block 2048 + # keypoints x 2 1024 16x16 
Upsampling - - 32x32 
Conv block 1024 + # keypoints x 2 512 32x32 
Upsampling - - 64x64 
Conv block 512 + # keypoints x 2 256 64x64 
Upsampling - - 128x128 
Conv block 256 + # keypoints x 2 128 128x128 
Upsampling - - 256x256 
Conv block 128 + # keypoints x 2 64 256x256 
Convolution 64 3 256x256 

CalMS21. The CalMS21 dataset  [43]  consists of videos and trajectory data from a pair of interacting mice, annotated with 
behavior labels at each frame by neuroscientists. There is one black mouse and one white mouse engaging in social behaviors, 
recorded at 1024 x 570 at 30 Hz. The supervised keypoints provided with CalMS21 are from the MARS detector  [40] 
developed for this dataset, which detects 7 anatomically-defined keypoints for each mouse. For training keypoint discovery, 
we use a subset of the training split without miniscope cable (26k images), and we use the full train/test split defined by  [43] 
on Task 1 for evaluating behavior classification. For behavior classification, we use the same setup (1D Conv Net architecture, 
hyperparameters, random seeds, data split, etc.) as the CalMS21 dataset benchmarks, except we replace the supervised input 
keypoints with our discovered keypoints for evaluation. We additionally experiment with adding heatmap confidence and 
convariance during classification by appending these additional features to input keypoints during classifier training. This 
dataset is available under the CC-BY-NC-SA license. 

MARS-Pose. MARS-Pose is a set of mouse interaction images with human keypoint annotations  [40]  and these images 
are recorded in similar recording conditions to CalMS21  [43].  We use a subset of the images for training (10,50,100,500) and 
test on the full 1.5k images test set. We evaluate this dataset based on pose estimation performance to the human-annotated 
keypoints. For the supervised model, we use the stacked hourglass model  [33]  and for the semi-supervised model, we add a 
supervised keypoint estimation loss based on MSE to our keypoint discovery framework. 

Fly vs. Fly. This dataset consists of videos of two interacting flies  [15]  with frame-level behavior annotations. We 
use the “Aggression” videos from this dataset (144 x 144 at 30 Hz) and use the behaviors with more than 1000 annotated 
training samples, with the same setup as  [44].  The provided FlyTracker with this dataset computes hand-crafted behavioral 
features directly from video for behavior classification. Since keypoints may be discovered from any body part, we compute 
corresponding generic features not based on keypoint identity: speed of every keypoint, acceleration of every keypoint, 
distance between every pair, and angle between every triplet. Additionally, since the flies are similar in appearance, when 
extracting keypoint locations from the B-KinD heatmaps, we detect 2 max locations for the 2 peaks. We then take the spatial 
softmax over the region around each max location, instead of taking the spatial softmax over the whole heatmap. In terms of 
identity, we always use the fly with smaller y values at centroid as the first fly, and the fly with larger y values as the second. 
For the classifier model, we use the same setup (1D Conv Net architecture (except frame gap in the Conv Net is 1 instead 
of 2 since flies have faster behaviors), hyperparameters, random seeds, data split, etc.) as the CalMS21 dataset benchmarks, 
except using the fly features as input to classify annotated behavior at each frame. This dataset is available under the CC0 
1.0 Universal license. 

Human3.6M. Human 3.6M dataset  [20]  is a large-scale dataset containing 3.6 million 3D and 2D human poses with 
corresponding images. The videos are taken from 4 different viewpoints for 17 scenarios (discussion, taking photo, walking, 
...) with the same background. This dataset is available for academic use, and the dataset license is provided by the Human 
3.6M authors on the dataset website, link available within  [20].  Simplified Human 3.6M dataset, introduced by  [53],  consists 
of 6 different activities with mostly upright poses by cropping the full image using bounding box. Since our method requires 



Dataset # Keypoints Batch size Resolution Frame Gap Learning Rate 
CalMS21 10 5 256 6 0.001 

Fly 10 5 256 3 0.001 
Human 16 36 128 20 0.001 
Jellyfish 10 5 256 20 0.001 

Vegetations 15 5 256 60 0.001 

Table 11. Hyperparameters for Keypoint Discovery. 

static background assumption, we crop a pair of full images using the same bounding box for training a keypoint discovery 
model. The final image has 128×128 resolution. We evaluate the pose regression performance on the same testing set from 
the Simplified Human 3.6M dataset. 

Jellyfish. This is an in-house video dataset consisting of a freely swimming Clytia hemisphaerica in a water tank. We 
train and run our keypoint discovery model on the same 30k frames, recorded at 48Hz, to demonstrate our keypoints on new 
organisms and on detecting swimming frequency. Since the jellyfish is very small (  50 pix) relative to the size of the image 
(928× 1158), we first use the SSIM image to identify a rough bounding box around the jellyfish (150 ×150) before re-scaling 
the input to the keypoint discovery model to 256 × 256. We note that this step would not be necessary given a GPU with more 
memory, since the jellyfish would still be visible at higher resolutions. More details on the pulse detection is in Section  A.4. 

Vegetations. This is an in-house video dataset captured from a drone flying overhead of an Oak tree as the tree is swaying 
in the wind, and local wind speed is recorded using an anemometer. The video frames are processed at 512 × 512 and 120 
Hz, and re-scaled to be 256 × 256 for the keypoint discovery model. The drone may shift slightly over the video recording, 
and we use existing image alignment methods  [47]  to align video frames before computing the spatiotemporal difference 
reconstruction target for our method. More details on the wind speed regression is in Section  A.5. 

C. Visualizations 

We present additional visualization results on mouse (Figure  11),  fly (Figure  12),  tree (Figure  13),  and human (Figure  14). 
Additional videos are available on our project website:  https://sites.google.com/view/b-kind. 

Confidence Visualizations. We observe that keypoints discovered on the background and not tracking agent parts gen-
erally have very low confidence (Figure  16).  This is because heatmaps of background keypoints are not well-localized, and 
is spread over the image, thus have a low peak value (low confidence). In comparison, discovered keypoints on body parts 
(such as the nose), is localized to a specific part of the image and has higher peak values. Additionally, confidence values can 
provide information on occluded parts. For example, for the nose of the white mouse (third column, first row, Figure  16),  the 
confidence varies from 0.5  0.6 when the nose is visible in the first two examples to 0.3  0.4 when the nose is harder to 
see in the last two examples. 

Challenges. Difficult examples for our model are visualized in Figure  15.  When there is occlusion, such as in the mouse 
examples, the keypoint is generally discovered on the visible parts, and when there is heavy occlusion, such as from the 
miniscope cable, discovered keypoint location may be shifted. This is likely why including additional information from the 
heatmap, such as confidence (Figure  16)  is helpful for behavior classification. We can see similar effects on self-occlusion for 
humans, and also left-right swapping of some keypoints for when humans are facing towards or away from the camera (this 
has also been observed with other keypoint discovery models  [28,39, 53]).  Unusual poses may also be difficult, such as when 
the fly is completely tilted towards the camera in the last column of row 1. Future directions to integrate 3D structure, for 
instance by using multi-view videos, could help address these issues. Despite this, we note that our current discovery model 
achieves state-of-the-art results among other self-supervised methods for behavior classification and keypoint regression. 



Figure 11. Qualitative Results on CalMS21. We observe that keypoints are discovered for noses of both mice and generally along the 
spine of the mice. 

Figure 12. Qualitative Results on Fly-vs-Fly. We observe that 3 keypoints are discovered on the body of the fly, with 2 on the wings (one 
for each wing). 

Figure 13. Qualitative Results on Vegetations. Each row shows different frames with discovered keypoints from a single video. Our 
model can discover and track consistent keypoints within the same video. 



Figure 14. Qualitative Results on Simplified Human 3.6M. We observe that keypoints are generally discovered on visible joints and end 
points of humans, such as head, elbows, hands, upper legs, knees and feet. We note that there is left/right swapping of body parts, since 
when the human is facing forwards or backwards, keypoints are generally on the same side. 

Figure 15. Limitations. We visualize examples that are difficult for our model, for example from occlusion/agents being in close proximity 
(mouse, fly), self-occlusion (human), unusual poses (human, fly), and left-right swapping (human). 



Figure 16. Confidence visualization on CalMS21. Confidence score (maximum prediction value) is shown with the normalized heatmap. 
Background keypoints (fourth on row 1 and second on row 2) have very low confidence. 
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